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Abstract

Investigating the optimal stochastic process beyond Gaussian for noise injection
in a score-based generative model remains an open question. Brownian motion is
a light-tailed process with continuous paths, which leads to a slow convergence
rate for the Number of Function Evaluation (NFE). Recent studies have shown
that diffusion models suffer from mode-collapse issues on imbalanced data. In
order to overcome the limitations of Brownian motion, we introduce a novel score-
based generative model referred to as Lévy-Itô Model (LIM). This model utilizes
isotropic ↵-stable Lévy processes. We first derive an exact reverse-time stochastic
differential equation driven by the Lévy process, then develop the corresponding
fractional denoising score matching. LIM takes advantage of the heavy-tailed
properties of the Lévy process. Our experimental results show LIM allows for
faster and more diverse sampling while maintaining high fidelity compared to
existing diffusion models across various image datasets such as CIFAR10, CelebA,
and imbalanced dataset CIFAR10LT. Comparing our results to those of DDPM with
3.21 Fréchet Inception Distance (FID) and 0.6437 Recall on the CelebA dataset,
we achieve 1.58 FID and 0.7006 Recall using the same architecture. LIM shows
the best performance in NFE 500 with 2⇥ faster total wall-clock time than the
baseline.

1 Introduction

Score-based diffusion models train time-dependent score models given a diffusion process and
generate samples from the corresponding reverse process [39]. The feasibility of score-based diffusion
models is based on the time-reversal formula of the Stochastic Differential Equations (SDEs) driven
by the Brownian motion [2]. The exact form of the density function of the Brownian motion enables
efficient sampling and easy theoretical handling compared to other types of noise. The score-based
diffusion model is easy to train because the score function is approximated through Denoising Score-
Matching (DSM). Additionally, the solution of reverse SDE can be simulated through the numerical
SDE solver. This enables effective training and utilization of the model in various applications. One
limitation of score-based diffusion models is that the paths produced by the SDEs need numerous
iterations to achieve a data distribution, leading to slower sampling. To solve these problems, various
methods have been proposed to reduce the convergence rate while maintaining to generate high
fidelity samples [22]. Another effort has also been made to use distillation to reduce the number of
steps [33]. In addition, it has been pointed out that Diffusion models show significant degradation
in terms of fidelity and diversity when dealing with imbalanced datasets [30]. Thus, there is a need
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Figure 1: Forward and reverse processes of Diffusion model and LIM. The formula indicates there
exists a reverse-time stochastic differential equation (SDEs) corresponding to SDEs driven by isotropic
↵-stable Lévy processes and can be exactly expressed by the fractional score function S

(↵)
t (x).

(a)

(b)

(c)
Forward SDE Reverse SDE

Figure 2: Trajectories of forward and reverse SDEs driven by (a) Brownian process; (b) isotropic ±-
stable Lévy process. Red boxes indicate large jumps generated by the heavy-tail property of ↵-stable
distribution. (c) Comparison of Maximum Mean Discrepancy (MMD) between the Diffusion Model
(DM) [39] and the proposed model on the mixture of Gaussians.

to perform further research and develop score-based generative models that use alternative noises.
Recently, there have been attempts to use new noises such as gamma distribution [24] or generalized
Gaussian distribution [8]. These models have shown possibilities in expanding the range of noise
processes. However, they did not propose a time-reversal formula, which is an important property for
the feasibility of score-based generative models. As a result, the time-reversal formula has not yet
been fully proven for alternative noises.

In this paper, we propose a novel score-based generative model, Lévy-Itô Model (LIM), which utilizes
isotropic ↵-stable Lévy processes as noise injection. This is the first attempt to use the isotropic
↵-stable Lévy process in a score-based generative model and prove the exact time-reversal formula
of SDEs driven by Lévy process. It is noted that this is also the first continuous-time model using
the heavy-tailed process, which allows for the derivation of a probability fractional ODE (See more
details in Appendix C). We derive a fractional score function to match the drift term of the generator
of time-reversal SDEs driven by Lévy process and propose fractional Denoising Score Matching,
which is a more general version of DSM [40] to approximate the fractional score function.

Looking at the reverse path of LIM in Figure 2, we observe large jumps occurring near the noise
space. It causes the trajectory to move quickly towards the sample space, which is shown in Figure
1. As LIM has sufficient ability to move from the sample space to the noise space in spite of small
noise coefficient due to large jump noises, there is a higher likelihood of reaching multiple modes
more precisely. These characteristics can be observed in Figure 3, which is based on the simplest
form of an imbalanced dataset. LIM’s superiority can be observed not only from the ratio aspect but
also from FID and MMD, which are calculated directly without using any embeddings for the sets of
true samples and generated samples. LIM shows that the distribution p✓ of its generated samples is
similar to the ground truth distribution pdata.
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Figure 3: Mode estimation for the synthetic data. The dataset consists of two mixtures of Gaussian
distributions, with a ground truth ratio of 10:1. The blue clusters in subplots (a) is the ground truth
and each (b) and (c) represents the distribution of generated samples in 2D by the diffusion model and
LIM. In subplot (b), it can be seen that for the Diffusion model, the generated samples have a ratio of
5.6:1, which is quite different from the ratio of ground truth in subplot (a). However, in subplot (c),
for LIM, the generated samples have a ratio of 11.1:1, which is relatively close to the ground truth.
This similarity can be observed not only from the ratio aspect but also from FID (Fréchet Inception
Distance) and Maximum Mean Discrepancy (MMD). The diffusion model shows FID of 8.312 ±
0.904 and MMD of 0.02 ± 0.002. On the other hand, the LIM achieves FID of 0.663 ± 0.376 and
MMD of 0.026 ± 0.003.

We draw inspiration from the observation that the time-reversal formula for SDEs is known not only
for diffusion processes but also for SDEs driven by Lévy processes containing jumps [7]. In addition,
the invariant measure of the Euler scheme has been shown to converge to the invariant measure of the
solution of SDEs driven by Lévy process [6]. Moreover, there is an example of using Lévy processes
in Markov Chain Monte Carlo (MCMC), where the corresponding research demonstrated a faster
convergence rate for NFE both theoretically and experimentally [37]. However, it cannot be directly
extended to SDEs driven by multivariate stable processes and use an approximation to calculate the
score function of a data distribution, which degrades the potential performance. These observations
motivate us to consider using Lévy processes in score-based generative models.

Our experimental results show LIM allows for faster and more diverse sampling while maintaining
high fidelity compared to diffusion models across various image datasets such as CIFAR10, CelebA,
and imbalanced dataset CIFAR10LT. We realize that the heavy-tail property of the Lévy process
allows us to overcome the limitations of Brownian motion with respect to mode estimation, sample
diversity, and convergence rate for NFE. Through the above experiments, we emphasize we have
further expanded the scope of score-based generative models.

The contributions of our paper can be summarized as follow:

• We propose a novel score-based generative model, Lévy-Itô Model (LIM), which utilizes
isotropic ↵-stable Lévy processes as noise injection.

• We derive an exact reverse-time stochastic differential equation driven by the Lévy process
and develop the corresponding fractional Denoising Score Matching.

• We validate that LIM allows for faster and more diverse sampling while maintaining high
fidelity compared to existing diffusion models across various image datasets and shows
more robustness against imbalanced data.

2 Related works

Diffusion models have shown improvements in performance through various approaches such as
incorporating guidance [18], introducing new architectures [29], and proposing novel training methods
[13]. Additionally, various attempts to reduce convergence rates have been proposed, such as using
ODE solvers [23], or Fourier Neural Operator [42]. Despite these advancements, diffusion models still
face inherent limitations such as slow convergence rates and the mode-collapse issue in imbalanced
datasets [30]. There have been attempts to use new noises in score-based generative models. The
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denoising generative model with gamma distribution is one such example [24], which shows faster
convergence for NFE than score-based diffusion models. [8] proposes using heavy-tailed noises in
score-based generative models by extending the noise injection to generalized Gaussian distributions.
The authors state that the heavy-tailed DSM is more robust against imbalance tasks than score-based
diffusion models. They commonly use a variant of the Denoising Diffusion Probabilistic Model
(DDPM) structure to apply alternative noises. These models have shown the potential to expand the
range of noise processes, however, their performance in terms of the Fréchet Inception Distance (FID)
is not as high as that of score-based diffusion models.

Since these distributions follow a Lévy process [11, 41], the drift term for the time-reversal formula
can be computed according to [7]. For isotropic ↵-stable Lévy processes, which follow symmetric and
stable distributions, an exact drift term can be computed from the time-reversal formula. Training can
be stable and accurate without the needs for integration. Furthermore, with the knowledge of the exact
drift term, a reverse sampling formula ensuring convergence can be derived. In contrast, the drift terms
used in Heavy-tailed DSM and Denoising Diffusion Gamma Models appear as an integral, making it
difficult to derive an exact form. Even if integration is used during training or approximations are
applied to the drift term, accumulating errors lead to inaccurate and unstable training. Moreover,
when using an approximation for the drift term to make training practical, there’s no assurance that
the distance between the distribution of actual data, pdata and the distribution obtained from reverse
sampling, p✓ aligns within a certain range. For Heavy-tailed DSM, despite proposing a modified score
function corresponding to the Generalized Gaussian distribution and providing a training method,
there is no theoretical foundation proving that the modified score function converges to pdata through
reverse sampling. Similarly, Denoising Diffusion Gamma Models also fail to propose an exact drift
term and present limitations by not providing theoretical evidence for the convergence of reverse
sampling using the proposed score function. As a result, the FID performances of these two papers
are significantly lower than that of DDPM [15].

3 Background

3.1 Isotropic alpha-stable distributions

Figure 4: Comparison of samples from Gaussian,
non-isotropic, and isotropic ↵-stable distribution.

Let ↵ 2 (0, 2] be a characteristic exponent
that determines the decay rate, and � be a
scale parameter. For d 2 N, S↵Sd(�) denotes
the d-dimensional isotropic ↵-stable distri-

bution. If a random variable X 2 Rd fol-
lows S↵Sd(�), then the characteristic func-
tion of X is E[eihu,Xi] = e

��↵||u||↵ and has
heavy-tail properties with tail index ↵, i.e.,
P(||X|| > r) ⇠ r

�↵. A closed-form of density
function for S↵Sd(�) is unknown, except for ↵ = 1, ↵ = 1.5 and ↵ = 2 cases3. Note that the
behavior of isotropic ↵-stable distribution is different from non-isotropic ↵-stable in multi-dimension
since the components of isotropic ↵-stable are not independent unless ↵ = 2. Contrary to [43] which
can not be extended to SDEs that are driven by ↵-stable Lévy processes, we utilize isotropic ↵-stable
processes for driving noise in SDEs. See Figure 4 for the comparison between sample distributions of
Gaussian, non-isotropic ↵-stable, and isotropic ↵-stable random variable.

3.2 Lévy processes

An Rd-valued stochastic process (Lt)t�0 with L0 = 0 is called Lévy process if (i) Lt has independent
increments, (ii) Lt has stationary increments, and (iii) Lt has stochastically continuous sample paths.
Thus, Lévy process may have at most countably many discontinuous points, also known as jumps [3].
If for all s < t, (Lt �Ls)

d
= Lt�s follows S↵Sd((t� s)1/↵), where d

= means that the two processes
have the same law, then Lt is referred to as a d-dimensional isotropic ↵-stable Lévy process, denoted
by L

↵
t . Notably, L↵

t is a prototypical pure jump process. The ↵-stable distribution has a heavy-tailed
property, meaning that the frequency of large jumps increases as ↵ decreases. According to the

3When ↵ = 2, it holds S↵Sd(�) = N d(0,
p
2�I) where N is a Gaussian distribution and I 2 Rd⇥d is the

identity operator
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Lévy-Itô decomposition [21], we can split the sample paths of Lévy process into drift parts, Brownian
process parts, and jump parts. The focus of this paper is on rotationally invariant pure-jump Lévy
processes, whose Lévy measure is ⌫(dx) ⇠ ||x||�d�↵dx.

4 Lévy-Itô Model

4.1 Time-Revesal of SDEs driven by Lévy processes

In this section, we provide a time-reversal theory for SDEs driven by Lévy processes as follows:

d

!
Xt = b(t,

!
Xt�)dt+ �L(t)dL

↵
t , t 2 [0, T ] (1)

where
!
Xt� denotes the left limit of

!
X at time t which implies the càdlàg (right conti. with left limits)

solution. We define fractional score function S
(↵)
t by,

S
(↵)
t (x) :=

�
↵�2
2 rpt(x)

pt(x)
, x 2 Rd

, t 2 [0, 1] (2)

where �
�
2 denote the fractional Laplacian of order �

2
for � 2 (�1, 2) [27]. Precisely, �

�
2 f(x) :=

F�1{||u||�F{f}(u)} where F and F�1 are the Fourier and the inverse Fourier transform, respec-

tively. The time-reversal of
!
Xt is defined by

 
Xt :=

!
Xt� �

!
XT� where t runs backward from T to 0.

Note that
 
Xt is a Lévy process with respect to natural filtration when time flows forwards [17], which

is the càglàd (left conti. with right limits). Our first main result is the derivation of the reverse-time
SDE corresponding to (1).
Theorem 4.1 (Time-Reversal of SDE). Let 1 < ↵  2. Suppose b(t,x) is locally bounded and the
marginal distribution of (Xt)t2[0,T ] has a density function pt(x).

d

 
Xt =

⇣
b(t,

 
Xt+)� ↵ · �↵

L(t)S
(↵)
t (

 
Xt+)

⌘
d̄t+ �L(t)dL̄

↵
t + dZ̄t, (3)

where d̄t is an infinitesimal negative timestep, L̄↵
t is the backward version of the isotropic ↵-stable

Lévy process, and Z̄t is the backward version of a Lévy-type stochastic integral Zt such that E[Zt] = 0
with finite variation.

See more detail in Theorem B.1 for the definition of Zt. Now we propose a score-based generative
model with Lévy process L↵

t , refers to Lévy-Itō Model (LIM). In [39], the VP-SDE formula is defined

as d
!
Xt = ��(t)

2

!
Xtdt+ (�(t))

1
2 dBt and �(t) is set to a linear function �(t) = (�1 � �0)t+ �0. On

the other hand, we extended [39]’s formula to the SDE driven by isotropic ↵-stable Lévy process,
d

!
Xt = ��(t)

↵

!
Xtdt + (�(t))

1
↵ dL

↵
t , where we simulate the noise term in (3) using only L

↵
t . This

choice is motivated by the fact that, in contrast to �L(t)dL↵
t , which exhibits infinite variation, dZt has

a mean of 0 and finite variation, rendering it comparatively negligible. The specific �(t) in our paper
is derived from the cosine schedule proposed in [25] and tailored to LIM as �(t) = �↵

d log(cos(
⇡t
2 ))

dt

for setting a forward SDE with b(t,x) = ��(t)
↵ x and �L(t) = �

1
↵ (t) in (1). Then the solution

!
Xt has the same law with a(t)

!
X0 + �(t)✏ where ✏ ⇠ S↵Sd(1), a(t) = exp(�

R t
0

�(s)
↵ ds), and

�(t) = (1� a
↵(t))

1
↵ . As b(t,x) = ��(t)

↵ x satisfies the condition of Theorem 4.1, we can obtain the
reverse-time SDE of the beta-schedule version,

d

 
Xt =

⇣
� �(t)

↵

 
Xt+ � ↵ · �(t) · S(↵)

t (
 
Xt+)

⌘
d̄t+ (�(t))

1
↵ dL̄

↵
t . (4)

For t < s, the solution of equation (4) can be represented as an integral, utilizing the semi-linear
structure of the reverse SDE,

xt =
a(t)

a(s)
xs � ↵

2 · a(t)
Z t

s

d

du

⇣ 1

a(u)

⌘
S
(↵)
u (xu)du+

Z t

s
(�(u))

1
↵
a(t)

a(u)
dL̄

↵
t . (5)
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We can get faster sampling method by using an approximation for the second term
R t
s

�(u)
a(u)S

(↵)
u (xu)du.

This term can be approximated as (
R t
s

�(u)
a(u)du) · S

(↵)
s (xs) and it is possible to calculate

R t
s �(u) a(t)

a(u) ,

the scale parameter � of which follows �↵ =
���
R t
s

d
du

⇣
e
�

R t
u �(k)

⌘���.

Corollary 4.1 (Variant of Euler-Maruyama with dynamic time increment). Suppose the fractional
score function in the SDE given by equation (4) satisfies the conditions stated in Theorem E.2, and
a(t), �(t) are bounded. Then, there exists a Markov chain (xt) that follows:

xt =
a(t)

a(s)
xs + ↵

2

⇣
a(t)

a(s)
� 1

⌘
S
(↵)
s (xs) +

⇣⇣
a(t)

a(s)

⌘↵
� 1

⌘ 1
↵
✏. (6)

Here, ✏ ⇠ S↵Sd(1) for s > t, and �t = s� t ⌧ 1. As a result of the conditions being satisfied, the
Wasserstein-1 distance between the invariant measures of the solution of Equation (4) and (xt) is
bounded by (�t)

1
↵ [6]. (See more detail in Appendix E)

The paper [6] outlines a way to find bounds on the Wasserstein-1 distance by determining bounds
for the approximation of the drift term, J1, and the approximation of the stochastic term, J2. In
the equation, only the bound for the approximation of the drift term, J1, is utilized. Furthermore,
since the law of a weak solution is same to the law of the strong solution, the Wasserstein-1 distance
between the invariant measures for the strong solution and the approximation can be used for the that
of the weak solution and the approximation as well. In addition, we can also find a probability ODE
corresponding to (1).
Theorem 4.2 (Probability Fractional ODE). Let b(t,x) : Rd ! R and �L(t) : R ! R be func-
tions that satisfy the Lipschitz condition as stated in [35]. For the SDE following (1), the solution
(Xt)t2[0,T ] of the SDE satisfies the following ODE:

d

!
Xt

d
=

✓
b(t,

!
Xt�)� �

↵
L(t)S

(↵)
t (

!
Xt�)

◆
dt. (7)

Due to its semilinear structure, the solution to (7) can be represented as an integral. This is shown in
Lemma D.2. The Euler method can then be used to find the solution.
Corollary 4.2 (Deterministic ODE sampling). If the drift term in (7) is Lipschitz continuous and
the solution xt has a bounded second derivative, then a sequence (xt) can be obtained using the
Euler-scheme:

xt =
a(t)

a(s)
xs + ↵ ·

⇣
a(t)

a(s)
� 1

⌘
· S(↵)

s (xs) (8)

where s > t. When the step size is �t, the global truncation error is bounded by O(�t) [5].

4.2 Estimating Fractional Score Function

Let q↵(x) be the density of S↵Sd(1). A weak solution of the beta-schedule version is
!
Xt =

a(t)
!
X0 + �(t)✏ where ✏ ⇠ S↵Sd(1) with the following transition density:

pt(xt|x0) =
1

�d(t)
q↵

✓
xt � a(t)x0

�(t)

◆
. (9)

We train the fractional score model st(xt; ✓) which estimates S
(↵)
t (xt) at the optimal point. The

method of approximating the fractional score function S
(↵)
t (xt) can be equivalent to estimating the

fractional score function S
(↵)
t (xt|x0), which replaces the fractional score function of term pt(xt) in

(2) with that of the transition density (9).
Theorem 4.3 (Fractional Denoising Score Matching). For a parameter ✓, two loss functions L1(✓)
and L2(✓) are given as follows:

L1(✓) = Et,xt⇠pt(xt)
kst(xt; ✓)� S

(↵)
t (xt)k22. (10)

L2(✓) = Et,(x0,xt)⇠pt(x0,xt)
kst(xt; ✓)� S

(↵)
t (xt|x0)k22. (11)

Then, there exists a constant C satisfying L1(✓) = L2(✓) + C so that the optimization of two loss
functions with respect to ✓ is equivalent.
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The drift term of the reverse-time SDEs can be accurately determined by training st(xt; ✓) to match
S
(↵)
t (xt|x0), as stated in Theorem 4.3. Moreover, if we have the jump-type Lévy process L↵

t , we can
calculate S

(↵)
t (xt|x0) explicitly as a linear expression.

Theorem 4.4. Let 1 < ↵ < 2. If the transition density function pt(xt|x0) follows (9), then the
fractional score function of pt(xt|x0) can be represented as a linear form such that

S
(↵)
t (xt|x0) =

�
↵�2
2 rpt(xt|x0)

pt(xt|x0)
= � 1

�↵�1(t)
· 1
↵
·
✓
xt � a(t)x0

�(t)

◆
. (12)

Theorem 4.4 implies that the computational cost of training a fractional score model st(xt; ✓) is
similar to DSM [40].

4.3 Loss function

We set beta schedule as cosine beta schedule �(t) [25] , following �(t) = ↵
1+s

⇡
2
tan

⇣
t+s
1+s

⇡
2

⌘

for small number 0 < s ⌧ 1. Then, the drift term a(t) =
cos(

t+s
1+s

⇡
2 )

cos(
s

1+s
⇡
2 )

and the diffusion term

�(t) = (1� a(t)↵)
1
↵ . We use the U-net architecture as in DDPM [15] for training and apply the loss

(11) to train st(xt; ✓). For ✏ ⇠ S↵Sd(1) and x0 ⇠ pdata, xt = a(t)x0 + �(t)✏, U(0, 1) denotes a
uniform distribution. Then, the loss with the relative weight �(t) is defined as

L(✓; �(t)) = Et⇠U(0,1)Ex0⇠pdataE✏⇠S↵Sd(1)

����↵�1(t)st(xt; ✓) +
✏

↵

���
2

2

. (13)

The fractional score model st(xt; ✓) learns the law of the solution Xt for each t because the beta-
schedule version solution used during training is the weak solution of the given forward SDEs.

5 Experiments

We employ continuous time step throughout our experiments and set NFE to a fixed value of 500
in all cases. Given that Lévy processes exhibit a higher occurrence of extreme values compared to
Gaussian noise, we opt for the smooth L1 Loss instead of the L2 Loss to ensure stable training. We
use the modified VP-SDE to fit the Lévy process and quadratic timestep during reverse sampling.

5.1 Mode Estimation

Figure 5: t-SNE and evaluation in the
imbalanced CIFAR10. LIM (blue), DM
(red), and training data (green).

We conduct the class imbalance experiment for mode
estimation with two kinds of datasets. First is customized
imbalanced CIFAR10 with a ratio given of 1:2:3:4:5.
We choose t-distributed stochastic neighbor embedding
(t-SNE), which reduces complex data of high dimen-
sions to two dimensions. In table 1 and Fiure 5, the
mode estimation of LIM is much closer to training
data than the diffusion model. Also, the corresponding
FID, Recall, and MMD of LIM show improved per-
formances. The second dataset is CIFAR10LT includ-
ing 10 classes, which follow heavy-tailed distribution
4. Table 3 shows that as we move from class 0 with a high ratio to class 9 with a low ratio,
the overall performance tends to decrease. However, LIM shows better performances compared
to the diffusion model with respect to FID and Recall. These results demonstrate that LIM is
more robust for mode estimation in imbalanced datasets, and alleviates the mode-collapse issue.

5.1.1 Sample Diversity

4The ratio is given by 5000:2997:1796:1077:645:387:232:139:83:50
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Metric Model airplane automobile bird cat deer dog frog horse ship truck

FID# DM 13.92 8.87 14.58 15.44 10.35 16.48 13.19 11.05 9.50 8.38
LIM 13.92 8.24 15.02 16.07 10.05 18.24 13.23 9.77 9.18 7.76

Recall" DM 0.6646 0.6238 0.6968 0.6076 0.6936 0.6792 0.6816 0.6734 0.6342 0.6098
LIM 0.6912 0.6516 0.7138 0.6272 0.6976 0.7212 0.7082 0.7040 0.6472 0.6366

Table 2: Results of conditional generation on CIFAR10(32⇥ 32).

Metric Model airplane automobile bird cat deer dog frog horse ship truck

FID# DM 22.00 12.69 30.55 37.14 22.08 49.31 38.67 44.82 50.97 36.08
LIM 15.594 9.5131 19.928 25.66 15.90 33.5393 29.46 24.88 30.34 34.302

Recall" DM 0.6412 0.5716 0.6500 0.5200 0.6240 0.5828 0.5796 0.6246 0.5890 0.6046
LIM 0.6768 0.6118 0.6778 0.5696 0.6248 0.6578 0.5686 0.6100 0.5906 0.6084

Table 3: Results of conditional generation on CIFAR10LT(32⇥ 32).

Metric LIM DM
FID# 21.07 62.62
Recall" 0.5549 0.5002
MMD# 0.00416 0.01396

Table 1: Imbalanced CIFAR10 results.

We choose Recall as an evaluation metric for sample di-
versity. In Table 5, we can see that LIM exceeds other
diffusion models in Recall. Moreover, even in the condi-
tional generation, it shows higher Recall for each class,
proving that the generated samples are more diverse than
those of the diffusion model (Table 2).

Imputation The imputation refers to the task of restoring the masked regions in an image. To
measure the diversity of samples, we use Learned Perceptual Image Patch Similarity (LPIPS) as a
metric, where a higher LPIPS indicates greater diversity and a lower value implies more similarity
between samples. For each original image x, we generate 10 imputed images {x̂i}10i=1

and calculate
the average of LPIPS for the 10 samples. As shown in Figure 6, the diffusion model tends to generate
similar eyes and mouths in the masked region, while LIM produces a much wider range of diverse
images and shows higher LPIPS.

Figure 6: Imputaion images on CelebA-HQ dataset. Diffusion model(DM) generates only similar
eyes and lips, while LIM generates a much more diverse range of shape and color of eyes and lips.
LPIPS" of DM is 0.0132, but LIM is 0.0197.

5.2 Convergence rate for NFE

We compare LIM and diffusion models on CIFAR10 (32 ⇥ 32) and CelebA (64 ⇥ 64) dataset in
terms of convergence rate for NFE. Figure 7 shows that FID score of LIM drops at earlier NFE than
the baselines in SDE-based sampling. Moreover, it shows a competitive convergence rate for NFE
compared to ODE-based models. These experimental results demonstrate that LIM is capable of
converging to the sample space faster than the baselines. See Appendix G.6 to figure out the wall
clock time per NFE on various datasets.
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Figure 7: Convergence rate for NFE measured by FID score on CIFAR10 and CelebA.

5.3 Sample Quality

Table 5 displays the performance of LIM in comparison to previous approaches for unconditional
image generation on CIFAR10 (32 ⇥ 32) and CelebA (64 ⇥ 64). We measure FID scores and
Recall using reverse sampling and generate 50k samples for all datasets. For CelebA, we randomly
select 50k samples from the training dataset with 5 iterations. We evaluate NLL using a uniformly
dequantized test dataset and calculate the log-likelihood through the average of 5 iterations using the
ODE solver [39]. Since it is difficult to numerically calculate the density function of the isotropic
↵-stable distribution in higher dimensions (d > 100) [26], we approximate the density function with
non-isotropic ↵-stable distributions to evaluate the NLL of LIM. For CIFAR10, we train 2 backbone
models: DDPM [15] and NCSN++(deep) [39]. See Appendix G for more detail.

↵ CIFAR10 CelebA
1.2 5.15 2.99
1.5 2.86 1.57
1.8 2.44 3.21

Table 4: ↵ selection on CIFAR10
(32⇥32) and CelebA (64⇥64).

The performance of LIM can differ with different ↵. In-
deed, this seems intuitively natural since images with
low resolution less prefer large jumps, while images with
high resolution and multiple modalities can benefit explo-
ration from large jumps. Table 4 provides a comparison of
LIM’s performance across different ↵ values. Although
the overall tendency of declining FID with lower values
remains consistent, it appears that differences in FID it-
self arises when using different architectures on CIFAR10 (32⇥32). In spite of using half of NFE
used in [39], LIM shows competitive FID score, Recall, and NLL. Especially in CelebA (64⇥64),
LIM achieves FID score of 1.57 and Recall of 0.7007. It is an impressive performance since we
do not use any other guidance or improved model architecture. We also conducted performance
comparisons between diffusion model [39] and LIM using the ADM architecture [9] on ImageNet
(64⇥64). Diffusion model [39] achieves a FID of 14.23, Precision of 0.6711, and Recall 0.6932. In
constrast, LIM achieves a FID of 12.97, Precision of 0.6782, and Recall of 0.6782. For comparing
the performance on a high-resolution dataset, we chose the DDPM architecture [15], and trained LIM
and diffusion model [39] on the CelebA-HQ dataset (256⇥256). This indicates that when it comes to
CelebA-HQ, LIM attains an FID score of 7.76 with 500 NFE, whereas the diffusion model achieves a
higher FID of 11.87 with 1000 NFE based on DDPM architecture [15].

5.4 Deterministic ODE sampling

NFE 20 50 100 200
DDIM 6.64 5.23 - 4.78

LIM-DDIM 6.73 4.80 3.95 -
Table 6: DDIM and LIM-DDIM with ↵ = 1.5 on
CelebA (64⇥64).

We have the option to utilize DDIM inference
for our model. When we use a pretrained model
on CelebA (64x64), Table 6 displays the FID
scores acquired by DDIM and LIM-DDIM for
various NFEs. The results demonstrate that
LIM-DDIM outperforms DDIM in terms of
performance.
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Figure 8: Generated samples on CelebA-HQ 256 ⇥ 256, LSUN-Church 256 ⇥ 256, and LSUN-
Bedroom 256⇥ 256.

Model Noise NFE FID# Recall" †NLL(bits/dim)#
CIFAR10 (32⇥ 32)

DDPM [15] Gaussian 1000 3.17 -  3.70
DDPM cont. (VP) [39] Gaussian 1000 3.24 0.6784 3.21
NCSN++ cont. (deep, VP) [39] Gaussian 1000 2.44 0.6860 3.13
LIM-DDPM cont. (Ours) Lévy (↵=1.8) 500 3.37 0.6874 3.08
LIM-NCSN++ cont. (deep, Ours) Lévy (↵=1.8) 500 2.44 0.6960 2.97

CelebA (64⇥ 64)

DDPM [15] Gaussian 1000 3.50 - -
DDPM cont. (VP) [39] Gaussian 1000 3.21 0.6437 2.39
LIM-DDPM cont. (Ours) Lévy (↵=1.5) 500 1.57 0.7007 2.23

Table 5: Unconditional generation on CIFAR10 (32⇥32) and CelebA (64⇥64). †NLL is approximated
by using non-isotropic ↵-stable distribution as a prior density.

6 Limitation

Many diffusion models have been conducted to find the best model architectures such as NCSN++
[39] and ADM [9]. In contrast, Lévy process differs significantly from Brownian motion. Therefore,
it is uncertain whether using the same model architecture that has been used previously is the best
approach for LIM. Although, in this study, we use the same structure of the existing diffusion model
to compare the pure effect of the Lévy process, there is a need to find a model architecture that is
suitable for the Lévy process in order to improve performance further.

7 Conclusion

The aim of this study is to expand the variety of noise distributions utilized in score-based generative
models by introducing an exact time-reversal formula for SDEs with Lévy processes. We propose a
new score-based generative model, Lévy-Itô Model (LIM). The effectiveness of this model has been
verified by empirical results, which show that LIM performs well with various image dataset. As a
result, this study provides a solution and demonstrates the potential for utilizing a wider range of
non-Gaussian Markov processes in score-based generative models.
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