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Abstract

Large language models (LLMs) struggle with representing and generating rare1

tokens despite their importance in specialized domains. In this study, we identify a2

reproducible three-regime organization of neuron influence in the final MLP layer3

for rare-token prediction, composed of: (i) a highly influential plateau of specialist4

neurons, (ii) a power-law regime of moderately influential neurons, and (iii) a rapid5

decay regime of minimally contributing neurons. We show that neurons in the6

plateau and power-law regimes form coordinated subnetworks with distinct geomet-7

ric and co-activation patterns, while exhibiting heavy-tailed weight distributions,8

consistent with predictions from Heavy-Tailed Self-Regularization (HT-SR) theory.9

These specialized subnetworks emerge dynamically during training, transitioning10

from a homogeneous initial state to a functionally differentiated architecture. Our11

findings reveal that LLMs spontaneously combine distributed power-law sensitivity12

with specialized rare-token processing. This mechanistic insight bridges theoretical13

predictions from sparse coding and superposition with empirical observations,14

offering pathways for interpretable model editing, efficiency optimization, and15

deeper understanding of emergent specialization in deep networks.16

1 Introduction17

Large language models (LLMs) have demonstrated remarkable capabilities in modeling complex18

linguistic patterns, yet they consistently struggle with representing and generating rare tokens, that19

is, words or phrases that appear infrequently in the training data [12, 33, 16]. This limitation arises20

from the heavy-tailed frequency distributions of natural language [34, 31], where a significant portion21

of linguistic phenomena appears with extremely low frequency[4, 11]. Recent work has shown this22

limitation can lead to collapse when training on synthetic data that either truncates or narrows the tail23

of the distribution [7, 10, 2].24

While extrinsic approaches have been proposed such as retrieval-augmented generation [14], in-25

context learning [8], and non-parametric memory mechanisms [3], the intrinsic mechanisms by which26

LLMs internally organize computation for rare token prediction remain largely unexplored. Under-27

standing these mechanisms is crucial both for theoretical advancement in mechanistic interpretability28

and for practical applications in model improvement and efficiency optimization.29

This challenge parallels human language acquisition, where children rapidly learn new words from30

minimal exposure [5, 18]. Cognitive neuroscience explains this through Complementary Learning31

Systems (CLS) theory [21, 13], which posits that the brain employs two distinct neural systems: a32

neocortical system for gradual learning of distributed representations, and a hippocampal system33

specialized for rapid encoding of specific experiences, including rare events [13, 26]. Analogously,34

LLMs may spontaneously develop distributed and specialized circuits for handling low-frequency35

tokens.36
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Recent mechanistic interpretability studies have revealed neurons encoding syntactic [17] and seman-37

tic [9] features, as well as frequency-sensitive neurons modulating token logits [27]. However, the38

organizational principles governing rare token processing—particularly how neurons self-organize39

into functional subnetworks—remain underexplored.40

In this study, we investigate decoder-only transformers and focus on the final MLP layer, where41

feature integration is critical for token prediction [30]. Across multiple model families, we identify42

neuron populations that disproportionately influence rare token prediction, forming a three-regime43

structure of influence:44

1. Influential plateau: A small subset of neurons with exceptionally high impact on rare token45

prediction.46

2. Power-law regime: A majority of moderately influential neurons following a scale-free47

distribution, consistent with sparse feature learning.48

3. Rapid decay: A long tail of minimally contributing neurons.49

We further demonstrate that plateau and power-law neurons form coordinated activation subspaces,50

exhibit structured geometric organization, and develop heavy-tailed weight distributions consistent51

with Heavy-Tailed Self-Regularization (HT-SR) theory [19, 20]. These findings suggest that LLMs52

spontaneously self-organize into specialized subnetworks for rare token processing, bridging theoreti-53

cal predictions from sparse coding and emergent superposition with empirical observations. These54

results provide insights for understanding how language models spontaneously develop computational55

specialization for low-frequency linguistic phenomena.56

2 Background57

2.1 Transformer architecture58

Figure 1: Absolute change in token-level cross-entropy
loss (∆loss) per neuron across training steps. Rare-
token-specialized neurons gradually emerge, exhibiting
disproportionately high influence compared to the ma-
jority of neurons with negligible effect.

We focus on the Multi-Layer Perceptron (MLP)59

sublayers of decoder-only transformers, where60

feature integration is critical for token predic-61

tion [30]. Given a normalized hidden state62

x ∈ Rdmodel from the residual stream, the MLP63

transformation is:64

MLP(x) = Wout ϕ(Winx+ bin) + bout, (1)

where Win ∈ Rdmlp×dmodel , Wout ∈ Rdmodel×dmlp ,65

and bin, bout are learned biases. The nonlinear-66

ity ϕ is typically GeLU, though gated activa-67

tions such as SiLU are common. We refer to68

the post-activation entries ϕ(Winx+ bin) as neu-69

rons, indexed by their layer and position (e.g.,70

<layer>.<index>).71

We select the last MLP layer for analysis, as it72

directly projects into the unembedding matrix that produces token probabilities. While this choice73

limits generalizability to earlier layers, it provides a principled starting point for studying emergent74

specialization in rare token processing.75

2.2 Heavy-Tailed Self-Regularization (HT-SR) Theory76

HT-SR theory provides a spectral lens for understanding functional specialization in neural net-77

works [19, 20, 15, 6]. It connects functional specialization to statistical properties of weight matrices78

and their eigenvalue distributions.79

For a neural network with L layers, let Wi denote a weight matrix extracted from the i-th layer, where80

Wi ∈ Rm×n and m ≥ n. We define the correlation matrix associated with Wi as:81
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Xi := W⊤
i Wi ∈ Rn×n, (2)

The empirical spectral distribution (ESD) of Xi is defined as:82

µXi
:=

1

n

n∑
j=1

δλj(Xi), (3)

where λ1(Xi) ≤ · · · ≤ λn(Xi) are the eigenvalues of Xi, and δ is the Dirac delta function. The83

ESD µXi
represents a probability distribution over the eigenvalues of the weight correlation matrix,84

characterizing its spectral geometry.85

HT-SR posits that successful training induces heavy-tailed spectral behavior, reflecting self-86

organization toward a critical regime between order and chaos. The tail-heaviness is quantified87

via the Hill estimator αHill (Section 4.3), where low αHill (typically α < 2) indicates strong functional88

specialization and distributed feature learning. In our context, neurons forming heavy-tailed subnet-89

works are hypothesized to correspond to rare token specialists, consistent with principles from sparse90

coding and information bottleneck theory [22, 28].91

3 Rare Token neuron analysis framework92

3.1 Rare Token Neuron Identification93

We hypothesize that a subset of neurons in the final MLP layer functionally specialize to modulate the94

prediction of rare tokens, that is, tokens with low frequency in the training corpus. This hypothesis is95

grounded in sparse coding [22] and the information bottleneck principle [28], suggesting that neural96

resources are allocated selectively to efficiently represent low-frequency, high-information content97

signals.98

Ablation methodology To test this hypothesis, we perform targeted ablation experiments following99

Stolfo et al. [27]. For neuron i with activation ni in the last MLP layer, we define the mean-ablated100

activation:101

x̃(i) = x+ (n̄i − ni)w
(i)
out , (4)

where n̄i is the mean activation of neuron i across a reference subset of inputs, and w
(i)
out is the102

corresponding output weight vector. This intervention isolates the contribution of each neuron to103

token-level predictions. We quantify functional specialization using the Neuron Effect:104

∆loss(i) = Ex∼D

∣∣∣L(LM(x), x)− L(LM(x̃(i)), x)
∣∣∣ , (5)

where L is the token-level cross-entropy loss and LM(x) is the model output. High ∆loss(i) indicates105

neurons with disproportionate influence on rare token prediction.106

Experimental setup We sample 25,088 tokens from the C4 corpus [25], filtering for rare tokens107

using a two-stage procedure: (i) retaining tokens below the 50th percentile in unigram frequency, and108

(ii) restricting to valid, correctly spelled English words1.109

Emergence of rare token neurons Figure 1 illustrates the per-neuron influence distribution over110

training. We observe a heavy-tailed structure: most neurons have negligible impact, while a small111

group exhibits disproportionately high ∆loss. We term these rare token neurons, further categorized112

as boosting or suppressing based on whether their activity increases or decreases rare token likelihood.113

1Filtered using the pyspellchecker library: https://pypi.org/project/pyspellchecker/
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3.2 Distribution and Structure of Neuron Influence114

Ranking neurons by ∆loss reveals a three-regime structure (Figure 2b):115

1. Influential plateau regime: A small fraction of neurons consistently exhibit high influence,116

forming a plateau at the top of the distribution.117

2. Power-law decay regime: Most neurons follow a scale-free power-law:118

log |∆loss| ≈ −κ log(rank) + β, (6)

where κ reflects the slope. This intermediate regime aligns with theoretical predictions of119

sparse feature extraction in overparameterized networks [20].120

3. Rapid decay regime: The remaining neurons contribute negligibly, with influence decaying121

faster than power-law predictions.122

This structure indicates functional specialization: a small subnetwork disproportionately handles123

rare token prediction. The power-law regime suggests scale-free organization characteristic of124

self-organized criticality in complex systems [1, 29].125

(a) Absolute ∆loss distribution across training steps. (b) Three-regime structure of neuron influence.

Figure 2: (a) The green line shows the power-law prediction; influence declines faster on the right
and deviates on the left due to an emerging bias, though the slope remains within the power-law
regime. (b) Illustration of the three-regime structure.

3.3 Co-activation Patterns Through the Lens of Activation Space Geometry126

Having identified rare-token neurons through targeted ablation experiments, we turn to a mechanistic127

analysis of their behavior, aiming to uncover structural principles that govern the (dis)appearance128

of rare tokens in model predictions. To this end, we conduct a series of geometric analysis on129

the activation space. Our approach is motivated by the hypothesis that the internal representations130

learned by language models encode information in geometrically meaningful ways—such that certain131

geometric structures (e.g. vectors,subspaces or manifolds) are responsible for particular semantic132

representations [23, 24].133

Construction of the activation space To understand how rare token neurons function collectively,134

we construct high-dimensional vectors comprising of activations of a certain neuron in response to135

the selected context-token pairs from the C4 corpus [25].136

Two geometric statistics for co-activation detection We hypothesize that rare token neurons137

do not act in isolation, but instead participate in coordinated subspaces to modulate token-level138

probabilities. To this end we introduce two statistics in the activation space to measure the potential139

coordination patterns.140

Firstly, we introduce the effective dimensionality of each neuron’s activation distribution using141

Principal Component Analysis (PCA). Formally, the effective dimension deff is defined as the smallest142

d such that the cumulative variance explained exceeds a fixed threshold τ :143
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deff = min

{
d :

∑d
i=1 λi∑N
j=1 λj

≥ τ

}
, (7)

where λi denotes the i-th eigenvalue of the activation covariance matrix.144

The second statistics is the pairwise cosine similarity between activation vectors, measuring the145

activation similarity between neurons, regardless of their activation intensities. Let hi,hj ∈ RT146

denote activation traces across T token contexts:147

cos(θij) =
hi · hj

∥hi∥∥hj∥
. (8)

Clustering and activation correlations To investigate whether rare token neurons exhibit clustered148

activation patterns, we compute pairwise correlations of their activations across the selected context-149

token pairs. For each neuron pair (i, j), we first calculate the Pearson correlation coefficient ρij150

between their activation vectors, then transform it into a distance metric:151

Dij = 1− |ρij |, (9)

which captures dissimilarity while remaining agnostic to the direction of correlation.152

We apply hierarchical agglomerative clustering with Ward linkage to this distance matrix. Specifically,153

we measure the number of distinct clusters that emerge at a distance threshold of t = 0.5. A154

larger number of clusters would indicate greater functional modularity within the rare-token neuron155

population, while fewer clusters would suggest more globally coordinated behavior.156

3.4 Weight Eigenspectrum and the Emergence of Functional Substructures157

To better understand how rare-token-influential neurons acquire their specialization, we analyze158

the evolution of weight eigenspectra across training steps. This perspective allows us to track how159

the model progressively develops functional differentiation, linking representational geometry with160

weight-space organization.161

Our analysis is grounded in the framework of Heavy-Tailed Self-Regularization (HT-SR) theory,162

introduced in Section 2.2. HT-SR predicts that during training, the emergence of heavy-tailed163

structures in weight matrices reflects effective feature learning: directions in weight space with larger164

variance correspond to dimensions carrying strong learned signals, while lighter-tailed directions165

capture noise or redundant patterns. From this perspective, neuron groups exhibiting heavier-tailed166

eigenvalue spectra are expected to encode richer, more structured computations.167

Formally, for a given neuron group G, we extract the corresponding slice of the weight matrix168

WG ∈ R|G|×d and compute its correlation matrix:169

ΞG =
1

d
WGW

⊤
G . (10)

We then analyze the eigenvalue distribution {λi} of ΞG to characterize the internal dimensionality170

and structure of the group’s learned representations.171

To quantify the shape of the eigenspectrum, we estimate the power-law exponent αHill using the Hill172

estimator:173

αHill =

[
1

k

k∑
i=1

log

(
λi

λk

)]−1

, (11)

where k is a tunable parameter that determines the truncation point for tail estimation. Following174

prior work on pruning via spectral statistics [15, 32], we adopt the Fix-finger method to automatically175

set k, aligning the truncation point λmin with the peak of the empirical spectral density.176

Tracking αHill across steps provides insight into the emergence of functional specialization. Lower177

αHill values (heavier tails) indicate that a neuron group’s weight directions concentrate more variance178

into a few dominant modes, consistent with coordinated feature learning. Conversely, higher αHill179

values (lighter tails) suggest weaker specialization and less structured computations.180
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4 Results181

4.1 Three-regime Structure in Neuron Influence182

Ranking neurons by their ∆Loss reveals a consistent three-regime structure presented in log-log scale.183

Such regime distinction is observed across model scales and architectures (Figure 2b; more results in184

Figure 6). This structure suggests a functional specialization composed of: i.) Influential plateau185

regime where a small fraction (1.7%) of neurons exhibit consistently exponentially larger influence,186

forming a plateau in the leftmost region; ii.) Power-law regime where the majority of influential187

neurons follow a power-law relationship, which appears as a linear relation in log-log coordinates188

log |∆Loss| ≈ −κ log(rank) + β, (12)

where the power-law exponent κ appears as the slope of a linear function; and iii.) Rapid decay189

tail regime where the remaining neurons decay more rapidly than power-law predictions, indicating190

negligible contribution to rare token prediction.191

(a) First derivative of log |∆Loss| with respect to
log(rank) for Pythia-410M. The plot highlights the
transition between the power-law regime and the

rapid decay regime, indicating the functional
boundary between moderately and minimally

influential neurons.

(b) Second derivative of log |∆Loss| versus
log(rank). Discontinuities mark structural transitions
between regimes, providing additional evidence for
the emergence of the three-regime organization of

rare-token neuron influence.

Figure 3: Derivatives of loss contribution with respect to loss rank, in log− log coordinates

Power-Law to Rapid Decay Transition The transition from power-law to rapid decay can be192

identified through the slope behavior of log |∆Loss| vs. log(rank). Using the finite difference method,193

we estimate the local slope κ(r) with a sliding window approach. As shown in Figure 3a, the first194

derivative starts to decrease around log(rank) ≈ 5, marking the breakdown of the power-law and the195

onset of rapid decay. This characterizes a functional boundary between moderately and minimally196

influential neurons.197

Unlike the rapid decay transition, the plateau regime is not readily distinguishable by the first198

derivative alone. Neurons in the range log(rank) ∈ (2, 5) exhibit a relatively consistent power-law199

behavior but with increased baseline influence. Such increment is quantified by200

δ := log |∆Loss| − (−κ log rank + β),

which measures to what extend the power-law underestimates the influence of top-ranked neurons.201

Figure 4 shows that the highly-influential plateau emerges progressively during training—implying202

functional specialization through training.203

Second-Order Derivative Analysis Our slope analysis reveals a notable feature in the derivative204

structure. While the first derivative of log |∆Loss| versus log(rank) remains continuous, the second205

derivative exhibits a discontinuity around the power-law to rapid decay transition (see Figure 3)b.206

This pattern provides additional evidence for the structural transition between regimes.207

The emergence of this three-regime organization during training suggests that language models208

spontaneously develop specialized computational strategies for rare token processing, with different209

neuron populations serving distinct functional roles.210
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Emergence of the Plateau Regime In Figure 4, we illustrate the dynamics of δ(r) through the211

training process. It shows that the plateau phase emerges progressively during training. The212

deviation is most pronounced for highest-ranked neurons and develops gradually as training proceeds,213

becoming increasingly significant in the later training stages. This evolution demonstrates a process214

of progressive functional differentiation, where a small subset of neurons gains disproportionate215

influence beyond what would be predicted by the power-law relationship.216

Notably, these plateau-phase neurons maintain slope characteristics similar to those in the power-law217

phase but operate at a higher baseline level of influence. As training proceeds, they acquire an218

additional positive bias term that causes systematic deviation from power-law scaling. The temporal219

development of these phases indicates that language models progressively form a specialized neuron220

subnetwork for rare token processing.221

4.2 Co-activation Patterns Through the Lens of Activation Space Geometry222

Figure 4: Dynamics of deviation δ(r) between ob-
served neuron influence and power-law predictions
across training. The plot illustrates the progressive
emergence of the influential plateau phase: top-ranked
neurons gradually gain disproportionate influence be-
yond the power-law expectation. These plateau-phase
neurons maintain similar slope characteristics to the
power-law regime but operate at a higher baseline, in-
dicating the formation of a specialized subnetwork for
rare-token processing over the course of training.

We analyze the behavior of rare-token-influential223

neurons through the geometry of their activation224

patterns. Despite being selected via individual225

ablation experiments, these neurons exhibit sys-226

tematic organizational structure that differs from227

random neuron groups: they co-activate strongly228

with each other while systematically avoiding co-229

activation with neurons less involved in rare token230

prediction as shown in within-group and cross-231

group correlations in Table 1. While the abso-232

lute correlation values are modest, statistical test-233

ing reveals meaningful differences: for Pythia-234

410M, rare token boosting neurons show within-235

group correlation of 0.036 ± 0.008 compared to236

0.007 ± 0.003 for random neurons (p < 0.001,237

Wilcoxon rank-sum test with Bonferroni correc-238

tion). The cross-group correlation between boost-239

ing and suppressing neurons (0.040± 0.009) ex-240

ceeds both individual group correlations with ran-241

dom neurons, suggesting these functionally oppos-242

ing groups operate within a shared computational243

framework rather than independently.244

To further investigate this structure, we construct high-dimensional activation vectors for each neuron245

using context-token pairs from the C4 corpus [25]. We then examine the geometric patterns with246

effective dimension and cosine similarity.247

Effective dimension analysis reveals that rare-token neurons lie on a significantly lower-dimensional248

manifold than random neurons. Across model families, rare token neurons show 8-13% reduction in249

effective dimensionality needed to explain 95% of activation variance. This compression suggests250

that they activate in a more coordinated, structured manner rather than independently(see results in251

Table 2).252

Pairwise cosine similarity provides additional evidence for functional organization(see results in253

Table 3). Random neuron pairs show near-zero similarity (mean ≈ 0.05), consistent with uncorre-254

lated activation patterns. Rare-token boosting and suppressing neurons exhibit higher within-group255

similarity (0.09− 0.17), indicating some degree of coordinated activation.256

Notably, these two groups also show substantial cross-group similarity, despite their opposing257

effects—suggesting they operate in coordinated, antagonistic roles.258

4.3 Weight Eigenspectrum259

To investigate how the network progressively develops functional differentiation, we apply Heavy-260

Tailed Self-Regularization (HT-SR) theory [19, 20] to analyze the eigenspectral properties of neuron261
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groups. This analysis examines whether rare token neurons develop distinct weight matrix character-262

istics compared to random neuron populations.263

Figure 5: Hill-estimator αHill values across training
for rare-token-influential neurons versus random neu-
rons. Lower αHill (heavier tails) indicates stronger
functional specialization. Rare-token neurons con-
sistently develop heavier-tailed weight distributions,
consistent with HT-SR theory.

For each neuron group G, we compute its cor-264

relation matrix and then analyze the eigenvalue265

spectrum {λi} of ΞG to assess the internal struc-266

ture of the group’s learned representations. To267

quantify spectral shape, we use the Hill estimator268

to measure the power-law exponent in the tail of269

the eigenvalue distribution. Details are provided270

in Appendix.271

Figure 5 shows that specialized neurons consis-272

tently exhibit lower αHill values—i.e., heavier-273

tailed distributions—compared to random neurons274

after the initial training phase. This pattern holds275

across model families and sizes (see results in Ta-276

ble 4). This persistent separation provides strong277

evidence for functional differentiation through im-278

plicit regularization. Despite fluctuations during279

training, the fundamental pattern remains: neurons280

that significantly impact rare token prediction con-281

sistently develop more pronounced heavy-tailed282

characteristics than neurons with random or general functionality.283

5 Discussion and Conclusion284

Based on our empirical observations, we propose two mechanistic conjectures to explain the emer-285

gence of rare token processing capabilities in language models:286

Conjecture 5.1 (Dual-Regime Organization) The emergence of power-law regime and its distinc-287

tion from the rapid decay regime suggest a spontaneous specialization of influential neurons. Among288

the rare token neurons, the power-law structure, the αHill behavior, and the co-activation patterns289

indicate self-organization phenomena that exceed random expectations.290

Conjecture 5.2 (Parallel Mechanism Conjecture) The plateau regime emerges through a mecha-291

nism that parallels the mechanism for the emergence of power-law regime. Through training, it292

further differentiates a small subset of neurons within the power-law group, by increasing their293

influence to form the influential plateau.294

The Dual-Regime Organization conjecture is motivated by the observation that the log∆loss–log rank295

slope remains consistent across both the power-law and plateau regimes. This consistency suggests296

that an underlying power-law structure governs both regimes, with the plateau reflecting an additional,297

distinct mechanism operating on top of this foundation. The Parallel Mechanism conjecture proposes298

that rare token processing relies on two complementary computational strategies: a distributed299

regime (power-law) for general rare token sensitivity and a specialized subnetwork (plateau) for300

exceptional cases. This resembles the Complementary Learning Systems (CLS) theory in cognitive301

neuroscience [21, 13], where general statistical learning coexists with specialized mechanisms for302

encoding exceptions and novel experiences.303

However, we emphasize that these conjectures are preliminary hypotheses based on our empirical304

observations. The modest effect sizes in our coordination analyses and the indirect nature of our305

weight eigenspectrum measurements suggest that stronger evidence would be needed to definitively306

establish these mechanisms.307

This paper presents a systematic investigation into the emergent neuronal mechanisms that language308

models develop for processing rare tokens—a fundamental challenge requiring a balance between309

learning and low-frequency generalization. Through ablation experiments and geometric analysis,310

we identified neuron groups with disproportionate influence on rare token prediction, organized311

through co-activation and heavy-tailed statistics. Our analysis revealed a three-regime structure of312

influence: a specialized influential plateau regime, a power-law regime following efficient coding313
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principles, and a rapid decay regime with minimal contribution to rare token processing. These314

regimes emerge progressively during training, suggesting spontaneous functional differentiation rather315

than predetermined architectural specialization. While our evidence supports the existence of rare316

token neurons and their organizational structure, we acknowledge that the underlying mechanisms317

remain partially understood. The modest coordination effects and indirect spectral measures indicate318

that stronger theoretical frameworks and measurement techniques are needed to fully characterize319

these phenomena.320

These results highlight the emergence of computational specialization in large language models,321

with implications for interpretability, efficiency optimization, and targeted model improvement.322

As language models continue to scale, understanding how they spontaneously develop specialized323

capabilities will become increasingly important for both theoretical advancement and practical324

applications.325

Our findings also suggest new directions for interpretability research. Instead of examining individual326

neurons in isolation, future work could investigate how specialized subnetworks coordinate to handle327

low-frequency linguistic phenomena. The emergence of these structures during training raises328

questions about whether similar specialization occurs for other phenomena beyond rare tokens.329

6 Limitation330

Identification of regimes Our current framework for detecting the three-regime structure relies331

on ablation-based proxies, such as neuron-wise changes in token-level loss. While these measures332

capture statistical influence, they do not fully establish functional specialization. Future work should333

investigate whether influential neurons across different model families co-activate in rare-token-334

related contexts, which would provide stronger evidence that these neurons are genuinely specialized335

rather than statistically salient.336

Neuron coordination within regimes The observed coordination effects, such as activation corre-337

lations among rare-token neurons, are modest in magnitude. Although correlation values indicate338

weak-to-moderate coupling, their consistency across multiple models, metrics, and statistical tests339

suggests systematic organization beyond random expectation. This likely reflects the inherently340

distributed computation in transformer architectures, where even modest coordination across a large341

neuron population can generate significant functional effects. More sophisticated measures—e.g.,342

mutual information, causal interventions, or network-level connectivity analyses—could provide a343

more rigorous assessment of functional specialization.344

Scope limited to the final MLP layer Our analysis focuses exclusively on neurons in the last MLP345

layer, where feature integration directly impacts token prediction. Rare-token processing, however,346

may involve interactions across multiple layers and attention mechanisms. Extending the analysis347

to earlier MLP layers, attention heads, and residual streams would offer a more comprehensive348

understanding of how LLMs coordinate distributed and specialized processing for low-frequency349

tokens.350

Applicability to downstream tasks We evaluate specialization in the context of next-token pre-351

diction on language modeling corpora. The practical impact of these rare-token neurons on down-352

stream applications—such as question-answering, reasoning, or domain-specific generation—remains353

untested. Future work should examine whether the identified subnetworks meaningfully contribute354

to task performance and whether interventions on these neurons can improve model efficiency or355

controllability in applied settings.356
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A Appendix445

A.1 Results446

Activation Correlation Analysis We examined activation patterns across neuron groups in five447

pre-trained language models, comparing rare token neurons (boost and suppress groups) against448

random baseline controls. Table 1 presents pairwise activation correlations within and between449

neuron groups (group size = 50).450

The results demonstrate consistently higher intra-group correlations for both boost neurons (range:451

0.004–0.036) and suppress neurons (range: 0.011–0.052) compared to random controls (range:452

-0.007–0.017). Notably, cross-group correlations between boost and suppress neurons (B vs. S)453

show positive values (0.010–0.040), suggesting coordinated but potentially antagonistic functionality.454

Random baseline comparisons (R1 vs. R2) exhibit near-zero correlations, confirming the specificity455

of our identified neuron groups.456

Table 1: Pairwise activation correlations within and between neuron groups

Model Size Boost Suppress Random B vs. R S vs. R B vs. S R1 vs. R2
Pythia-70M 70M 0.028 0.045 0.011 0.002 0.005 0.027 0.009
Pythia-410M 410M 0.036 0.052 0.007 0.005 0.006 0.040 0.007
GPT2-Small 124M 0.017 0.019 0.017 -0.001 -0.001 0.021 0.023
GPT2-Large 774M 0.004 0.011 0.012 -0.004 -0.004 0.010 0.016
GPT2-XL 1.5B 0.036 0.016 -0.007 0.003 -0.0004 0.020 0.008

Effective Dimensionality We computed the effective dimensionality of activation patterns using457

the participation ratio metric to assess functional specialization. Table 2 shows that rare token neuron458

groups consistently exhibit lower effective dimensionality compared to random baselines. This459

reduction in effective dimensions (boost: 33.0–43.0%, suppress: 32.2–43.0%) relative to random460

controls (36.2–46.0%) indicates more concentrated, specialized activation patterns within rare token461

neurons.462

Table 2: Effective dimensionality proportions across neuron groups

Model Size Boost Suppress Random
Pythia-70M 70M 33.5 32.6 36.2
Pythia-410M 410M 33.0 32.2 37.3
GPT2-Small 124M 37.0 40.0 45.0
GPT2-Large 774M 43.0 43.0 46.0
GPT2-XL 1.5B 40.0 42.0 46.0

Cosine Similarity of Weight Vectors Weight vector cosine similarities provide insight into the463

geometric organization of rare token neurons in parameter space. Table 3 reveals strong positive464

alignment within boost (0.028–0.141) and suppress (0.092–0.165) neuron groups, while showing465

consistent negative alignment between these specialized groups and random controls. The negative466

cross-correlations (boost vs. random: -0.100 to 0.003, suppress vs. random: -0.105 to -0.014)467

suggest that rare token neurons occupy distinct regions of weight space, supporting our hypothesis of468

functional specialization.469

Weight Distribution Analysis We analyzed the heavy-tailed properties of weight distributions470

using power-law exponents (α) estimated via the Hill estimator. Table 4 demonstrates that rare471

token neuron groups exhibit significantly lower α values compared to random controls, indicating472

heavier-tailed weight distributions. This finding supports our hypothesis that functional specialization473

correlates with the emergence of heavy-tailed statistical properties in neural networks.474

Phase Transition Dynamics Figure 6 illustrates the evolution of neuron influence distributions475

throughout training across the GPT-2 model family. The suppress neuron populations exhibit476
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Table 3: Cosine similarity between weight vectors within and across neuron groups

Model Size Boost Suppress Random B vs. R S vs. R B vs. S R1 vs. R2
Pythia-70M 70M 0.141 0.165 0.021 -0.017 -0.014 0.146 0.021
Pythia-410M 410M 0.107 0.133 0.054 -0.032 -0.041 0.114 0.058
GPT2-Small 124M 0.109 0.122 0.089 -0.100 -0.105 0.120 0.099
GPT2-Large 774M 0.028 0.092 0.041 -0.034 -0.063 0.054 0.052
GPT2-XL 1.5B 0.095 0.095 0.009 -0.010 -0.015 0.090 0.012

Table 4: Power-law exponents (α) for weight distributions across neuron groups

Model Size Boost Suppress Random
Pythia-70M 70M 4.30 3.97 6.37
Pythia-410M 410M 3.80 3.43 7.56
GPT2-Small 124M 2.12 1.57 6.74
GPT2-Large 774M 3.30 1.84 8.31
GPT2-XL 1.5B 2.01 1.68 9.33

characteristic three-phase development: an initial plateau phase with uniform low influence, followed477

by a power-law scaling regime, and concluding with rapid decay at high influence values. This pattern478

emerges consistently across model scales, suggesting a universal mechanism underlying rare token479

neuron specialization.480

Figure 6: Distribution of neuron influence slopes for suppress neurons across the GPT-2 model family,
showing characteristic three-phase organization emerging during training.

13


	Introduction
	Background
	Transformer architecture
	Heavy-Tailed Self-Regularization (HT-SR) Theory

	Rare Token neuron analysis framework
	Rare Token Neuron Identification
	Distribution and Structure of Neuron Influence
	Co-activation Patterns Through the Lens of Activation Space Geometry
	Weight Eigenspectrum and the Emergence of Functional Substructures

	Results
	Three-regime Structure in Neuron Influence
	Co-activation Patterns Through the Lens of Activation Space Geometry
	Weight Eigenspectrum

	Discussion and Conclusion
	Limitation
	Appendix
	Results


