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Abstract

Large language models (LLMs) struggle with representing and generating rare
tokens despite their importance in specialized domains. We investigate whether
LLMs develop internal specialization mechanisms through discrete modular archi-
tectures or distributed parameter-level differentiation. Through systematic analysis
of final-layer MLP neurons across multiple model families, we discover that rare-
token processing emerges via distributed specialization: functionally coordinated
but spatially distributed subnetworks that exhibit three distinct organizational princi-
ples. First, we identify a reproducible three-regime influence hierarchy comprising
highly influential plateau neurons(also termed as rare-token neurons), power-law
decay neurons, and minimally contributing neurons, which is absent in common-
token processing. Second, plateau neurons demonstrate coordinated activation
patterns (reduced effective dimensionality) while remaining spatially distributed
rather than forming discrete clusters. Third, these specialized mechanisms are
universally accessible through standard attention pathways without requiring ded-
icated routing circuits. Training dynamics reveal that functional specialization
emerges gradually through parameter differentiation, with specialized neurons
developing increasingly heavy-tailed weight correlation spectra consistent with
Heavy-Tailed Self-Regularization signatures. Our findings establish that LLMs pro-
cess rare-tokens through distributed coordination within shared architectures rather
than mixture-of-experts-style modularity. These results provide insights for inter-
pretable model editing, computational efficiency optimization, and understanding
emergent functional organization in transformer networks.

1 Introduction

Large language models (LLMs) have achieved remarkable performance across diverse language tasks,
yet they consistently struggle with a fundamental challenge: representing and generating rare tokens
that appear infrequently in training data [Kandpal et al.|[2023| Zhang et al.| [2025| Mallen et al., 2023].
This limitation is particularly problematic for specialized domains where critical information often
resides in the long tail of token frequency distributions [Zipfl |[1949, |Wyllys| |1981]]. Recent work has
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shown that this challenge can lead to model collapse when training on synthetic data with truncated
frequency distributions [Dohmatob et al., 2024} [Hataya et al., 2023} |Bohacek and Farid, 2023]].

While external solutions such as retrieval-augmented generation [Lewis et al.| [2020], in-context
learning [Dong et al., [2022]], and non-parametric memory mechanisms [Borgeaud et al.| 2022]] have
been proposed, a critical question remains unanswered: do LLMs spontaneously develop internal
mechanisms specialized for rare token processing during pre-training? Understanding these
internal mechanisms has profound implications for model interpretability, computational efficiency,
and our theoretical understanding of how large neural networks organize functional specialization.

This question resonates with insights from cognitive neuroscience on how biological systems balance
statistical regularities and exceptions. Complementary Learning Systems (CLS) theory [McClel-
land et al.| |1995| [Kumaran et al 2016] explains human learning through dual neural architectures:
neocortical systems that extract statistical regularities from frequent experiences, and hippocampal
circuits specialized for rapid encoding of novel, infrequent episodes. By analogy, one might expect
effective learning systems to require distinct computational strategies for common versus rare events.

Motivated by this perspective, we consider two competing hypotheses for rare-token specialization
in LLMs. The modular hypothesis, inspired by mixture-of-experts architectures [Shazeer et al.|
2017, predicts a discrete functional separation akin to the hippocampal-neocortical divide: spatially
clustered neurons with dedicated routing pathways forming distinct “modules” for rare-token pro-
cessing. In contrast, the distributed hypothesis [Rumelhart et al., 1986, [Hinton, |1986] proposes
that specialization emerges through parameter-level differentiation within shared computational
substrates. Under this framework, the same network architecture implements both common and rare
token processing through coordinated activation patterns of spatially distributed neurons, similar to
how single cortical areas can exhibit different functional modes. With these competing hypotheses,
modular organization should produce: (i) spatially clustered specialized neurons, (ii) dedicated
attention routing pathways, and (iii) discrete activation patterns. Distributed organization should
instead exhibit: (i) coordinated but spatially scattered neurons, (ii) universal accessibility through
standard mechanisms, and (iii) graded, context-dependent specialization.

Mechanistic interpretability studies have shown that transformer neurons can encode interpretable
features, from syntactic dependencies [Manning et al., 2020, Finlayson et al.| [2021]] to semantic
concepts [Gurnee et al., 2023, |Bricken et al., 2023]]. Recent findings also suggest frequency-sensitive
mechanisms, with neurons modulating prediction confidence based on token rarity [Stolfo et al.|
2024]]. Yet, prior work has primarily focused on individual neuron functions, leaving open the broader
organizational principles underlying rare token specialization.

We address this gap by conducting a systematic investigation of how LLMs internally implement rare
token specialization. Specifically, we identify neurons with disproportionate influence on rare token
prediction and characterize their organizational principles through five complementary analyses:

1. Hierarchical Influence: We reveal a reproducible three-regime structure in rare token
processing: plateau neurons, power-law decay neurons, and rapid decay neurons where the
plateau regime is absent for common tokens.

2. Activation Coordination: We show that rare-token neurons exhibit coordinated activation
patterns, as quantified by effective dimensionality, despite being spatially scattered.

3. Spatial Organization: Using network modularity analysis, we establish that specialized
neurons are distributed rather than clustered into discrete modules.

4. Attention Routing: We demonstrate that rare tokens access specialized mechanisms through
standard attention pathways without dedicated routing.

5. Functional Specialization: Using HT-SR spectral analysis, we show that rare-token neurons
develop distinct spectral signatures in their learned weight representations.

Taken together, our findings provide the first systematic evidence that LLMs implement distributed
rather than modular specialization for rare token processing. This result resolves a fundamental
open question about functional organization in transformer architectures. Moreover, it highlights how
distributed specialization enables flexible, context-sensitive processing while preserving computa-
tional efficiency, which diverges from modular separation predicted by CLS-inspired accounts.



2 Background

2.1 Transformer architecture

In this study, we focus on the Multi-Layer Perceptron (MLP) sublayers. Given a normalized hidden
state 2 € Rl from the residual stream, the MLP transformation is defined as:

MLP(z) = Woud(Winx + bin) + bout, 1)

where Wi, € RmoXdmotel and T, € Rt X dmip are Jearned weight matrices, and by, boy, are biases.
The nonlinearity ¢ is typically a GeLU activation. We refer to individual entries in the hidden activa-
tion vector ¢p(Winxz + by, ) as neurons, indexed by their layer and position (e.g., <layer>.<index>).
The activations n represent post-activation values of these neurons. We selected the last layer as
it directly projects into the unembedding matrix that produces token probabilities, which creates a
computational bottleneck where feature integration must occur [Wei et al., [2022].

2.2 Heavy-Tailed Self-Regularization (HT-SR) Theory

Heavy-Tailed Self-Regularization (hereafter H7-SR) theory offers a spectral lens on neural network
generalization[Martin and Mahoney, |2019} 2021} [Lu et al., 2024} |Couillet and Liao, [2022]. Specifi-
cally, consider a neural network with L layers, let W; denote a weight matrix extracted from the i-th
layer, where W; € R™*™ and m > n. We define the correlation matrix associated with WW; as:

X; =W, W, e R"*",

which is a symmetric, positive semi-definite matrix. The empirical spectral distribution (ESD) of X;
is defined as:

1 n
px, = 25&(&)’
J:

where A1 (X;) < -+ < A, (X;) are the eigenvalues of X;, and 0 is the Dirac delta function. The
ESD px, represents a probability distribution over the eigenvalues of the weight correlation matrix,
characterizing its spectral geometry.

HT-SR theory proposes that successful neural network training exhibits heavy-tailed spectral behavior
in the ESDs of certain weight matrices, due to self-organization toward a critical regime between
order and chaos. Such heavy-tailed behavior is captured by various estimators, and particularly
informative among which is the power-law (PL) exponent iy, who estimates the tail-heaviness of
the eigenvalue distribution. Low values of oy (typically o < 2) indicate heavy-tailed behavior,
often interpreted as signs of functional specialization and self-organized criticality [[Yang et al., 2023].
A formal definition of oy and the associated estimation procedure is provided in Section@

3 Rare Token neuron analysis framework

3.1 Rare Token Neuron Identification

We hypothesize that certain neurons in LLMs specialize for modulating token-level probabilities
of rare tokens. From a theoretical perspective, such specialization is consistent with sparse coding
principles [Olshausen and Field, |1997] and the information bottleneck framework [Tishby et al.,
2000], where limited capacity is selectively allocated under uncertainty.

Ablation methodology Following |Stolfo et al.|[2024], we perform targeted ablation experiments in
the last MLP layer. For neuron ¢ with activation n; in the last MLP layer, we define the mean-ablated
activation:

5D =2+ (1 — )iy, @
where 7; is the mean activation of neuron ¢ across a reference subset of inputs, and wéfﬁ is the

corresponding output weight vector. This intervention isolates the contribution of each neuron to
token-level predictions. We quantify the influence of a neuron i on rare-token prediction by Aloss:



Aloss(i) = Epop |L(LM(z), ) — LLM(2D), 2)] 3)

where L is the token-level cross-entropy loss and LM(x) is the model output. High Aloss(¢) indicates
neurons with disproportionate influence on rare token prediction. Intuitively, neurons with higher
Aloss have a disproportionate influence on rare-token predictions, making them candidates for
rare-token specialization.

Experimental setup To evaluate the ablation
effects defined above, we sample 25,088 tokens

from the C4 dataset [Raffel et al.l 2020]], fo- 20000 — 0
cusing on rare tokens identified through a two- e
stage filtering procedure. First, we remove ex- 15000 —— 54000
tremely rare tokens that fall below the “elbow G _ giggg
point” of the frequency distribution, identified g 10000 104000
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unstable behavior in our experiments. Second,
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from the remaining set, we retain tokens with Aloss

unigram frequencies below the 15th percentile.

For comparison, we define common Fokf;ns a5 Figure 1: Absolute change in token-level cross-entropy
those above the 15th percentile. _Thls distine-  1os5 (Aloss) per neuron across training steps for Pythia-
tion allows us to contrast neuronal influences on  410M. There are a group of neurons exhibiting dispro-
low-frequency versus more predictable tokens.  portionately high influence compared to the majority of

.. . . ith ligible effect.
As the definition of “rare-token" is central to this neurons with neghgible etiec

study, we verified the robustness of our findings

across multiple percentile thresholds. The qualitative patterns reported here remain qualitatively
stable under these variations. It is however worth noticing, that tokens below the frequency elbow
point behave idiosyncratically and inconsistently across analyses, motivating their exclusion from our
core rare-token set. While the peculiar processing of this naturally defined token group remains an
intriguing open question, it lies beyond the scope of the present work.

Given training data availability, ablation experiments are performed on both the Pythia and GPT-2
model families across various parameter scales. Since GPT-2’s original training corpus is not publicly
available, we approximate token frequencies using the OpenWebTextCorpus [|Gokaslan et al.,[2019]],
a widely accepted replication of GPT-2’s dataset.

Figure [I] illustrates the per-neuron influence distribution over training using equation 3.1f We
observe a heavy-tailed structure: most neurons have negligible impact, while a small group exhibits
disproportionately high Aloss. This provides qualitative evidence on the existence of the group of
neurons that dedicate to the rare tokens.

3.2 Analysis Framework

Our analysis tests the distributed specialization hypothesis through four subsequent complementary
investigations, each designed to evaluate specific theoretical predictions about rare token processing
mechanisms. We move beyond individual neuron analysis to characterize the organizational principles
governing functional specialization in transformer architectures.

Activation Coordination Patterns We begin by examining activation coordination patterns to test
whether specialized neurons exhibit coordinated behavior. The distributed specialization hypothesis
predicts that functionally coordinated neurons should produce aligned activation patterns, reducing
the effective dimension of their collective activation space. In contrast, modular specialization
predicts largely independent activation within localized groups.

For each neuron group G, we construct activation vectors across context—token pairs from the C4
dataset. If neurons act independently, these vectors should be nearly linearly independent [[Tao and
'Vu, 2008]]. On the other hand, coordinated specialization should manifest as alignment in activation
patterns. We quantify this through Principal Component Analysis, defining effective dimension as



the smallest d such that cumulative variance explained exceeds threshold 7 = 0.95:

S
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where \; are eigenvalues of the activation covariance matrix. Distributed specialization predicts lower

degr for rare-token neurons relative to random controls.

Spatial Organization Analysis To test whether rare-token neurons form localized modules or
operate in a distributed manner, we analyze their spatial organization through correlation networks.
Modular organization would manifest as spatially clustered groups of strongly interconnected neurons,
whereas distributed specialization predicts functional coordination without clear spatial clustering.

Formally, we represent each rare-token neuron 7 € P as a node in an undirected graph G = (P, E),
with edge weights A;; given by the mutual information between activation vectors of neurons ¢ and j
across evaluation data:

- o ) log Plaisaj)
Aij = MI(ai,a;) = Y plai,a;)log p(ai)p(a;)’ ®

a;,ay

We quantify modular structure using the Louvain community detection algorithm, which computes

modularity as:
1 kik;
- A Fif
@ 2m%:{ Y 2m

where k; = Y ; Aij is the weighted degree of neuron ¢, m = % > ; Aij is the total edge weight, and
d(ci, ¢j) = Lifneurons ¢ and j fall in the same detected community. Larger () values indicate stronger
modular clustering [Newman, |2006]]. To evaluate whether rare-token neurons exhibit meaningful
modularity, we compare their () values against size-matched groups of randomly selected neurons.
The distributed specialization hypothesis predicts no significant difference between the two.

] d(cis ), (6)

Attention Routing Analysis We next ask whether rare tokens rely on dedicated attention pathways
that selectively route information to rare-token neurons, or whether they instead access these neurons
through standard mechanisms. Under modular organization, rare tokens should be funneled through
specialized attention heads, while a distributed organization predicts universal accessibility without
dedicated routing.

We focus on attention heads in the final two layers (L — 2 and L — 1), which directly influence the
last MLP layer containing rare-token neurons. For each head h, we quantify attention concentration
using the Gini coefficient over its attention distribution:

n .
.. n+1—9% (ied
Gini(h) =1 —2 Z — e, (7
=1
where a?{"z-‘ed represents the attention weights sorted in ascending order. Higher Gini coefficients

indicate more concentrated attention patterns and potential specialized routing behavior.

To test for differential routing, we compute Spearman correlations between attention patterns for
rare versus common tokens across all heads. The modular hypothesis predicts distinct correlation
patterns, whereas the distributed hypothesis predicts alignment between the two. Finally, we assess
functional dependence through ablation. For each head h, we measure its impact on rare-token neuron
activations as:

||abaseline — Qgblated(h) H2
Impact(h) = 3
P ( ) Habaselinel|2 ’

where apaseline 18 the activation vector of rare-token neurons under normal operation, and agpjaed(n) i
obtained after zeroing the output of head h. To isolate routing effects, we compare individual head
ablations against full layer ablations: strong effects from single heads would support specialized
routing, while small individual effects combined with strong aggregate effects point to distributed
integration.



Eigen spectrum analysis To complement the activation-based analyses, we examine the spectral
properties of weight representations associated with rare-token neurons. This analysis is grounded in
Heavy-Tailed Self-Regularization (HT-SR) theory [2.2][Martin and Mahoneyl 2021]], which predicts
that functionally specialized neural units exhibit distinctive heavy-tailed spectral signatures in their
weight correlation structures.

For each identified neuron group G (rare-token neurons and size-matched random control groups), we

extract the corresponding slice of the MLP weight matrix W¢ € RI9/*¢ and compute the empirical
correlation matrix:

1
B = 8W W/, 9)

where d denotes the hidden dimension. The eigenvalue spectrum {); } ngll of Eg characterizes the

internal dimensionality and correlation structure of the learned representations.

We quantify spectral heaviness using the Hill estimator:

k —1
1 A
amn = | log (Ak> , (10)

i=1

where k is the number of eigenvalues in the tail region, selected using the Fix-finger method [[Yang
et al.,2023] to align the threshold \; with the peak of the eigenvalue density. Lower ayj; values
indicate heavier tails, suggesting more complex learned structures with stronger feature correlations.

HT-SR theory predicts that specialized neurons should exhibit heavier-tailed spectra (o < 2) than
randomly selected controls. We test this prediction by comparing oy across groups and model
scales in order to provide spectral evidence for functional differentiation that converges with the
activation-level findings.

4 Results

4.1 Hierarchical Organization of Rare Token Processing
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i
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(a) Rare token processing (b) Common token processing

Figure 2: Neuron influence organization reveals specialization for rare tokens. (a) Rare token
processing exhibits a three-regime structure: plateau neurons with exceptional influence (around
1% of total), power-law decay regime, and rapid decay tail. (b) Common token processing shows
only smooth power-law decay without plateau structure, demonstrating that specialized mechanisms
emerge selectively for rare token processing.

In order to isolate neurons most critical for rare-token prediction, we rank neurons in the final MLP
layer by their contribution to loss reduction (ALoss). This analysis reveals a consistent organizational
structure across model families and scales (Figure [5a)).



When ranked by Aloss on log—log axes, the distribution follows three regimes as Figure [2a] shows
(Details of regime identification are explained in|[A.1)):

i.) Power-law regime where a group of neurons fall in a power-law regime, manifested as a linear
relation between a neuron’s Aloss and its ranking in log-log coordinates.

log |Aloss| &~ —r log(rank) + £3, (11)

here the power-law exponent « appears as the slope of a linear function;

ii.) Influential plateau regime where a small fraction (around 1%) of neurons exhibit consistently
higher influence than the power-law regime, forming a plateau in the leftmost region;

iii.) Rapid decay tail regime where the majority of uninfluential neurons decay much more rapidly
than power-law, indicating negligible contribution to rare token prediction.

This three-regime organization suggests hierarchical resource allocation specifically adapted for
rare-token processing. We term the plateau units rare-token neurons, reflecting their exceptional and
selective role in rare-token prediction. The rare-token neurons exhibit influence levels that notably
exceed what would be expected from uniform or even power-law distributed processing capabilities.
Importantly, this regime emerges only for rare tokens: the same analysis on common-token prediction
shows no plateau, but instead a smooth power-law decay (Figure [2b). This contrast demonstrates that
the three-regime structure reflects targeted specialization, not a generic statistical artifact, and the
effect holds across both GPT-2 and Pythia families in different parameter sizes (Figure [5). We also
found that the specialization pattern emerges during training as shown in Appendix [A.2]

4.2 Coordinated Activation Patterns

Model Size Plateau Random Model Size Single Random All
1B 0.79 0.88 1B 0.34 0.37 -0.50
Pythia 1.4B 0.74 0.89 Pythia 1.4B 0.28 0.32 -0.45
2.8B 0.72 0.89 2.8B 0.30 0.34 -0.47
774M 0.77 0.82 774M  0.31 0.35 -0.48
GPT2 15 o081 0.90 GPT2 s 034 037  -050

Table 1: Effective dimensionality across neu-
ron groups. Rare-token neurons consistently ex-
hibit a lower deg/(number of neurons) ratio than
random controls across model architectures and
scales, indicating coordinated activation patterns.

Table 2: Attention ablation effects across model
scales. Only significant effects (p < 0.05) are an-
notated with *. Individual head removals show
minimal effects, while ablating all heads pro-
duces large changes.

We analyze the effective dimensionality of rare-token neuron activation patterns to test for coordinated
behavior. These neurons consistently demonstrate lower effective dimensionality than randomly
sampled neurons across all examined models (Table T).

Across Pythia models, rare-token neurons consistently show lower dimensionality than random
neurons, as seen in Table|l} suggesting that their activations are more linearly dependent and occupy
a more constrained subspace. A similar pattern is observed in GPT2-XL, indicating that this low-
dimensional structure persists in larger models. This reduction in effective dimensionality points to a
shared co-activation pattern among rare-token-selective neurons: rather than acting independently,
they tend to activate together in a coordinated manner.

4.3 Spatially Distribution rather than clustering

Community detection analysis reveals that rare-token neurons do not exhibit significantly stronger
spatial clustering than random baselines (Table[3). Modularity scores show mixed patterns across
models: Pythia-1B and Pythia-1.5B display higher modularity for rare-token neurons (0.39 vs. 0.17
and 0.38 vs. 0.15 respectively), while Pythia-2.8B shows a smaller difference (0.34 vs. 0.18, p<0.01).
GPT-2 models demonstrate more modest differences, with GPT-2 Large showing 0.31 versus 0.19



and GPT-2 XL showing 0.27 versus 0.18. Only Pythia-2.8B reaches statistical significance for the
difference. The inconsistent pattern across models suggests that rare-token neurons are spatially
distributed rather than forming coherent clusters.

4.4 No Evidence for Selective Attention Routing

We next examined whether rare to-
kens depend on specialized attention
pathways that selectively route infor-

Model Size Group Modul. Comm.

mation into rare-token neurons. If 1B Plateau 0.39 10.1
such routing existed, we would expect Random 0.17 8.1
distinct attention signatures for rare

tokens and large effects from ablating Pythia 1.4B RPEll?ltggfn 8?2 22
individual heads. ’ '

%k

First, we compared attention distribu- 2.8B g;itgggl 06314 g gg
tions between rare and common to- ’ :
kens in the layers preceding the fi- 774M Plateau 0.31 15.0
nal MLP. The two distributions were GPT-2 Random 0.19 10.0
nearly indistinguishable: correlations Plateau 0.27 6.6
were hlgh (7“ = 0.89 + 007), and 1.5B Random 0.18 4.1

attention concentration did not differ

significantly (Grare = 0.34 4 0.05 vs. Taple 3: Community detection results across model scales.
Geommon = 0.32£0.04, p = 0.43, Modularity scores (Modul.) show inconsistent patterns, indi-
t-test). cating distributed rather than clustered organization. Comm.

Second, we conducted ablation exper- denotes average community size.

iments at the head and layer level (Ta-

ble[2). Across all model scales, ablat-

ing a single attention head produced only small and statistically comparable changes in rare-token
neuron activation (effect sizes 0.28-0.34), regardless of whether the head was selected for its influ-
ence or chosen at random. In contrast, removing all heads in a layer led to large and highly significant
activation drops (—45% to —50%, all p < 0.001).

Taken together, these results strongly argue against specialized routing. Rather than relying on a few
dedicated heads, rare-token neurons integrate signals in a distributed fashion across multiple heads
and layers, consistent with the broader distributed coding hypothesis observed in our modularity
analyses.

4.5 Weight Spectral Differentiation
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N o o & (b) AHill across training steps in Pythia-70M and
(a) Hill estimator across model family and sizes. Pythia-410M models.

Figure 3: Hill estimator analysis shows consistent spectral differentiation. Rare-token neurons exhibit
lower ay;y values than random controls across model families, indicating heavier-tailed weight
correlation spectra.

The consistent pattern across model architectures and scales suggests that specialized neurons develop
distinct spectral signatures in their learned weight representations.



Analysis of weight correlation matrices using the Hill estimator reveals consistent spectral differences
between plateau and random neurons. (Figure [3|a) shows that rare-token neurons exhibit lower
agin values compared to random controls across both GPT-2 and Pythia model families, indicating
heavier-tailed eigenvalue distributions in their weight correlation matrices. And this is an emerging
property with the increasing gap between the selected neurons and their random controls across
training. This suggests that spectral differentiation is a fundamental characteristic of rare token
processing mechanisms rather than an artifact of specific architectures or parameter scales.

5 Discussion

This paper presents a systematic investigation into the neuron mechanisms that transformer language
models develop for processing rare tokens, which typically requires a balance between learning and
low-frequency generalization. Through converging lines of evidence from neuron influence analysis,
activation space geometry, spatial organization, attention routing, and weight spectral analysis, we
demonstrate that rare-token competency emerges through parameter-level differentiation within
shared computational substrates rather than discrete modular architectures.

Our analysis revealed a three-regime a specialized influential plateau regime, a power-law regime
following efficient coding principles, and a rapid decay regime with minimal contribution to rare
token processing. This pattern represents hierarchical resource allocation that differs markedly from
both uniform processing and strict modular separation. The absence of plateau regime for common
tokens highlights that this specialization is not simply a generic feature of network scale but emerges
selectively for rare-token processing.

Our activation coordination analysis reveals that rare-token neurons operate as functionally integrated
units despite spatial distribution across the MLP layer. The consistent reduction in effective dimen-
sionality indicates that these neurons have learned to coordinate their responses in ways that optimize
rare-token processing. This coordination occurs without spatial clustering, indicating that functional
specialization can emerge through parameter correlation patterns rather than architectural modularity.
The universal accessibility of rare-token neurons through standard attention mechanisms reveals that
rare-token access specialized processing through the same distributed attention integration used by all
tokens rather than requiring specialized routing circuits that would create computational bottlenecks.
This design principle enables transformers to maintain flexible, context-sensitive processing while
achieving functional specialization.

The heavy-tailed weight correlation spectra observed in rare-token neurons align with Heavy-Tailed
Self-Regularization theory predictions about functional specialization. Lower Hill estimator values
indicate that specialized neurons develop more complex internal correlation structures, suggesting
that meaningful feature learning emerges through spectral differentiation. This provides a bridge
between activation-based observations of coordination and weight-based signatures of specialization.

Our findings connect to frameworks in computational neuroscience. On the one hand, our results
provide empirical support for distributed representation theory while offering new insights into
how artificial neural networks can implement complementary learning principles. The observed
three-regime structure echoes Complementary Learning Systems (CLS) theory, where specialized
units handle exceptional cases while distributed systems process statistical regularities. However, our
results reveal that transformers achieve this dual functionality within a single architecture through
parameter differentiation rather than anatomically distinct systems. On the other hans, current findings
reflect sparse coding principles in computational neuroscience [Olshausen and Field, |1997]], where
efficient resource allocation emerges naturally from statistical structure. The hierarchical influence
organization suggests that transformers implement a form of adaptive sparsity where computational
resources are allocated proportionally to the information content and difficulty of different token

types.

Our finding that specialization strength scales with model size indicates that larger models do not
simply memorize more patterns, but develop more sophisticated functional differentiation. This
provides a mechanistic explanation for improved rare token performance with scale and suggests that
continued scaling may yield increasingly refined specialization mechanisms.

For model editing and alignment, our findings suggest that interventions should target coordinated
neuron groups rather than individual units. The distributed nature of specialization implies that



effective modifications may require understanding and manipulating entire subnetworks rather than
localized components.

6 Future Directions

Towards deeper MLP layers Our analysis focuses exclusively on neurons in the last MLP layer,
where feature integration directly impacts token prediction. Rare-token processing, however, may
involve interactions across multiple layers and attention mechanisms. Extending the analysis to earlier
MLP layers, attention heads, and residual streams would offer a more comprehensive understanding
of how LLMs coordinate distributed and specialized processing for low-frequency tokens.

Applicability to downstream tasks We evaluate specialization in the context of next-token pre-
diction on language modeling corpora. The practical impact of these rare-token neurons on down-
stream applications—such as question-answering, reasoning, or domain-specific generation—remains
untested. Future work should examine whether the identified subnetworks meaningfully contribute
to task performance and whether interventions on these neurons can improve model efficiency or
controllability in applied settings.

The relationship between rare token specialization and other forms of functional organization in
transformers requires further investigation. Do similar distributed mechanisms emerge for syntactic
processing, semantic relationships, or reasoning tasks? Characterizing the full landscape of functional
specialization in large language models represents a frontier for mechanistic interpretability research.
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A Appendix

A.1 Regime identification

Regime identification To precisely identify regime boundaries and track their evolutions during
training, it is critical to understand the power-law exponent, appearing as a slope. We employ the
finite difference method with a sliding window for estimating this slope:

_ log|ALoss(r - e)| — log [A fLoss(r)|

()~ Tog(©)

(12)

where r is the rank and e is Euler’s number. This finite-difference approximation provides a robust
estimate of the local slope in log-log space, thus enabling the identification of the behavior of
—k(r), in particular transition points where it changes significantly. The three regimes are then
identified using an automated change point detection algorithm [Truong et al., 2020] applied to the
() curve, which identifies transition points where the slope changes dramatically. We validate these
automatically detected boundaries through manual inspections for distribution differences on either
side of the boundaries.

Plateau regime identification We characterize the plateau regime by calculating the difference
between observed influence values log | ALoss(r)| and the power-law prediction (—x log(r) + 5):

0(r) = log |ALoss(r)| — (—xlog(r) + 3) (13)

where x and [ are parameters estimated from the power-law regime region. The quantity 6(r)
illustrates how much the ranked neuron r deviates from the power-law prediction. A plateau regime
is therefore characterized as a log rank range where 6(r) is bounded above a positive value, hence
the name “plateau”.
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A.2 Emerging specialization during training

Power-Law to Rapid Decay Transition The transition from power-law to rapid decay can be
identified through the slope behavior of log | ALoss| vs. log(rank). Using the finite difference method
above, we estimate the local slope «(r) with a sliding window approach. As shown in Figure , the
first derivative starts to decrease around log(rank) ~ 5, marking the breakdown of the power-law and
the onset of rapid decay. This characterizes a functional boundary between moderately and minimally
influential neurons.
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Emergence of the Plateau Regime Unlike
the rapid decay transition, the plateau regime is 05
not readily distinguishable by the first derivative
alone. Neurons in the range log(rank) € (2,5)
exhibit a relatively consistent power-law behav-
ior but with increased baseline influence. Such
increment is quantified by

d := log |ALoss| — (—k logrank + ),
which measures to what extend the power-law
underestimates the influence of top-ranked neu-

rons. Figure ] shows that the highly-influential
plateau emerges progressively during training.—implying functional specialization through training.
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Figure 4: Absolute Aloss across training steps.

Second-Order Derivative Analysis Our slope analysis reveals a notable feature in the derivative
structure. While the first derivative of log | ALoss| versus log(rank) remains continuous, the second
derivative exhibits a discontinuity around the power-law to rapid decay transition (see Figure [?Z)b.
This pattern provides additional evidence for the structural transition between regimes.

The emergence of this three-regime organization during training suggests that language models
spontaneously develop specialized computational strategies for rare token processing, with different
neuron populations serving distinct functional roles.

A.3 Cross-Model Validation of Neuron Influence Organization
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Figure 5: Neuron influence organization reveals specialization for rare tokens. (a) Rare token
processing exhibits a three-regime structure: rare-token neurons with exceptional influence , power-
law decay regime, and rapid decay tail. (b) Common token processing shows only smooth power-law
decay without plateau structure, demonstrating that specialized mechanisms emerge selectively for
rare token processing.

To validate the generalizability of our findings, we extend our neuron influence analysis beyond the
primary results presented in the main text. Figure [5]demonstrates that the three-regime organizational
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structure for rare-token processing is not limited to a single model architecture or parameter scale, but
represents a consistent computational principle across diverse transformer-based language models.
Our extended analysis encompasses multiple model families including GPT-2 (Medium, Large, XL
variants) and Pythia (1.4B, 1B, 2.8B configurations), spanning a range of parameter counts. Across
all tested configurations, we observe the same fundamental three-regime structure: the influential
plateau regime containing a small proportion of neurons, the intermediate power-law regime, and the
rapid decay tail regime. The consistency of this pattern across different architectural implementations
and parameter scales suggests that the specialized allocation of computational resources for rare-
token processing reflects universal optimization pressures in language model training, rather than
architecture-specific artifacts. This cross-model validation strengthens our interpretation that rare-
token neurons represent a fundamental organizational principle in transformer-based language models.

15



	Introduction
	Background
	Transformer architecture
	Heavy-Tailed Self-Regularization (HT-SR) Theory

	Rare Token neuron analysis framework
	Rare Token Neuron Identification
	Analysis Framework

	Results
	Hierarchical Organization of Rare Token Processing
	Coordinated Activation Patterns
	Spatially Distribution rather than clustering
	No Evidence for Selective Attention Routing
	Weight Spectral Differentiation

	Discussion
	Future Directions
	Ethics Statement
	Reproducibility Statement
	Acknowledgements
	Appendix
	Regime identification
	Emerging specialization during training
	Cross-Model Validation of Neuron Influence Organization


