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ABSTRACT

Deploying reinforcement learning (RL) policies in real-world scenarios, partic-
ularly through offline learning approaches, faces challenges due to distribution
shifts from training environments. Past approaches have shown limitations such as
poor generalization to out-of-distribution (OOD) variations or requiring extensive
retraining on target domains. We propose Uncertainty-aware Adaptive RL, UARL,
a novel offline RL pipeline that enhances OOD detection and policy generalization
without directly training in OOD environments. UARL frames distribution shifts
as OOD problems and incorporates a new OOD detection method to quantify
uncertainty. This approach enables iterative policy fine-tuning, starting with offline
training on a limited state space and progressively expanding to more diverse
variations of the training environment through online interactions. We demonstrate
the effectiveness and robustness of UARL through extensive experiments on con-
tinuous control tasks, showing reliability in OOD detection compared to existing
method as well as improved performance and sample efficiency.

1 INTRODUCTION

Robust Reinforcement Learning (RL) offers optimal solutions under relatively idealized theoretical
conditions (Iyengar, 2005; Nilim & El Ghaoui, 2005; Tamar et al., 2014). However, deploying these
RL policies in real-world applications poses substantial safety concerns, as real-world environments
often deviate from theoretical assumptions (Dulac-Arnold et al., 2021; Garcıa & Fernández, 2015).
The adoption of RL in real-world applications, such as robotics (Kober et al., 2013) and industrial
control (Spielberg et al., 2019), has highlighted the importance of addressing these challenges.

The online nature of RL, requiring continuous interaction with the environment, often proves im-
practical in real-world settings due to associated risks and costs (Sutton & Barto, 2018; Levine et al.,
2020). This challenge is compounded by Out-Of-Distribution (OOD) events, such as sensor noise
or unmodeled environmental changes, which can substantially degrade the performance of trained
policies (Zhao et al., 2020; Huang et al., 2023; Danesh & Fern, 2021). Existing research on robustness
and safety provides a foundation for tackling these issues, including robust control strategies that
optimize policies to handle worst-case scenarios (Iyengar, 2005; Nilim & El Ghaoui, 2005). However,
it introduces new challenges, particularly the distributional shift between the data collection policy
and the learned policy, which can be exacerbated during online fine-tuning (Lee et al., 2022; Zheng
et al., 2023; Zhang et al., 2023a).

Domain randomization (DR) techniques enhance robustness by training in simulation and deploying
the policy to real-world environments (Tobin et al., 2017). This approach has emerged as an
alternative, allowing training on pre-collected static datasets (Levine et al., 2020) from perturbed
environments in simulation. However, determining how to design the simulated environment to
reflect real-world variability accurately is often challenging. In addition, domain randomization
introduces significant safety concerns when testing potentially unsafe policies on physical hardware
(Mehta et al., 2020). Despite these advances, developing policies that ensure safety under unexpected
real-world conditions remains relatively underexplored in RL. Accelerating research on methods
addressing these challenges is crucial for enabling safe real-world deployment of RL systems.
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Figure 1: Overview of UARL framework. Blue boxes show our contributions while orange boxes are adapted
from existing RL methods. Agent processes nominal and repulsive datasets through RL and diversity terms. The
verification module assesses policy safety, guiding deployment, or additional data collection. This process helps
to manage OOD scenarios.

In this paper, we introduce Uncertainty-aware Adaptive RL (UARL), a novel approach that encourages
safe policy deployment under distribution shift without direct access to the target environment. As
shown in Fig. 1, UARL introduces a diversity term that consists of an ensemble of critics to quantify
policy uncertainty and iteratively refines high-uncertainty regions (of the state space). UARL
integrates nominal and repulsive datasets in the replay buffer and employs a verification module for
safe adaptation to OOD scenarios. We validate UARL on MuJoCo benchmark tasks (Todorov et al.,
2012), assessing performance, safety, and sample efficiency.

Contributions. Our key contributions are (1) a method for quantifying uncertainty and adapting
policy without direct interactions in the OOD environments, and (2) an efficient offline-to-
(semi)online (O2O) RL strategy to balance the replay buffer. Unlike traditional O2O methods that
transition directly from offline learning to online fine-tuning in the target environment, our approach
leverages simulated environments to gradually expose the policy to increasing levels of environmental
variability, eliminating the need to fine-tune policies with immediate real-world interaction. Compared
to domain randomization, our method avoids the risk of validating potentially unsuitable policies in
OOD environments, thereby improving the safety and reliability of RL in real-world applications.
These contributions collectively advance the field of safe and robust RL, offering a novel framework
that enhances policy generalization and safety across diverse simulated environments, while providing
a foundation for addressing the challenges of distribution shifts and OOD events in RL1.

2 RELATED WORK

In this section, we provide a summary of related work in offline RL, offline-to-online RL, and
ensemble methods. A comprehensive discussion of the Related Work is presented in App. C.

Offline RL. Traditional RL allows policies to interact freely with environments to discover optimal
strategies (Sutton & Barto, 2018). In contrast, offline RL addresses scenarios where online interaction
is impractical or risky, learning solely from pre-collected datasets gathered by a behavior policy
(Fujimoto et al., 2019; Agarwal et al., 2020; Ernst et al., 2005; Kumar et al., 2019; Levine et al., 2020;
Lange et al., 2012; Kostrikov et al., 2022; Wang et al., 2020; Tarasov et al., 2024). This approach
enables applications in domains where real-time learning might be unsafe. However, offline RL faces
a significant challenge in distributional shift, where the training data may not accurately represent the
deployment environment, potentially leading to suboptimal or unsafe behavior. Several approaches
address this issue by encouraging the learned policy to resemble the behavior policy (Jaques et al.,
2019; Wu et al., 2019; Siegel et al., 2020; Fujimoto & Gu, 2021), promoting caution through action
alignment. Other methods explore training conservative critics for more cautious reward estimates
(Kumar et al., 2020; Kostrikov et al., 2021) or diversifying critics within the actor-critic framework to
improve robustness (An et al., 2021; Bai et al., 2022; Wu et al., 2021).

Offline-to-Online RL. Building upon offline RL, O2O RL leverages previously collected offline
datasets to accelerate online RL training. This approach first pre-trains a policy with offline RL
and then continues to fine-tune it with additional online interactions (Nair et al., 2020; LEI et al.,
2024; Zhao et al., 2024; Zheng et al., 2022). However, naive O2O RL is often unstable due to the

1Anonymized source code is available at: anonymous.4open.science/r/UARL-41CD
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distributional shift between the offline dataset and online interactions. To address this, researchers
have proposed techniques such as balanced sampling (Lee et al., 2022), actor-critic alignment (Yu &
Zhang, 2023), adaptive conservatism (Wang et al., 2024), return lower-bounding (Nakamoto et al.,
2023), adaptive update strategies (Zheng et al., 2023), introducing online policies alongside offline
ones (Zhang et al., 2023a), and using weighted replay buffers with density ratio estimation (Lee
et al., 2022). While these works primarily focus on maximizing cumulative rewards and addressing
distributional shifts, our paper explicitly considers policy safety, particularly for OOD samples. Our
work builds upon weighted samples but offers a more efficient solution by leveraging learned critics
to assign weights to offline and online samples during fine-tuning.

Ensemble Methods combine multiple models to enhance performance and are widely used in ML
applications (Goodfellow et al., 2016). In OOD detection, ensembles offer robustness by leveraging
model diversity (Lee & Chung, 2020; Lakshminarayanan et al., 2017). While random initialization
contributes to diversity, controlled diversity is often achieved by manipulating the loss function
(Wabartha et al., 2020; Mehrtens et al., 2022; Jain et al., 2020; Pang et al., 2019). This allows
for fine-tuning ensemble behavior, particularly through regularization techniques or bias-variance
decomposition (Wood et al., 2023; Arpit et al., 2022), enhancing both ID accuracy and OOD
detection by ensuring disagreement in uncertain regions, known as “repulsive locations” (Hafner
et al., 2020). In RL, ensembles play a key role in optimizing exploration strategies. Osband et al.
(2016) introduced ensemble critics for more efficient exploration, and Lee et al. (2021) proposed
leveraging Q-ensembles to augment Q-value estimates using the mean and standard deviation of the
ensemble. These methods also support uncertainty estimation, crucial for handling OOD scenarios in
RL, by analyzing discordance between ensemble members’ predictions (Wabartha et al., 2020; Liu
et al., 2019; Lakshminarayanan et al., 2017; Jain et al., 2020). Building on these foundations, we
employ critic disparity in actor-critic algorithms to effectively detect OOD instances, combining the
strengths of ensemble methods in both OOD handling and RL optimization.

3 BACKGROUND

3.1 REINFORCEMENT LEARNING

RL problems commonly model the world as a Markov Decision Process (MDP) M = ⟨S,A, T,R, γ⟩,
where S is state space, A is action space, T (s′|s, a) is the state transition function, R(s, a) is
the reward function and γ ∈ [0, 1) is discount factor (Bellman, 1957; Sutton & Barto, 2018). In
RL, the objective is to find the optimal policy that maximizes the expected cumulative return:
π∗ = argmaxπ Es;a∼π(·|s) [

∑∞
t=0 γ

tR(s, a)] with π(a|s) representing the probability of taking
a ∈ A in s ∈ S under policy π. While online RL algorithms can be either on-policy (updated
based on data from the current policy) or off-policy (updated based on data from any policy), offline
RL is inherently off-policy. In offline RL, the policy is learned using a static, pre-collected dataset
D = {(s, a, s′, r)} obtained by a behavior policy πb, where r is the immediate reward obtained
after taking a ∈ A in s ∈ S and transitioning to s′ ∈ S (Levine et al., 2020). Given dataset D, the
Q-function update rule during policy iteration is defined as:

Qπ
k+1 ← argmin

Q
Es,a,r,s′∼D

[
(Q(s, a)− (r + γEa′∼πk(·|s′)[Q

π
k (s

′, a′)]))2
]

policy evaluation (1)

which updates the Q-values by minimizing the MSE between the current Q-values and the target
values, approximating the true Q-values that satisfy the Bellman equation under the current policy.
The policy π is then updated towards actions that maximize the expected Q-value:

πk+1(·|s)← argmax
π

Es∼D,a∼πk(·|s)[Qk+1(s, a)] policy improvement (2)

By iteratively evaluating and improving the policy, with appropriate assumptions, actor-critic RL
converges to a near-optimal policy maximizing the expected cumulative return (Levine et al., 2020).
However, a key challenge in offline RL is the distributional shift between the dataset D and the state-
action distribution induced by the learned policy, potentially leading to overestimation of Q-values
for state-action pairs not well-represented in the dataset D, potentially resulting in poor performance
when the learned policy is deployed (Kumar et al., 2020).

To mitigate this, approaches like conservative learning employ critics that lower-bound the true value
(Kumar et al., 2020; Fujimoto et al., 2019; Kumar et al., 2019). Another approach is ensemble
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diversification, which involves increasing the number of Q-networks and diversifying them (An et al.,
2021). This diversification is achieved by minimizing the cosine similarity between the gradients
of different critics with respect to their inputs, encouraging the critics to capture different aspects
of the value function. These methods aim to mitigate distribution shifts and reduce uncertainty in
offline RL by modifying the policy evaluation step. The challenges of distributional shift are further
exacerbated when fine-tuning offline RL policies in an online setting (O2O RL) (Zheng et al., 2023;
Lee et al., 2022; Zhang et al., 2023a). In this scenario, the policy encounters previously unseen states
during online interaction, potentially leading to inaccurate Q-value estimates. This can harm the
performance of the initial policy learned offline, especially when the offline data has limited coverage
of the state-action space.

3.2 ENSEMBLE DIVERSIFICATION

As detailed in Sec. 2, ensembles show improved efficacy when supplemented with an extra loss term,
beyond initial weight randomization, to regulate diversity. The DENN method (Wabartha et al., 2020)
implements this approach by introducing a new diversity term, Ldiv, into the loss function. This
method utilizes the concept of repulsive locations, strategically selected data points designed to
induce disagreement among ensemble models, particularly at the boundary of the training distribution,
where the model’s predictions are less certain and may exhibit higher variance.

Let X = {x1, x2, ..., xn} denote the inputs and Y be the corresponding output space of the nominal
dataset. One approach to defining repulsive locations is to add noise to the input data: X ′ = {x+ ϵ :
x ∈ X}, where ϵ represents noise. Alternatively, an entirely different dataset can serve as repulsive
locations (Hendrycks et al., 2019). By introducing these repulsive locations, uncertainty is enforced at
the boundary of the training distribution, effectively propagating into OOD regions, thereby enhancing
OOD detection crucial for robust model performance. To leverage these repulsive locations, DENN
employs an ensemble of multiple models, each denoted as fi : X → Y . DENN promotes diversity
by constraining each fi to differ from a reference function g : X → Y , which was trained once on
the nominal dataset. This reference function g serves as a consistent baseline for diversity promotion.
DENN augments the conventional supervised learning loss function by:

L(fi, g,X ,X ′) =
1

|X |
∑

x,y∈X
(fi(x)− y)2 +

λ

|X ′|
∑
x∈X ′

exp(−||fi(x)− g(x)||2/2δ2)︸ ︷︷ ︸
diversity term Ldiv

(3)

where λ is the diversity coefficient and δ controls the diversity between two models at data point
x ∈ X ′. The diversity term Ldiv penalizes the similarity between fi and the reference function g,
which leads to different predictions at inputs X ′, thus making fi diverse with respect to g.

4 UNCERTAINTY-AWARE ADAPTIVE RL

In this section, we start by defining our repulsive locations in Sec. 4.1. We then outline our key
technical elements, including an ensemble of critics for OOD detection (Sec. 4.2), a balanced replay
buffer to handle distribution shifts (Sec. 4.3), and an iterative policy refinement process (Sec. 4.4).

4.1 REPULSIVE LOCATIONS IN RL

While repulsive locations enhance model diversity in supervised learning (Wabartha et al., 2020),
applying them in sequential decision-making requires a more nuanced approach than simply adding
noise to data. To address the challenge of real-world distribution shifts, we generate repulsive
locations by injecting variability into environment dynamics through hyperparameter randomization.
We select key hyperparameters like initial noise scale, friction coefficient, and agent’s mass, inspired
by common variations in real-world tasks that we have no accurate knowledge about.

We assume that we do not have direct knowledge of the target environment Ew. We begin with an
initial environment E0 (which may not align with Ew) and a repulsive location E1 through parameter
randomization. By progressively expanding the randomization range, we create a curriculum that
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gradually introduces more randomized scenarios. This approach aims to push the agent’s exploration
towards the real-world environment, Ew.

Figure 2: A conceptual visu-
alization of state space ex-
panding from E0 (initial)
to E1, E2, and E3 by in-
creasing randomization. DR
denotes domain randomiza-
tion, Ew is the theoretical
state space, and Ew′ is the
region in which the agent
can perform effectively.

Fig. 2 is a conceptual illustration on how UARL progressively expands the
randomization range from E0 to En, where Ei for i ∈ N and 0 < i ≤ n
denotes the environment with increasingly diverse environmental condi-
tions. Importantly, Ew′ represents a subset of the Ew that is sufficient for
the agent to perform well in the target environment. Our goal is to train
the agent to operate effectively within Ew′ , balancing comprehensive
coverage of likely scenarios with computational efficiency.

By focusing on this practical subset rather than the entire state space, or a
wide blindly chosen one like in domain randomization (Tobin et al., 2017),
we aim to achieve safe policy deployment without the computational cost
of exhaustive exploration. Sec. 5 provides details on these randomization
procedures and how they contribute to the agent’s adaptability.

4.2 OFFLINE RL WITH DIVERSE CRITICS

We extend DENN’s diversity term Ldiv to not only have diverse critics
but also be able to use critics to estimate uncertainty in the environment
(Wabartha et al., 2020). This uncertainty estimation is crucial for solving
the problem of safe and robust RL in real-world applications, as it allows
the agent to identify and adapt to situations where its knowledge is limited
or potentially unreliable.

When extending DENN to RL, we need to consider that, unlike supervised learning, data in RL are
not labelled. Therefore, we need to define a reference function that corresponds to the value each
critic in the ensemble would naturally predict OOD. An interesting observation is that we do not
need to pretrain the reference function since we have the Bellman target value as the label. In our
approach, we learn an ensemble of N distinct Q-functions, denoted as {Q1, Q2, . . . , QN}. With that,
we modify Ldiv in Eq. 3 to the following:

LRL
div =

∑
i

exp
(
−||Qi(s, a)− (r + γQi(s

′, π(a′|s′)))||2/2δ2
)
; (s, a, s′, r) ∼ D′ (4)

where in the offline RL setting,D′ is the repulsive dataset which can be defined as the dataset gathered
by the behavior policy over any modified version of the original environment, which we detail in
Subsec. 4.1. Based on temporal difference learning, we can consider r + γQi(s

′, π(a′|s′)) as the
learner’s target value, and compare that against the predicted value of Qi(s, a) (Sutton & Barto,
2018). By combining Eq. 1 and Eq. 4, our overall policy evaluation step for each Qi in the ensemble:
Qπ

i,k+1 ← argmin
Qi

Es,a,s′,r∼D
[
(Qi(s, a)− (r + γQπ

i (s
′, π(a′|s′))))2

]
+ λ(Es,a,s′,r∼D′;a′∼π(·|s′)

[∑
i

exp(−||Qi(s, a)− (r + γQi(s
′, a′))||2/2δ2)

]
)︸ ︷︷ ︸

diversity term LRL
div

(5)

Eq. 4 and Eq. 5 form the core of our work, promoting diversity among the Q-functions in our
ensemble. The diversity term LRL

div in Eq. 5 encourages each Qi to diverge from its own Bellman
target on the repulsive dataset D′, while the first term ensures accurate Q-value estimation on the
nominal dataset D. This formulation is analogous to Eq. 3, where each model in the ensemble is
encouraged to differ from a reference function.

The diversity term in our formulation is key to improving robustness and uncertainty estimation in
our ensemble. The update rules (Eq. 4 and Eq. 5) promotes agreement amount Q-functions on D and
diversity on D′, providing a clearer separation between D (ID) and D′ (OOD). Without Eq. 4 and
Eq. 5, a set of Q-functions with minimal diversity would produce similar values across both nominal
and repulsive datasets. This lack of diversity would diminish the impact of LRL

div, as the exponential
term would stay close to 1, limiting the disagreement between Qi(s, a) and (r + γQi(s

′, π(a′|s′))).
As a result, the ensemble would struggle to capture a range of Q-value estimates, especially in OOD
scenarios, leading to poor uncertainty estimation and overconfidence in unfamiliar situations.
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Algorithm 1 Balancing replay buffer

1: Require: ▷ Before balancing
ensemble of critics Q, online dataset Don, offline dataset Doff.

2: for each (s, a) ∈ Don ∪ Doff do ▷ Compute variance for every data point
3: Compute the variance σ2(s, a) between the critics’ outputs Q(s, a)
4: if s ∈ Don then
5: Assign weight w proportional to 1

σ2(s,a)
▷ Higher weight to ID samples

6: else if s ∈ Doff then
7: Assign weight w proportional to σ2(s, a) ▷ Higher weight to OOD samples

The objectives pursued in the policy evaluation step exhibit conflicting tendencies if D ∩ D′ ̸= ∅,
resulting in regularization for small enough values of λ (Szegedy et al., 2016). Beyond D, LRL

div
becomes the dominant term, encouraging OOD repulsion between Qi(s, a) and (r + γQi(s

′, a′)),
thus promoting diverse Q-values OOD. It is noteworthy that when λ = 0, Eq. 5 returns to the standard
RL loss. Each critic within our ensemble is trained to utilize Eq. 5. Given the stochastic initialization
of their respective parameters, the critics will naturally develop different predictions, especially in
regions of the state-action space that are not well-represented in the training data.

4.3 FINE-TUNING POLICY WITH BALANCING REPLAY BUFFER

To address some of the existing problems in offline RL settings, recent work has shifted towards an
O2O approach, where policies are pre-trained with offline data and refined through online interactions,
as discussed in Sec. 2. However, effectively utilizing both offline and online datasets requires
consideration of their disparate distributions, which may hinder policy fine-tuning (Nakamoto et al.,
2023). To stabilize fine-tuning and expedite convergence, we propose assigning weights to samples
based on the critics’ uncertainty about them. We define the weight of a sample (s, a, r, s′) as:

w(s, a, r, s′) =

{
1

σ2(Q1(s,a),...,QN (s,a)) if (s, a, r, s′) ∈ Don

σ2(Q1(s, a), ..., QN (s, a)) if (s, a, r, s′) ∈ Doff (6)

where Q1, ..., QN are the N critics in our ensemble, and σ2(·) denotes the variance. This approach
motivates a balanced replay scheme that manages the trade-off between utilizing online samples,
beneficial for adaptation, and offline samples, stable for maintaining baseline performance. The
pseudocode for balancing the replay buffer is outlined in Alg. 1.

4.4 UARL ALGORITHM

Our approach assumes access to a limited real-world demonstration dataset Dw as a proxy for the
target deployment environment. This enables us to evaluate policy uncertainty on real-world data
without risking unsafe deployments. Collected from a few demonstrations, Dw captures key aspects
of the real-world task that may differ from simulation.

Initially, we execute a behavior policy for n episodes in an unaltered simulation environment E0,
generating an offline dataset D0. We then introduce slight randomization to a single hyperparameter
in the environment E1, collecting a repulsive dataset D1 using the same behavior policy. These
two datasets, D0 (nominal) and D1 (repulsive), are used in our loss function: D0 contributes to the
standard RL loss, while D1 informs the diversity term LRL

div (Eq. 5).

After training, the variance of the critic ensemble over a given dataset serves as a critical metric
in this process. As defined in Eq. 5, the loss function promotes agreement amount critics on D
and disagreement on D′. Consequently, lower variance indicates that the data is ID, while high
variance suggests the data is OOD. For this, we evaluate the learned critics’ uncertainty on Dw. If the
uncertainty is below a predefined threshold (Subsec. 5.2), then Dw must have aligned with D0, and
the policy is deemed ready for deployment.

Otherwise, we expand the randomized hyperparameters from E1 to E2 and collect the new repulsive
dataset D2. We combine D0 and D1 as the nominal dataset using our balancing replay buffer method
(Subsec. 4.3) and apply the O2O approach to refine the policy. This process continues iteratively until

6
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Algorithm 2 UARL

1: Require: ▷ Before training
real-world dataset Dw, behavior policy πb, original environment E0, threshold.

2: D0 ← rollouts of πb over E0 ▷ Subsec. 4.1
3: E1 ← expanding E0 by increasing the parameter randomization range
4: D1 ← rollouts of πb over E1

5: Train policy π0 and ensemble of N critics Q0 with Eq. 5 and Eq. 2 with nominal and
repulsive datasets: (D0,D1) ▷ Subsec. 4.2

6: σ2← 1
N

∑N−1
j=0

(
Q0j − 1

N

∑N−1
k=0 Q0k

)2

7: i← 0

8: while σ2 > threshold do ▷ Continue until policy is safe
9: Ei+2 ← expanding Ei+1 by increasing the parameter randomization range ▷ Subsec. 4.1

10: Di+2 ← rollouts of πi over Ei+2

11: Dnom ← balanced replay buffer with D0,D1, ...,Di+1 ▷ Subsec. 4.3 - Alg. 1
12: Finetune πi+1 and Qi+1 with Eq. 5 and Eq. 2 with nominal and

repulsive datasets: (Dnom,Di+2) ▷ Subsec. 4.2

13: σ2← 1
N

∑N−1
j=0

(
Qi+1j − 1

N

∑N−1
k=0 Qi+1k

)2

14: i← i+ 1
15: Deploy policy πi

▷ Detailed hyperparameter explanations found in the App. A.1

the uncertainty criterion is satisfied for deployment. Alg. 2 outlines the iterative fine-tuning process,
leading to a policy with sufficient certainty for deployment.

Note that if the condition in line 8 of Alg. 2 is never violated, it suggests ineffective domain
randomization. High uncertainty despite varied training environments indicates that the agent has
not generalized to real-world conditions, possibly due to inadequate randomization or a mismatch
with real-world data. In such cases, training should be stopped, and the domain randomization or
real-world data needs revisiting. This is not a shortcoming of UARL, but a limitation of the domain
randomization or data quality.

Comparing other work on uncertainty-aware RL, our work explicitly identifies scenarios when the
policy encounters OOD situations without direct interaction in the target environment. This is a
crucial safety feature for real-world deployment. Additionally, the progressive nature also allows the
agent to adapt to increasingly complex environments while maintaining performance stability.

Our iterative training pipeline works with any off-policy RL algorithm using an ensemble of critics,
offering a flexible framework for improving robustness and safety in real-world RL. Our formulation
presented in Eq. 5 solely introduces a “diversity term” into the policy evaluation step; therefore,
UARL seamlessly integrates into any offline RL algorithm. In Sec. 5, we incorporated UARL into
CQL (Kumar et al., 2020), AWAC (Nair et al., 2020), and TD3BC (Fujimoto & Gu, 2021).

5 EXPERIMENTS

Our evaluation comprehensively assesses the performance, robustness, and efficiency of the proposed
UARL approach. We compare it against several state-of-the-art offline and O2O RL methods to
address the following key questions: (1) Does UARL impact the performance of baseline meth-
ods? (Subsec. 5.1) (2) How effectively does UARL differentiate between ID and OOD samples?
(Subsec. 5.2) (3) What is the effectiveness of the balancing replay buffer mechanism in UARL?
(Subsec. 5.3) (4) How sample-efficient is UARL? (App. B.4)

Baselines. We benchmark UARL against the following prominent offline and O2O RL methods:
CQL (Kumar et al., 2020), which learns conservative value estimations to address overestimation
issues; AWAC (Nair et al., 2020), which enforces policy imitation with high advantage estimates;
TD3BC (Fujimoto & Gu, 2021), an offline RL method that combines TD3 (Fujimoto et al., 2018)
with behavioral cloning; and EDAC (An et al., 2021), which learns an ensemble of diverse critics by
minimizing the cosine similarity between their gradients. We implement these baselines based on the
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Figure 3: Offline training (1st iteration) performance, showing average return during training across the random-
ized hyperparameters. Curves are smoothed for clarity.

CORL framework (Tarasov et al., 2022) without additional hyperparameter tuning. UARL is applied
to CQL, AWAC, and TD3BC, but not to EDAC due to its inherent diversity mechanism.

Evaluation Criteria. Our comprehensive evaluation framework for UARL focuses on performance,
robustness, and sample efficiency. We introduce systematic randomization to three key hyperparame-
ters in each environment: initial noise scale, friction coefficient, and the agent’s mass. By isolating
the effect of each hyperparameter, we assess the method’s adaptability to dynamic conditions. Specif-
ically, the noise scale is multiplied by 102, while both the friction coefficient and the agent’s mass are
increased proportionately per iteration (App. A.2 provides further details). To ensure robust results,
we aggregate the outcomes of 5 random seeds, reporting the mean and a 95% confidence interval. We
evaluate the baselines and UARL based on the following criteria: (1) Cumulative return on evaluation
environments during training, which measures overall performance; (2) OOD accuracy, defined as
the critic variance’s ability to differentiate ID and OOD environments; (3) Sample efficiency, defined
as the number of samples required to reach a pre-defined return threshold.

Dataset. Although the D4RL dataset (Fu et al., 2020) is widely used in offline RL, it lacks behavior
policy checkpoints needed for generating the repulsive dataset required by UARL. Thus, we created
a new dataset using arbitrary behavior policies. Key differences from D4RL include: (1) We use
MuJoCo v4 with Gymnasium, fixing bugs in the v2 version used by D4RL (Towers et al., 2023); (2)
We extend beyond D4RL’s three locomotion environments to include Ant and Swimmer; (3) For the
behavior policy, we train SAC (Haarnoja et al., 2018) until convergence, generating 999 rollouts per
environment. Despite these changes, our dataset’s metrics closely match those of D4RL. Therefore,
we expect our findings to generalize to D4RL once the necessary behavior policies become available.
The real-world dataset Dw is obtained by running the behavior policy in the environment with a wide
range of randomized parameter values, ensuring reflecting real-world variability.

Diversity Loss Hyperparameters. Selecting the hyperparameters λ and δ in the diversity loss term,
LRL

div (Eq. 5), is key to balancing the RL objective with promoting diversity among critics. We set
λ adaptively such that the LRL

div contributes approximately 10% of the total loss, striking a balance
between the primary learning objective and the diversification goal. This choice ensures that the
diversity term has a meaningful impact without overshadowing the original objective. As suggested
by Wabartha et al. (2020), an effective range for δ is [10−3, 10−1/2], from which we selected 10−2.
While these choices are somewhat arbitrary, they are guided by the intuition that LRL

div should be
significant enough to influence learning without dominating it. The relative scale of λ allows the
agent to maintain its focus on task performance while still benefiting from the improved uncertainty
estimation provided by diverse critics. Our experiments show that these initial λ and δ values offer a
strong baseline, with further fine-tuning yielding additional improvements (see App. B.3 for details).

5.1 OVERALL PERFORMANCE

To verify that adding a diversity term does not introduce a negative impact on the overall performance,
we assess UARL’s performance by tracking cumulative return during training. Fig. 3 shows the
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Figure 4: Critic variance across 100 rollouts in the Ant-v4 environment for AWAC-based methods. The
randomized hyperparameter is agent mass. Each column represents a fine-tuning iteration with an expanded ID
range by multiplying the agent’s mass vector by a constant: 1x→ 5x→ 10x. The orange line indicates the 95%
confidence interval of critic variances for ID samples, serving as an OOD detection threshold. UARL-AWAC
consistently distinguishes ID from OOD samples, while AWAC struggles to do so.

performance gains in the offline training phase (1st iteration of UARL) across various randomized
hyperparameters. We observe significant improvements in the Ant-v4 and HalfCheetah-v4, partic-
ularly when randomizing the initial noise scale. For instance, UARL-TD3BC shows a substantial
performance advantage over TD3BC in both environments. Similar enhancements are evident when
randomizing the friction coefficient, while performance is maintained when altering the agent’s
mass. Moreover, while EDAC uses an ensemble of 10 critics (Tarasov et al., 2022), UARL achieves
strong performance with just 2 critics (default number of critics in baselines), reducing computational
overhead. This efficiency makes UARL well-suited for real-world applications with limited resources.
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Figure 5: O2O training (2nd iteration) performance in Ant-v4
(top) and HalfCheetah-v4 (bottom) environments, showing
average return during fine-tuning across three randomized
hyperparameters.

The O2O phase (2nd iteration) expands
the range of the randomized hyperparam-
eter, collects new data, balances the replay
buffer, and fine-tunes the policy as described
in Sec. 4. Fig. 5 showcases the perfor-
mance during this fine-tuning phase, fo-
cusing on AWAC and CQL as our O2O-
compatible baselines. The results demon-
strate that UARL continues to enhance or
maintain performance during the training
similar to the 1st phase, and interestingly, it
prevents the performance decline observed
in CQL across several scenarios, which oc-
curs in HalfCheetah-v4 when the initial
noise scale or friction coefficient is altered.
(more details in App. B.1).

5.2 OOD DETECTION

A key objective of UARL is to enhance un-
certainty awareness in RL policies. We evaluate the variance among critics in UARL and the baselines.
To assess OOD detection, we set a threshold based on the 5th percentile of the variances observed
in 100 ID rollouts, which refer to rollouts generated in environments with variations the agent has
encountered during training. During deployment, data points exceeding this threshold are classified
as OOD, allowing us to evaluate the performance on recognizing OOD situations.

Fig. 4 demonstrates the improved uncertainty estimation of UARL-AWAC compared to standard
AWAC in the Ant-v4 environment with randomized agent mass. It shows how UARL enables
a clear distinction between ID and OOD states based on critic variance, a capability absent in
baseline. Moreover, Fig. 4 illustrates the evolution of uncertainty estimation across three iterations of
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Figure 6: The impact of balancing the replay buffer (BRB) during the initial fine-tuning (O2O) for all randomized
hyperparameters. The top row presents results for Ant-v4, while the bottom row for HalfCheetah-v4.

fine-tuning, each expanding the range of agent mass considered as ID. UARL-AWAC consistently
maintains high critic variance for OOD states while adapting its uncertainty estimates as the ID range
expands. This adaptive behavior demonstrates UARL’s ability to maintain robust OOD detection
even as the agent’s knowledge of the environment grows, which is crucial for safe real-world RL
deployment. Additional comparisons across different environments and parameter settings can be
found in App. B.2, while further baseline comparisons are detailed in App. B.5.

5.3 EFFECT OF BALANCING REPLAY BUFFER

Finally, we evaluate the impact of the replay buffer balancing mechanism employed in UARL (Alg. 1).
Fig. 6 shows the effect of removing the replay buffer balancing feature while fine-tuning the policy in
the O2O RL setting. In both Ant-v4 and HalfCheetah-v4, the balancing mechanism consistently
outperforms its counterparts across all three randomized hyperparameters. UARL with balancing
shows faster learning, higher average returns, and less “unlearning” (overriding of previously learned
behaviors), both in Ant-v4 (especially at the beginning of learning) and HalfCheetah-v4. Overall,
UARL with balancing demonstrates increasing gains throughout the entire training process.

The results suggest that balancing the replay buffer leads to more stable and efficient learning,
particularly crucial in O2O RL where transitioning from offline pretraining to online fine-tuning
can be challenging. The consistent improvement across various environmental hyperparameters
indicates that the balancing mechanism’s benefits are robust to task dynamics variations. In essence,
our experiments show that the replay buffer balancing mechanism is a key component in enhancing
UARL’s performance, accelerating early-stage fine-tuning, and improving overall performance across
different environments and task hyperparameters.

6 CONCLUSION, LIMITATIONS, & FUTURE WORK

Our proposed pipeline, UARL, addresses real-world RL deployment challenges through targeted,
iterative adaptation in simulation. It prevents trial and error via a representative dataset (Dw) from
the target environment, deploying only when confident. UARL improves efficiency and robustness
with precise OOD detection, balanced O2O RL sampling, and gradual environment variation, without
extensive randomization. Its uncertainty estimation is key for detecting OOD scenarios, particularly
in robotics, where agents must navigate unexpected variations.

Despite these advantages, UARL has a few drawbacks. As a pilot study, we only explored randomizing
a single parameter at the time, while a more elaborate scheme could prove useful for real-world
deployment. Moreover, UARL requires a real-world dataset Dw to determine when to exit Alg. 2. An
incomplete or unrepresentative Dw could lead to overconfident policies. We summarize the limitation
here and discuss in detail in App. D.

Future work will focus on automatizing the randomization sequence and validating the robustness of
UARL beyond simulated environments, to real robotic systems.
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A EXPERIMENT SETUP

A.1 HYPERPARAMETERS AND NETWORK ARCHITECTURES

As mentioned in Sec. 5, our implementations of baselines and UARL are based on Clean Offline
Reinforcement Learning (CORL)2 (Tarasov et al., 2022). CORL is an Offline RL library that offers
concise, high-quality single-file implementations of state-of-the-art algorithms. The results produced
using CORL can serve as a benchmark for D4RL tasks, eliminating the need to re-implement or
fine-tune existing algorithm hyperparameters. Thus, without tuning any hyperparameter, we use the
already provided ones for our experiments, for either baselines or UARL. Following, we present the
hyperparameters used in our experiments and the network architectures for baselines.

2github.com/corl-team/CORL
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A.1.1 AWAC

Table 1: AWAC Hyperparameters.

Hyperparameter Value

AWAC
(Nair et al., 2020)

Scaling of the advantage estimates 0.33
Upper limit on the exponentiated
advantage weights 100

Common

Discount factor γ 0.99
Replay buffer capacity 2M
Mini-batch size 256
Target update rate τ 5× 10−3

Policy update frequency Every 2 updates

Optimizer (Shared) Optimizer Adam (Kingma & Ba, 2015)
(Shared) Learning rate 3× 10−4

Pseudocode 1. AWAC Network Details

Critic Q Networks:
▷ AWAC uses 2 critic networks with the same architecture and forward pass.
l1 = Linear(state_dim + action_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 256)
l4 = Linear(256, 1)

Critic Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
x = ReLU(l3(x))
value = l4(x)

Policy π Network (Actor):
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 256)
l4 = Linear(256, action_dim)

Policy π Forward Pass:
x = ReLU(l1(state))
x = ReLU(l2(x))
x = ReLU(l3(x))
mean = l4(x)
log_std = self._log_std.clip(-20, 2)
action_dist = Normal(mean, exp(log_std))
action = action_dist.rsample().clamp(min_action, max_action)
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A.1.2 CQL

Table 2: CQL Hyperparameters.

Hyperparameter Value

CQL
(Kumar et al., 2020)

Scaling the CQL penalty 1
Target Action Gap −1
Temperature Parameter 1

Common

Discount factor γ 0.99
Replay buffer capacity 2M
Mini-batch size 256
Target update rate τ 5× 10−3

Policy update frequency Every 2 updates

Optimizer
(Shared) Optimizer Adam (Kingma & Ba, 2015)
(Shared) Policy learning rate 3× 10−5

(Shared) Critic learning rate 3× 10−4

Pseudocode 2. CQL Network Details

Critic Q Networks:
▷ CQL uses 2 critic networks with the same architecture and forward pass.
l1 = Linear(state_dim + action_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 1)

Critic Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
value = l3(x)

Policy π Network (Actor):
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 256)
l4 = Linear(256, 2 * action_dim)

Policy π Forward Pass:
x = ReLU(l1(state))
x = ReLU(l2(x))
x = ReLU(l3(x))
x = l4(x)
mean, log_std = torch.split(x, action_dim, dim=-1)
normal = Normal(mean, std)
action_dist = TransformedDistribution(normal, TanhTransform(cache_size=1))
action = action_dist.rsample()
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A.1.3 TD3BC

Table 3: TD3BC Hyperparameters.

Hyperparameter Value

TD3BC
(Fujimoto & Gu, 2021)

Scaling factor (α) 2.5
Noise added to the policy’s action 0.2
Maximum magnitude of noise
added to actions 0.5

Common

Discount factor γ 0.99
Replay buffer capacity 2M
Mini-batch size 256
Target update rate τ 5× 10−3

Policy update frequency Every 2 updates

Optimizer (Shared) Optimizer Adam (Kingma & Ba, 2015)
(Shared) Learning rate 3× 10−4

Pseudocode 3. TD3BC Network Details

Critic Q Networks:
▷ TD3BC uses 2 critic networks with the same architecture and forward pass.
l1 = Linear(state_dim + action_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 1)

Critic Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
value = l3(x)

Policy π Network (Actor):
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
x = ReLU(l1(state))
x = ReLU(l2(x))
x = Tanh(l3(x))
action = max_action * x
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A.1.4 EDAC

Table 4: EDAC Hyperparameters.

Hyperparameter Value

EDAC
(An et al., 2021)

Diversity coefficient η 1.0
Target entropy −action_dim

Common

Discount factor γ 0.99
Replay buffer capacity 2M
Mini-batch size 256
Target update rate τ 5× 10−3

Policy update frequency Every 2 updates

Optimizer (Shared) Optimizer Adam (Kingma & Ba, 2015)
(Shared) Learning rate 3× 10−4

Pseudocode 4. EDAC Network Details

Critic Q Networks:
▷ EDAC uses 10 critic networks with the same architecture.
l1 = Linear(state_dim + action_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 256)
l4 = Linear(256, 1)

Critic Q Forward Pass:
input = concatenate([state, action])
x = ReLU(l1(input))
x = ReLU(l2(x))
x = ReLU(l3(x))
value = l4(x)

Policy π Network (Actor):
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, 256)
mu = Linear(256, action_dim)
log_sigma = Linear(256, action_dim)

Policy π Forward Pass:
x = ReLU(l1(state))
x = ReLU(l2(x))
hidden = l3(x)
mu, log_sigma = mu(hidden), log_sigma(hidden)
log_sigma = clip(log_sigma, -5, 2)
policy_dist = Normal(mu, exp(log_sigma))
action = policy_dist.sample()
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Table 5: Randomized hyperparameter scales used during our experiments. → shows one round of fine-tuning
(iteration) using UARL, i.e. E0 → E1 → · · · → En.

Environment Randomized
Hyperparameter

Original
Scale Modified Scale

Ant-v4
Initial Noise Scale 1× 10−1 1× 10−5 → 1× 10−3 → 1× 10−1

Friction Coefficient 1 1→ 1.25→ 1.5→ 1.75
Agent’s Mass 1x 1x→ 5x→ 10x→ 15x

HalfCheetah-v4
Initial Noise Scale 1× 10−1 1× 10−5 → 1× 10−3 → 1× 10−1

Friction Coefficient 0.4 0.4→ 0.5→ 0.6→ 0.7
Agent’s Mass 1x 1x→ 1.05x→ 1.1x→ 1.15x

Hopper-v4
Initial Noise Scale 5× 10−3 5× 10−7 → 5× 10−5 → 5× 10−3 → 5× 10−1

Friction Coefficient 2 2→ 2.5→ 3→ 3.5
Agent’s Mass 1x 1x→ 1.15x→ 1.3x→ 1.45x

Swimmer-v4
Initial Noise Scale 1× 10−1 1× 10−5 → 1× 10−3 → 1× 10−1

Friction Coefficient 0.1 0.1→ 0.5→ 1→ 1.5
Agent’s Mass 1x 1x→ 5x→ 10x→ 15x

Walker2d-v4
Initial Noise Scale 5× 10−3 5× 10−7 → 5× 10−5 → 5× 10−3 → 5× 10−1

Friction Coefficient 0.9 0.9→ 2→ 3→ 4
Agent’s Mass 1x 1x→ 1.1x→ 1.2x→ 1.3x

A.2 RANDOMIZED HYPERPARAMETER SCALES

Due to the variety of dynamics and physics of the agent in each environment, the range of randomized
hyperparameters should be different. For instance, when initializing the Ant-v4 environment, the
initial noise scale is 1 × 10−1, while it is 5 × 10−3 for Hopper-v4. Because of this, we consider
various ranges to scale the randomized hyperparameters. The values provided in Table 5 show the
scales of the hyperparameters during each iteration of our algorithm.

The selection of these hyperparameter ranges is based on careful consideration of each environment’s
characteristics and the MuJoCo physics engine’s properties (Todorov et al., 2012):

• Initial Noise Scale: This hyperparameter affects the initial state variability. For more stable
agents like Ant-v4 and HalfCheetah-v4, we start with a smaller scale (1 × 10−5) and
gradually increase it to the default value (1× 10−1). For less stable agents like Hopper-v4
and Walker2d-v4, we begin with an even smaller scale (5× 10−7) to ensure initial stability.

• Friction Coefficient: In our experiments, we specifically modify the friction coefficient
between the agent and the ground. MuJoCo utilizes a pyramidal friction cone approximation,
where this coefficient directly affects contact dynamics and determines how the agent
interacts with its environment. We maintain the default friction values initially, then gradually
increase them to challenge the agent’s locomotion and stability. For Ant-v4, we make
moderate increases due to its quadrupedal locomotion’s reliance on ground contact. For
HalfCheetah-v4, where smooth forward motion is key, smaller increments are used. Higher
initial friction coefficients are assigned to Hopper-v4 and Walker2d-v4 to stabilize their
balance, and these are increased substantially to test the agents under more challenging
conditions.

• Agent’s Mass: In MuJoCo, an agent’s mass is determined by its constituent geoms. We
scale the mass of all geoms uniformly to maintain the agent’s mass distribution. For
Ant-v4 and Swimmer-v4, we use larger mass increments (up to 15x) as these agents are
inherently more stable due to their multi-limbed or water-based nature. For bipedal agents
like HalfCheetah-v4, Hopper-v4, and Walker2d-v4, we use smaller increments to avoid
drastically altering their delicate balance dynamics.

These hyperparameter ranges are designed to gradually create an OOD scenario while maintaining
feasible locomotion, allowing our UARL approach to adapt progressively to more challenging
scenarios.
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B ABLATION STUDY

This section presents a comprehensive ablation study to evaluate the efficacy and robustness of our
proposed UARL method. We conduct a series of experiments across multiple MuJoCo environments:
Ant-v4, HalfCheetah-v4, Hopper-v4, Swimmer-v4, and Walker2d-v4. The study applies UARL
to three offline RL algorithms: Conservative Q-Learning (CQL), Advantage-Weighted Actor-Critic
(AWAC), and TD3BC. We assess the impact of key randomized hyperparameters, namely initial noise
scale, friction coefficient, and agent’s mass, which are crucial for simulating real-world variability
and testing the method’s adaptability.

Our evaluation metrics encompass cumulative return during training, OOD detection accuracy, and
sample efficiency. We examine these metrics across both the initial offline training phase and the
subsequent O2O fine-tuning phases where applicable. To ensure statistical significance and robustness
of our findings, each configuration is tested using five random seeds. Throughout the study, we
maintain consistency in all hyperparameters, network architectures, and settings, except for those
specifically under investigation.

The ablation study is structured to provide insights into several key aspects of UARL. First, we present
a detailed analysis of overall performance, expanding on the results provided in the main paper. This
includes cumulative return during training for all five environments, offering a comprehensive view
of UARL’s impact across diverse locomotion tasks.

Next, we delve into the OOD detection capabilities of UARL, a crucial component for safe and robust
RL deployment. We examine how the method’s uncertainty estimation, implemented through diverse
critics, enables effective differentiation between ID and OOD samples. This analysis is particularly
relevant for assessing the method’s potential in real-world applications where encountering novel
situations is inevitable.

We then focus on sample efficiency, a critical factor in the practicality of RL algorithms. By comparing
UARL against baselines trained on the full state space from the outset, we demonstrate how our
iterative approach to expanding the state space contributes to more efficient learning.

Lastly, we investigate the impact of the balancing replay buffer mechanism, a key innovation in
UARL. This component is designed to manage the transition between offline and online learning
effectively, and we present results showing its influence on learning stability and performance.

Throughout this ablation study, we aim to provide a nuanced understanding of UARL’s components
and their contributions to its overall effectiveness. The results and analyses presented here complement
and expand upon the findings in the main paper, offering deeper insights into the method’s behavior
across a range of environments and conditions.
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B.1 OVERALL PERFORMANCE

This subsection presents an extended analysis of UARL’s performance across the three MuJoCo
environments missing in the main paper: Hopper-v4, Swimmer-v4, and Walker2d-v4. We evaluate
the cumulative return during training for each environment, considering the three randomized hyper-
parameters: initial noise scale, friction coefficient, and agent’s mass. This comprehensive analysis
builds upon and extends the results presented in Sec. 5 of the main paper.

Fig. 7 illustrates the cumulative return achieved by each agent during the offline training phase (first
iteration) across all environments. The results consistently demonstrate that UARL either improves
or maintains the performance of the baseline methods. For instance, in the Swimmer-v4 environment,
when the friction coefficient is randomized, UARL significantly enhances the performance of both
TD3BC and CQL baselines. Similarly, when randomizing the agent’s mass in the same environment,
we observe performance improvements across all baseline methods. Notably, there are no instances
where the application of UARL leads to a decrease in performance. This robustness is particularly evi-
dent in challenging environments like Hopper-v4 and Walker2d-v4, where maintaining stability can
be difficult. The consistent performance improvements across diverse environments and randomized
hyperparameters underscore the versatility and effectiveness of our approach.

Fig. 8 extends this analysis to the fine-tuning phase (second iteration), focusing on the O2O RL
setting. Here, we observe that UARL continues to demonstrate strong performance, often surpassing
the baselines. This is particularly evident in the Hopper-v4 environment, where UARL-AWAC shows
significant improvements over standard AWAC across all randomized hyperparameters.

Fig. 9 presents the same analyses of the fine-tuning phase, but for the third iteration of UARL.
This figure demonstrates the continued effectiveness of our approach over multiple iterations. The
results show that UARL maintains its performance advantages and, in many cases, further improves
upon the gains observed in the second iteration. For instance, in the Walker2d-v4 environment,
UARL-CQL exhibits consistently superior performance across all randomized hyperparameters,
showcasing the method’s ability to leverage accumulated knowledge effectively. In the Swimmer-v4
environment, we observe that UARL-AWAC continues to outperform the baseline AWAC, particularly
when randomizing the agent’s mass and initial noise scale. These results underscore the stability and
long-term benefits of our approach, indicating that the performance improvements are not transient
but persist and potentially amplify over multiple iterations of fine-tuning.

The results in all three figures highlight a key strength of UARL: its ability to enhance the per-
formance of existing offline RL algorithms without compromising their core functionalities. This
is achieved through the introduction of diverse critics and the balancing replay buffer mechanism,
which together provide more robust policy learning and effective management of the O2O transition.
Furthermore, the consistent performance across different randomized hyperparameters demonstrates
UARL’s adaptability to various environmental changes. This adaptability is crucial for real-world RL
applications, where the ability to handle unexpected variations in the environment is essential for safe
and effective deployment.

In summary, these extended results reinforce and expand upon the findings presented in the main
paper. They provide strong evidence for the efficacy of UARL across a wide range of locomotion
tasks and environmental conditions, highlighting its potential as a robust and versatile approach for
offline and O2O RL.
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Figure 7: Offline training (first iteration) performance in Hopper-v4 (top), Swimmer-v4 (middle), and
Walker2d-v4 (bottom) environments, showing average return during training across three randomized hy-
perparameters.
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Figure 8: O2O training (second iteration) performance in Hopper-v4 (top), Swimmer-v4 (middle), and
Walker2d-v4 (bottom) environments, demonstrating average return during fine-tuning across three randomized
hyperparameters.
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Figure 9: O2O training (third iteration) performance in various environments, demonstrating average re-
turn during fine-tuning across three randomized hyperparameters. In order, from top to bottom: Ant-v4,
HalfCheetah-v4, Hopper-v4, Swimmer-v4, Walker2d-v4.
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B.2 OOD DETECTION

This section provides an in-depth analysis of UARL’s OOD detection capabilities across various
environments and randomized hyperparameters. We measure the critic variance across 100 rollouts
for both AWAC-based and CQL-based methods, comparing UARL with baseline approaches. In the
following figures (Fig. 10 through Fig. 17), each column represents a fine-tuning iteration with an
expanded ID range, as detailed in Subsec. A.2. The orange line indicates the 95% confidence interval
of critic variances for ID samples, serving as our OOD detection threshold.
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Figure 10: The OOD detection results for AWAC and UARL-AWAC initial noise scale (top) and friction
coefficient (bottom) over the Ant-v4 environment.
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Figure 11: The OOD detection results for CQL and UARL-CQL initial noise scale (top) and friction coefficient
(middle), and agent’s mass (bottom) over the Ant-v4 environment.
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Figure 12: The OOD detection results for AWAC and UARL-AWAC initial noise scale (top) and friction
coefficient (middle), and agent’s mass (bottom) over the HalfCheetah-v4 environment.
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Figure 13: The OOD detection results for CQL and UARL-CQL initial noise scale (top) and friction coefficient
(middle), and agent’s mass (bottom) over the HalfCheetah-v4 environment.
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Figure 14: The OOD detection results for AWAC and UARL-AWAC initial noise scale (top) and friction
coefficient (middle), and agent’s mass (bottom) over the Swimmer-v4 environment.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

Initial noise scale is 1e-05

0

1

2

3

Cr
iti

c 
Va

ria
nc

e

CQ
L

0 200 400 600 800 1000

Initial noise scale is 0.001

0

3

6

9

0 200 400 600 800 1000

Initial noise scale is 0.1

0

3

6

9

0 200 400 600 800 1000
Episode Steps

0

5

10

15

Cr
iti

c 
Va

ria
nc

e
UA

RL
-C

QL

0 200 400 600 800 1000
Episode Steps

0

2

4

0 200 400 600 800 1000
Episode Steps

0

1000

2000

3000

4000

ID: 1e-05
OOD: 0.001
OOD: 0.1

OOD: 1.0
95% ID CI

ID: 1e-05
ID: 0.001
OOD: 0.1

OOD: 1.0
95% ID CI

ID: 1e-05
ID: 0.001
ID: 0.1

OOD: 1.0
95% ID CI

0 200 400 600 800 1000

Friction coefficient is 0.1

0.00

0.15

0.30

0.45

0.60

Cr
iti

c 
Va

ria
nc

e
CQ

L

0 200 400 600 800 1000

Friction coefficient is 0.5

0

1

2

0 200 400 600 800 1000

Friction coefficient is 1.0

0

3

6

9

0 200 400 600 800 1000
Episode Steps

0

200

400

600

800

Cr
iti

c 
Va

ria
nc

e
UA

RL
-C

QL

0 200 400 600 800 1000
Episode Steps

0

1

2

0 200 400 600 800 1000
Episode Steps

0

2

4

6

8 1e8

ID: 0.1
OOD: 0.5
OOD: 1.0

OOD: 1.5
95% ID CI

ID: 0.1
ID: 0.5
OOD: 1.0

OOD: 1.5
95% ID CI

ID: 0.1
ID: 0.5
ID: 1.0

OOD: 1.5
95% ID CI

0 200 400 600 800 1000

Agent's mass multiplied by 1x

0

4

8

12

16

Cr
iti

c 
Va

ria
nc

e

CQ
L

0 200 400 600 800 1000

Agent's mass multiplied by 5x

0

3

6

9

0 200 400 600 800 1000

Agent's mass multiplied by 10x

0

15

30

45

0 200 400 600 800 1000
Episode Steps

0

25000

50000

75000

100000

Cr
iti

c 
Va

ria
nc

e
UA

RL
-C

QL

0 200 400 600 800 1000
Episode Steps

0

100

200

300

400

0 200 400 600 800 1000
Episode Steps

0

50

100

150

200

ID: 0.1x
OOD: 5.0x
OOD: 10.0x

OOD: 15.0x
95% ID CI

ID: 0.1x
ID: 5.0x
OOD: 10.0x

OOD: 15.0x
95% ID CI

ID: 0.1x
ID: 5.0x
ID: 10.0x

OOD: 15.0x
95% ID CI

Figure 15: The OOD detection results for CQL and UARL-CQL initial noise scale (top) and friction coefficient
(middle), and agent’s mass (bottom) over the Swimmer-v4 environment.
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Figure 16: The OOD detection results for AWAC and UARL-AWAC initial noise scale (top) and friction
coefficient (middle), and agent’s mass (bottom) over the Walker2d-v4 environment.
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Figure 17: The OOD detection results for CQL and UARL-CQL initial noise scale (top) and friction coefficient
(middle), and agent’s mass (bottom) over the Walker2d-v4 environment.
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The results show that UARL consistently outperforms baseline methods in detecting OOD data
across various environments (Ant-v4, HalfCheetah-v4, Swimmer-v4, and Walker2d-v4) using
both AWAC-based and CQL-based implementations. A key advantage is its clear separation of ID
and OOD samples through critic variance, something often missing in standard AWAC and CQL.
UARL adapts its OOD detection threshold as the ID range grows over iterations, maintaining robust
performance even in changing environments. Its effectiveness remains consistent across the studied
randomized hyperparameters, proving its versatility. The method excels in complex environments like
Ant-v4 and HalfCheetah-v4 and shows improved or stable OOD detection over time, suggesting it
benefits from expanded training data without losing its detection capability. These findings highlight
UARL’s strong potential for safe, adaptive deployment in dynamic real-world scenarios.
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B.3 UARL HYPERPARAMETER SENSITIVITY ANALYSIS

This subsection examines the sensitivity of UARL to its key hyperparameters: the diversity co-
efficient λ and the diversity scale δ. These hyperparameters balance the standard RL objec-
tive with the goal of promoting diversity among critics. We evaluate various combinations of
λ ∈ {1%, 5%, 10%, 15%, 20%} and δ ∈ {10−3, 10−2, 10−1} across two settings: Ant-v4, focusing
on the agent’s mass hyperparameter, and HalfCheetah-v4, focusing on the initial noise scale. We
tested these combinations with three baseline algorithms (AWAC, CQL, and TD3BC), using 5 random
seeds for each configuration, resulting in a total of 450 experimental runs.

The hyperparameter selection process is grounded in a systematic exploration of the trade-off between
diversity regularization and policy optimization. By varying the diversity coefficient λ and scale δ,
we aim to understand how these parameters influence the learning dynamics of UARL. The chosen
ranges reflect a careful consideration of the potential impact of diversity-promoting mechanisms on
the RL objective.

Fig. 18 and Fig. 19 demonstrate the influence of varying λ and δ values on agent performance
during training, on Ant-v4’s mass and HalfCheetah-v4’s initial noise scale, respectively. While our
chosen default configuration performs well, the results indicate the potential for further performance
enhancement through careful hyperparameter tuning. The configurations with the most extreme
values, specifically λ ∈ {15%, 20%} and δ = 10−1, tend to have the most detrimental effect on
performance. At higher diversity coefficients, the introduced regularization becomes increasingly
aggressive, potentially introducing noise that disrupts the learning process. This suggests an inherent
trade-off where excessive diversity constraints can impede the algorithm’s ability to converge to
optimal behavior. This suggests that moderate values for these hyperparameters generally yield better
results, with room for fine-tuning within this range to optimize performance for specific environments
or baseline algorithms. The observed performance degradation under extreme configurations can be
attributed to an amplified diversity loss, which overshadows the RL objective, thereby reducing the
UARL’s capacity to effectively optimize its policy.

This analysis highlights the robustness of UARL across a range of hyperparameter values while
also indicating opportunities for optimization in specific environments or with particular baseline
algorithms. The varied performance across different hyperparameter combinations suggests that
fine-tuning these hyperparameters could lead to enhanced results in certain scenarios, though the
default configuration provides a strong baseline performance across the tested environments and
algorithms.
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Figure 18: Performance sensitivity to hyperparameters λ and δ during training in the Ant-v4 environment, with
a focus on the agent’s mass hyperparameter. Each row represents a baseline algorithm (AWAC, TD3BC, CQL),
while each column corresponds to a fixed value of δ as indicated. The default configuration used in the main
paper (λ = 10% and δ = 10−2) is depicted in the middle column, highlighted by the green line.
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Figure 19: Performance sensitivity to hyperparameters λ and δ during training in the HalfCheetah-v4 environ-
ment, with a focus on the initial noise scale hyperparameter. Each row represents a baseline algorithm (AWAC,
TD3BC, CQL), while each column corresponds to a fixed value of δ as indicated. The default configuration used
in the main paper (λ = 10% and δ = 10−2) is depicted in the middle column, highlighted by the green line.
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B.4 SAMPLE EFFICIENCY

To assess the sample efficiency of UARL, we define convergence based on the number of data points
required for the cumulative return to reach an acceptable level, as per the reward thresholds defined by
the Gymnasium Environments (Towers et al., 2023). We trained UARL until convergence, allowing
it to progressively expand its state space. For a fair comparison, we then trained baselines on this
final expanded state space from the outset, ensuring they operate in the same state space that UARL
ultimately reached through its iterative process.

Table 6 compares sample efficiency between UARL and the baselines across different environments
and randomized hyperparameters. The figure shows the difference in the number of samples required
for convergence. Positive values indicate that baselines require more samples to converge. The results
demonstrate that by starting with a limited state space, UARL generally requires fewer samples to
converge while maintaining performance as the state space expands in subsequent iterations. Out of a
total of 45 comparisons across 5 environments, 3 baselines, and 3 randomized hyperparameters, and
based on Welch’s t-test with a significance level of 0.05, UARL statistically significantly outperforms
the baselines in 35% of cases and achieves non-significant improvements in 49% of cases, resulting in
an overall improvement in 84% of comparisons. Notably, a small portion of data from the limited state
space (first iteration) is often sufficient for UARL to achieve convergence while remaining performant
during the fine-tuning process. This finding supports the notion that iteratively incrementing the state
space and fine-tuning the policy significantly enhances sample efficiency.

In calculating UARL’s sample efficiency, we considered both the nominal and repulsive datasets to
ensure a fair comparison with baselines trained on the expanded (nominal) state space. The results in
Table 6 highlight UARL’s ability to learn efficiently in complex environments, potentially reducing
the computational resources and time required for training robust policies. This sample efficiency,
along with the earlier performance improvements, highlights the practical advantages of our approach
in real-world RL applications where data collection is costly or time-consuming.

Table 6: Sample efficiency comparison: Difference in means and standard deviations (mean ± std), in thousands
of samples needed for convergence (baseline vs. corresponding UARL method: AWAC-based, CQL-based,
TD3BC-based). Positive values indicate UARL requires fewer samples.

Hyperparameter Ant HalfCheetah Hopper Swimmer Walker2d

Initial
Noise
Scale

1208±859 8745±1499 5062±1986 5700±949 1680±2163

501±1009 27112±1104 3616±1381 −228±899 1579±2440

5661±905 13799±939 10993±1843 −114±837 −407±1488

Friction
Coefficient

3857±2278 3765±1419 2202±1683 −43±2094 2357±1711

3578±2083 17343±1940 4038±1897 −376±1811 −930±2560

9401±1589 13043±978 14991±1486 14±1736 −437±2102

Agent’s
Mass

5902±1674 10779±1243 8138±1414 7625±2090 282±2217

8262±1540 1210±2220 2531±1941 −8631±2280 −2646±2133

−1225±1120 13309±2915 2092±1387 3343±1762 1049±1549
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B.5 COMPARISON WITH SOTA OOD BASELINES

The following experiment evaluates the effectiveness of our method compared to state-of-the-art
baselines that focus on robustness and uncertainty estimation. Specifically, we compare our method
against PBRL (Bai et al., 2022) and RORL (Yang et al., 2022), which which are designed to enhance
robustness, as well as EDAC (An et al., 2021) and DARL (Zhang et al., 2023b), which are focused on
improving uncertainty estimation.

PBRL penalizes Q-values in high-uncertainty regions by leveraging the standard deviation of ensemble
predictions, promoting conservative learning. To further enhance stability and mitigate extrapolation
errors, PBRL incorporates OOD samples into the training buffer. These OOD samples, including
states from the offline dataset and actions outside the dataset’s support, regularize the Q-function
in uncertain regions. By applying stronger penalties for OOD actions in high-uncertainty areas,
PBRL achieves robust and reliable policy learning. In contrast, RORL emphasizes robustness
against adversarial observation perturbations and OOD states and actions. It employs a conservative
smoothing technique to regularize value functions and policies near the dataset’s support, penalizing
overestimation in unfamiliar regions. RORL further introduces adversarial state perturbations within
a predefined radius during training to test and improve robustness. Unlike PBRL, which focuses
on OOD actions for ID states, RORL penalizes both OOD states and actions, providing a more
comprehensive form of conservatism. Additionally, RORL minimizes policy distribution differences
under perturbed states, ensuring stability in adversarial scenarios, making it particularly effective in
environments with challenging observation perturbations and limited data coverage.

EDAC aims to prevent over-estimation of Q-values during training with OOD samples, ensuring
a conservative learning process. This is achieved by diversifying the gradients of Q-functions in
an ensemble, thereby reducing the alignment of Q-function gradients. By minimizing their cosine
similarity, EDAC increases the variance in Q-value predictions for OOD actions, which enhances
the ability to penalize uncertain or risky actions. This uncertainty-aware approach helps avoid
over-confident predictions, leading to more robust offline RL. On the other hand, DARL employs a
non-parametric particle-based cross-entropy estimator that uses k-nearest neighbor search to measure
uncertainty, projecting data into a distance-preserving, low-dimensional space to make the process
efficient. This estimator allows DARL to accurately quantify uncertainty by capturing the relationship
between samples in the dataset. Building on this, DARL incorporates adaptive truncated quantile
critics, which adjust the extent of underestimation for Q-values based on sample uncertainty, ensuring
conservative value estimation for high-uncertainty samples.

Fig. 20 extends the results from the main paper’s Fig. 4 by including the performance of PBRL,
RORL, EDAC, and DARL in OOD detection. As shown, PBRL and RORL struggle to effectively
differentiate between ID and OOD dynamics, leading to overly optimistic policies in high-uncertainty
regions and reduced robustness in OOD scenarios. EDAC and DARL demonstrate some success
in distinguishing ID from OOD cases, but their performance is inconsistent across settings. For
instance, EDAC accurately separates ID and OOD samples during the 1st iteration of fine-tuning
(2nd column), but achieves only 30% accuracy in distinguishing ID from OOD samples during the
2nd iteration. Similarly, DARL performs well during the offline training phase (1st column) but fails
to maintain consistent performance thereafter. In contrast, UARL consistently outperforms these
baselines, reliably distinguishing ID and OOD dynamics across all settings, resulting in more robust
and dependable policy behavior.
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Figure 20: Critic variance across 100 rollouts in the Ant-v4 environment for PBRL, RORL, EDAC, DARL, and
AWAC-based methods. The randomized hyperparameter is agent mass. Each column represents a fine-tuning
iteration with an expanded ID range by multiplying the agent’s mass vector by a constant: 1x → 5x → 10x.
The orange line indicates the 95% confidence interval of critic variances for ID samples, serving as an OOD
detection threshold. UARL-AWAC consistently distinguishes ID from OOD samples, while AWAC struggles to
do so.
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C RELATED WORK

Safe and Robust RL addresses critical challenges in high-stakes applications like robotics (Garcıa &
Fernández, 2015). While safe RL focuses on avoiding harmful actions by imposing policy constraints
during training and deployment (Heger, 1994), robust RL aims to maintain performance stability under
uncertainties or adversarial perturbations (Iyengar, 2005; Nilim & El Ghaoui, 2005). To enhance
robustness, domain randomization techniques train agents in varied, randomized environments
(Andrychowicz et al., 2020; Tobin et al., 2017; Lee et al., 2020; Mozian et al., 2020). However, this
approach can be computationally expensive and challenging to tune for complex scenarios (Mehta
et al., 2020). Additionally, those methods assume that policy can be trained in OOD scenarios, which
poses significant risks in real-world applications.

Our proposed method, UARL, addresses these challenges by explicitly detecting OOD scenarios and
adapting policies based on uncertainty estimation without direct interactions in OOD environments.
This approach improves both safety and robustness without incurring the computational overhead
associated with traditional domain randomization techniques.

Uncertainty-aware RL While there are several uncertainty-aware methods in offline RL, such
as MOBILE (Sun et al., 2023), PBRL (Bai et al., 2022), and RORL (Yang et al., 2022), which
penalize OOD actions using uncertainty quantifiers, we respectfully distinguish our approach. Unlike
MOBILE, PBRL, and RORL, which primarily focus on robustness by penalizing uncertain actions to
avoid OOD scenarios during training, our work focuses on explicit OOD detection during deployment.
This difference is crucial: while these methods aim to build robust policies that can operate in OOD
conditions, our method is designed to identify when a system is operating in OOD situations prior to
policy deployment, which is critical in safety-critical systems like robotics.

Our progressive environmental randomization method builds an agent’s ability to distinguish between
ID and OOD states, actively detecting when novel or uncertain scenarios arise. This capability
allows the agent to make informed decisions, such as requesting human intervention or guiding data
collection for further policy refinement. While robustness is a beneficial side effect of our iterative
fine-tuning, it is secondary to our primary goal of reliable OOD detection.

Curriculum learning in RL aims to improve agent learning by progressively exposing the agent
to increasingly complex tasks or environments (Narvekar et al., 2020; Li et al., 2024). Traditional
approaches involve manually designing a sequence of tasks with increasing difficulty, where agents
learn foundational skills before tackling more challenging scenarios (Graves et al., 2017). Recent
advances have explored more nuanced transfer methods, such as REvolveR (Liu et al., 2022), which
introduces a continuous evolutionary approach to policy transfer by interpolating between source
and target robots through a sequence of intermediate configurations. While REvolveR focuses on
morphological and kinematic transitions, it still shares the fundamental limitation of most curriculum
learning approaches: relying on predefined task progressions that may not capture the unpredictability
of real-world environments.

In contrast, our approach focuses on uncertainty-driven adaptation, dynamically expanding the
exploration space based on real-time uncertainty estimation rather than a predetermined task hierarchy.
Unlike curriculum RL’s structured task progression, UARL enables continuous, adaptive learning that
more closely mimics real-world environmental variability, particularly in scenarios with unpredictable
and out-of-distribution events. Critically, our method avoids the safety risks associated with direct
policy refinement in target domains by using an ensemble of critics to evaluate policy suitability
without dangerous direct interactions.
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Table 7: Computational Overhead of CQL vs. CQL+UARL, on a single Nvidia 4090 GPU.

Metric Baseline UARL
Memory Usage ∼2 GB ∼4 GB
Memory Increase 50%
Training Time per Iteration ∼0.5 seconds ∼0.55 seconds
Computational Time Increase 10%
Diversity Loss Calculation Not Applicable Required

D LIMITATIONS

While UARL demonstrates promising results in enhancing safety in RL, several key limitations
warrant discussion.

Table 7 highlights the computational overhead associated with UARL. The approach introduces
moderate resource demands, with a 10% increase in training time and 50% higher memory usage
compared to baseline methods which depends on the size of the repulsive dataset. However, these
costs are offset by the potential for improved policy safety and robustness, particularly in detecting
and adapting to OOD scenarios.

A primary limitation of UARL is the sequential randomization of a single hyperparameter during
iterative adaptation. While this controlled exploration aids stability, it may fail to capture the complex
interplay between multiple environmental parameters. Future work could explore simultaneous
multi-parameter randomization to better simulate real-world uncertainties.

The method also relies on manually defined parameter ranges for randomization, determined using
domain expertise. This reliance may limit generalizability across diverse tasks and environments.
Developing an automated mechanism to adaptively determine parameter ranges could enhance
scalability and reduce human intervention.

Another challenge is the dependence on a proxy dataset Dw from the target environment, which
critically influences uncertainty estimation and policy refinement. If this dataset is incomplete or
unrepresentative, it can lead to suboptimal adaptations or overconfident policies. Techniques to ensure
dataset quality and representativeness will be crucial for robust performance.

Finally, while UARL has demonstrated effectiveness on MuJoCo benchmark tasks, its applicability
to more complex, high-dimensional, real-world scenarios remains an open question. Extensive
validation across diverse robotic and control domains will be necessary to establish its broader
relevance and effectiveness.
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