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ABSTRACT

Audio-Visual Question Answering Continual Learning (AVQACL) aims to enable
models to adapt to new tasks while preserving prior knowledge. Existing methods
face two primary challenges: Firstly, fine-tuning induces catastrophic forgetting
due to cross-task interference in shared backbone parameters, as gradient signals
from diverse tasks conflict and overwrite prior knowledge; Secondly, most ap-
proaches rely on task labels at inference, which is impractical in open-world set-
tings where task boundaries are fluid and unlabeled. To address these challenges,
we introduce AVQACL-MoE, an anchor-based Mixture-of-Experts (MoE) frame-
work that reframes continual learning as incremental expert composition within
a frozen pre-trained audio-visual backbone. First, we train corresponding task-
specialized experts for different tasks respectively and freeze their parameters after
training, structurally reducing the catastrophic forgetting caused by shared back-
bone parameters. Second, to effectively select the corresponding task-specialized
experts, we refine the task signatures into lightweight, modal-specific anchors dur-
ing training. Then implement task-independent routing based on cosine similarity
between the input sample and anchors for inference. On the AVQACL benchmark,
AVQACL-MoE achieves state-of-the-art performance, reducing forgetting from
27% to 2% and improving final accuracy by over 30.9%. By shifting the stability-
plasticity trade-off from weight adaptation to expert assembly, our approach en-
ables scalable continual learning for open-world AVQA applications. The code is
available at https://anonymous.4open.science/r/AVQACL-MoE-C454/.

1 INTRODUCTION

Continuous Learning (CL) aims to enable models to acquire new knowledge without reducing the
knowledge they have already learned, providing theoretical support for the deployment of artificial
intelligence in an open real-world environment. Especially for Audio-Visual Question Answering
(AVQA) tasks, the real-world AVQA systems encounter an ever-expanding sequence of tasks in
unknown order, such as localizing sound sources in cluttered scenes, aligning asynchronous events
across modalities, or inferring causal audio-visual relationships. Each task demands distinct cross-
modal fusion patterns, making stable and scalable learning especially challenging.

The recently proposed AVQACL benchmark (Wu et al., 2025a) evaluates continual learning in
AVQA using deep models, revealing severe catastrophic forgetting under sequential fine-tuning:
the best prior method suffers a 24.7% accuracy drop on earlier tasks. However, existing AVQACL
methods face several amplified challenges in deep audio-visual architectures. First, sequential fine-
tuning causes severe cross-task interference due to shared backbone parameters, as gradient signals
from diverse tasks (e.g., spatial localization vs. causal inference) conflict and overwrite prior knowl-
edge Ahn et al. (2021); Pian et al. (2023); Wu et al. (2025a). Second, most studies assume task labels
are available at inference, which is unrealistic in open-world settings where task boundaries (Tiwari
et al., 2025; Du et al., 2024; Zhu et al., 2024) are fluid and unlabeled (e.g., between counting instru-
ments, locating solos, and inferring temporal order).

To address the challenges mentioned, we propose AVQACL-MoE, which reframes continual learn-
ing as the incremental composition of frozen, task-specialized experts within a pre-trained audio-

1

https://anonymous.4open.science/r/AVQACL-MoE-C454/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

visual backbone. Firstly, to eliminate cross-task interference from sequential fine-tuning, we train
task-specialized experts by replacing intermediate feed-forward network (FFN) layers exclusively
for each new task. Then, we freeze the trained task-specialized experts that prevent knowledge
overwriting and mitigate catastrophic forgetting via parameter isolation. Secondly, to enable task-
independent inference without relying on task labels, we first distill task signatures into lightweight
and modality-specific anchors during the training period. Then, we use soft routing based on cosine
similarity to select the most relevant task-specialized expert for task inference. Finally, to avoid
the rigidity and underutilization of hard-coded Mixture-of-Experts (MoE) designs, our framework
supports continual expert accumulation, where the growing pool enables combinatorial knowledge
reuse for novel audio-visual queries while maintaining constant inference cost through deterministic
top-1 selection.

In summary, by recasting the stability-plasticity dilemma as an expert assembly problem, our
AVQACL-MoE facilitates sustainable knowledge expansion: new knowledge is incorporated by
adding experts without modifying existing ones, thereby scaling capacity while ensuring prior
knowledge retention. The contributions of our method are summarized as follows:

1. We propose a MoE framework specifically designed for the AVQACL task, which enables
the performance of task-specialized expert selection and task-independent reasoning based
on anchor routing without relying on additional task identifiers.

2. We consider training corresponding task experts for different tasks. Through this structural
isolation, our model can prevent knowledge coverage and mitigate catastrophic forgetting
while maintaining outstanding performance.

3. Extensive experiments on the AVQACL benchmark show that AVQACL-MoE achieves
state-of-the-art performance, with a reduction in average forgetting from 27% to 2% and
improving final accuracy by over 30.9%.

2 RELATED WORK

2.1 AUDIO-VISUAL QUESTION ANSWERING

State-of-the-art AVQA systems learn joint audio-visual representations to answer questions
grounded in complex scenes (Yang et al., 2022; Guangyao li, 2022). Early datasets (AVQA (Yang
et al., 2022), MUSIC-AVQA (Guangyao li, 2022)) have driven innovations in multimodal attention
and cross-modal alignment Li et al. (2023). However, they assume a static training distribution
and cannot cope with real-world data streams where new reasoning skills must be acquired on the
fly. Recent work addressed biases in these datasets for better generalizability, such as Liu et al.
(2024b), which crafted a balanced MUSIC-AVQA for unbiased question-answering, and Ma et al.
(2024), which overcame multimodal biases in AVQA, highlighting the need for robust evaluations
in dynamic settings. The recently introduced AVQACL benchmark (Wu et al., 2025a) formalized
continual learning in AVQA, revealing that naı̈ve sequential fine-tuning leads to catastrophic forget-
ting (> 24% accuracy drop). While Question-Aware Gaussian Experts (Kim et al., 2025) improved
static AVQA via modality-specific experts, they were not designed for continual adaptation. Sim-
ilarly, Cheng et al. (2024) proposed an MoE with adapters for audio-visual learning, focusing on
unimodal and cross-modal specialization. However, it targeted static scenarios without addressing
continual learning issues like forgetting. To the best of our knowledge, this study is the first work
addressing AVQA continual learning with a task-agnostic, expert-based architecture that prevents
forgetting by construction.

2.2 UNIMODAL CONTINUAL LEARNING

Unimodal Continual Learning (UCL) methods mitigated forgetting through parameter regularization
(EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018)), knowledge distillation (Li & Hoiem,
2018; Dhar et al., 2019), or episodic replay (iCaRL (Rebuffi et al., 2017), SS-IL (Ahn et al., 2021)).
These techniques excelled on single-modal tasks but struggled with multimodal inputs: distillation
losses failed to preserve intricate spatiotemporal relationships across audio and video, while replay
incurred prohibitive storage costs for high-resolution videos. Recent surveys (Guo et al., 2025)
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Figure 1: Overview of the AVQACL-MoE Framework. Firstly, we add task-specific expert modules
to the LLM structure to isolate the mutual interference between different tasks. We then construct
visual, audio, and text anchors to record the tasks’ characteristics during the training period. During
reasoning, the MoE selection module based on anchor points quickly selects the corresponding task-
specialized experts by calculating the similarity between the recorded anchor points and inputs.

confirmed that directly porting UCL methods to multimodal streams was insufficient, motivating
our shift from weight adaptation to expert composition.

2.3 MULTIMODAL CONTINUAL LEARNING

Multimodal Continual Learning (MCL) research extended continual learning to vision-language and
audio-visual domains. vCLIMB (Villa et al., 2022) and PIVOT (Villa et al., 2023) handled incre-
mental video understanding but ignore question-answering. For AVQA-specific continual learning,
AVQACL baselines (Wu et al., 2025a) combined question-guided fusion (QCIF), spatiotemporal
distillation (TKD-STFC), and semantic consistency constraints (QSCC); yet all were weight-update
paradigms exhibiting severe forgetting. Similarly, Nikandrou et al. (2024) enhanced continual learn-
ing in visual question answering via modality-aware feature distillation to mitigate forgetting, but
relied on distillation that may not capture visual-question interactions fully. Recent MoE continual-
learning works (Huai et al., 2025; Yin et al., 2025) required task-ID supervision for routing or
pre-assigned experts to single modalities, making them brittle for overlapping tasks and joint audio-
visual reasoning. In contrast to learned routers or probabilistic gating (Cheng et al., 2024), which
targeted static audio-visual scenarios and require trainable routing networks, our method is designed
for continual learning. Their adaptable routers demanded task-specific updates, incurred higher
computational costs, and risked overfitting; furthermore. Further, they provided no mechanism to
prevent catastrophic forgetting when tasks arrive sequentially. We freeze modality-aware experts,
compute lightweight anchors on-the-fly, and route via cosine similarity, eliminating task-ID depen-
dence while enabling fine-grained cross-modal fusion without forgetting.

3 METHODOLOGY

To address the above challenges, we propose AVQACL-MOE as shown in Fig. 1, which is a prin-
cipled continual learning framework for multimodal reasoning that resolves the stability-plasticity
dilemma by incrementally composing a sparse mixture of experts. Specifically, we train lightweight
task-specialized experts for each task, respectively. Then, during reasoning, the routing mechanism
dynamically selects the most relevant expert for each query. With this design, the proposed model
monotonically scales its capacity while keeping all previously learned parameters unchanged, miti-
gating catastrophic forgetting.

Our goal is to obtain a unified model MT by learning a series of audio-visual question-answering
tasks T1:T = {T1, . . . , TT }. Specifically, we decompose the method into three tightly integrated
stages:(1) frozen multimodal alignment via trainable connectors that are pre-trained and then frozen;
(2) sparse, task-specialized experts inserted into the frozen transformer; and (3) efficient, anchor-
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based expert routing that selects exactly one expert per query at inference. The architectural separa-
tion of these stages underpins the theoretical properties discussed in Section A.1.

3.1 CROSS-MODAL CONNECTOR TRAINING

Let dhidden denote the hidden size of the frozen LLM backbone M. The dv and da represent the
feature dimensions of the frozen visual and audio encoders Evis and Eaud, respectively. We introduce
linear connectors that map modality features into the LLM hidden space while preserving pre-trained
representations:

Wv ∈ Rdv×dhidden , Wa ∈ Rda×dhidden . (1)

where, we adopt the pre-trained connector Wv from LLaVA (Liu et al., 2024a) for visual inputs.
For audio inputs, we utilize the audio-language connector Wa trained on audio–text corpora and
then freeze it for all subsequent continual learning tasks.

Specifically, for a given video, we first sample F visual frames from it. Then, the visual encoder Evis
and the audio encoder Eaud are used to extract the visual and audio features, respectively:

V = Evis(xvis) ∈ R(F ·Nv)×dv , A = Eaud(xaud) ∈ RNa×da . (2)

where, Nv and Na represent the number of tokens. Subsequently, the connectors project the obtained
features into the LLM hidden space:

Ṽ = VWv, Ã = AWa. (3)

3.2 TASK-SPECIALIZED EXPERTS TRAINING

When learning new tasks, shared parameter fine-tuning inevitably introduces catastrophic forgetting,
which is caused by gradient updates. Based on this, we consider training a task-specialized expert
for different tasks to reduce the interference between tasks at the structural level. Specifically, when
a new task Tiarrives, we instantiate a full-capacity expert Ei by inserting a task-specific MLP module
into the LLM with frozen parameters:

Sexpert = { l | 0 ≤ l < N, l mod 2 = 0 }, (4)

where N represents the number of layers in the LLM. To ensure the lightweight design, we only
insert task-specialized experts in even-numbered layers. For each task-specialized expert, it consists
of the lower projection, activation function, and upper projection:

Ei,l(h) = GELU
(
hW

(1)
i,l

)
W

(2)
i,l , (5)

Finally, for task i, we obtained the task-specialized expert weights Θ(i)
train, which contain the knowl-

edge of task i:

Θ
(i)
train = {W(1)

i,l ,W
(2)
i,l } l∈Sexpert . (6)

During training, we optimize each expert with standard next-token prediction while conditioning on
the projected multimodal features:

L(i)
task = −E(x,y)∼Ti

|y|∑
t=1

log pθi

(
yt | y<t, Ṽ, Ã,xtext

)
, (7)

where θi = Θ
(i)
train. yt is an prediction at position t, and |y| is the sequence length of the true answer

text y. Upon convergence, we freeze Ei and add it to the expert pool; all other parameters remain
frozen throughout.

To enable the model to adaptively select the corresponding task-specialized experts, we have refined
a compact, parameter-free task-anchor for each expert. Specifically, for mini-batch index n, we
compute per-modality sample features by averaging valid tokens (padding excluded), and store the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

final task anchors for the inference process:

f
(n)
audio =

1

|Avalid|
∑

a∈Avalid

(
Eaud(a)Wa

)
, (8)

f
(n)
text =

1

|Tvalid|
∑

t∈Tvalid

Embed(t), (9)

f
(n)
video =

1

|VIvalid|
∑

vi∈VIvalid

(
Evis(vi)Wv

)
, (10)

µ(n)
m = µ(n−1)

m +
f
(n)
m − µ

(n−1)
m

n
, m ∈ {audio, text, video}, (11)

ai = {µaudio, µtext, µvideo }. (12)

where, ai represents the task anchor of expert i. Furthermore, due to our unique design, maintaining
the anchor only requires O(dhidden) memory, without extra buffer.

3.3 EFFICIENT EXPERT ROUTING AT INFERENCE

During inference, to effectively select the correct task-specialized expert without using task labels,
we adopt a MoE router based on similarity to achieve expert selection. Specifically, we select the
appropriate task-specialized experts based on the cosine similarity between the input data and the
anchors. First, we calculate the cosine similarity between the current test input and the features of
each expert anchor:

ρi,m =
ŝ⊤q,m âi,m

max
(
∥ŝq,m∥2 ∥âi,m∥2, ϵ

) , m ∈ {audio, text, video} (13)

where ·̂ denotes ℓ2 normalization and sq = {fq,audio, fq,text, fq,video} denotes the input test data. The
small constant ϵ is used to prevent division by zero.

Subsequently, we aggregate the cosine similarities across the available modalities for each task-
specific expert to compute routing weights and select the expert with the highest weight for infer-
ence. Let Mi denote the set of modalities (e.g., audio, text, video) present in the inputs for the
i-th task, as determined by the availability of corresponding features. The routing weight ρi for
the i-th expert is computed as the mean of modality-specific cosine similarities ρi,m (defined in
Eq. equation 13), and the optimal expert is selected as follows:

ρi =
1

|Mi|
∑

m∈Mi

ρi,m, (14)

k∗ = argmax
i

ρi, i ∈ {1, . . . , T}, (15)

where T is the total number of tasks, and k∗ indicates the index of the selected expert. Our method
eliminates the need to train routers by calculating similarity, reducing resource consumption while
ensuring the accuracy of task-specific expert selection.

4 EXPERIMENTS

4.1 DATASET

We benchmark AVQACL-MoE on the AVQACL suite (Wu et al., 2025a), which instantiates two
continually-learning splits built upon established AVQA corpora. These splits are engineered to
reproduce open-world conditions in which new reasoning skills and audio-visual concepts arrive in
an unknown order.

Split-AVQA is derived from the original AVQA dataset (Yang et al., 2022). It contains 39,314 real-
world 10-second videos paired with 41,008 question-answer instances spanning four question types
(where, which, happening, and come from) and 2,135 open-vocabulary answers. The continual-
learning protocol divides this corpus into T = 4 task stages, where each stage corresponds to one
question type.

5
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Split-MUSIC-AVQA originates from the MUSIC-AVQA dataset (Guangyao li, 2022) and com-
prises 7,324 60-second music performance clips with 20,774 QA pairs. Questions fall into T = 5
categories (counting, location, comparative, temporal, existential) and share a 40-way answer vo-
cabulary.

4.2 EVALUATION METRICS

We adopt the AVQACL benchmark’s (Wu et al., 2025a) standardized metrics to quantify both cu-
mulative performance and forgetting.

Mean Accuracy (MA). After completing training on task t, we record the test accuracy on all tasks
seen so far. MA is the average over the T incremental checkpoints:

MA =
1

T

T∑
t=1

at.

where at indicates the accuracy of task t that completing the training on task t. MA reports the
model’s sustained global competence as new question semantics and audio-visual concepts are in-
troduced.

Average Forgetting (AF). AF measures knowledge loss on earlier tasks when learning later ones.
Let aγ,i denote accuracy of task i after training task γ, and at,i the accuracy of the same task i after
training task t (t > γ):

AF =
1

T − 1

T∑
t=2

1

t− 1

t−1∑
i=1

max
γ<t

(aγ,i − at,i).

where T represents the total number of tasks, while t denotes the index of the current task. The
lower AF indicates superior resistance to catastrophic forgetting.

4.3 IMPLEMENTATION DETAILS

All experiments were carried out on 8 A100 GPUs. Following Li et al. (2025), we start from
publicly released checkpoints: the CLIP-ViT-L/14-336 vision encoder (Radford et al., 2021), the
BEATs iter3 audio encoder (Chen et al., 2023), and the LLaMa-2-7B-chat language model (Touvron
et al., 2023). For every incoming task, we run five epochs of AdamW optimization with β1 = 0.9,
β2 = 0.999, ϵ = 10−8, and weight decay 0. The learning rate warms up linearly from 0 to 4×10−5

with a warmup ratio of 0.03, then follows a cosine schedule. We adopt a global batch size of 8.
We evaluate the accuracy of predicted answers using a streamlined process combining exact match-
ing and semantic evaluation. For non-matching pairs, we employ the Qwen-Flash API to assess
semantic equivalence, and prompts are modified from (Wu et al., 2025b).

4.4 EXPERIMENTAL RESULTS

Baseline. We evaluate our proposed method against several representative and state-of-the-art con-
tinual learning approaches, including LwF (Li & Hoiem, 2018), EWC (Kirkpatrick et al., 2017),
MAS (Aljundi et al., 2018), iCaRL (Rebuffi et al., 2017), SS-IL (Ahn et al., 2021), AV-CIL (Pian
et al., 2023), AVQACL (Wu et al., 2025a), along with recent CL-MoE (Huai et al., 2025) with the
same LLaVA backbone (without the audio connector we designed).

Comparison and Analysis. Table 1 summarizes CL performance on both splits. Our method
achieves state-of-the-art performance on both datasets, effectively mitigating catastrophic forgetting
in AVQACL. Regularization-based methods (EWC, LwF) and distillation approaches (iCaRL) bring
only marginal relief (MA ≤ 25.28%, AF ≥ 30%), while replay-heavy SS-IL and AV-CIL reduce
forgetting to ∼ 2.7% AF, but still plateau below 33% MA. Because their weight-update paradigm
cannot reconcile heterogeneous audio-visual fusion patterns, which confirms the severity of catas-
trophic forgetting in multimodal reasoning.

The prior best AVQACL baseline tops out at 32.05% MA and 2.47% AF on Split-AVQA, yet re-
mains over 54 points behind our result. Recent MoE-based methods like CL-MoE (Huai et al., 2025)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

perform poorly on Split-MUSIC-AVQA (25.58% MA), primarily because they are designed for con-
tinual visual question answering without explicit support for the audio modality, which is essential
for tasks involving sound-source localization, instrument identification, and temporal audio cues
in music performance videos. Our AVQACL-MoE shatters this ceiling without any replay buffer
(M = 0). On the Split-AVQA dataset, it achieves 86.41% MA while keeping average forgetting
at an all-time low of 2.34%. This trend is equally striking on the longer-horizon Split-MUSIC-
AVQA: we record 72.02% MA, surpassing the strongest competitor by 38 points, and drive AF
down to 1.79%. Critically, the gain is obtained without revisiting past data or task labels, validating
that freezing the backbone and assembling task-specialized experts is both more effective and more
scalable than continual weight adaptation.

Table 1: Experimental results of various methods on the audio-visual question answering continual
learning datasets, Split-AVQA and Split-MUSIC-AVQA; M represents the size of memory bank
(replay buffer, is used to storing a small fixed size of exemplar memory set of data from previous
answers). MA: higher is better, AF: lower is better.

Method Split-AVQA Split-MUSIC-AVQA

M MA(%) AF(%) M MA(%) AF(%)

LwF (Li & Hoiem, 2018) 0 21.53 30.49 0 30.93 30.14
EWC (Kirkpatrick et al., 2017) 0 18.89 40.69 0 28.76 32.58
MAS (Aljundi et al., 2018) 0 24.47 8.91 0 29.33 31.15
iCaRL (Rebuffi et al., 2017) 5000 25.28 33.76 700 28.46 33.16
SS-IL (Ahn et al., 2021) 5000 30.50 2.68 700 32.16 28.05
AV-CIL (Pian et al., 2023) 5000 27.49 2.91 700 31.22 29.65
AVQACL (Wu et al., 2025a) 5000 32.05 2.47 700 33.64 27.08
CL-MoE (Huai et al., 2025) 0 29.76 3.27 0 25.58 2.45
Ours 0 86.41 2.34 0 72.02 1.79

4.5 ABLATION STUDY
Table 2: Ablation study on the impact of our continual
learning strategy on Split-AVQA and Split-MUSIC(-
AVQA). MA: higher is better, AF: lower is better.

Method Split-AVQA Split-MUSIC

MA(%) AF(%) MA(%) AF(%)

Ours w/o CL 74.98 7.89 43.61 41.54
Ours 86.41 2.34 72.02 1.79

Impact of Continual Learning Strategy. To
assess the contribution of our CL approach
beyond the intrinsic capability of the visual-
audio-language LLM backbone, we conduct an
ablation by removing the CL components. In
this setting, the LLM is directly fine-tuned se-
quentially on the AVQACL tasks without task-
specific experts or anchor-based routing, thus
relying solely on its pre-trained multimodal
alignment and reasoning.

Table 3: Task accuracy matrix on Split-MUSIC-
AVQA without CL. Each entry shows the accuracy
of a task (row) after training up to the corresponding
task (column). Severe forgetting is observed, partic-
ularly for Task 0 (Counting).

Task T0 T1 T2 T3 T4

T0 Counting 0.6366 0.0021 0.0756 0.0425 0.0068
T1 Existential – 0.8131 0.7804 0.5507 0.6340
T2 Location – – 0.6346 0.1006 0.5283
T3 Comparative – – – 0.5099 0.3569
T4 Temporal – – – – 0.6546

As shown in Table 2, the plain Multimodal LLM
(MLLM) with frozen visual-language and audio-
language connectors already achieves non-trivial
MA, indicating that its inherent knowledge con-
tributes substantially to performance. However,
on the Split-MUSIC-AVQA dataset, after instruc-
tion tuning on Task 1 (Existential), which mainly
requires binary answers, the evaluation on Task
0 (Counting) predominantly yields “yes” or “no”
instead of numerical predictions, leading to low
MA and high AF and thus revealing severe catas-
trophic forgetting. To provide a finer-grained
view, we report the full task accuracy matrix in

Table 3, which shows the forgetting pattern: for example, Task 0 (Counting) accuracy drops from
63.7% when trained alone to nearly 0% after subsequent tasks, while the overall MA declines to
43.61% with an AF of 41.54%. These results highlight that sequential fine-tuning without CL
causes drastic cross-task performance collapse, whereas our CL strategy with task-specific experts
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Figure 2: Anchor-guided routing accuracy. Match is the test accuracy that anchors guided to the
matching expert. Mismatch is the test accuracy that anchors guided to the other experts.

and anchor-based routing effectively mitigates forgetting and enhances plasticity beyond the raw
MLLM.

Task-Agnostic Anchor Routing: How Faithful Are Our Experts? We evaluate our anchor-
based router on Split-MUSIC-AVQA and Split-AVQA. Fig. 2 reports match and mismatch accura-
cies, and Fig 3 shows empirical routing distributions. These datasets include overlapping or seman-
tically adjacent tasks, e.g., ”Count” versus ”Exist” in MUSIC-AVQA, enabling assessment under
realistic boundary ambiguity.

On Split-MUSIC-AVQA, anchors route correctly most of the time, with minimal performance drop
on mismatched queries, demonstrating graceful degradation. Split-AVQA shows an even higher
global match rate, with modest loss on mismatches. This robustness arises from shared cross-task
audio-visual patterns, allowing off-target experts to generalize reliably. Anchors computed as run-
ning means naturally adapt to gradual task drift, supporting label-free task identification and general-
ization to few-shot or shifted distributions. Compared to learned routers in existing MoE approaches,
our parameter-free anchors offer simplicity, stability, and most importantly, need no buffer replay to
train MoE routers in CL scenario.

The Effect of Multi-modality for Anchor-based Expert Routing. To evaluate the impact of
modality configurations on the effectiveness of our anchor-based routing, we conduct an ablation
study using different combinations of modalities, visual (V), visual-audio (VA), and visual-audio-
text (VAT), on both datasets. We measure match accuracy (queries routed to the expert trained on
the corresponding task). The results are summarized in Fig. 4.

On Split-AVQA, the tri-modal VAT anchor achieves the best overall trade-off, while removing
text (VA) substantially reduces performance, and the visual-only (V) anchor performs comparably
poorly, indicating that textual signatures play a critical role in refining anchor routing. On Split-
MUSIC-AVQA, VAT again clearly dominates, whereas VA and V collapse to very low accuracy.
This large gap arises because performance scenes often share both visuals and audio, leaving no
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Figure 3: Routing distribution (%) obtained by our anchor-based task-agnostic router on the CL
splits. For each task, the figure shows the percentage of test queries directed to every expert.
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Figure 4: Ablation study on modality configurations for anchor-based routing across Split-AVQA
and Split-MUSIC-AVQA datasets. The bar graphs illustrate the performance of modality combi-
nations of V (Visual), A (Audio), and T (Text). The heatmap below correlates match accuracy
percentages with three modality configurations in two datasets.

reliable cues for query type; only text disambiguates such cases. These findings demonstrate that
multimodal (VAT) anchors are essential for robust task-agnostic routing under diverse continual-
learning conditions.

Impact of Expert Insertion Layer Parity. We further study how the parity of transformer layers
at which experts are inserted affects continual-learning performance. By default, AVQACL-MoE
inserts task-specific FFN experts at every even-indexed layer (indices l such that l mod 2 = 0).
We conduct an ablation that instead places experts at odd-indexed layers, keeping all other settings
identical. Table 4 summarizes the results on both continual-learning splits.

Table 4: Insertion-layer parity ablation on Split-AVQA and Split-MUSIC-AVQA. MA: higher is
better, AF: lower is better.

Split-AVQA Split-MUSIC-AVQA

Insertion Layers MA(%) AF(%) MA(%) AF(%)

Even (main) 86.41 2.34 72.02 1.79
Odd 87.06 1.65 71.25 1.91

On Split-AVQA, switching to odd layers slightly lifts MA by 0.65% and further suppresses AF by
0.69%. Conversely, on Split-MUSIC-AVQA, odd layers incur a modest drop of 0.77% in MA and a
0.12% rise in AF. These minor fluctuations indicate that the framework is largely insensitive to the
exact layer parity once the backbone is frozen and parameter isolation is enforced.

5 CONCLUSION AND LIMITATION

We presented AVQACL-MoE, an anchor-based mixture-of-experts framework for audio-visual
question answering continual learning. By freezing the multimodal backbone and composing task-
specialized experts, our method structurally prevents catastrophic forgetting while scaling to new
tasks. The anchor-based routing enables task-agnostic inference without relying on task identifiers,
and experiments on the AVQACL benchmark show significant gains in mean accuracy with near-
zero forgetting.

A potential limitation is the linear growth of expert pools with task count. However, in practice,
AVQA systems typically handle a limited number of core task types. For extended scenarios, similar
tasks can be dynamically merged via anchor-driven clustering to cap memory overhead. Future work
will explore dynamic parameter-sharing MoE variants.
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ETHICS STATEMENT

Our AVQACL-MoE framework advances continual learning for audio-visual question answering by
mitigating catastrophic forgetting and enabling task-agnostic inference. While the approach demon-
strates strong performance, it also inherits general risks common to generative models: outputs may
occasionally be incorrect or misleading, which could be problematic in safety-critical or decision-
making scenarios. In addition, dataset biases (e.g., overrepresentation of certain instruments or
scenes) may lead to unfair or skewed predictions. We strongly encourage researchers and practi-
tioners to validate outputs carefully, especially in sensitive domains such as surveillance, education,
or assistive technologies. The intended purpose of this work is methodological advancement and
academic study, not deployment in high-stakes environments, and we advocate for responsible and
transparent use that ensures fairness, privacy protection, and compliance with ethical and legal stan-
dards.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our findings, we provide detailed descriptions of the model architecture,
training configurations, and evaluation protocols in Sections 3 and 4 of the paper, with implementa-
tion details in Section 4.3 and theoretical proofs in Appendix A.1. Ablation studies and case analyses
(Section 4.5 and Appendix A.2) further support robustness. All source code, training scripts, full hy-
perparameter settings, and pretrained weights are available at the following anonymous repository:
https://anonymous.4open.science/r/AVQACL-MoE-C454/ to facilitate full replica-
tion of our results by other researchers.
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Andrés Villa, Juan León Alcázar, Motasem Alfarra, Kumail Alhamoud, Julio Hurtado, Fabian Caba
Heilbron, Alvaro Soto, and Bernard Ghanem. PIVOT: prompting for video continual learning. In
CVPR, pp. 24214–24223, 2023.

Kaixuan Wu, Xinde Li, Xinling Li, Chuanfei Hu, and Guoliang Wu. AVQACL: A novel benchmark
for audio-visual question answering continual learning. In CVPR, pp. 3252–3261, 2025a.

Zhixuan Wu, Bo Cheng, Jiale Han, Jiabao Ma, Shuhao Zhang, Yuli Chen, and Changbo Li.
VideoQA-TA: Temporal-aware multi-modal video question answering. In COLING, pp. 7239–
7252, 2025b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pinci Yang, Xin Wang, Xuguang Duan, Hong Chen, Runze Hou, Cong Jin, and Wenwu Zhu. AVQA:
A dataset for audio-visual question answering on videos. In ACM MM, pp. 3480–3491, 2022.

Jiong Yin, Liang Li, Jiehua Zhang, Yuhan Gao, Chenggang Yan, and Xichun Sheng. Progressive
homeostatic and plastic prompt tuning for audio-visual multi-task incremental learning. In ICCV,
2025.

Haoran Zhu, Maryam Majzoubi, Arihant Jain, and Anna Choromanska. TAME: task agnostic con-
tinual learning using multiple experts. In CVPRW, pp. 4139–4148, 2024.

A APPENDIX

A.1 THEORETICAL PROPERTIES

We now analyze the theoretical guarantees of our AVQACL-MoE framework. These properties
stem from the parameter isolation across experts and the anchor-based routing mechanism, which
together enable robust continual learning without catastrophic forgetting.

Setup. Let Ψi = {θ | ∂L(i)
task/∂θ ̸= 0} denote the parameter influence set for task Ti, representing

the subset of model parameters updated during the training of task Ti. Our design enforces parameter
isolation, ensuring Ψi ∩ Ψj = ∅ for all i ̸= j, and inference routes a query to a single expert via
cosine similarity to anchors, as defined in Eq. equation 14.

Zero Catastrophic Forgetting.
Theorem 1. Under parameter isolation, the expert Ei remains unchanged after learning any subse-
quent task Tj where j > i.

Proof. Since Ψi∩Ψj = ∅ for i ̸= j, the parameters of Ei (denoted Θ
(i)
train) are not in the gradient path

of L(j)
task and thus receive no updates during the optimization of task Tj . Consequently, the functional

mapping of Ei—defined by its forward pass in Eq. equation 5—remains invariant, preserving the
performance on task Ti indefinitely.

Routing Stability. Let ρi(q) denote the aggregated cosine similarity for query q with respect to the
i-th expert, and define the margin ∆i(q) = minj ̸=i(ρi(q)− ρj(q)). If ∆i(q) > 0 for all evaluation
queries of task Ti, then the addition of further tasks and their corresponding anchors does not alter
the routed index argmaxj ρj(q) nor the end-to-end prediction. Empirical validation in Section 4.5
confirms positive margins in practice.

Complexity. With |Ei| parameters per expert and |ai| = dsig floats for each anchor, the memory
complexity is M(T ) = Mbase +

∑T
i=2(|Ei|) +

∑T
i=1(|ai|), and the computational complexity is

C(T ) = O(T dsig)︸ ︷︷ ︸
routing

+ O(|E|)︸ ︷︷ ︸
single forward

. The use of hard top-1 selection maintains a forward pass cost

independent of T , while routing scales linearly with the number of tasks T .

Knowledge Accumulation. The sets of experts and anchors grow additively: P(T ) = P(T−1) ∪
{ET } and A(T ) = A(T−1) ∪ {aT }. This design ensures a monotonic increase in model capacity
while preserving the functionality of previously learned tasks by construction.

A.2 CASE STUDY

We further illustrate the behavior of our anchor-based routing through three inference examples
without access to task labels (Fig. 5).

(a) “Where is the loudest instrument?” — correctly routed to the Location expert, producing the
answer left.

(b) “Is there a voiceover?” — incorrectly routed to the Counting expert, but predicting the right
answer yes.
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(c) “What happened in the video?” — correctly routed to the Happening expert, with the answer
Volcanic explosion.

These cases highlight two key properties of our framework: (i) anchors enable task-agnostic routing,
allowing the model to operate without explicit task identifiers; and (ii) even in cases of routing
mismatch, the model can still generate semantically plausible outputs by leveraging shared cross-
task knowledge. This robustness demonstrates the practicality of our approach in open-world AVQA
scenarios where task boundaries are inherently ambiguous.

Video:

Audio:

Question id 4862: Where is the loudest instrument? Ground Truth: left Answer: left

Video:

Audio:

Question id 4862: Where is the loudest instrument? Ground Truth: left Answer: left

Video:

Audio:

Question id 23567: Is there a voiceover? Ground Truth: yes Answer: yes

Video:

Audio:

Question id 23567: Is there a voiceover? Ground Truth: yes Answer: yes

Task type: Existential (01) Actual router: Counting(00)

Video:

Audio:

Question id 23567: Is there a voiceover? Ground Truth: yes Answer: yes

Task type: Existential (01) Actual router: Counting(00)

Video:

Audio:

Question id 33878: What happened in the video? Ground Truth: Volcanic explosion Answer: Volcanic explosion

Video:

Audio:

Question id 33878: What happened in the video? Ground Truth: Volcanic explosion Answer: Volcanic explosion

Task type: Happening (01) Actual router: Happening (01)

Video:

Audio:

Question id 33878: What happened in the video? Ground Truth: Volcanic explosion Answer: Volcanic explosion

Task type: Happening (01) Actual router: Happening (01)

Task type: Location (02) Actual router: Location (02)Task type: Location (02) Actual router: Location (02)

Figure 5: Case Study.
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