®

Check for
updates

PySigma: Towards Enhanced Grand
Unification for the Sigma Cognitive
Architecture

Jincheng Zhou2®)@® and Volkan Ustun?

! Department of Computer Science, University of Southern California,
Los Angeles, USA
jinchenz@usc.edu
2 Institute for Creative Technologies, University of Southern California,
Los Angeles, USA
{jzhou,ustun}@ict.usc.edu

Abstract. The Sigma cognitive architecture is the beginning of an inte-
grated computational model of intelligent behavior aimed at the grand
goal of artificial general intelligence (AGI). However, whereas it has been
proven to be capable of modeling a wide range of intelligent behaviors,
the existing implementation of Sigma has suffered from several signifi-
cant limitations. The most prominent one is the inadequate support for
inference and learning on continuous variables. In this article, we pro-
pose solutions for this limitation that should together enhance Sigma’s
level of grand unification; that is, its ability to span both traditional cog-
nitive capabilities and key non-cognitive capabilities central to general
intelligence, bridging the gap between symbolic, probabilistic, and neu-
ral processing. The resulting design changes converge on a more capable
version of the architecture called PySigma. We demonstrate such capa-
bilities of PySigma in neural probabilistic processing via deep generative
models, specifically variational autoencoders, as a concrete example.

Keywords: Sigma - Cognitive architecture - Probabilistic graphical
model - Message passing algorithm -+ Approximate inference + Deep
generative model

1 Introduction

The Sigma cognitive architecture is the beginning of an integrated computa-
tional model of intelligent behaviors, with an end goal of becoming a working
implementation of a complete cognitive system [13]. In service of this goal, four
design desiderata have been in place to guide the research and development: (1)
grand unification, that the architecture should span both traditional cognitive
capabilities and key non-cognitive aspects — such as the symbolic, probabilistic,
and neural processings — central to an intelligent agent, (2) generic cognition,
that it should span both natural and artificial cognition at an appropriate level
© Springer Nature Switzerland AG 2022

B. Goertzel et al. (Eds.): AGI 2021, LNAT 13154, pp. 355-366, 2022.
https://doi.org/10.1007/978-3-030-93758-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93758-4_36&domain=pdf
http://orcid.org/0000-0003-2328-6614
http://orcid.org/0000-0002-7090-4086
https://doi.org/10.1007/978-3-030-93758-4_36

356 J. Zhou and V. Ustun

of abstraction, (3) functional elegance, that it should yield human-level intelli-
gent behaviors from a simple and theoretically elegant base, and (4) sufficient
efficiency, that it should execute quickly enough for real-time applications.

Sigma is implemented as a two-level architecture: a cognitive language level
on top of a graphical architecture level. The cognitive language level provides a
user-friendly interface for programming Sigma models by offering two essential
constructs: Predicates that store and represent first-order relational knowledge
and Conditionals that organize predicates into graphs and rules that enable
deriving new knowledge and update existing memories. The graphical architec-
ture level compiles the model written in the cognitive language into an aug-
mented factor graph. This augmented factor graph inherits the essential seman-
tics of the conventional factor graphs but augments them in several key ways
to allow broader model capacity, such as allowing a variable node to represent
first-order variables and introducing unidirectional edges. The actual computa-
tions then occur over a sequence of cognitive cycles by, within each, passing
messages around this factor graph until quiescence (the elaboration phase) and
then updating message contents in factor nodes as necessary (the modification
phase).

Sigma’s graphical architecture has successfully assisted in modeling a wide
range of cognitive and non-cognitive abilities [13]. However, throughout the years
of research on it, it has been apparent that the current implementation suffers
from at least two fundamental limitations: difficulty in dealing with continu-
ous variables; and lack of a critical cognitive capability for structure learning
from experience; known as “chunking.” In this article, we focus primarily on
tackling the first limitation. We first propose a fundamental change to the mes-
sage structure to efficiently represent continuous variables, accompanied by an
enhanced design of the graphical architecture, message propagation algorithm,
and inference/learning mechanisms. These changes ultimately converge on a new
version of Sigma called PySigma that, by design, inherits all of Sigma’s infer-
ential capabilities and also extends them in significant ways. We then illustrate
one of such extension regarding the support for neural probabilistic processing
by demonstrating the modeling of a canonical deep generative model — the Vari-
ational Autoencoder (VAE) [8]. Finally, we briefly touch upon a potential future
research direction inspired by the experience of modeling VAE that may lead to
solutions to the second limitation.

2 Message Representation with Continuous Variables

The cornerstone of Sigma’s graphical architecture is the message: a data struc-
ture that captures the first-order relational knowledge about certain facts. For
example, the location of an object in the blocks world environment can be rep-
resented by a predicate Location(0:object, X:value, Y:value), where vari-
able 0 of type object refers to the specific object, and variables X, Y of type
value describes the object’s X-Y coordinate. The specific value of this pred-
icate at any given time is then stored as a message with the same signature:
m(0:object, X:value, Y:value).

PySigma: Towards Enhanced Grand Unification 357

In Sigma, the message data structure leverages Piecewise-Linear Maps [13].
This implementation can approximate functions over continuous variables; how-
ever, it can get quite messy when learning the probability density function of a
continuous random variable. For example, after multiple cycles of updating the
piecewise-linear map, the messages tend to become too fractured and intractable
to compute efficiently unless proper smoothing is applied.

To remedy this issue in PySigma, we recognize that a message is essen-
tially encoding a batch of independently distributed distributions. Drawing inspi-
ration from Tensorflow’s distribution package design [4], we make the distinction
between a message’s variables that index the batch of distributions versus those
variables that are their event variables. The former are called Relational Vari-
ables in PySigma, and the latter Random Variables. Then, to tractably encode
the distributions, the Piecewise-Linear Map representation is replaced with two
alternatives: the parameter and particle-lists format. A message assumes that the
distributions come from a parametric distribution family and uses the parameter
vectors to encode its distributions with the parameter format. With the particle-
lists format, particles (or samples from the distributions) are stored rather than
the parameters, allowing estimation of the statistics of the underlying distribu-
tions [3]. Under such formulation, any Piecewise-Linear Map message in Sigma
can be effectively represented by a particle-lists format message in PySigma,
enabling PySigma to be fully reduced to Sigma.

Because tensors can best represent components of both parameters and par-
ticle lists, we build PySigma’s message structure on top of PyTorch tensors and
implement PySigma’s graphical architecture essentially as pipelines of tensor
manipulations. Since PyTorch is a commonly used deep learning library, such
design choices not only ensure the speed and accuracy of any tensor operation
but also prepares PySigma for further integration with standard deep learning
modules, such as deep neural networks [11].

3 Generalized Factor Graph, Approximate Inference,
and Gradient-Based Learning

Apart from the new message representation and implementation, PySigma fun-
damentally changes several other aspects of Sigma’s graphical architecture. First,
PySigma cognitive models are compiled to an augmented factor graph that is fur-
ther generalized, specifically in the factor node function formulation. In Sigma,
a factor node function is formulated similarly to the tabular factor in a conven-
tional factor graph and implemented as a Piecewise-Linear Map, which records
every function value corresponding to each tuple of the function variable values.
However, such a formulation needs exponential space when the number of func-
tion variables increases. PySigma relaxes this restricted formulation and instead
relies on the following one, which defines two types of factor functions:

Definition 1. An n-ary generative factor function F is a mapping
[T-, Rv, — [0,1] such that

p=FWV,Va,..., V)

358 J. Zhou and V. Ustun

An n-ary discriminative factor function G is a mapping H:.L:_ll Ry, — Ry,
such that
Vn == G(Vh Vv27 L) Vn—l)

where V1, Vs, ..., V, are the random variables, and Ry, is the support set of the
random variable V;.

By doing so, PySigma admits arbitrary function implementations that con-
form to the above definition as factor node functions. Thus, for example, a deep
neural network module can be used as a factor function approximator to resolve
the issue of space explosion.

It should be noted that how PySigma integrates neural networks is very dif-
ferent from the previous approach in Sigma [12,14]. In Sigma, neural networks
are reimplemented leveraging the existing components of the Sigma graphical
architecture. What is done here for PySigma, on the other hand, extends the
architecture to admit neural modules as the primary, inseparable components.
Thus, compared to Sigma, PySigma is more deeply integrated with neural pro-
cessing and hence, is prepared to take one step forward to bridge the gap between
neural, probabilistic, and symbolic reasoning.

All of Sigma’s message passing, inference, and learning mechanisms have been
overhauled in PySigma to work with the new message structure and the general-
ized factor graph. PySigma still inherits the same two-phased cognitive cycles as
in Sigma, but the implementations of both phases are fundamentally changed.
PySigma also clearly distinguish between inference and learning: inference per-
forms local updates on the predicates’ working memory based on incoming mes-
sages to find the posterior distribution given the observations, whereas learning
updates the model parameters to optimize a pre-defined objective function.

For message passing, the existing Sigma uses the Sum-Product algorithm, a
form of exact inference algorithm, which suffers from tractability issues when
facing continuous variables and generalized factor functions [13]. For PySigma,
we have developed a set of generalized message passing rules to perform approx-
imate inference. It is a combination of Particle Belief Propagation (PBP) [3,5]
and Variational Message Passing (VMP) [2,15] on factor graphs. In the most
general case, a conditional subgraph (the group of variable and factor nodes
that a conditional is compiled to) expects all incoming messages from the inci-
dent predicate subgraph (the group of nodes that a predicate is compiled to) to
be of particle-lists format. It then computes outgoing messages using the PBP
message update rule on factor nodes [5]. However, if all of the incoming messages
are also of parameter format and their assumed distribution classes are not only
the exponential class but also conjugate to the factor function, then the VMP
message update rule on factor nodes is used, which directly manipulates the
exponential family distributions’ natural parameters [15]. Such a hybrid message
passing algorithm mostly produces the generalized particle-based approximate
messages. However, the algorithm efficiently generates a parameter-based exact
message when the incoming messages and the factor function share particular
structures. Moreover, message passing in PySigma would be identical to the

PySigma: Towards Enhanced Grand Unification 359

Sum-Product rules if messages are discrete and the factor functions are in tabu-
lar format. In this way, PySigma can be easily reduced to Sigma, thus supporting
all of the cognitive capabilities that Sigma’s inference can achieve in principle.

For the inference update, we follow the PBP formulation so that particles are
only sampled at the predicate subgraph, and a conditional subgraph does not
alter incoming particles or sample new particles. This restriction is to prevent
incoming messages to a predicate subgraph from having contradicting lists of
particles [5]. We thus categorize PySigma’s predicates into three types: the non-
memorial type, the variational memorial, and the Markov Chain Monte Carlo
(MCMC) memorial. The non-memorial type predicate is reserved for relaying
messages from one conditional to another. The last two memorial types, however,
actively maintain an internal message as their working memory and updates this
message using the incoming messages. A variational memorial predicate explic-
itly assumes that a variational posterior distribution describes its memory and
updates this memory by directly summing the incoming message’s parameters if
all of the incoming messages are of parameter format [2]. Otherwise, if any of the
incoming messages are of particle-lists format, it resorts to the stochastic gradi-
ent update, similar to the update method proposed by the Reparameterization
Gradient Message Passing [1]. Unlike the variational one, the MCMC memorial
predicate does not make any assumption about the posterior distribution but
relies on the MCMC method to iteratively update its memory particles [7].

Finally, learning is carried out in PySigma by gradient backpropagation, the
same technique used for training deep neural networks. A PyTorch computa-
tional graph [11] that is automatically built when PySigma propagates mes-
sages in the elaboration phase of each cognitive cycle enables the gradient back-
propagation. Although PyTorch automatically does backpropagation, PySigma
actively controls the scope of the gradient flow to prevent one part of the graph
from affecting the learning of another irrelevant part. Such a control mecha-
nism also enables PySigma to choose different optimizers for each scope of the
gradient and apply different fine-tuning techniques for each optimizer, such as
early-stopping and learning rate schedules.

4 Deep Generative Modeling in PySigma

The expressive power of the new message representation scheme, combined with
the generality of the generalized message propagation, inference, and learning
algorithm, enables PySigma to capture an even more comprehensive range of
models than Sigma, hence taking a step forward toward the ultimate goal of
grand unification. Such increased capability can be best demonstrated by mod-
eling deep generative models, a class of probabilistic models that takes strength
from deep neural networks, which Sigma has difficulties modeling. To illustrate
the deep generative modeling in PySigma, we will discuss one specific such model,
the variational autoencoder (VAE), in detail [8], demonstrate how to model it
in PySigma, and analyze the correctness of the resulting PySigma model.

360 J. Zhou and V. Ustun

4.1 Preliminaries

Variational Autoencoders are canonical deep generative models widely used for
learning a smooth representation space for continuous data such as images and
audio. It is a successful fusion between probabilistic modeling and deep neural
networks: the model can be mathematically analyzed as a probabilistic graphical
model at a conceptual level but relies on deep neural networks for the implemen-
tation and backpropagation-based stochastic gradient descent for optimization.

From a probabilistic inference perspective, VAE is a class of methods for
working with the Latent Variable Model, a class of models where a group of
latent variables is interlinked to explain the behaviors of the observed variables.
Figure 1a shows the simplest possible latent variable model as a Bayesian network
that consists of only a latent variable z and an observed variable x. Figure 1b
presents the factor graph representation of this model. The py(z) factor node
encodes the prior distribution over z, and py(x | z) factor node encodes the
conditional distribution that determines the underlying dynamics between z and
x. Throughout the following sections, we will concentrate on this simple model
for illustration. We will assume a known and fixed prior distribution and call the
unknown conditional distribution pp(x | z) the reconstruction model. We will
also assume the reconstruction model comes from a very general model family P
for which exact inference algorithms such as the Sum-Product algorithm cannot
solve in polynomial time. However, despite the generality, the reconstruction
models can be parameterized by a parameter 6, and the probability density
function of the model is differentiable with respect to 6.

(a) (b)

© O

Fig. 1. Left (a): simple latent variable model as a directed Bayesian network. Right
(b): the same model expressed as a factor graph.

There are two objectives of the above latent variable model that are worth
pursuing:

PySigma: Towards Enhanced Grand Unification 361

1. Inference: with the reconstruction model pg(x | z) fixed, find the posterior
po(z | x) for the latent variable, given data x € D.

2. Learning: to select a reconstruction model py(x | z) from the model family
P such that the entire graphical model (prior + reconstruction) best fit the
data distribution D.

VAE approaches the inference task by introducing an amortized variational
posterior ¢y (z | X) that is implemented by a neural network f; : X — A mapping
a mini-batch of observed data points X to the posterior distribution parameter
A that is then used to instantiate the variational posterior. This neural network
is also known as the recognition model. Therefore, rather than iteratively finding
a posterior ¢(z) for multiple steps each time the reconstruction model py(x | z)
is updated, VAE more efficiently obtains an approximated posterior through a
single forward propagation of the neural network f,. Moreover, the inference task
is converted into yet another learning task that is to update fy, and both the
inference and learning tasks can be solved simultaneously by jointly optimizing
the Evidence Lower Bound Objective (ELBO) for parameters § and ¢:

%) = 1o po(X | 2)po(2)
[’(07¢1) = Eq¢(z\x) 1 g %(Z | }—{) (1)

where X is a mini-batch of observed data points. Accordingly, the updates are:

¢ — ¢+ VoL(0,$;%) (2)
0 — 0+ VoLl(0, ;%) (3)

where £ is the Monte Carlo estimate to the lower bound £. Updating ¢ effectively
solves the inference task, and updating 6 effective solves the learning task.

4.2 VAE as a Message-Passing Factor Graph

With the VAE objective and optimization mechanics established, we now con-
sider modeling the VAE as a factor graph to prepare for a PySigma implemen-
tation. VAEs, although inherently are directed latent variable models, are often
optimized with a black-box optimization procedure (or end-to-end training in
the deep learning context) in practice. In such a procedure, the model itself
(including both the “reconstruction” model py and the “recognition” model gy)
is treated as a black box and optimized by first taking a global gradient back-
propagation to the parameters of both models ps and g4 with a subsequent
joint parameter update to both 6 and ¢. This black-box optimization procedure,
however, is very different from the design principles of a factor graph. The latter
emphasizes breaking a global model into local pieces and relies on locally correct
message update procedures to achieve the global optimization objective.

362 J. Zhou and V. Ustun

Fortunately, although modeling VAEs while completely conforming to con-
ventional factor graph semantics is very hard, the task is simpler if we consider
the augmented factor graph PySigma leverages. Figure2a shows a modified
version of the model in Fig. 1b, where a unidirectional message passing gad-
get is added alongside the original model, encapsulating the recognition model
¢s(z | x). Figure 2b shows the actual compiled PySigma model, which will be
analyzed in the next section.

To start, we notice that Eq. (1) can be expressed in the following factorized
format:

£(6,6:%) = By, a5, 1ogpe<>-c|z>+logpe<z>—logq¢<z|s<>} (4)
(a) (b)
po(z) po(z)
),
[x12)] [asz]0]
v

Fig. 2. Left (a): Latent variable model with conditional recognition factor. Note that
the two unidirectional dashed arrows indicate that this model uses PySigma’s aug-
mented factor graph semantics. Right (b): Compiled PySigma model of the Variational
Autoencoder. The nodes grouped by a dashed rectangle together construct a predicate
subgraph.

At first glance, the three terms to be taken expectation seem to exactly map
onto the three factor nodes in Fig. 2a, yet the subtraction sign before the third
term indicates otherwise. Indeed, messages from factor nodes in a conventional
factor graph will be taken product with at the variables nodes, leading to log-
arithmic summations in the overall probability density. However, this challenge
can be overcome if we view ¢4(z | x) not as a conventional factor, but as a
sampling factor, from which particles of z are sampled. In this formulation, the
term pg(z)/qq(z | x) as well as the term py(x | z)/q4(z | x) can be interpreted
as weights of the particles drawn from ¢4(z | x) that are important weighted
against the distributions py(z) and py(x | z) respectively.

PySigma: Towards Enhanced Grand Unification 363

To further illustrate the model’s correctness under PBP, we break down the
particle messages when the factor graph reaches quiescence, which is shown in
Table 1. The “Particle Source” indicates where the particles of each message
were originally drawn from, the “Log Sampling Densities” indicate the particles’
relative frequencies, and the “Importance Weight” is the importance weight of
the particles derived by dividing the target values by the particles’ log sampling
densities.

Table 1. Messages of the model in Fig. 2a when in quiescence state

Direction Particle source Importance weight Log sampling densities
x — q4(2z | x) | Data points & € D Uniform Uniform

q¢(z | x) — z | Particles z ~ ¢4(z | x) | Uniform logqs(z | T)

x — pg(x | z) | Data points & € D Uniform Uniform

po(x | z) — z | Particles z ~ qg(z | x) | >, po(T | 2)/q4(2 | T) log q4(z | T)

2= po(z) | Particles 2 ~ 4s(z | %) | 3y po(® | 2)/as(2|7) | logaelz | 0)

po(z) — 2 Particles z ~ qy(z | X) | pg(2) log g¢ (2 | T)

z — pg(x | z) | Particles z ~ q4(z | x) | po(2) log g¢ (2 | T)

po(x | z) — x | Data points Z € D >, po(Z | 2)pe(2)/qe(z | Z) | Uniform

We can thus derive the marginal posterior for both node x and node z. The
former is simply the message pg(x | z) — x, whereas the latter is the product of
two messages: pg(z) — z and py(x | 2) — z.

post ZPO z | Z)D) (5)

Q¢Z|$

z

post(z Zp0$|2’pe z) (6)

— g4(z |)

xT

where Z € D and z ~ g4(z | Z). Here the notation post denotes that the values
estimate the marginal posterior.

Looking back to the global ELBO Eq. (1), we notice that expressions (5)
and (6) are both a Monte Carlo estimator to the ELBO, only with the former
summarizing over variable z and the latter summarizing over variable x. There-
fore, if we optimize post(x) with respect to the model parameter § and optimize
post(z) with respect to the variational parameter ¢ separately, we recover the
optimization procedures (2) and (3). Moreover, since both optimization on 6 and
¢ are done separately and only using local incoming messages, we have achieved
the goal of global optimization via local updates.

4.3 Model Implementation in PySigma

Figure 2b presents the schema of a compiled PySigma model that implements
the variational autoencoder. It is an augmented version of the factor graph in

364 J. Zhou and V. Ustun

Fig. 2a with several PySigma’s special purpose factor nodes added to complete
the predicate subgraph.

At the bottom, the Perception Buffer Factor Node (PBFN) perceives a batch
of data points at the start of each cognitive cycle and encapsulates the data
points as message particles with uniform log sampling densities. The Optimiza-
tion Node (OPT) calculates the loss value (5) by taking the product of the
incoming message’s particle weights. This loss value will then be used to back-
propagate gradients to the reconstruction factor py(x | z) during the modifica-
tion phase. Both PBFN and OPT, together with the observed variable node z,
construct the observed predicate structure.

To the right, the recognition factor node g4(z | x), implemented by a neu-
ral network module, takes in the batch of data points and produces a batch of
variational distribution parameters A, which is then relayed through the variable
node A. The Working Memory Factor Node (WMFN) receives A and instantiates
a batch of independent variational distributions, from which particles are sam-
pled with non-uniform log sampling densities. During the modification phase,
it computes the loss value (6) and propagates gradients back to the recognition
factor g4(z | x). Both the WMFEN and the variable node z together construct
the latent predicate subgraph.

5 Future Work: Chunking

Chunking was implemented years ago in the Soar cognitive architecture, a pre-
decessor to Sigma, where trees of rule firings could be summarized and replaced
by single rules that are efficient to compute [10]. Unfortunately, due to the prob-
abilistic nature of Sigma, summarizing Sigma’s probabilistic logical rules is much
harder, and there is yet to be a satisfactory solution. However, the modeling of
VAE in PySigma provides an exciting lead. The recognition subgraph, in partic-
ular, might be generalizable in that it can be attached to any PySigma models to
efficiently approximate the posterior of an arbitrary predicate given observations
at some other predicates.

The implication of the recognition subgraph being an architectural pattern is
far-reaching. For example, the parallel existence of a complex reasoning pathway
with a simple neural approximator within a cognitive model can be related to
the conception of fast and slow thinking in cognitive science [6]. Moreover, The
ability of the architecture to automatically decide whether to attach such a
recognition subgraph or an active control over the usage of the slow and fast
message pathways are canonical metacognitive capabilities that are significant
to the general intelligence [9]. Thus, it is worthwhile to investigate how well VAE
can be further generalized in PySigma.

6 Conclusion

Sigma cognitive architecture and system results from decades of research on the
integrated computational model of intelligent behaviors. Sigma has successfully

PySigma: Towards Enhanced Grand Unification 365

modeled a wide range of capabilities yet faces a severe challenge regarding infer-
ence and learning with continuous variables. In this article, we presented several
fundamental changes to Sigma’s implementation that converge on a new ver-
sion of Sigma called PySigma. We also provided a glimpse of the new capability
these changes have unveiled, particularly the support for deep generative models.
Overall, we demonstrated that PySigma is more capable than Sigma to unite
neural and probabilistic processing, hence taking a step toward the ultimate
desiderata of grand unification.

Acknowledgements. Part of the effort depicted is sponsored by the U.S. Army
Research Laboratory (ARL) under contract number W911NF-14-D-0005, and that the
content of the information does not necessarily reflect the position or the policy of
the Government, and no official endorsement should be inferred. We also would like to
thank Dr. Paul Rosenbloom for his comments and suggestions, which helped improve
the quality of this paper. More importantly, we appreciate Dr. Rosenbloom’s continu-
ous and invaluable guidance in enhancing our understanding of cognitive architectures
and the design choices for Sigma.

References

1. Akbayrak, S., De Vries, B.: Reparameterization gradient message passing. In: Euro-
pean Signal Processing Conference, EUSIPCO, September 2019 (September 2019).
https://doi.org/10.23919/EUSIPCO.2019.8902930

2. Dauwels, J.: On variational message passing on factor graphs. In: Proceedings of
the IEEE International Symposium on Information Theory, pp. 2546-2550 (2007).
https://doi.org/10.1109/ISIT.2007.4557602

3. Dauwels, J., Korl, S., Loeliger, H.A.: Particle methods as message passing. In:
Proceedings of the IEEE International Symposium on Information Theory, pp.
2052-2056 (2006). https://doi.org/10.1109/ISIT.2006.261910

4. Dillon, J.V., et al.: TensorFlow distributions (2017). http://arxiv.org/abs/1711.
10604

5. Thler, A., McAllester, D.: Particle belief propagation. In: van Dyk, D., Welling, M.
(eds.) Proceedings of the 12th International Conference on Artificial Intelligence
and Statistics. Proceedings of Machine Learning Research, vol. 5, pp. 256263, 16—
18 April 2009. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida
USA (2009). http://proceedings.mlr.press/v5/ihler09a.html

6. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New York
(2011). https://doi.org/10.1037/h0099210

7. Kim, H., Robert, C.P., Casella, G.: Monte Carlo statistical methods. Technometrics
42(4), 430 (2000). https://doi.org/10.2307/1270959

8. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International
Conference on Learning Representations, Conference Track Proceedings, ICLR
2014, Banff, AB, Canada, 14-16 April 2014 (2014)

9. Kralik, J.D., et al.: Metacognition for a common model of cognition. Procedia
Comput. Sci. 145, 730-739 (2018). https://doi.org/10.1016/j.procs.2018.11.046,
https://www.sciencedirect.com/science/article/pii/S1877050918323329. Postpro-
ceedings of the 9th Annual International Conference on Biologically Inspired Cog-
nitive Architectures, BICA 2018 (Ninth Annual Meeting of the BICA Society),
held 22-24 August 2018 in Prague, Czech Republic

https://doi.org/10.23919/EUSIPCO.2019.8902930
https://doi.org/10.1109/ISIT.2007.4557602
https://doi.org/10.1109/ISIT.2006.261910
http://arxiv.org/abs/1711.10604
http://arxiv.org/abs/1711.10604
http://proceedings.mlr.press/v5/ihler09a.html
https://doi.org/10.1037/h0099210
https://doi.org/10.2307/1270959
https://doi.org/10.1016/j.procs.2018.11.046
https://www.sciencedirect.com/science/article/pii/S1877050918323329

366

10.

11.

12.

13.

14.

15.

J. Zhou and V. Ustun

Laird, J.E.: The Soar Cognitive Architecture (2018). https://doi.org/10.7551/
mitpress/7688.001.0001

Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32.
Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92{2bfa9f7012727740-Paper.pdf

Rosenbloom, P.S.; Demski, A., Ustun, V.: Rethinking sigma’s graphical architec-
ture: an extension to neural networks. In: Steunebrink, B., Wang, P., Goertzel,
B. (eds.) AGI-2016. LNCS (LNAI), vol. 9782, pp. 84-94. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41649-6_9

Rosenbloom, P.S., Demski, A., Ustun, V.: The sigma cognitive architecture and
system: towards functionally elegant grand unification. J. Artif. Gen. Intell. 7(1), 1-
103 (2016). https://doi.org/10.1515/jagi-2016-0001. https://www.degruyter.com/
downloadpdf/j/jagi.2016.7.issue-1/jagi-2016-0001/jagi-2016-0001.pdf
Rosenbloom, P.S., Demski, A., Ustun, V.: Toward a neural-symbolic sigma: intro-
ducing neural network learning. In: Proceedings of the 15th International Confer-
ence on Cognitive Modeling, ICCM 2017, pp. 73—78 (2017). http://www.doc.ic.ac.
uk/~sgc/teaching/pre2012/v231/lecturel3.html

Winn, J.: Variational message passing and its applications. Ph.D. thesis (2003).
http://johnwinn.org/Publications/thesis/Winn03_thesis.pdf

https://doi.org/10.7551/mitpress/7688.001.0001
https://doi.org/10.7551/mitpress/7688.001.0001
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1007/978-3-319-41649-6_9
https://doi.org/10.1515/jagi-2016-0001
https://www.degruyter.com/downloadpdf/j/jagi.2016.7.issue-1/jagi-2016-0001/jagi-2016-0001.pdf
https://www.degruyter.com/downloadpdf/j/jagi.2016.7.issue-1/jagi-2016-0001/jagi-2016-0001.pdf
http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture13.html
http://www.doc.ic.ac.uk/~sgc/teaching/pre2012/v231/lecture13.html
http://johnwinn.org/Publications/thesis/Winn03_thesis.pdf

	PySigma: Towards Enhanced Grand Unification for the Sigma Cognitive Architecture
	1 Introduction
	2 Message Representation with Continuous Variables
	3 Generalized Factor Graph, Approximate Inference, and Gradient-Based Learning
	4 Deep Generative Modeling in PySigma
	4.1 Preliminaries
	4.2 VAE as a Message-Passing Factor Graph
	4.3 Model Implementation in PySigma

	5 Future Work: Chunking
	6 Conclusion
	References

