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ABSTRACT

Graph-based learning is a rapidly growing sub-field of machine learning with applications in social
networks, citation networks, and bioinformatics. One of the most popular type of models is graph
attention networks. These models were introduced to allow a node to aggregate information from the
features of neighbor nodes in a non-uniform way in contrast to simple graph convolution which does
not distinguish the neighbors of a node. In this paper, we study theoretically this expected behaviour
of graph attention networks. We prove multiple results on the performance of the graph attention
mechanism for the problem of node classification for a contextual stochastic block model. Here
the features of the nodes are obtained from a mixture of Gaussians and the edges from a stochastic
block model where the features and the edges are coupled in a natural way. First, we show that in
an “easy” regime, where the distance between the means of the Gaussians is large enough, graph
attention is able to distinguish inter-class from intra-class edges, and thus it maintains the weights of
important edges and significantly reduces the weights of unimportant edges. As a corollary, we show
that this implies perfect node classification. However, a classical argument shows that in the “easy”
regime, the graph is not needed at all to classify the data with high probability. In the “hard” regime,
we show that every attention mechanism fails to distinguish intra-class from inter-class edges. We
evaluate our theoretical results on synthetic and real-world data.

1 INTRODUCTION

Graph learning has received a lot of attention recently due to breakthrough learning models (Gori et al., 2005; Scarselli
et al., 2009; Bruna et al., 2014; Duvenaud et al., 2015; Henaff et al., 2015; Atwood & Towsley, 2016; Defferrard et al.,
2016; Hamilton et al., 2017; Kipf & Welling, 2017) that are able to exploit multi-modal data which consist of nodes and
their edges as well as the features of the nodes. One of the most important problems in graph learning is the problem
of classification, where the goal is to classify the nodes or edges of a graph given the graph and the features of the
nodes. Two of the most popular mechanisms for classification and graph learning in general are the graph convolution
and the graph attention. Graph convolution, usually defined using its spatial version, corresponds to averaging the
features of a node with the features of its neighbors (Kipf & Welling, 2017).! Graph attention (Velickovic et al., 2018)
mechanisms augment this convolution by appropriately weighting the edges of a graph before spatially convolving the
data. Graph attention is able to do this by using information from the given features for each node. Despite its wide
adoption by practitioners (Fey & Lenssen, 2019; Wang et al., 2019; Hu et al., 2020) and its large academic impact as
well, the number of works that rigorously study its effectiveness is quite limited.

One of the motivations for using a graph attention mechanism as opposed to a simple convolution is the expectation
that the attention mechanism is able to distinguish inter-class edges from intra-class edges, and consequently weights
inter-class edges and intra-class edges differently before performing the convolution step. This ability essentially
maintains the weights of important edges and significantly reduces the weights of unimportant edges, and thus it
allows graph convolution to aggregate features from a subset of neighbor nodes that would help node classificaiton
tasks. In this work we explore the regimes in which this heuristic picture holds in simple node classification tasks,
namely classifying the nodes in a contextual stochastic block model (CSBM) (Binkiewicz et al., 2017; Deshpande
et al., 2018). The CSBM is a coupling of the stochastic block model (SBM) with a Gaussian mixture model, where
the features of the nodes within a class are drawn from the same component of the mixture model. For a more precise
definition, see Section 2. We focus on the case of two classes where the answer to the above question is sufficiently

' Although the model in Kipf & Welling (2017) is related to spectral convolutions, it is mainly a spatial convolution since messages
are propagated along graph edges.



precise to understand the performance of graph attention and build useful intuition about it. We briefly and informally
summarize our contributions as follows:

1. In the “easy regime”, i.e., when the distance between the means is much larger than the standard deviation,
we show that there exists a choice of attention architecture that distinguishes inter-class edges from intra-
class edges with high probability. In particular, we show that the attention coefficients for one class of edges
are much higher than the other class of edges. Furthermore, we show that these attention coefficients lead
to perfect node classification result. However, in the same regime, we show that the graph is not needed to
perfectly classify the data.

2. In the “hard regime”, i.e., when the distance between the means is small compared to the standard deviation,
we show that any attention architecture is unable to distinguish inter-class from intra-class edges with high
probability. Moreover, we show that using the original GAT architecture (Velickovic et al., 2018), with high
probability, most of the attention coefficients are going to have uniform weights, similar to those of uniform
graph convolution (Kipf & Welling, 2017).

3. We provide an extensive set of experiments both on synthetic data, and on three popular real-world datasets
that validates our theoretical results.

1.1 PREVIOUS WORK

Recently the concept of attention for neural networks (Bahdanau et al., 2015; Vaswani et al., 2017) was transferred
to graph neural networks (Li et al., 2016; Bresson & Laurent, 2018; Velickovic et al., 2018; Lee et al., 2019; Puny
et al., 2020). A few papers have attempted to understand the mechanism in Velickovic et al. (2018). One work
relevant to ours is Brody et al. (2022). In this paper the authors show that a node may fail to assign large edge
weight to its most important neighbors due to a global ranking of nodes that is generated by the attention mechanism
in Velickovic et al. (2018). Another related work is Knyazev et al. (2019), which presents an empirical study of the
ability of graph attention to generalize on larger, complex, and noisy graphs. In addition, in Hou et al. (2019) the
authors propose a different metric to generate the attention coefficients and show empirically that it has an advantage
over the original GAT architecture. Other related work to ours, which does not focus on graph attention, comes from
the field of statistical learning on random data models. In particular, random graphs and the stochastic block model
have been traditionally used in clustering and community detection (Abbe, 2018; Athreya et al., 2018; Moore, 2017).
Moreover, the works by Binkiewicz et al. (2017); Deshpande et al. (2018), which also rely on CSBM are focused on
the fundamental limits of unsupervised learning. Of particular relevance is the work by Baranwal et al. (2021), which
studies the performance of graph convolution on CSBM as a semi-supervised learning problem. Finally, there are a
few related theoretical works on understanding the performance and the universality of graph neural networks (Chen
et al., 2019; Chien et al., 2021; Zhu et al., 2020; Xu et al., 2019; Garg et al., 2020; Loukas, 2020a;b). We provide
theoretical results that characterize the precise performance of graph attention compared to graph convolution and no
convolution for CSBM with the goal of answering the particular questions that we imposed above.

2 PRELIMINARIES

In this section, we describe the Contextual Stochastic Block Model (CSBM) (Deshpande et al., 2018) which serves as
our data model, and the Graph Attention mechanism (Velickovic et al., 2018).

Letd,n € N, and €1,...,¢, ~ Ber(1/2)?, and define two classes as Cy, = {j € [n] | ¢; = k} for k € {0,1}.
For each index i € [n], we set the feature vector X; € R? as X; ~ N((2¢; — D), I+ 0%)? where p € R%, 5 € R
and I € {0,1}%%9 is the identity matrix. For a given pair p,q € [0, 1] we consider the stochastic adjacency matrix
A € {0,1}™*™ defined as follows. For ¢, j € [n] in the same class (i.e., intra-class edge or simply intra-edge), we set
a;j ~ Ber(p), and if ¢, j are in different classes (i.e., inter-class edge or simply inter-edge), we set a;; ~ Ber(q). We
denote by (X, A) ~ CSBM(n, p, q, 1, 02) a sample obtained according to the above random process. An advantage
of CSBM is that it allows us to control the noise by controlling the parameters of the distributions of the model. In
particular, CSBM allows us to control the distance of the means and the variance of the Gaussians, which are important
for controlling separability of the Gaussians. For example, fixing the variance, then the closer the means are the more

*Ber(-) denotes the Bernoulli distribution.
The means of the mixture of Gaussians are 4. Our results can be easily generalized to general means. The current setting makes
our analysis simpler without loss of generality.



difficult the separation of the Gaussians becomes. Moreover, CSBM allows us to control the noise in the graph, namely
the difference between intra-class and inter-class edge probabilities.

A single-head graph attention applies some weight function on the edges based on their node features (or a mapping
thereof). Given two representations h;, h; € R¥ for twonodes i, j € [n], let U (h;, h;) o a(Wh;, Wh;) where « :
RF x RF — Rand W € RF*F" is a learnable matrix. We refer to the mapping ¥ as the attention model/mechanism
with attention coefficients:

i def exp(¥(h;, hj))
Y Y e, exp(¥(hy, hy))’

where N is the set of neighbors of node ¢ including node ¢ itself. Letting f be some nonlinear element-wise function,
the graph attention convolution output is h; = f(h}), where h. = > jein) Aijri;Why Vi € [n]. A multi-head
graph attention (Velickovic et al., 2018) uses K € N weight matrices W1 ... WK ¢ RFXF " and averages their

individual (single-head) outputs. We consider the most simplified case of a single graph attention layer (i.e., F’ = d
and F' = 1) where « is realized by an MLP using LeakyRelu activation.*

(D

The CSBM model induces dataset features X which are correlated through the graph G = ([n], E), represented by an
adjacency matrix A. A natural requirement of an attention architecture is to maintain important edges in the graph and
ignore unimportant edges. For example, important edges could be the set of intra-class edges and unimportant edges
could be the set of inter-class edges. In this case, if graph attention maintains all intra-class edges and ignores all inter-
class edges, then a node from a class will be connected only to nodes from its own class. More specifically, a node v

will be connected to neighbor nodes whose associated node features come from the same distribution as node features

of v. Given two sets A and B, we denote A x B % {(i,j):i € A,j € B} and A? LA x A To study the expected

behavior that graph attention should main important edges and drop unimportant edges, we use the following definition
of separability of edges. Given an attention model ¥, we say that the model separates the edges, if the outputs
U (X;, X;) satisfy sign(¥(X;, X)) = sign(p — q) when (4, j) is an intra-class edge, i.e. (i,j) € (C; UCZ) N E, and
sign(¥(X;, X)) = sign(g — p) when (4, ) is an inter-class edge, i.e. (i,j) € E\ (C} UCZ).}

3 RESULTS

We consider two parameter regimes: the first (“easy regime”) is where |||z = w(o+/logn), and the second (“hard
regime”) is where ||u|l2 = Ko for some 0 < K < O(y/logn). All of our results rely on a mild assumption which
lower bounds the sparsity of the graph generated by the CSBM model. This assumption requires the expected degree
of a node in the graph to be larger than log® n which covers reasonably sparse graphs. Note that we do not assume
anything about the relative magnitude between p and ¢. All results hold regardless of p > q or p < q.

Assumption 1. p, ¢ = Q(log? n/n).

3.1 “EASY REGIME”

In this regime (||p]|2 = w(oy/Iogn)) we show that there exists a choice of attention architecture ¥, which is able to
separate the edges with high probability. The result is constructive - we show that a two-layer MLP attention is able to
correctly classify all edges with high probability. In Section 4, we provide extensive experiments using the two-layer
MLP attention architecture and empirically validate the theoretical claims.

Theorem 1. Suppose that ||p||2 = w(ov/logn). Then, there exists a choice of attention architecture VU such that with
probability at least 1 — 0,,(1) over the data (X, A) ~ CSBM(n,p,q, p,c?) it holds that V separates intra-class
edges from inter-class edges.

Proof sketch: To prove Theorem 1 we first transform the pair (X;, X;) to a new pair (w’X;, w?X;), where w =
sign(p — q)pt/|| ]2 is a unit vector that maximizes the total pairwise distances among the four means given below.

*LeakyRelu(z) = x if z > 0 and Bz for some constant 5 € [0, 1) otherwise.

>If p = g, we simply require that sign(¥(X;, X)) = 1 for one class of edges and sign(¥(X;,X;)) = —1 for the other class of
edges. We define separability in this way because, as we will see later, it leads to desirable attention coefficients which in turn lead
to perfect node classification result.



When we consider the pair space (wTXi, d)TXj), we can think of each pair as a two-dimensional Gaussian vector,
whose means one of the following: (w” p, w” ), (—w” pu, 0" ), (W p, —w" w), or (—w™ p, —w" p). We need
to classify the data corresponding to means (w” p, w” ) and (— @™ p, —wT p) as sign(p — q) (i.e, intra-class edges)
and classify the data corresponding to the other means as sign(q — p) (i.e., inter-edges). This problem is known in
the literature as the “XOR problem” (Minsky & Papert, 1969). To achieve this we consider an architecture ¥ that
separates the first and third quadrants (intra-edges) of the 2D space from the second and forth quadrants (inter-edges).
The particular function ¥ has been chosen such that it is able to classify the means of the XOR problem correctly.
At the same time, our assumption ||ut||2 = w(o+/logn) guarantees that the distance between the means of the XOR
problem is much larger than the standard deviation of the Gaussians, thus, there is not much overlap between the
distributions. This property guarantees that with high probability the sign of the expected ¥(X;,X,) is the same
as the sign of ¥ applied to the means of (X;,X;). Since the means are classified correctly, we use concentration
arguments to prove that with high probability over (X, A) ~ CSBM(n, p, q, i, 02), ¥ separates the edges.

We present two corollaries of the above theorem. The first corollary characterizes the attention coefficients induced
by using the architecture W from Theorem 1. In this regime, separability of the edges implies high concentration for
the attention coefficients, v;;. This shows the desired behavior of the attention mechanism: when p > ¢, it maintains
intra-class edges and essentially ignores all inter-class edges; when p < ¢, it maintains inter-class edges and essentially
ignores all intra-class edges.

Corollary 2. Suppose that ||pt||2 = w(o+/logn). Then there exists a choice of attention architecture ¥ such that with
probability at least 1 — 0,,(1) over the data (X, A) ~ CSBM(n, p, q, i, 02) it holds that

L Ifp > g, then vi; = ;2 (1% 0,

1
2. Ifp < q, then v;; = 1

)) if (4, §) is an intra-class edge and ~y;; = o(m) otherwise;
(1 £ 0,(1)) if (4, 7) is an inter-class edge and v;; = o

1 ]
T ) otherwise.

2
ng
Proof sketch: Corollary 2 is proved using the fact that ¥(X;, X;) concentrates around its expected value, which is
close to, up to a small error, the function ¥ applied to the means of the data (X;, X;). Given concentration of ¥ and
concentration of node degrees that is guaranteed by Assumption 1, we can show concentration of +y;; around the values
reported in the corollary. If p > ¢, then for ¢, j in the same class, we have that ¥'(X;, X ;) concentrates around large
positive value, which means that exp(¥(X;, X;) is exponentially large. On the other hand, by the definition of the
attention coefficients (Equation 1), the denominator of v;; is dominated by terms (7, k) where k is in the same class as
i (this is since for pairs ¢, k from different class exp(¥(X;, X)) is exponentially small when p > ¢), and since each
node i is connected to ©(np) many intra-class nodes and ¥ (X;, X},) concentrates around the same value for each
intra-class pair, we get the above value of 7;;. A similar reasoning applies to inter-class pairs and yields the vanishing
value of +;; for inter-class edges when p > ¢. The argument for p < ¢ follows in same way.

Note that, when p > ¢, the attention coefficients which correspond to intra-class edges are much larger than the
attention coefficients of inter-class edges. This essentially means that the model ignores inter-class edges. Similarly,
when p < g, the model ignores intra-class edges. By using Corollary 2 on vy;; we obtain a node classification result as
well. In the following, we say that the model separates the nodes if b}, > 0 when i € C and b, < 0 when i € Cj.

Corollary 3. Suppose that ||p||2 = w(o+/logn). Then, there exists a choice of attention architecture V such that with
probability at least 1 — 0,,(1) over the data (X, A) ~ CSBM(n,p,q, u,0?), the model separates the nodes for any
P, q satisfying Assumption 1.

The above result holds for any value of p, ¢ satisfying Assumption 1. That is, even when the graph structure is noisy
(i.e., have many inter-class edges) it is possible to obtain perfect node classification.

Proof sketch: The proof of this corollary is a consequence of Corollary 2. We discuss the case p > ¢ as the case
p < q follows similarly. Intuitively, Corollary 2 implies that the means of the convolved data should concentrate
around the same means as the original data. On the other hand, by the choice of p, g we expect that each node will
be connected to ©(np) many intra-class nodes (and essentially no inter-class nodes, due to the small value of the
attention coefficients for inter-class edges in Corollary 2, which implies the independence in ¢) so that the averaging
operation reduces the variance significantly to ~ o2 /np. However, since the distance between the new means is around
2||p]|2 = w(o/Togn) and the variance is much smaller than o2, we can expect to achieve perfect node separability.

Nonetheless, in this regime, we prove that a simple linear classifier, which does not use the graph at all, achieves perfect
node separability with high probability. In particular, by a classical argument (Anderson, 2003), the Bayes optimal
classifier for the node features (without the graph) is realized by a simple linear classifier, which achieves perfect node



separability with high probability.® This implies that in the above regime, using the graph model is unnecessary, as it
does not provide additional power compared to a simple linear classifier for the node classification task.

Proposition 4. Suppose ||p]2 = Q(ov/Togn), and let X be sampled from the Gaussian mixture model. Then, the
Bayes optimal classifier is realized by a linear classifier which achieves perfect node separability with probability at
least 1 — 0, (1) over X.

3.2 “HARD REGIME”

In this regime (||p||2 = Ko for K < O(+/logn)), we show that any attention architecture ¥ will fail to separate
the edges. The next theorem quantifies the misclassification of edge pairs that ¥ exhibits. Below we define ®.(-) =
1 — ®(-), where ®(+) denotes standard Gaussian CDF.

Theorem 5. Suppose ||p||a = Ko for some K > 0 and let U be any attention mechanism. Then,
1. For any ¢’ > 0, with probability at least 1 — O(n’cl), U fails to correctly classify at least a 2 - ®.(K)?
fraction of the inter-class edges.
2. Forany k > 1ifq > wlog*nthon with probability at least 1 — O (%) U misclassify at least

nd.(K)2’ n i ®e(K)?logn

one inter-class edge.

Part 1 of the theorem implies that if || |2 is linear in the standard deviation o, then with overwhelming probability the
attention mechanism fails to distinguish a constant fraction of inter-edge pairs from the intra-edge pairs. Furthermore,
part 2 of the theorem characterizes a regime for the inter-edge probability ¢ where the attention mechanism fails to
distinguish at least one inter-edge node pair, by providing a lower bound on ¢ in terms of the scale at which the
distance between the means grows compared to the standard deviation ¢. This aligns with the intuition that as we
increase the distance between the means, it gets easier for the attention mechanism to correctly distinguish the node
pairs. However, if ¢ is also increased in the right proportion (in other words, if the noise in the graph is increased), then
the attention mechanism will still fail to correctly distinguish at least one of the inter-edge node pairs. For instance,

setting K = /2loglogn and k = 4, we get that if ¢ > (@), then with probability at least 1/2, ¥
misclassifies at least one inter-edge.

Proof sketch: Consider the pair of node features (X;,X;). Recall that the goal of an attention mechanism is to
distinguish the pairs where ¢ and j are in the same class (intra-edges) from the pairs where ¢ and j are in different classes
(inter-edges). To show that every attention mechanism fails at this task, first, we use the underlying distribution of the
data to characterize the Bayes optimal classifier for this problem and compute an upper bound on the probability with
which the optimal classifier correctly classifies a single inter-edge pair. Then the proof of part 1 of the theorem follows
from a concentration argument for the fraction of inter-edge pairs that are misclassified by the optimal classifier. For
part 2, we use a similar concentration argument to choose a suitable threshold for ¢ that forces the attention mechanism
to fail on at least one inter-edge pair.

As a motivating example, we focus our attention on one of the most popular attention architecture (Velickovic et al.,
2018), where « is a single layer neural network parametrized by (w, a,b) € R? x R? x R with LeakyRelu as
activation. Namely, the attention coefficients are defined by

T
7 |w X;
ot exp <LeakyRe1u <a {’wTXJ} + b>)
Yij = i .
Ziew,oxp (Lot (o[22 ] +0))

We show that with a very high probability most of the attention coefficients +;; in Equation 2 are going to be ©(1/|N;|),
which implies that the model fails to distinguish intra- and inter-edges.

2)

Theorem 6 (informal). Assume that ||p|ls < Ko and o < K’ for some constants K and K'. Moreover, assume
that the parameters (w, a,b) are bounded by a constant. Then, with probability at least 1 — 0, (1) over the data
(X,A) ~ CSBM(n,p,q, p,0?), at least 90% of ~y;; are © (1/|N;|).

A Bayes optimal classifier makes the most probable prediction for a data point. Formally, for our scenario, such a classifier is
given by h*(z) = argmax.c 1} Prly = c | z].



Proof sketch: Theorem 6 is due to the inability of the attention mechanism to correctly classify intra- and inter-class
edges as stated in Theorem 5. This means that the numerator in Equation 2 is not indicative of the class memberships
of nodes ¢, j but rather acts like Gaussian noise. Combined with the observation that the denominator in Equation 2,
which we will denote by §;, is the same for all ;; where [ € N;, this implies that most of the attention coefficients are
roughly the same. Using concentration arguments about {w? X}, yields v;; = ©(1/4;) and 6; = O(|N;|).

Compared to the “easy regime”, it is difficult to obtain a separation result for the nodes. In the “easy regime”, the
distance between the means was larger than the standard deviation, which made the “signal” (the expectation of the
convolved data) dominate the “noise” (i.e., the variance of the convolved data). In the “hard regime” the “noise”
dominates the “signal”. Thus, we conjecture the following.

Conjecture 7. Suppose that ||plls < Ko and 0 < K’ for some constants K and K'. Then, any single layer graph

attention model fails to perfectly classify the nodes with high probability when |p — q| = O (0’\ /(logn)/ A), where
A is the expected degree.

The above conjecture means implies that in the “hard regime” the performance of the graph attention model depends
on ¢ as opposed to the “easy regime”, where in Theorem 3 we show that it doesn’t. This property is verified by our

synthetic experiments in Figures 1c¢ and 1f. The o+/(logn)/A bound comes from our conjecture that the expected

maximum of the graph convolved data (with attention) over the nodes is at least co/(logn)/A for some constant
c>0.

4 EXPERIMENTS

In this section, we demonstrate empirically our results in Section 3 on synthetic and real data. The parameters of the
models that we experiment with are set by using an ansatz based on our theorems. The particular details are given
in Appendix B.1. We use the standard split which comes from PyTorch Geometric (Fey & Lenssen, 2019). Also,
in Appendix B.3.2, we provide experiments on real data where PyTorch Geometric is used to train the models. The
results are similar to the main paper, we provide discussion when there are discrepancies. With two exemptions in
Figures le and 2b, in all our experiments we use MLP-GAT, where the attention mechanism W is set to be a two-layer
network using LeakyRelu activation function. The exemptions are made to demonstrate Theorem 6. We demonstrate
more results for the original GAT (Velickovic et al., 2018) mechanism with two heads in Appendix B.2.

4.1 SYNTHETIC DATA

We use the CSBM to generate the data. We present two sets of experiments. In the first set we fix the distance between
the means and vary ¢, and in the second set, we fix ¢ and vary the distance. We set n. = 1000, d = n/log*(n), p = 0.5
and o = 0.1. Results are averaged over 10 trials.

4.1.1 FIXING THE DISTANCE BETWEEN THE MEANS AND VARYING ¢

We consider the two regimes separately, where for the “easy regime” we fix the mean p to be a vector where each
coordinate is equal to 100+/logn?/ 2+/d. This guarantees that the distance between the means is 100y/log n2. In the
“hard regime” we fix the mean p to a vector where each coordinate is equal to ¢ /v/d, and this guarantees that the
distance is 0. We vary ¢ from log?(n)/n to p.

In Figure 1 we illustrate Theorem 1 and Corollaries 2, 3 for the “easy regime”, and Theorems 5, 6 for the hard regime.
In particular, in Figure la we show Theorem 1, MLP-GAT is able to classify intra and inter edges perfectly. In
Figure 1b we show that in the “easy regime”, the ~y that correspond to intra-edges concentrate around 2 /np for MLP-
GAT, while the ~ for the inter-edges concentrate to tiny values, as proved in Corollary 2. In Figure 1c we observe
that the performance of MLP-GAT for node classification is independent of ¢ in the “easy regime” as is proved in
Corollary 3. However, in this plot, we observe that not using the graph also achieves perfect node classification, a result
which is proved in Proposition 4. In the same plot, we also show the performance of uniform graph convolution (Kipf
& Welling, 2017), where its performance depends on ¢ (see Baranwal et al. (2021)). In Figure 1d we show Theorem 5,
MLP-GAT misclassifies a constant fraction of the intra and inter edges as proved in Theorem 5. In Figure le we show
Theorem 6, v in the “hard regime” concentrate around uniform (GCN) coefficients for both MLP-GAT and GAT.



In Figure 1f we illustrate that node classification accuracy is a function of ¢ for MLP-GAT. This is conjectured in
Conjecture 7.
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Figure 1: Demonstration of Theorem 1 and Corollaries 2, 3 for the “easy regime”, and Theorems 5, 6 for the hard
regime. The first row of figures demonstrates the former results and the second row of figures demonstrates the latter
results. The shaded areas show standard deviation.

4.1.2 FIXING ¢ AND VARYING THE DISTANCE BETWEEN THE MEANS

We consider the case where ¢ = 0.1. In Appendix B.2.2, we also demonstrate the case where ¢ = 0.4. The results are
similar in this case too. In Figure 2 we show how the attention coefficients of MLP-GAT and GAT, the node and edge
classification depend on the distance between the means. We also add a vertical line at o to approximately separate the
easy (left of o) and hard (right of o) regimes. Figure 2a illustrates Theorems 1 and 5 in the “hard” and “easy” regimes,
respectively. In particular, we observe that in the “hard regime” MLP-GAT fails to distinguish intra from inter edges,
while in the “easy regime” it is able to do that perfectly for a large enough distance between the means.

In Figure 2b we observe that in the “hard regime” v concentrate around the uniform (GCN) coefficients, while in the
“easy regime” MLP-GAT is able to maintain the v for the intra edges, while it sets the y to tiny values for the inter
edges. In Figure 2c. we observe that in the “hard regime” v of GAT concentrate around the uniform coefficients
(proved in Theorem 6), while in the “easy regime” although the v concentrate, GAT is not able to distinguish intra
from inter edges. This makes sense since the separation of edges can’t be done by simple linear classifiers that GAT is
using, see the discussion below Theorem 6. Finally, in Figure 2d we show node classification results for MLP-GAT.
In the “easy regime” we observe perfect classification as proved in Corollary 3. However, as the distance between the
means decreases, we observe that MLP-GAT starts to misclassify nodes.

4.2 REAL DATA

In this experiment, we illustrate the attention coefficients, node and edge classification for MLP-GAT as a function
of the distance between the means on real data. We use the popular real data Cora, PubMed, and CiteSeer. These
data are publicly available and can be downloaded from Fey & Lenssen (2019). The datasets come with multiple
classes, however, for each of our experiments we do a one-v.s.-all classification for a single class. This is a semi-
supervised problem, only a fraction of the training nodes have labels. The rest of the nodes are used for measuring
prediction accuracy. To control the distance between the means of problem we use the true labels to determine the
class of each node and then we compute the empirical mean for each class. We subtract the empirical means from their
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Figure 2: Attention coefficients of MLP-GAT and GAT, node and edge classification as a function of the distance
between the means. The shaded areas in our plots show standard deviation.

corresponding classes and we also add means p and — g to each class, respectively. This modification can be thought
of as translating the mean of the distribution of the data for each class.

The results of this experiment are shown in Figure 3. In this figure we show results only for class 0 of each dataset,
for results on other classes see Appendix B.3. The results are similar. We note that in the real data we also observe
similar behavior of MLP-GAT in the easy and hard regimes as for the synthetic data. In particular, for all datasets as
the distance of means increases, MLP-GAT is able to accurately classify the intra and inter edges, see Figures 3a, 3d
and 3g. Moreover, as the distance between the means increases, the average intra v becomes much larger than the
average inter vy, see Figures 3b, 3e and 3h, and the model is able to classify the nodes accurately, see Figures 3c, 3f
and 3i. On the contrary, in the same figures, we observe that as the distance of the means decreases then MLP-GAT is
not able to separate intra from inter edges, the averaged ~ are very close to uniform coefficients and the model can’t
classify the nodes accurately.

Note that Figure 3 does not show the standard deviation for the attention coefficients v. We show the standard deviation
of v in Figure 4. We observe that the standard deviation is higher than what we observed in the synthetic data. In
particular, it can be more than half of the averaged ~. This is to be expected since for the real data the degrees of the
nodes do not concentrate as well. In Figure 4 we show that the standard deviation of the uniform coefficients 1/|V;|
is also high and that the standard deviation of -y is similar to that of 1/|V;| for intra-class -, while the deviation for
inter-class y is large for a small distance between the means, but it gets much smaller as the distance increases.

5 CONCLUSION AND FUTURE WORK

We show that graph attention improves robustness to noise in graph structure in an “easy”’ regime, where the graph is
not needed at all. We also show that graph attention may not be very useful in a “hard” regime where the node features
are noisy. Our work shows that single-layer graph attention has limited power at distinguishing intra- from inter-class
edges. Given the empirical successes of graph attention and its many variants, a promising future work is to study the
power of multi-layer graph attention mechanisms for distinguishing intra- and inter-class edges.
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A PROOFS

A.1 GENERAL RESULTS

We start by stating some standard definitions and probability tools which will be used throughout. The first definition
is regarding sub-Gaussian random variables. These random variables are characterized by their tail decay.

Definition A.1 (Vershynin (2018)). We say that a random variable z follows a sub-Gaussian distribution if there are
positive constants C, v such that for every t > 0

Pr[|z — E[2]| > t] < Cexp(—vt?).
Equivalently, z is sub-Gaussian if Elexp(a(z — E[2])?)] < 2 for some a > 0. This condition is known as 1)o-
condition.

The following lemma discuss the behavior of the maxima of sub-Gaussian random variables.

Lemma A.2 (Rigollet & Hiitter (2015)). Let x1, ..., x, be sub-Gaussian random variables with the same mean and
sub-Gaussian parameter &2. Then,

E [mz{a}]( (x; — E[m,])} < o+/2logn.
1€(n
Moreover, for any t > 0

t2
Pr {?61?;]( (z; — E[z;]) > t} < 2nexp (— 2&2> .
Next, we define Lipschitz functions and state the LeakyRelu is Lipschitz.
Definition A.3. Let (X, dy) and (Y, dy) be metric spaces. A function f : X — Y is called L-Lipschitz if there is
L € R such that for every u,v € X
dy(f(u)v f(’U)) <L dX(ua 1)).

Fact A.4. LeakyRelu is L-Lipschitz with L < 1.

Next, for completeness, we state two forms (additive and multiplicative) of Chernoff bounds used in this work.

Lemma A.5 (Alon & Spencer (2004); Handel (2014); Vershynin (2018)). Let x1,. .., Xn be identical independent
random variables ranging in [0, 1], and let p = E[x1]. Then for any € € (0, 1), it holds that

1 e2n

— E Xi—Dp|>€| <2exp|——1,

n - 4
i€[n]

and for any v € (0, 2], it holds that

1 2

fE Xi —P| > P <2eXp<—7pn)~
n 4
i€[n] ]

In order to prove Theorem 1 we will need the following concentration result on LeakyRelu whose constant denoted
by 3. Fix (w,a) € R% x R? and for 4, j € [n] let

N((a1 + ax)w” p, o®||a]?|lw]®)  ifi,j e Cy

N((a; — ax)w™pu, o?|la|?|w|?) ifiecCy, j€C

N(—(a; — a2)wTp, o?|al?|w|?) ifieCoy, jeC'

N(—(aj + az)wT u, o?|al]?|w|?) ifi,j € Co

Zij = aleXi + GQWTXj ~

Lemma A.6. There exists an absolute constant C > 0 such that with probability at least 1 — 0,,(1), we have
LeakyRelu(z;;) = LeakyRelu ((a; + as)w” p) + Colla|/|wl|v/2logn, ifi,je Ch,
LeakyRelu(z;;) = LeakyRelu ((a; — as)w” p) + Colla|/|w|v/2logn, ifie Cy,j e Co,
LeakyRelu(z;;) = LeakyRelu (—(a; — a2)w” p) £ Colla||lw|\/2logn, ifie Co,je Ch,
LeakyRelu(z;;) = LeakyRelu (—(a; + a2)w” p) & Colla||lw|\/2logn, ifi,j e Co.

12



Proof: Since for every i,j € [n]? the random variable z;; follows a normal distribution, by definition it is sub-

Gaussian with parameter ¢ - /Var|z;;| for ¢ > 1 large enough constant (see definition A.1). By Fact A.4, LeakyRelu
is L-Lipschitz function with L < 1
LeakyRel — E|[LeakyRel 2
B [exp (( eakyRelu(z) Kz[ eakyRelu(z)]) )]

z

|
!

K2
o (120

Setting K = ¢ - y/Var|z| - L, implies that (3) is bounded above by 2, which means that Leaky-Relu is sub-Gaussian
with parameter ¢ - \/ Var[z] - L (see Vershynin (2018)). Therefore for any ¢ > 0,

[exp (E, [LeakyRelu(z) — LeakyRelu(2')]? )}

I
w

2
Pzr [[LeakyRelu(z) — E [LeakyRelu(z)] | > t] < 2exp <02L2tVar[z]> . 4)

Setting t = 10cL+/Var[z] log n, and applying a union bound over all 7, j € [n]?, we get that with probability at least
1 — 25, the complement of (4) holds for all i, j € [n]?.
Next, we estimate E[LeakyRelu(z)]. For any ¢ > 0 we have
E[LeakyRelu(z)] = E[LeakyRelu(2) - 1{,—g[2)|<}] + E[LeakyRelu(z) - 11 ._g[2]|>¢1]-

We consider both terms separately. First, note

E[LeakyRelu(z) - 1{,_g(z) <¢}] = E[LeakyRelu(z) | |z — E[z]| < '] - Pr[|z — E[z]| <t'].
By writing z = E[z] 4+ 1/ Var|z] - g, for g ~ N (0, 1) and using Lipschitz continuity of the Leaky-Relu

E [LeakyRelu(z) | |z — E[z]| < ] =E [LeakyRelu(E[z] ++/Var[z] - g) | v/ Var[z]|g| < t'}

€ [LeakyRelu(E[z]) — Lt', LeakyRelu(E[2]) + Lt’}. )

Hence by using sub-Gaussian concentration,

/2

BlLeakyRelu(2) - 1(1x-scv] > (1 - 2e ) ) (Lentyetu(els] - ), o

E[LeakyRelu(z) - 1{,_g[z)|<¢}] < LeakyRelu(E[z]) + Lt'.

For the second summand, we apply Cauchy-Schwartz inequality and Lipshitzness of LeakyRelu

|E [LeakyRelu(z) - 1{|._g[)>¢}]| < VE[|LeakyRelu(z)[?] - Pr[|z — E[z]| > /]

§¢%WM%mCﬂ£M>

< \/QLQ(E[zP + Var(z]) exp (-zvz[z])

< LE[z] \/2 exp (2\/Z[z]> + L\/2 Var|z] exp (2\;&3‘[,2]) )

Setting t' = 104/2 Var[z] log n, and combining Equations (6) and (7) results in

LV2E[z] L\/2Var[z] ®)

E[LeakyRelu(z)] < LeakyRelu(E[z]) + 10L+/2 Var[z]logn + e + 50 )

E[LeakyRelu(z)] > <1 - nim) (LeakyRelu(E[z]) — 10L+/2 Var|z] log n) - Lﬁ(E[z]nJgo Varlz))
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Combining Equations (5), (8), (9) using the choice of ¢, we have that with a probability of at least 1 — O(1/n%®) for
alli,j € [n]

Lv2 (Blzy] + /Var[z;])
LeakyRelu(z;;) < LeakyRelu(E[z;;]) + 20L(c + 1)4/2 Var[z;;]logn + = ,  (10)

nO

2
LeakyRelu(z;;) > (1 - 100) <LeakyRelu(E[zij]) —20(c+ 1)L4/2 Var|z;;| log n>
n

L\/§Ezij+ Var|z;;
LAl V). o

‘We henceforth condition on this event. Recall that we have that

LeakyRelu(E[z;;]) = LeakyRelu((a; + a2)w” u) fori,j e Cy (12)
LeakyRelu(E[z;;]) = LeakyRelu((a; — a2)w’u)  forie Oy, j € Cy (13)
LeakyRelu(E[z;;]) = LeakyRelu(—(a; — a2)w” p) fori e Cy, j € Cy (14)
LeakyRelu(E[z;;]) = LeakyRelu(—(a; + a2)w” p) fori,j € Cy. (15)

Using Equations (10)-(15) we have that for ¢, j € C
LeakyRelu(z;;) = LeakyRelu ((a; + a2)w” p) £ 20L(c + 1)o]|al||w|/2logn.
The results for all other cases of ¢, j follow similarly. |

The following statement considers the optimal Bayes classifier for data generated by the Gaussian mixture model.

Lemma A.7 (See section 6.4 in Anderson (2003)). Let (X, A) ~ CSBM(n, p,q, i, 02). Then, the optimal Bayes
classifier for X is realized by the linear classifier.

[0 ifzeTp <0
h(m){1 ifaTp >0

Proof: For a given data point « and label y € {0, 1}, the Bayes classifier is given by

h(x) =argmaxPry =c| z].

ce{0,1}
Note that since the class membership variables €1, ..., €, ~ Ber(1/2) are independent, we have Pr[y = 0] = 3 and
Prly = 1] = 5. Therefore, by Bayes rule
Pr[y:C]'fw\y(m |y:C) 1
Prly =clz| = T feply=1-0"
Prly = 0]fzpy—o(z [y = 0) + Prly = U fapr(z [y =1) 14 Lepll=l-0

Assume that ¢ € Cj, we have that h(x) = 0 if and only if Pr[y = 0 | ] > 1/2. Therefore, if we consider class

¢ = 0 we need that J=(®V=1 < 1. That is,
fw\y(w‘yfo)

fole lv=1) _eposhle b)) (1 : 2
L = o =exp| ——=—= Hx_HH — ||$+IJ’” <1,
Fo(@ [4=0)  exp (—gkslz + ul}) 352 (== pl: d

which implies that 2 g < 0. Similarly, for label ¢ = 1 we get that 7 u > 0. Hence, the Bayes classifier is given by

0 ife’pu<0
h(z) = =
(@) {1 ifxTp >0’

which is a linear classifier. |

The next lemma relates the fraction of misclassifications of the Bayes optimal classifier to the norm || g]|2 (and thus to
the distance between the means).
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Lemma A.8. Assuming independence of the underlying data X, the following holds for the Bayes classifier.

L If||\pll2 = ov/21og n then with a probability of at least 1 — 0,,(1), the Bayes classifier separates the data.
2. If||pl2 = Ko for w(l) < K < o/2logn, then for any k > 1 with a probability of at least 1 — O (m)

the number of misclassified nodes is ®'n (1 + 4/ W), where & %1 — ®(K) and @ denote the CDF

of standard Gaussian.

3. If|p)l2 = Ko for K = O(1), then with a probability of at least 1 — 0,,(1), the number of misclassified nodes
is at least ®'n(1 — 0, (1)) where ' > ( K ) L exp (—%2)

K2+1 ) Von
Proof: Fix i € [n] and write
x; = (2¢, — 1)pu+o0g; where  g; ~ N(0,I).

Assume €; = 0 and consider the Bayes classifier from Lemma A.7. Then, the probability of misclassification is

T
Prlale> o) - e [810 5 W] g (1),
Iz~ o

T
where the last equality follows from the fact that ﬁ ~ N(0,1).

Suppose ||pt||2 > ov/21og n. By using standard tail bounds for normal distribution (Vershynin, 2018),

||u|2> o ( |u||§> n”!

1-® < exp | — < .

( o ) = Tl v2r P\ 20 ) = Varogn

Therefore, the probability that there exists ¢ € Cj which is misclassified is at most ﬁ = o(1). A similar
argument can be applied to the case where ¢ € ('1, and an application of a union bound on the events that there is

i € [n] which is misclassified finishes the proof of this case.

Next, consider the case where ||pt]|2 = Ko forw(1l) < K < 0+/21logn. We have that for class €; = 0 the misclassifi-
cation probability is
Y _p(K).

Therefore, by applying additive Chernoff bound, we have that for any £ > 1

®'n(1+0(1 2
Z 1i misclassified ¢ <(2()) + K(I)/nlog n)] < Wa
1€Cp

Pr

and similarly for €; = 1. Applying a union bound over the two classes finishes the proof of this case.

Finally, consider the case where ||p||2 = Ko for some constant KX > 0. For class ¢; = 0, we have that the misclassi-
fication probability is lower-bounded by

Y 3 (K) > (K2K+1) : \/12?exp (If) = Q(1).

Therefore, by applying the Chernoff bound, we have that with a probability of at least 1 — o(1) we have that

d'n
Pr Z 1 misclassified < 7(1 - 0(1))] = l/pOIY(n)'
1€Co
By a similar argument for ¢; = 1 and a union bound, the result follows. |

The next observation will be useful throughout the paper.
Observation A.9. Fix w # 0 inR% andlet gy, ..., g, be iid drawn from N(0,1;). Then {wTg;} are independent.
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Proof: Note that for each i € [n] the random variable w” g, follows Gaussian distribution with mean 0 and variance
[|w]|2, it suffices to show that the covariance E[w”g; - wTg;] = 0 for all i # j. By definition

Ew’g-w'g]|=E | Y wiwgingie| = > > wiwElginge] =0  Vi#j,

ke[d] £€[d] keld] £€[d]

where the last equality follows from independence between g; and g;. |

A.2 PROOF OF THEOREM | AND ITS IMPLICATIONS

In this subsection, we will show that there exists a choice of attention architecture W which allows the model to
distinguish inter-class edges and intra-class edges. In particular, we construct an explicit instance ¥ and show that it
ignores all “unimportant” edges and keeps only “important” edges. We restate the theorem for convenience.

Theorem. Suppose that ||| = w(o/Togn). Then, there exists a choice of attention architecture U such that with a
probability of at least 1 — 0,,(1) over the data (X, A) ~ CSBM(n,p, q, w, 0?) it holds that ¥ separates intra-class
edges from inter-class edges.

Proof: We consider as an ansatz the following two layer architecture W.

1 1
1% def |—1 —1 def
S=11 -1l
-1 1

C
w = sign(p — q)” T

where R > 0 is a scaling parameter to be determined later. The output of the attention model is defined as

wlX;
U(X;,X;) :=r - LeakyRelu (S . LI}TX]}> .

We will assume that p > ¢ and treat sign(0) = 1. The result for p < ¢ follows similarly. Denote the input of

~T )

LeakyRelu(-) by A;; g, {:gT)%l} € R*, and note that for ¢ € [4], we have (A;;): = St1w? X; + Si 2w’ X
J

Recall that the random variable (A;;); = St,l’lI]TXi + St,Q’II]TXj is distributed as follows:

N((St1+St2)w M, HStH2 2) ifi,j € Cy

N((St,1 — Si2)wT p, [|S¢]%0?) ifi e C1, j €
N(=(Si1 — Si2)wTp, ||Se||?0?) ifieCo, jeCr'
N(— (St’1 + Stﬁz)’lIJTpJ, ||St||202) ifi,j5 € Cy

(Aij)t = St,leXi -+ Styg’lIJTXj ~

We work on each of the four coordinates separately. Assume ¢ = 1. In such a case, we have that

N(2[|pll2; 20%)  ifi,jeCy

(A N(0, 20?) ifieCy, jel
9ETY N(0, 202) ifieCy, jeCy’
N(=2||pll2, 20?) ifi,j€ Cy

Using our results for the LeakyRelu concentration in Lemma A.6 and our assumption on the norm of p, we have that
with a probability of at least 1 — 0,,(1),

2[|pal2(1 £ o(1)) ifi,jeC

+2Co+/logn ifi e C1, j€C
LeakyRelu((A;;);) = ’ .
calyRelu((Aij)1) +2Co/logn ifi e Cy, jeCy

—2B||pll2(L £ 0(1)) ifé,j € Co
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Using a similar argument we get

—28|[pll2(1 £0(1)) ifi,j € Ch
) x2Co+/logn ifi e C1, j€C
LeakyRelu((Ai)2) =4 4905 /ogn ificCy jeC’
2[|pll2(1 £ 0(1)) if i, j € Co
+2Co+/logn ifi,j e Cy
vy ) 221 £ (1)) ifi € C1, j € Cy
LealyRetul(845)s) =3 Zoslulla(1 £ 0(1)) ifie Co, jeCy”
+2Cao+/logn ifi,j € Cy
+2Co+/logn ifi,j € Cy
=28l £ 0(1)) ifie Gy, jeCo
LeakyRel((Aii)1) = § g1 £ o(1))  ifieCo, jEC
+2Cao+/logn ifi,j € Cy

Applying a union bound over the four coordinates of the vector A;;, we get that the above event holds with probability
atleast 1 — o, (1) for all ¢.

Next, we examine the second layer of the architecture. Suppose i, j € C; so that

LeakyRelu(A;;) = [2ulla(1 £ 0(1)) —26]ul2(1 £0(1)) +2Coylogn +200/Iogn) .
Then,

r - LeakyRelu(A ;) = 2R|ull2(1 — B)(1 £ o(1)) £ 4RCo\/logn = 2R ul|a(1 — B)(1 £ o(1).

By applying a similar reasoning to the over pairs

2R[|pl2(1 = B) (A £o(1))  ifi,jeCy
2R[|pll2(1 = B) (1 +0(1))  ifi,j € Co
- LeakyRelu(A;;) = o ) ,
r - LeakyRelu(Ais) = 0 o g1 ila(1 — B)(1 £ 0(1)) ifi € Cy, j € Co
—2R||p|l2(1 = B)(1 L o(1)) ifie Cy, jeCy
and the proof is complete. |

Next, we define a high probability event under which we can obtain some interesting corollaries.
Definition A.10. Event £* is the intersection of the following events over the randomness of A and {€;}; and X,

1. &, is the event that |Cy| = 5 £ O(y/nlogn) and |C1| = § £ O(v/nlogn).

2. & is the event that for each i € [n], D;; = w (1 + %).

3. &3 is the event that for each i € [n],

(1—€i)gteip 10
p+q (1 4 \/logn)'

1—e;)p+te;
Co N Nj| = D;; - U=cupte pJ):Z;_ . (1 + %ﬁgn) and |Cy N N;| = Dy; -

4. £, is the event that for each i € [n], |w'X; — E [TI)TXZ‘] | < 100+/log n.

The next lemma is a straightforward application of Chernoff bound and a union bound (originally proved in Baranwal
et al. (2021))

Lemma A.11. With probability at least 1 — 1/poly(n) event £* holds.

We present two corollaries of Theorem A.2. The first is regarding the values of ;.

Corollary 8. Suppose that ||pt||2 = w(o+/logn). Then there exists a choice of attention architecture ¥ such that with
probability at least 1 — 0,,(1) over the data (X, A) ~ CSBM(n, p, q, u, o) it holds that
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1. Ifp > gq, then ~;; = %(1 + 0, (1)) if (i, ) is an intra-class edge and ~y;; = o( ) otherwise;

2. If p < q, then;; = nlq(l +0,(1)) if (i, 7) is an inter-class edge and ~y;; = o(

1
n(p+q)
1
n(p+q)

) otherwise.

Proof: The proof is straightforward by considering the cases p > g and p < ¢ separately. Using the attention archi-
tecture given in Theorem A.2, the definition of the attention coefficients, the high probability event in Lemma A.11,
and picking R such that 1/R = w(o+/logn) and 1/R = o(]|p||2), we obtain the claimed results. |

Next, we show that the model separates the nodes for any choice of p, g satisfying Assumption 1.

Corollary 9. Suppose that |||z = w(o/logn). Then, there exists a choice of attention architecture U such that
with probability at least 1 — 0,,(1) over the data (X, A) ~ CSBM(n, p, q, i, 0%), GAT separates the data for any p, q
satisfying Assumption 1.

Proof: We prove the case p > ¢ and the case p < ¢ follows analogously. Consider the same ansatz described in
Theorem A.2 (set R such that 1/R = w(o+/logn) and 1/R = o(]|u]|2)). Assume that i € Cy (the case for i € Cj

follows similarly), and let
~ def ~
xr; = Z ")/Z‘j’l.UTXj.
JEN;

We would like to compute the conditional mean and variance of &; given £*. By using Corollary 8 we have

S aTXle| = Bl Y qaTX;+
JEN; JECOHNN; JECINN;
1
< ) - - _
< cmN< (1+0(1)) (u||2+1om/1ogn)) + |Co N Ny (0 <n(p+q)) ( |u||z+1om/1ogn)>
ng(1+o(1))
= 1+o0(1 1 1 -— -1 1
Jiala(1 = o(1)) + 100/ logn — 5 2= 5 ([l — 100 log )
= [lull2(1 £ o(1)).
Similarly,
- " +o
5 X €| 2 a1 £o(1) - 100 iogn - A (s + 100 Togn)
JEN;
= [[mll2(1 £ o(1)).
Using the same reasoning, we get for i € Co, E[2;|E¥] = —||p/|2(1 £ o(1)).

Next, we claim that for each ¢ € [n] the random variable &; given £* is sub-Gaussian with a small sub-Gaussian
constant compared to the above expectation.

Lemma A.12. Conditioned on E*, the random variables &; for i € [n] are sub-Gaussian with sub-Gaussian param-

eter 52 = O (‘7—2)

np
Proof: Fix an arbitrary ¢ € [n]. In order to obtain a sub-Gaussian parameter of &; conditioned on the event £*,
we will use concentration of Lipschitz functions of Gaussian random variables, see, e.g., Theorem 5.2.2 in Vershynin
(2018). In particular, we will show that there is a Lipschitz function f; : R™ — R such that the distribution of f;(v)

for v ~ N(0,1,,) is the same as the conditional distribution of &; conditioned on the event £*. In what follows we
construct the function f; in a series of steps.

Let us write X; = (2¢; — 1)u + og; where g; ~ N(0,1;),¢; = 0ifi € Chpande; = 1ifi € Cy. Because
w = p/||pll2 we have w'X; = (2¢; — 1)||pl|2 + ocw?g;. We will consider a random vector v € R™ whose jth
coordinate v, has the same distribution as w" g;. By Observation A.9, v ~ N(0,L,).

Note that the event £* (more specifically, the event £,) induces a transformation which transforms the isotropic
Gaussian random vector [w g;] je[n) to a vector of truncated Gaussian random variables. This is because the event
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£ requires that |07 X; — E [w?X;]| < 100+/Iogn for all j € [n], but since w”X; — E [w"X;] = ow”g;, this
is equivalent to requiring that |7 g;| < 10y/logn for all j € [n]. Therefore, conditioned on the event £*, for each
j € [n] the random variable 1I;ng follows a truncated Gaussian distribution over the interval [—10+/log n, 10+/log n].
Let v € R" denote the random vector whose jth coordinate ©; has a truncated Gaussian distribution over the interval
[—104/log n, 104/log n]. We show that © may be obtained from v via a push forward mapping M:

_ def

0= M) = [r(v1),7(v2),...,7(v.)]" (16)
where 7(x) f -1 ((1 —=2¢)®(x) +c¢) for ¢ = ®(—10+/log n). The following claim shows that 7(v;) indeed follows
the truncated Gaussian distribution over the interval [—10+/log n, 10/log n].

Claim A.13. Assume that v ~ N(0,1). Then, 7(v) follows the truncated Gaussian distribution over the interval

[—10+v/Tog n, 104/Iog n).

Proof: Let ¥ be a random variable that follows the truncated Gaussian distribution over the interval
[-104/log n, 10y/logn]. Tts cumulative distribution function is given by ¥(z) = (®(z) — ¢)/(1 — 2¢) where
¢ = ®(—10+/logn). The function ¥ : [~10+/log n, 10\/log n] — [0, 1] is bijective and has inverse ¥~! : [0,1] —
[—10+4/log n, 10y/log n]. In particular, if ¥(z) = u for some z € [—10+/log n, 104/log n] and v € [0, 1], then we know
that 7 = U1 (u) = ®~((1 — 2¢)u + c¢). By the inverse transform method, if u follows a uniform distribution over
the interval [0, 1], then ¥ ~!(u) follows the truncated Gaussian distribution over the interval [—10y/log n, 10y/log n].
Letv ~ N(0,1), then ®(v) is uniform over [0, 1], and hence 7(v) = ®~1((1 — 2¢)®(v) + ¢) = ¥~ 1(®(v)) follows
the truncated Gaussian distribution over the interval [—10+/lIog n, 10+/Tog n]. |

It turns out that the push forward mapping M : R™ — R"™ is Lipschitz with constant 1.
Claim A.14. The mapping M given by equation 16 has Lipschitz constant 1.

Proof: We show that the coordinate transform 7 is Lipschitz which implies the result. Because the cumulative
distribution function ® is differentiable and bijective, the derivative of the inverse ® ! is given by the inverse function
rule: 2®~1(z) = 1/(¢(®~*(z))), where ¢(z) denote the standard Gaussian PDF. Apply the chain rule and the
inverse function rule we get that

d d 1-2 1-2

() = —[07H((1 - 200(2) + )| = (1 = 20¢(x) < U=2960@) (4

de de o(2-1((1 - 20)0(x) + o)) o)

In order to see the second last inequality, let us consider the following two cases.

Case 1: x > 0. In this case, we have that % < ®(z) <1and

<P(2)<1 <= 1-20(z2) <0 < c(1-20(x)) <0 <= (1 —2¢)P(x) + ¢ < D(z).

N =

Moreover, one easily verifies that

(1—-2¢)P(z)+c> % = P(z) > %

Therefore, since z > 0, we have that % < (1—=2¢)®(x) + ¢ < ®(x), which implies
0<® (1 -20)0(z) +¢) <P (®(2)) =z,
and hence (@1 ((1 — 2¢)®(z) + ¢)) > ¢(x), proving the second last inequality of equation 17.
Case 2: © < 0. In this case, we have that 0 < &(z) < % The result is shown by following the same steps as above.
It follows from equation 17 that the function 7 has Lipschitz constant 1. The Lipschitz constant of M is obtained by

noticing that
n

1M () = M(w)[13 =D _(r(uj) = 7(v)))* <Y _(u; —v;)* = [[u—v]3.

Jj=1 j=1
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So far we have showed that M (v) has the same distribution as [w” g;] je[n) conditioned on the event £*. Moreover,
M has Lipschitz constant L; = 1. Now, consider the function [ : R® — R"™ defined by

_\ def _
@) < |26 = Dl +0;]
j€ln]

It is straightforward to see that the Lipschitz constant of [ is L; = o, since

11(v) = 1(®)]l2 = || | 2&; = Dllpll2 + 00; — | 2 = Dllpllz2 + ov; = oo —o'2.

jeln) : jemlly

In addition, since W' X; = (2¢; — 1)|| /|2 + ow?Tg; for j € [n], we see that {(M (v)) has the same distribution as
[@” X ]je[n) conditioned on the event £*. For j € [n] let w”X;|€* denote the random variable which follows the

conditional distribution of d:TXj conditioned on the event £, and similarly let &;|E* denote the random variable
which follows the conditional distribution of #; conditioned on the event £*. Because the unconditioned random
variable &; is obtained as a function of [’ X;];¢[n:

Ti= > v (["IJTXj]je[n]) w!' X,
i€N;

it follows that

Fi0) ST UM () - LM @)]; = i ([ﬁ’Tlef*]je[n]) WX = &€,

JEN; JEN;

where the second and the third equalities denote equality in distribution. As a technical remark, in order for f;(v) and
&;|E™ to have identical distributions, we need to consider both distributions conditioning on the events €1, €3, 3.
These events are only concerned with the graph structure and do not affect the Gaussian distributions of [w” g;] jeln]
or v. For notational simplicity we omit conditioning on these events explicitly. We proceed the proof with the under-
standing that we are to establish distributional equivalence between &;|€4 and f;(v) under the event that £, 2, €5
already hold. This is without loss of generality and we will explain the reason when the conditions are used later in
the proof.

It left to obtain a Lipschitz constant of f;. We see that the function f; is the composition f; = h; ol o M where

hz(a:) déf Z ’}/”(33) . :Bj.

JEN;

Therefore, the Lipschitz constant of f; is obtained by Ly, = Ly, Li Ly = oLy, where Ly, is the Lipschitz constant of
h;. In what follows we compute L,;. The domain of the function h; is the range R of the composition [ o M. We will
show that h; is Lipschitz over R. Let us assume without loss of generality that i € Cj (the case for ¢ € C yields the
same result and is obtained identically). By the definition of M and [/, we know that the event £, identifies a bounded
subspace in R™ which is essentially the set R. Moreover, since the events £1, €5, €3 do not affect the distribution of
the Gaussian random variables and hence we may assume without loss of generality that these events hold (otherwise,
one can obtain identical result by carrying out the same series of computations and then apply the conditions of events
E1,E2,E3). We know from Corollary 8 that under the event £ we have v;j(z) = = (1 £ o(1)) if j € Cp and

np
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vij() = 5 exp(=O(R||ull2))(1 £ 0(1)) if j € Cy. Recall that R satisfies R|[p[|o = w(1), we get

) —nita = | S0 AWM g gryy 5 HEEAD) et )
jENiﬂCO np jeNiﬁCl np

2 (1+0(1)) ifj e N;nCyl"

= | |2 exp(~O(R|pl2))(1 £ 0(1)) ifjeN:NCy (x — ')
0 ifj ¢ N; ieln]
%(110(1)) if j € N;nCy

< | p exp(—=O(R[[pl[2))(1 £ o(1)) ifj € NinCy lz — 2|,
0 g N g,

2 ,
gvcﬁl+dnwwwm

This shows that the Lipschitz constant of h; over R satisfies Ly, = O (\/%fp) . Therefore, the Lipschitz constant of f; is

Ly =0Lp, =0 (\/TT)> This allows us to apply the Gaussian concentration result (see Theorem 5.2.2 in Vershynin
(2018)) to the random variable f;(v) and get that the sub-Gaussian parameter of f;(v) is 62 = Lfci =0 ( )

a2

np J*

Since the random variable &; conditioned on £* has the same distribution of f;(v), its sub-Gaussian parameter is also
2 . . .

O (%p) The result holds for all ¢ € [n] because our choice of ¢ was arbitrary. |

Now, we have all the tools to finish the proof of the theorem. We bound the probability of misclassification

Pr [max:i:i > 0} <Pr {max:ﬁi >t + E[ﬁcl]] ,
1€Co 1€Co

fort < |E[Z;]| = ||p]l2(1 £ 0(1)). By Lemma A.12, picking t = © (U\/log |CO\) and applying Lemma A.2 implies

that the above probability is 1/poly(n).

Similarly for class C; we have that the misclassification probability is

Pr [min z; < 0] =Pr {— max(—&;) < 0} =Pr {max(—:ﬁi) > 0] <Pr [max —&; >t —E[z]],
i€Cq 1€Cq i€Cq 1€Cq

for t < E[&;]. Pickingt = © (m /log |Cy \) and applying Lemma A.2 and a union bound over the misclassification
probabilities of both classes conclude the proof of the corollary. |

A.3 PROOF OF PROPOSITION 4

We start by restating the proposition for convenience.

Proposition. Suppose |||z = Q(o+/Togn), and let (X, -) ~ CSBM(n, -, -, p, 02). Then, the Bayes optimal classifier
is realized by a linear classifier which achieves perfect node separability with probability at least 1 — 0,,(1) over X.

Proof: The proof follows by first applying Lemma A.7 to deduce that a linear classifier obtains the optimal perfor-
mance and then applying Case (1) of Lemma A.8.

A.4 PROOF OF THEOREM 5

The goal of the attention mechanism is to separate the pairs of nodes (X;, X ;) based on whether 4, j are in the same
class or different classes. We say ¢ ~ j if both ¢ and j are in the same class Cyy or C'y, and i »~ j otherwise. Let X;j
X

X

denote the vector obtained as a result of concatenating X; and X, i.e., ng = (
J

> . Then we would like to analyze
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all classifiers with the property
0 imj
y=h(Xj;) = {1 J
To comment on the limitations of all such classifiers, it is sufficient to analyze the Bayes classifier for this data

model, since by definition a Bayes classifier is optimal. The following lemma describes the optimal classifier for this
classification task.

i~g

Lemma A.15. The optimal (Bayes) classifier that serves as the attention mechanism for the pairs ng is realized by

the following function.
. x
B () = {0 if p cosh (

1 otherwise

T
o

#) < qoosh (=24

Proof: Recall that |Co| = |C1| = 5. Hence, X7, is a uniform mixture of four 2d-dimensional Gaussian distributions.

Letp' = (Z ) and v’ = (_,u, H>' Then the four Gaussian distributions are

(',0%I) i€ Cy,jeCy
N(—p',0%I) i€Cy,jeC,
N(V/,O'2I) ieCo,jECl'
N(-v',0%I) i€Cy,j€Cy

/
X!, ~

The optimal classifier is then given by

h*(x) = argmax Pr[y = ¢ | z].
ce{0,1}

Note that Pr[y = 0] = ¢ and Pr[y = 1] = p. Thus, by Bayes rule we obtain that

Prly=c|z] = Prly = |- fup(|y=c) ) .
Prly = O]fm\yZO(EB |y=0)+Prly= 1]fm|y:1(a: |y=1) 1+ Pl‘[lél)/j[;;j;m:yéﬂzzi)—c)

Suppose that x = X, such that i » j. Then h*(x) = 0if and only if Pr[y = 0 | ] > 3. Hence, for ¢ = 0 we require

: = L h(L 2T o ) N
Dlen@V=l < which implies that £ cosh(Zya” u') < 1. Similarly, we obtain the reverse condition for h*(x) = 1.
@ fu)y (z|y=0) q cosh(a% Tu/)
|

The next theorem uses A.15 to precisely quantify the misclassification of node pairs that the attention mechanism
exhibits. In particular, part 1 of the theorem implies that if ||g||2 is linear in the standard deviation, o, then with
overwhelming probability the attention mechanism fails to distinguish a constant fraction of inter-edge pairs from the
intra-edge pairs.

Furthermore, part 2 of the theorem characterizes a regime for the inter-edge probability ¢ where the attention mech-
anism fails to distinguish at least one inter-edge node pair, by providing a lower bound on ¢ in terms of the scale at
which the distance between the means grows compared to the standard deviation ¢. This aligns with the intuition
that as we increase the distance between the means, it gets easier for the attention mechanism to correctly distinguish
the node pairs. However, if ¢ is also increased in the right proportion, or in other words, if the noise in the graph is
increased, then the attention mechanism will still fail to correctly distinguish at least one of the inter-edge node pairs.

We restate the theorem for the readers’ convenience.

Theorem (Restatement of Theorem 5). Assume that q = Q(%) and let U be any attention mechanism. Let

d.(1) defy ®(-), where © is the standard normal CDF. Then for any K > 0 if |pu||2 = Ko then we have:

1. For any ¢ > 0, with probability at least 1 — O(n™°), the attention mechanism V fails to distinguish at least
29 (K)? fraction of the inter-edge pairs (X;,X;),i = j from the intra-edge pairs (X;,X;),i ~ j.

2. Forany k > 1ifq > wlog®n 4oy with probability at least 1 — O (é), at least one inter-edge
n

n®.(K)2’ 2. (K)2logn
pair is indistinguishable from the intra-edge pairs under V.
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Proof: From A.15, we observe that for successful classification by the optimal classifier, we need

T,,’ T,,
pcosh <a:02u) < qcosh (wa:) for i ~ 7,

T,,’ T,,
pcosh <a:02u) > g cosh (wU:) fori ~ j.

We will split the analysis into two cases. First, note that when p > g we have for ¢ »~ j that

T,/ T,, T,/ T,,
T v T v

pcosh( 5) < qcosh( 5 ) = cosh( 5) < cosh( 5 > = |27y < |2V
o o o o

In the first implication, we used that p > ¢, while the second implication follows from the fact that cosh(a) <
cosh(b) = |a| < |b| for all a,b € R. Similarly, for p < ¢ we have for ¢ ~ j that

T,,/ T,, T,/ T,,
z zlv z v

pcosh( 2“) > qcosh( 5 ) = cosh( 5) > cosh( 5 ) = |27y > |2TV|.
o o o o

Therefore, for each of the above cases, we can upper bound the probability for either ¢ ~ j or ¢ ~ j that X’ij is

correctly classified, by the probability of the event |X;?u’ | < |X V'] or equivalently |XU u > |X;JTV’ |. We focus
on the former as the latter is equivalent and symmetric. Writing X = p+og; and X; = —p + og;, we have that for
i€C1andj€O(),

Pl (X;) = 0] < Pr[|X7 /| < [X;Tv/|
Pr[|X{p+ X7 p| < X7 o — XTpl]
= Pr [U|gZ n+g; N\ <|£2|pl3+ ng n—= UgJT”H

N . N N K2
<Pr {IgiTu +gjnl—lglp—gjnl< —”O_”
=Pr(lg] i+ g] il — gl o — gf Bl < 2K],
where 1 = m In the second to last step above, we used triangle inequality to pull 2||u||2 outside the absolute
value, while in the last equation we use ||u|j2 = Ko.
We now denote z; = g 1 for all i € [n]. Then the above probability is Pr[|z; + z;| — |z — 2;| < 2K], where
zi,zj ~ N(0, 1) are independent random variables. Note that we have
Pr[h*(X};) = 0] < Prz; + 2| — |2 — 2| < 2K]

— Pr{lz + 2] — |2 — 2] < 2K, 2] < K]+ Prllz; + 2] — |5 — 2] < 2K, [2] > K]

= Prl|z;| < K]+ ®(K) Prl|z;]| > K]. (18)
To see how we obtain the last equation, observe that if |z;| < K then we have

|2 + 25| = |2i — 2| = |20 + 2] = |z — il
<z + |z — |25 — 2l by triangle inequality
<zl + 125 = |12] = |2l by reverse triangle inequality
< Jzil + 23] = (23] = |zil) = 2|z
< 2K,

hence, Pr(|z; + z;| — |z — z;| < 2K, |z| < K] = Pr[|z;] < K]. On the other hand, for |z;| > K, we look at each
case, conditioned on the events z; > K and z; < —K for each of the four cases based on the signs of z; + z; and
z; — z;. We denote by E the event that |z; + z;| — |z; — 2| < 2K, and analyze the cases in detail.
Conditioned on z; < —K:
PI‘[E,ZZ' +2; 20,2, —2; 20 | 23
rlE,zi+2; >0,z —2; <0 2
Pr(E, z+2; <0,z —2; >0 z
PI'[E,Zi-I-Zj <0,z —z; < 0 | Zi

Pr(z; < zj,2z; > —z | z; < —K] =0,
Pr(z; > |z|,2i < K | z; < = K] = ®(2;),
[
[2i

Pr(z; < —|zi, 2z > —K | z; < —=K] = 0,
<zj<—z,z; > K|z <-K|=3(K) - ®(z).

K]
K]
K]
K]

/\/\/\/\
H
i

rz
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The sum of the four probabilities in the above display is Pr[E | z; < —K| = ®(K). Similarly, we analyze the other
case.

Conditioned on z; > K:

PriE,z;+2;> 0,2, —2; >0| 2z, > K| =Pr[—2z < z; < 2,2, <K | z; > K] = ®(K) — ®(2:),
Pr(E,z +2; > 0,2, — 2; <0 z; > K] =Pr[z; > \zz| 2z < K|z >K|]=0,
Pr(E, zi+2; <0,z —2; > 0|z > K] = Pr(z; < —|z],2; > —K | z; > K] = ®.(%),
Pr(E, z+2; <0,z —2; <0 |2z > K| =Pr(z; < —z,2; >z |z > K] =0.
The sum of the four probabilities above is Pr[E | z; > K ] = ®(K). Therefore, we obtain that
Pr(lz; + z;j| — |z — 2] < 2K | || > K] = ®(K),
which justifies Equation 18.
Next, note that Pr[|z;| < K] = ®(K) — ®.(K) and Pr[|z;| > K] = 29.(K), so we have from Equation 18 that

Pr{h*(X};) = 0] < B(K) — Be(K) + 20(K)D(K) = 1 — 2Bc(K) + 20 (K)D(K) = 1 — 2B.(K)>.
Thus, X; is misclassified with probability at least 20 (K )*.

We will now construct sets of pairs with mutually independent elements, such that the union of those sets covers all
inter-edge pairs. This will enable us to use a concentration argument that computes the fraction of the inter-edge
pairs that are misclassified. Since the graph operations are permutation invariant, let us assume for simplicity that

Co=A{1,...,5}and C; = {§ +1,...,n} for an even number of nodes n. Also define the function
) ) <n
mi =4 itisy

We now construct the following sequence of sets forall [ € {0,..., 5 — 1}:

S = {(Xm(i,z),XHg) forall i € Co N Ny }-

We now fix [ € {0,...,5 — 1} and observe that the pairs in the set S; are mutually independent. Define a Bernoulli
random variable, 3;, to be the indicator that (X, (; 1), Xit =) is misclassified. We have that E[3;] > 2®.(K)?. Note
that the fraction of pairs in the set S5; that are misclassified is \lel Y icConN
Bernoulli random variables. Hence, by Hoeffding’s inequality, we obtain

o Bi, which is a sum of independent

1
Pr|—= > 5 220(K)?—t| >1—exp(—|Se?).
| l|i€CoﬁNm(i,L)

Since p,q = w(log <& 1) we have by the Chernoff bound that with probability at least 1 — 1/poly(n), |S;| = ng(1 +

0,(1)) for all I. We now choose t = Cllgﬁn = 0,,(1) to obtain that on the event where |S;| = ng(1 & 0,,(1)), we

have the following for any large C' > 1:

1
Pr|c— Y. i 220(K)?—o0,(1)| >1-n"C.
| l|ieCUﬁNm(i,l>

Following a union bound over all / € {0, ..., 4§ — 1}, we conclude that for any ¢ > 0,

Pr si Z Bi > 20.(K)? — on(1), vze{o,...,g_l} >1-0(n).

| ! | 1€CoNNp(i,1)

Thus, out of all the pairs X with j » 4, with probability at least 1 — O(n~¢) for any ¢ > 0, we have that at least a
fraction 2@, (K)? of the palrs are misclassified by the attention mechanism. This concludes part 1 of the theorem.
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For part 2, note that by the additive Chernoff bound A.5 we have for any ¢ € (0, 1),

Pr S Bi = 2S0c(K)? — [Sift| =1 — exp(—|S[t?/4).
1€CONN (i 1)

Since |S;| = 5 (1 £ 0,(1)) with probability at least 1/poly(n), we choose t = 4/ w to obtain

Pr Z Bi > ng®(K)*(1+0,(1)) — \/,‘ﬁ?”LqCI)C(K)2 log?n| >1-— O(n*%@’c(m%og").
iECOr‘INm(i)L)

klog?n
n‘i’c(K)2

Now note that if ¢ > then we have ng®.(K)? > x log? n, which implies that

ngde( \//mq@ )2 log n > 0.

Hence, in this regime of g,

Pr Z /81' >0 > 1— O(nff'@c([{)?]ogn),
’L‘GCoﬂNm,(iyl)

and the proof is complete. |

A.5 PROOF OF THEOREM 6

We first state the formal version of the theorem.

Theorem 10 (Formal restatement of Theorem 6). Assume that ||p||2 < Ko and o < K’ for some constants K and
K'. Moreover, assume that the parameters (w, a, b) € R? x R? x R are bounded by a constant. Then, with probability
at least 1 — 0,,(1) over the data (X,A) ~ CSBM(n,p, q, p,c?), there exists a subset A C [n] with cardinality at
least n — o(+/n) such that for all i € A the following hold:

1. There is a subset J; o C N; N Cy with cardinality at least 35|N; N Co|, such that v;; = ©(1/|N;|) for all

je Ji,O'
2. There is a subset J; 1 C N; N Cy with cardinality at least %|Ni N C4|, such that v;; = O(1/|N;|) for all
j € J¢71.
For ¢ € [n] let g; be independent Gaussian random variables with mean 0 and variance 1, so we have X; = —p + 0g;

fori € Cyand X; = p + og; for i € Cy. Moreover, since the parameters (w, a,b) € R? x R? x R are bounded, we
can write w = Rw and a = R'a where w and a are unit vectors and R and R’ are some constants. We define the
following sets which will become useful later in our computation of v;;’s.

Define
et [, € n] |a1wT g;| < 104/log(n(p , and
lasw? g;| < 104/log(n(p V] eEN; |-

For i € [n] define
Jiodef{jGNmC()Hagw gijl <Vv1 }
Jildef{jEN ﬂClHa,gw g]|<\/ }

def

B, ={jeNnCy |27 <ayw’g; <2'},t=1,2,....T,

B, ¥ {jeN,NC 27! <anTg; <2}, t=1,2,...,T,

where T % {log2 (10\/mﬂ.

We start with a few claims about the sizes of these sets.
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Claim A.16. With probability at least 1 — o(1), we have that |A| > n — o(y/n).

Proof: Because |az| < 1 we know that A is a superset of A’ where

. < 104/log(n(p+ q)), and
A e @ gil .
i€ln] lwTg;| < 104/log(n(p+q)), Vj € N;

We give a lower bound for |.A’|. Denote b ' pr <|1I;Tgi| > 10+/log(n(p + q))) Then

1 ! =50 108 (n(p+0) < p < L
210+/log(n(p + q)) 104/log(n(p + q))

Apply the multiplicative Chernoff bound

e~ 50log(n(p+q))

Lnbs?
2[:] {lo7g: 210y Tgmran} = "D +0)| S e
1€(n
and set § = 7(10 log(n(p + q)))(n(p + q))?>, we see that with probability at least 1 — o(1),
\/>
1vm>m¢ﬁ‘;;7H v
{ ol | o n(p +q))*

This means that

Hz € [n] | lw” g;| > 10y/log(n(p + q)) or 3j € N; such that |w” g;| > 10 log(n(p—&-q))}‘
‘-@mfﬁm%'Z@+®“ioﬂﬁ=2@@ﬂzm%uiou»:ow%>

Therefore we have

A’ = n = o(v/n).

Claim A.17. With probability at least 1 — 0(1) we have that for all i € [n),

|J10| ‘N ﬂCo\ and |Jl 1| > O|NlﬁCl|

— 10

Proof: We prove the result for J; o, the result for .J; ; follows analogously. First fix ¢ € [n]. For each j € |N; N Cy|
we have that

Prf|a;,w”g;| > V10] < Pr[lw”g;| > V10] < ™
Denote JCO = (N N Co) \ Ji,0.- We have that

E[|J5ol] = Y Yagwrg,zvioy | <€ VINiNCol,
JEN;NCoH

Apply Chernoff’s inequality (Theorem 2.3.4 in Vershynin (2018)) we have
mso (_CEITEl )M
P > —|N;NC GOl
e [Wial 2 g5IMin G| < e Bl (S0 )

ee %N, N Cy| INinGol /10
|N; N Cy|/10




Apply the union bound we get

9 ~ & INin nmin{p.q} (1o
Pr ||Jiol > 151Co N Ni| Vi € [n]} >1- Y ¢ F > (1-0(1) (1—716_2 L= “”) =1-0(1).

i€[n]

The second last inequality follows because [N; N Co| > § min{p,q}(1 & o(1)) = ZL(1 & o(1)) under degree

concentration for all ¢ € [n]. Moreover, since we have used the degree concentration, this introduces the additional
multiplicative (1 — o(1)) term in the probability lower bound. The last equality is due to our assumption that p,q =

Q(log’n), ]

n

Claim A.18. With probability at least 1 — o(1), we have that for all i € [n] and for all t € [T,

|BLo| < E[|BLy|l + VTIN; N Col5 and |B!,| < E[|B,|] + VTN, N Cy5.

Proof: We prove the result for B} ;, and the result for Bf ; follows analogously. First fix i € [n] and t € [T]. By the
additive Chernoff inequality we have

Pr (|Blo| = EIIBLol| + IN: N Col - VTIN; N G| ) < e 2TINCOl,
Taking a union bound over all ¢ € [n] and t € [T] we get

r| U U {1Bll = BIBL + VTN N Gl

i€[n] te[T]
< nTeXp( 2T (2 min{p, ¢}(1 £ (1)))3/5> +o(1) = o(1),

where the last equality follows from Assumption 1 that p, ¢ = Q( log;

nT exp ( 2T (L min{p,q}(1 0(1)))3/5) = nTexp (~w (V2Tlogn)) = 0 (1>

n

), and hence

for some absolute constant ¢ > (. Moreover, we have used degree concentration, which introduced the additional
additive o(1) term in the probability upper bound. Therefore we have

Pr [\Bgo| < E[|B!o|| + VT|N; 0 Col?,Vi € [n] Vt € [T]} >1—o(1).

|
Proof of Theorem 10: We start by defining an event £* which is the intersection of the following events over the
randomness of A and {¢;}; and X; = (2¢; — 1) + 0g;,
o & is the event that for each i € [n],
€i)q + €ep)(1 £ o(1)).
» &, is the event that |A] > n — o(y/n).
* &, is the event that | J; o| > 5|N; N Col and |J; 1| > 25| N; N Cy| for all i € [n].

il = 5((1 —e)p+eq)(1£o(1)) and [Cy N N;| = 5((1 —

* £ is the event that | B! )| < E[|B!y[] + VT|N; N Co|? and |B!,| < E[|B,[] + VT|N; N Cy|3 for all
i € [n] and for all ¢ € [T].

By Claims A.16, A.17, A.18, we get that with probability at least 1 — o(1), the event £* = ()}
show that under event £*, for all ¢ € A, forall j € J; . where ¢ € {0, 1}, we have ;; = ©(1/
Theorem 10.

o € holds. We will
;). This will prove

T
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Fix ¢ € A and some j € J; . Let us consider
_ exp (LeakyRelu(aleXi + acw’X; + b))

> ken, exp (LeakyRelu(a;w”X; + asw? Xy, + b))
_ exp (0RR LeakyRelu(k; + a1w” g; + axw” g; + 1))

> ken, exp (0 RR' LeakyRelu(rix + a1w?g; + asw?gy. + 1))
_ 1
T Y ken, (A — Ayj)
where for [ € N;, we denote

Ky (2¢; — D w/o + (2¢) — D" /o,

Ay ©f SRR LeakyRelu(ky + ajw? g; + asw? g; + '),

and b = o RR'b’. We will show that ), exp(Aix — A;;) = O(|N;|) and hence conclude that v;; = ©(1/[N;).

Yij

First of all, note that since || ]2 < Ko for some absolute constant K, we know that
lka| < V2K = O(1).
Let us assume that @ g; > 0 and consider the following two cases regarding the magnitude of a;w” g;.
Case 1. If k;; + a1 w”' g; + asw’g; + b < 0, then
Ay — Aij = oRR (LcakyRclu(mk a1 g; + anwlgy + V)
— LeakyRelu(k;; + a1w’ g; + axw’ g; + b’))
= oRR (LeakyRelu(dllegi + arwT gy, + O(1))
= Blkij + a1’ g; + @’ g; + bl))
= oRR' (LeakyRelu(asw” g £ O(1)) £ O(1))
=oRR (0(axw”gi) £ O(1)),

where 3 is the slope of LeakyRelu(x) for z < 0. Here, the second equality follows from |z + b'| < V2K + || =
O(1) and k;; + a,w” g; + asw’g; + b < 0. The third equality follows from

« We have j € J; o and hence |a,w’ g;| = O(1);

s We have k;j + @17 g; + aswTg; +V < 0,50 a1wlg; < |kij| + |axwTg;| + [b'| = O(1), moreover,
because a;wlg; > 0, we get that |a;wT g;| = O(1);
e We have |k;;+a1wT g;+asw’ g;j+b| < |a1w? g;|+|axw” g;|+|ri;+b'| = O(1)+0(1)+0(1) = O(1).

Case 2. If k;j + a1w’ g; + axw?g; + ' > 0, then
Aip — Aj; = oRR' (LeakyRelu(mk +a1wTg; + aswTlgy + 1)
— LeakyRelu(k;; + a1w’ g; + axw” g; + b’))
— oRR' (LeakyRelu(mk +a1wTgi + aswTgy + )
— kij — W’ g; — ay’ g; — bl)
= oRR' (LeakyRelu(r, + a1w” g; + s’ gr + V') — a1’ g; £ O(1))

=oRR @(dQﬁJTgk) + 0(1) s if k € Ji,O U Ji,l
< oRR' (O(aswTgy) £ O(1)), otherwise.

)

To see the last (in)equality in the above, consider the following cases:
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1. If k € J; 0 U J; 1, then there are two cases depending on the sign of r;, + a1w” g; + asw?gx + V.
o If kg + @y’ g; + asw’ gy + b’ > 0, then we have that
LeakyRelu (ki + a1w” g; + aow” g + V') — ayw”? g; + O(1)
= kg + a1’ g; + aswl g, + b — arw’g; +0(1)
= aywl gy + ki +0 +0(1)
= ayw’ gy +£O(1).

o If ki + ar1w?g; + aswTgy + b < 0, then because @ w’g; > 0 and |k + asw®gy + | <
|kix| + |aswT gr| + V'] = O(1), we know that aw?'g; < |kix| + |asw?gx| + [b'| = O(1) and
|kir + a1 wT g; + asw? gy, + b'| = O(1). Therefore it follows that

LeakyRelu(kix + @1’ g; + asw” g, + V') — arw’ g; £ O(1)
= LeakyRelu(+0(1)) — O(1) £ O(1)
= +0(1)
= axw’ gy £0(1)
where the last equality is due to the fact that k € J; o U J; 1 so |asw? gx| = O(1).
2. If k & J; 0 U J; 1, then there are two cases depending on the sign of k;, + dlii:Tgi + dglegk + 0.
o If ki, + 1w’ g; + asw? gy, + b’ > 0, then we have that
LeakyRelu (ki + a1 w” g; + aw? g + V') — aw?g; £ O(1)
= wip + a1’ g; + asw’ gy + 0 — awg; £ O(1)
= asw’ gy + ki + 0 £0(1)
= ayw’ gy +£0O(1).
o If ki + @17 g; + asw” gy, + b’ < 0, then we have that,
LeakyRelu(rk, + a1” g; + @asw’ g, +b') — a1’ g; £ O(1)
= Brik + fan” g; + Pasw” gy + BV — a1’ gi + O(1)
= Baw” g, — (1 - Blaiw’g; £ O(1)
< Bayw” g, +0(1),
where £ is the slope of LeakyRelu(-).
Combining the two cases regarding the magnitude of a;w? g; and our assumption that o, R, R = O(1), so far we
have showed that, for any ¢ such that awTg; >0, forall j € Ji,0, we have

Aip — Ass — 9(&2127Tgk) + O(l), if k € Ji,O @] Ji,l
ik Y7 O(agwTgr) £0(1), otherwise.

By following a similar argument, one can show that Equation 19 holds for any 7 such that a@;w” g; < 0.

19)

Let us now compute

Z exp(A, — Ajj) = Z exp(Aj — Ayj) + Z exp(Air — Aij)

kEN; kEN;NCo kEN;NCy
for some j € Jio. Let us focus on Y,y ¢, exp(Qix — Ajj) first. We will show that Q(|N; N Col) <
Y keninco EXP(Ai — Agy) < O(IN:)).
First of all, we have that

D exp(Ai—Aij) = D exp(Ajp — Ayj) = > exp (O(aw’gr) £ O0(1))
keN;NCy kEJrL'YU keJ;i o
Z Z ecl = |Ji70‘6cl = Q(|N1 N C()D,
keJio

(20)
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where ¢ is an absolute constant (possibly negative). On the other hand, consider the following partition of N; N Cy:

Pldﬁf{kENﬂC’Magw gr < 1},

Pgdﬁf{keNﬂco|a2’LU gk>1}
It is easy to see that
Z exp(Ay — Ayj) < Z exp (O(axw” gi) Z e = |P1]e® = O(|N; N Cy)), 2D
kEPy kP, keP,
where c5 is an absolute constant. Moreover, because 7 € A we have that P, C Ut e[ Bf}o. It follows that

Z exp(Aik - A”) = Z Z eXp(Aik - AZ])

kEP; te[T) keB!

Y Y exp (O(asi”gr) = 0(1)) (22)

te[T] keB]

> IBiole™,

te[T]

IN

IN

where c3 is an absolute constant. We can upper bound the above quantity as follows. Under the Event £*, we have

that
B y| < my + VTIN; N Col?, forall t € [T],

where
mtdffEHB oll = Z Pr(27! < a,wlg, <2') < Z Prla,w’ g, > 2071
kEN;NCo kEN;NCo
< Z PI‘[’LZJTg},C > 2t_1] < |Ni n CQ|€_22t73
kEN;NCo

It follows that

ST BLole® < 30 (INi N Cole™ " + VTIN: N1 Col#) 22

te[T) te[T]
<IN, NCol Yo e e 1 3T VTN 0 CylF e (23)
t=1 te([T]
< ca|N; N Col + o(|Ni])
< O(|Ni),

where c4 is an absolute constant. The third inequality in the above follows from

. _92t—3 _ ot
* The series ) .o, e 27 "ec32" converges absolutely for any constant cs;

* The sum 3, (7 VT|N; N Co|3ee2” = T5|N; N Co|5e®2" = o(|N;|) because
log (T3e%") = glog [1og, (10\/log(n(p + 0)) ) | + ¢2l108: (10VioBtn ) |
3
< ;log ilogg (10 log(n(p + q))ﬂ +20c3+/log(n(p + q))
1
0 (S 1oxniy+a)).

for any ¢ > 0. In particular by picking ¢ > 5 we see that T3e%2" < O((n(p + ¢))¢) < o(|N;|3), and
hence we get T3 e<2" |N; N Col3 < |Ny|% - o(|N;|5) = o(|NV;)).
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Combining Equations 22 and 23 we get

> exp(Ai — Aij) < O(INi)), (24)
ke Py
and combining Equations 21 and 24 we get
Z eXp(Aik — Aij) = Z eXp(Aik — A”) + Z eXp(Aik — AU) S O(|Nl‘) (25)
kEN;NCo kePy kePy
Now, by Equations 20 and 25 we get
Q(N;NCyl) < Z exp(Aix — Aij) < O(|Ni]). (26)
keN;NCy

It turns out that repeating the same argument for » 0, - n o exp(Aj — Ayj) yields

QUIN:NCi) < > exp(Aix — Aij) < O(IN;]). Q27)
keN;NCy
Finally, Equations 26 and 27 give us
D exp(Ai — Ay) = O(IN;)),
kEN;
which readily implies
1
Yij =
T ke, exp(Ais — Ayj)
as required. We have showed that for all ¢ € A and for all j € J; ¢, 7;; = ©(1/|N;|). Repeating the same argument

we get that the same result holds for all ¢ € A and for all j € J; ;, too. Hence, by Claims A.16 and A.17 about the
cardinalities of A, J; ¢ and J; ; we have thus proved Theorem 10. |

= O(1/|Nil)

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ANSATZ FOR GAT, MLP-GAT AND GCN

For the original GAT architecture we fixed w = p/||p||2 and defined the first head as a; = %(1, 1) and by =

—%pr,; The second head is defined as a; = —a; and bo = —b;. We briefly discuss the choice of such ansatz. The

parameter w is picked based on the optimal Bayes classifier without a graph, and the attention is set such that the first
head maintains pairs in C; and the second head maintains pairs in Cp.” We will clearly see from the results, this choice
of ansatz produces good node classification performance (in the “easy regime”, where we vary g we clearly see how
those performances degrade since GAT linear attention mechanism is unable to separate inter- from intra-edges). More
specifically, one may use the same techniques in the proof of Theorem 1 and Corollaries 2 and 3 to prove the node
separability results (in this particular case, the result will depend on g in contrast to the result we get for MLP-GAT,
where the no dependence of ¢ was needed).

For MLP-GAT we use the following choice of ansatz.

1 1
- def M def |—1 —1 def
W= S= 0 o
2l
-1 1

so that the output of the attention model is defined as

wl'X;
r - LeakyRelu <S . |:’LIJTXJ‘:|> .

This choice of two layer network allows us to bypass the “XOR problem” (Minsky & Papert, 1969) and separate inter-
from intra-edges, which is clearly impossible with linear architecture.

For GCN we used the ansatz from Baranwal et al. (2021), which is also w = p /|| pt/|2-

"Note that in this case, due to the linearity of the attention mechanism, it will be impossible for the model to keep only ~y;; which
correspond to intra-class edges.
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B.2 SYNTHETIC DATA

B.2.1 FIXING THE DISTANCE BETWEEN THE MEANS AND VARYING ¢

In this subsection, we present additional experimental results for the original GAT (Velickovic et al., 2018) mechanism
with two heads, and MLP-GAT on synthetic data. Unless stated otherwise, we use the exact parameter setting as in
Subsection 4.1.1.

As explained in the introduction, a GAT head (equipped with a linear attention mechanism) is bound to fail to separate
the edges. Recall that when considering the pair space (w? X, wTXj), we can think of each pair as a two-dimensional
Gaussian with means in either one of the four quadrants. For correct edge classification, we need to classify the data
originating from the distributions whose means are in the second and fourth quadrant from the data originating from
the distributions whose means are in the first and the third quadrants (that is, the problem is a “XOR problem” (Minsky
& Papert, 1969)). However, it is readily seen that any linear classifier fails on the above task. In Figure 5a we can
clearly see the lack of ability of the heads to ignore inter-edges. For example, head 0 maintains all the intra-edges of
class 1 but also maintains the inter-edges between class 1 to class 0. Figure 5b presents the attention coefficients of
GAT in the “hard regime” and demonstrates Theorem 6, where most y concentrate around uniform (GCN) coefficients.
In Figure 5¢ we observe the node classification performance of the GAT model in the “easy regime”. As opposed to
MLP-GAT, we can clearly see that the node classification performance of GAT is affected by increasing q. Figure 5d
demonstrates the node classification performance in the “hard regime” (which is conjectured in Conjecture 7).
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(c) Node classification, easy
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Figure 5: Attention coefficients and node classification accuracy for GAT.

B.2.2 FIXING g AND VARYING THE DISTANCE BETWEEN THE MEANS

We consider the case where ¢ = 0.4. In Figure 6 we show the attention coefficients for both MLP-GAT and two head
GAT as a function of the distance between the means, and the node classification performance of GAT as a function of
the distance between the means. In Figure 6a we see that in the “hard regime” MLP-GAT produce attention coefficients
that concentrate around uniform (GCN) coefficients, while in the “easy regime” the model is able to maintain only the
~ that correspond to intra-class edges (as stated in Corollary 2) while ignoring all coefficients corresponding to inter-
class edges. In Figure 6b we observe that in the “hard regime” the attention coefficients of GAT concentrate around
the uniform coefficients (as proved in Theorem 6), while in the “easy regime”, even though the attention coefficients
concentrate, GAT is not able to distinguish intra from inter edges. As explained before, this is due to the fact that a
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linear attention mechanism is bound to fail on the “XOR problem”. Lastly, in Figure 6¢ we show classification results
for GAT. Note that in the “easy regime” GAT achieves perfect separability. However, as the distance between the
means decreases, GAT begins to misclassify nodes.
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Figure 6: Attention coefficients MLP-GAT/GAT and node classification for GAT.

B.3 REAL-WORLD DATA
B.3.1 ANSATZ

In Figure 7 we present the results for MLP-GAT on CiteSeer using the chosen ansatz.
In Figure 8 we present the results for MLP-GAT on Cora using the chosen ansatz.

In Figure 9 we present the results for MLP-GAT on PubMed using the chosen ansatz.
In Figure 10 we present the results for GAT on CiteSeer using the chosen ansatz.

In Figure 11 we present the results for GAT on Cora using the chosen ansatz.

In Figure 12 we present the results for GAT on PubMed using the chosen ansatz.

B.3.2 TRAINING

For experiments on real data, we also used PyTorch Geometric (Fey & Lenssen, 2019) to train the models GAT, MLP-
GAT, GCN, and the linear classifier. We train the models using the Adam optimizer with a learning rate of 103,
weight decay 1073, and 200 epochs. We terminate the process if the average binary cross-entropy loss is less than
10~2. We report the results of the last epoch.

It is important to note that for MLP-GAT the results that we get from the training process are very similar to the ones
reported in the main paper. One difference that we observed is that for a very large distance between the means the
trained parameters of MLP-GAT resulted in some misclassifications for the edges. This happens because in the “easy
regime” the graph is not needed at all and there must exist many parameter settings that achieve a near-perfect node
classification without necessarily distinguishing intra-class from inter-class edges.

For GAT we also observe similar trends for training to the ones that we observed using an ansatz. One difference is
the behavior of v, which exhibit some irregular behavior when the distance between the means is very large. Again,
this does not seem to affect node classification accuracy. In the case where the distance between the means is small,
we do observe that the average -y is close to uniform, which is also what we have proved in the main paper for the
CSBM model.

In Figure 13 we present the results for MLP-GAT on CiteSeer under training.
In Figure 14 we present the results for MLP-GAT on Cora under training.

In Figure 15 we present the results for MLP-GAT on PubMed under training.
In Figure 16 we present the results for GAT on CiteSeer under training.

In Figure 17 we present the results for GAT on Cora under training.
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In Figure 18 we present the results for GAT on PubMed under training.
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Figure 8: Ansatz MLP-GAT on Cora.
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Figure 9: Ansatz MLP-GAT on PubMed.
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Figure 10: Ansatz GAT on CiteSeer.
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Figure 11: Ansatz GAT on Cora.
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Figure 12: Ansatz GAT on PubMed.
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Figure 14: Training MLP-GAT on Cora.
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Figure 18: Training GAT on PubMed.
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C FREQUENTLY ASKED QUESTIONS AND ANSWERS

In this section we provide answers to some questions typically asked by practitioners working with graph neural
networks.

Q: The regimes are defined based on the relationship between population parameters p and o. Why don’t you define
the regimes based on empirical/sample mean and variance? Moreover, why does the definition of regimes depend on
the sample size n?

A: For the first question: Our goal is to understand how graph attention performs with respect to the true data distri-
bution parameters p and o. These parameters naturally appear in the analyses because we can replace the random
variables X with = + og where g is isotropic Gaussian. This replacement is exact. Orthogonal to our setting, one
may try and introduce in the analyses the empirical mean and variance, but that would result in additional errors in the
bounds which are not necessary, since we can already prove high probability results using the true parameters. There-
fore the correct way to make assumptions is to assume something about the population parameters. Results under our
assumptions provide a cleaner theoretical insight because the same conclusions apply to any realized empirical data
with high probability. In practice if one is interested in determining if the assumptions are satisfied in the real data,
then it could be posed as a parameter estimation problem where the estimation errors for both mean and variance can
be controlled.

For the second question: The definition of regimes depends on n because the results require Gaussian concentration.
In fact, they should depend on n. Here is an intuitive explanation. Think about what happens if n = 2, then any model
will work. The larger n is, the larger ratio of mean over variance we require in order to avoid overlap between the
Gaussian distributions. Note that the dependence on n is unavoidable if we want to obtain high probability result on
correct classification: The assumptions and the result are essentially an “if and only if” relationship.

Q: In the “easy regime”, are the solutions given by SGD or other optimizers (close to) optimal?

A: Empirically, we have extensive experiments (see Figures 13-18) where we demonstrate that training the models
using SGD is doing what it is expected to do, i.e., the trained models and the ansatz have similar performances. Note
that the ansatz is proven to be optimal for the “easy regime”.

Q: Are the theoretical analyses restricted to a specific attention architecture?

A: No. Our analyses are not limited to a special graph attention model. For the positive result in the “easy regime”,
we use a specific architecture because it is sufficient for perfect classification. For the negative result in the “hard
regime”, our result applies to the Bayes optimal classifier, which means that any classifier/attention would fail (since
the optimal Bayes classifier fails).

Q: Are the theoretical analyses of CSBM in this work similar to prior analyses of SBM?

A: No. The analyses in this work significantly differ from prior analyses of SBM in that our work heavily focuses
on analyzing the behaviors of sub-Gaussian random variables (i.e. the node features) rather than analyzing the graph
structure alone. The sub-Gaussian random variables are formed by coupling the highly nonlinear attention coefficients,
the node features and the graph structure altogether. The resulting data is highly correlated and highly nonlinear.

Q: What is the main challenge in extending the current work to multi-layer scenario?

A: For the particular two-block CSBM data model, we do not need more layers to obtain the desired results for both
the “easy regime” and the “hard regime”. On the other hand, if someone wants to analyze the effects of using more
layers, they need to use a more complicated data model, e.g. XOR CSBM, where the nodes belonging to class 0 have
means [p, ] and [— g, —p] with equal probability, and nodes belonging to class 1 have means [, —p] and [—p, p]
with equal probability. For XOR CSBM we might need more than two layers. The proof techniques are going to be
the same, and conclusions are going to be the same.

Q: Ultimately we care about node classification accuracy, why do you focus on edge classification in this work?

A: The ability to weight/drop edges allows aggregation from more informative neighbor nodes and consequently
leads to better node classification result. This benefit is demonstrated by the positive result in the “easy” regime.
For that reason we believe it is important to understand the behavior of graph attention from the perspective of edge
classification. This is why in this work we focus on determining if graph attention helps in the classification of edges.
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