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Abstract
Before entering the neural network, a token is001
generally converted to the corresponding one-002
hot representation, which is a discrete distri-003
bution of the vocabulary. Smoothed represen-004
tation is the probability of candidate tokens005
obtained from a pre-trained masked language006
model, which can be seen as a more informative007
substitution to the one-hot representation. We008
propose an efficient data augmentation method,009
termed text smoothing, by converting a sen-010
tence from its one-hot representation to a con-011
trollable smoothed representation. We evalu-012
ate text smoothing on different benchmarks in013
a low-resource regime. Experimental results014
show that text smoothing outperforms various015
mainstream data augmentation methods by a016
substantial margin. Moreover, text smoothing017
can be combined with those data augmentation018
methods to achieve better performance.019

1 Introduction020

Data augmentation is a widely used technique, es-021

pecially in the low-resource regime. It increases022

the size of the training data to alleviate overfit-023

ting and improve the robustness of deep neural024

networks. In the field of natural language process-025

ing (NLP), various data augmentation techniques026

have been proposed. One most commonly used027

method is to randomly select tokens in a sentence028

and replace them with semantically similar tokens029

to synthesize a new sentence (Wei and Zou, 2019;030

Kobayashi, 2018; Wu et al., 2019). (Kobayashi,031

2018) proposes contextual augmentation to predict032

the probability distribution of replacement tokens033

by using the LSTM language model and sampling034

the replacement tokens according to the probabil-035

ity distribution. (Wu et al., 2019) uses BERT’s036

(Devlin et al., 2018) masked language modeling037

(MLM) task to extend contextual augmentation038

by considering deep bi-directional context. (Ku-039

mar et al., 2020) further propose to use different040

types of transformer based pre-trained models for041

Figure 1: The blue part demonstrates the use of text
smoothing data augmentation for downstream tasks, and
the red part directly uses the original input.

conditional data augmentation in the low-resource 042

regime. 043

MLM takes masked sentences as input, and typ- 044

ically 15% of the original tokens in the sentences 045

will be replaced by the [MASK] token. Before 046

entering MLM, each token in sentences needs to 047

be converted to its one-hot representation, a vec- 048

tor of the vocabulary size with only one position 049

is 1 while the rest positions are 0. MLM outputs 050

the probability distribution of the vocabulary size 051

of each mask position. Through large-scale pre- 052

training, it is expected that the probability distri- 053

bution is as close as possible to the ground-truth 054

one-hot representation. Compared with the one- 055

hot representation, the probability distribution pre- 056

dicted by pre-trained MLM is a “smoothed” repre- 057

sentation, which can be seen as a set of candidate 058

tokens with different weights. Usually, most of the 059

weights are distributed on contextual-compatible 060

tokens. Multiplying the smooth representation by 061

the word embedding matrix can obtain a weighted 062

summation of the word embeddings of the candi- 063

date words, termed smoothed embedding, which 064

is more informative and context-rich than the one- 065

hot’s embedding obtained through lookup opera- 066

tion. Therefore, the use of smoothed representation 067

instead of one-hot representation as the input of 068
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the model can be seen as an efficient weighted data069

augmentation method. To get the smoothed rep-070

resentation of all the tokens of the entire sentence071

with only one forward process in MLM, we do not072

explicitly mask the input. Instead, we turn on the073

dropout of MLM and dynamically randomly dis-074

card a portion of the weight and hidden state at075

each layer.076

An unneglectable situation is that some tokens077

appear more frequently than others in similar con-078

texts during pre-training, which will cause the079

model to have a preference for these tokens. This is080

harmful for downstream tasks such as fine-grained081

sentiment classification. For example, given “The082

quality of this shirt is average .", the “average" to-083

ken is most relevant to the label. The smoothed084

representation through the MLM at the position085

of “average" is shown in Figure 2. Although the086

probability of “average" is the highest, more proba-087

bilities are concentrated on tokens conflict with the088

task label, such as “high", “good" or “poor”. Such089

a smoothed representation is hardly a good aug-090

mented input for the task. To solve this problem,091

(Wu et al., 2019) proposed to train label embedding092

to constraint MLM predict label compatible tokens.093

However, under the condition of low resources, it094

is not easy to have enough label data to provide095

supervision. We get inspiration from the practi-096

cal data augmentation method mixup (Zhang et al.,097

2017) in the computer vision field. We interpolate098

the smoothed representation with the original one-099

hot representation. Through interpolation, we can100

enlarge the probability of the original token, and101

the probabilities are still mostly distributed on the102

context-compatible words, as shown in the figure103

2.104

We combine the two stages as text smooth-105

ing: obtaining a smooth representation through106

MLM and interpolating to constrain the represen-107

tation more controllable. To evaluate the effect108

of text smoothing, we perform experiments with109

low-resource settings on three classification bench-110

marks. In all experiments, text smoothing achieves111

better performance than other data augmentation112

methods. Further, we are pleased to find that text113

smoothing can be combined with other data aug-114

mentation methods to improve the tasks further. To115

the best of our knowledge, this is the first method to116

improve a variety of mainstream data augmentation117

methods.118

Figure 2: Interpolation of the smoothed representation
and the original one-hot representation.

2 Related Work 119

Various NLP data augmentation techniques have 120

been proposed and they are mainly divided into two 121

categories: one is to modify raw input directly, and 122

the other interferes with the embedding (Miyato 123

et al., 2016; Zhu et al., 2019). The most commonly 124

used method to modify the raw input is the token 125

replacement: randomly select tokens in a sentence 126

and replace them with semantically similar tokens 127

to synthesize a new sentence. (Wei and Zou, 2019) 128

directly uses the synonym table WordNet(Miller, 129

1998) for replacement. (Kobayashi, 2018) proposes 130

contextual augmentation to predict the probability 131

distribution of replacement tokens with two causal 132

language models. (Wu et al., 2019) extends con- 133

textual augmentation with BERT’s (Devlin et al., 134

2018) masked language modeling (MLM) to con- 135

sider bi-directional context. (Gao et al., 2019) 136

softly augments a randomly chosen token in a sen- 137

tence by replacing its one-hot representation with 138

the distribution of the vocabulary provided by the 139

causal language model in machine translation. Un- 140

like (Gao et al., 2019), we use MLM to generate 141

smoothed representation, which considers the deep 142

bi-directional context more adequately. And our 143

method has better parallelism, which can efficiently 144

obtain the smoothed representation of the entire 145

sentence in one forward process. Moreover, we 146

propose to constrain smoothed representation more 147

controllable through interpolation for classification 148

tasks. 149

3 Our Method 150

3.1 Smoothed Representation 151

We use BERT as a representative example of 152

MLM. Given a downstream task dataset, namely 153

D = {ti, pi, si, li}Ni=1, where N is the number of 154
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1 sentence = "My favorite fruit is pear ."
2 lambd = 0.1 # interpolation hyperparameter
3 mlm.train() # enable dropout, dynamically mask
4 tensor_input = tokenizer(sentence, return_tensors="pt")
5 onehot_repr = convert_to_onehot(**tensor_input)
6 smoothed_repr = softmax(mlm(**tensor_input).logits[0])
7 interpolated_repr = lambd * onehot_repr + (1 - lambd) * smoothed_repr

Listing 1: Codes to implement text smoothing in PyTorch

instances, ti is the one-hot encoding of a text (a155

single sentence or a sentence pair), pi is the posi-156

tional encoding of ti, si is the segment encoding157

of ti and li is the label of this instance. We feed158

the one-hot encoding ti, positional encoding pi as159

well as the segment encoding si into BERT, and160

fetch the output of the last layer of the transformer161

encoder in BERT, which is denoted as:162

−→
ti = BERT(ti) (1)163

where
−→
ti ∈ Rseq_len,emb_size is a 2D dense vector164

in shape of [sequence_len, embedding_size]. We165

then multiply
−→
ti with the word embedding ma-166

trix W ∈ Rvocab_size,embed_size in BERT, to get the167

MLM prediction results, which is defined as:168

MLM(ti) = softmax(
−→
tiW

T ) (2)169

where each row in MLM(ti) is a probability distri-170

bution over the token vocabulary, representing the171

context-compatible token choices in that position172

of the input text learned by pre-trained BERT.173

3.2 Mixup Strategy174

The mixup (Zhang et al., 2017) is defined as:175

x̃ = λxi + (1− λ)xj (3)176

ỹ = λyi + (1− λ)yj (4)177

(xi, yi) and (xj , yj) are two feature-target vectors178

drawn at random from the training data, and λ ∈179

[0, 1]. In text smoothing, the one-hot representation180

and smoothed representation are derived from the181

same raw input, their lables are identical and the182

interpolation operation will not change the label.183

So the mixup operation can be simplified to:184

t̃i = λ · ti + (1− λ) · MLM(ti) (5)185

ti is the one-hot representation, MLM(ti) is the186

smoothed representation, t̃i is the interpolated rep-187

resentation and λ is the balance hyperparameter to188

control interpolation strength. In the downstream189

tasks, we use interpolated representation instead of190

the original one-hot representation as input.191

SST-2 SNIPS TREC
Train 20 70 60
Dev 20 70 60
Test 1821 700 500

Table 1: Data statistics in low-resource regime settings.

4 Experiment 192

4.1 Baseline Approaches 193

EDA(Wei and Zou, 2019) consists of four simple 194

operations: synonym replacement, random inser- 195

tion, random swap, and random deletion. 196

Back Translation (Shleifer, 2019) translate a sen- 197

tence to a temporary language (EN-DE) and then 198

translate back the previously translated text into the 199

source language (DE-EN). 200

CBERT (Wu et al., 2019) masks some tokens 201

and predicts their contextual substitutions with pre- 202

trained BERT. 203

BERTexpand, BERTprepend (Kumar et al., 204

2020) conditions BERT by prepending class labels 205

to all examples of given class. “expand" a the label 206

to model vocabulary, while “prepend" without. 207

GPT2context (Kumar et al., 2020) provides a 208

prompt to the pre-trained GPT model and keep- 209

ing generating until the EOS token. 210

BARTword, BARTspan (Kumar et al., 2020) con- 211

ditions BART by prepending class labels to all ex- 212

amples of given class. BARTword masks a single 213

word while BARTspan masks a continuous chunk. 214

4.2 Experiment Setting 215

Our experiment strictly follows the settings in the 216

(Kumar et al., 2020) paper on three text classifica- 217

tion datasets downloaded from the links 1. 218

SST-2 (Socher et al., 2013) is a movie reviews sen- 219

timent classification task with two labels. 220

SNIPS (Coucke et al., 2018) is a task of over 221

16,000 crowd-sourced queries distributed among 7 222

user intents of various complexity. 223

1SST-2 and TREC:https://github.com/1024er/
cbert_aug,
SNIPS:https://github.com/MiuLab/
SlotGated-SLU/tree/master/data/snips
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Method SST-2 SNIPS TREC Avg.
No Aug 52.93 (5.01) 79.38 (3.20) 48.56 (11.53) 60.29(6.58)
EDA 53.82 (4.44) 85.78 (2.96) 52.57 (10.49) 64.06(5.96)
BackTrans. 57.45 (5.56) 86.45 (2.40) 66.16 (8.52) 70.02(5.49)
CBERT 57.36 (6.72) 85.79 (3.46) 64.33 (10.90) 69.16(7.03)
BERTexpand 56.34 (6.48) 86.11 (2.70) 65.33 (6.05) 69.26(5.08)
BERTprepend 56.11 (6.33) 86.77 (1.61) 64.74 (9.61) 69.21(5.85)
GPT2context 55.40 (6.71) 86.59 (2.73) 54.29 (10.12) 65.43(6.52)
BARTword 57.97 (6.80) 86.78 (2.59) 63.73 (9.84) 69.49(6.41)
BARTspan 57.68 (7.06) 87.24 (1.39) 67.30 (6.13) 70.74(4.86)
Text smoothing 59.37(7.79) 88.85(1.49) 67.51(7.46) 71.91 (5.58)

Table 2: Evaluating data augmentation methods on different datasets in a low-resource regime.

Method SST-2 SNIPS TREC Avg.
EDA 59.66 (5.57) 87.53 (2.31) 55.95 (7.90) 67.71 (5.26)
+ text smoothing 64.84(6.82) 88.54(3.03) 67.68(9.70) 73.69(6.52)
BackTrans. 60.60 (7.40) 86.04 (2.20) 64.57 (7.48) 70.40 (5.70)
+ text smoothing 61.66(7.62) 88.72(1.99) 69.17(10.51) 73.19(6.7)
CBERT 60.10 (4.57) 86.85 (2.06) 63.56 (8.09) 70.17 (4.91)
+ text smoothing 61.65(6.65) 88.18(2.85) 67.84(9.70) 72.56(6.4)
BERTexpand 59.85 (6.16) 86.12 (2.45) 62.67 (7.59) 69.55 (5.40)
+ text smoothing 62.04(7.93) 89.49(2.05) 65.89(7.48) 72.47(5.82)
BERTprepend 60.28 (5.80) 86.86 (2.46) 65.20 (6.88) 70.78 (5.05)
+ text smoothing 62.75(7.14) 88.04(1.92) 68.07(7.30) 72.95(5.45)
GPT2context 57.46 (4.96) 84.10 (2.39) 46.47 (12.80) 62.68 (6.72)
+ text smoothing 60.66(6.72) 87.68(1.60) 59.13(11.33) 69.16(6.55)
BARTword 86.98(1.96) 60.99(7.15) 61.29(10.00) 69.76(6.37)
+ text smoothing 62.67(7.40) 88.50(2.10) 67.75(6.50) 72.97(5.33)
BARTspan 87.34(2.17) 63.42(5.58) 62.47(8.11) 71.08(5.29)
+ text smoothing 62.37(7.18) 89.06(2.18) 70.89(6.81) 74.11(5.39)

Table 3: The effect of text smoothing combined with other data augmentation methods in low-resource regime.

TREC (Li and Roth, 2002) contains six question224

types collected from 4,500 English questions.225

We randomly subsample 10 examples per class226

for each experiment for both training and develop-227

ment set to simulate a low-resource regime. Data228

statistics of the three datasets are shown in Table229

1. Following (Kumar et al., 2020), we replace nu-230

meric class labels with their text versions.231

We first compare the effects of text smoothing232

and baselines data augmentation methods on dif-233

ferent datasets in a low-resource regime. Then we234

further explore the effect of combining text smooth-235

ing with each baseline method. Considering that236

the amount of data increases to 2 times after com-237

bination, we expand the data used in the baseline238

experiments to the same amount for the fairness of239

comparison. All experiments are repeated 15 times240

to account for stochasticity and results are reported241

as Mean (STD) accuracy on the full test set.242

4.3 Experimental Results243

As shown in Table2, text smoothing brings the244

largest improvement to the model on the three245

datasets compared with other data augmentation246

methods. Compared with training without data247

augmentation, text smoothing achieves an aver-248

age improvement of 11.62% on the three datasets,249

which is significant. The previously best method is 250

BARTspan, which is exceeded by Text smoothing 251

with 1.17% in average. 252

Moreover, we are pleased to find that text 253

smoothing can be well combined with various data 254

augmentation methods, further improving the base- 255

line data augmentation methods. As shown in Ta- 256

ble3, text smoothing can bring significant improve- 257

ments of 5.98%, 2.79%, 2.39%, 2.92%, 2.17%, 258

6.48%, 3.21%, 3.03% to EDA, BackTrans, CBERT, 259

BERTexpand, BERTprepend, GPT2context, BART- 260

word, and BARTspan, respectively. To the best of 261

our knowledge, this is the first method to improve a 262

variety of mainstream data augmentation methods. 263

5 Conclusoins 264

This article proposes text smoothing, an effective 265

data augmentation method, by converting sentences 266

from their one-hot representations to controllable 267

smoothing representations. In the case of a low 268

data regime, text smoothing is significantly better 269

than various data augmentation methods. Further- 270

more, text smoothing can further be combined with 271

various data augmentation methods to obtain better 272

performance. 273
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