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ABSTRACT

Deep neural networks (DNNs) have achieved remarkable success in predicting
transcription factor (TF) binding from high-throughput genome profiling data.
Since TF binding is primarily driven by sequence motifs, understanding how
DNNs make accurate predictions could help identify these motifs and their log-
ical syntax. However, the black-box nature of DNNs complicates interpretation.
Most post-hoc methods evaluate the importance of each base pair in isolation,
often resulting in noise since they overlook the fact that motifs are contiguous
regions. Additionally, these methods fail to capture the complex interactions be-
tween different motifs. To address these challenges, we propose Motif Explainer
Models (MEMs), a novel explanation method that uses sufficiency and necessity
to identify important motifs and their syntax. MEMs excel at identifying multiple
disjoint motifs across DNA sequences, overcoming limitations of existing meth-
ods. Moreover, by accurately pinpointing sufficient and necessary motifs, MEMs
can reveal the logical syntax that governs genomic regulation.

1 INTRODUCTION

The regulatory function of DNA sequences is determined by short DNA segments called “motifs”,
where certain proteins called “transcription factors” (TFs) bind to regulate gene activity (Klug,
1995; |Alberts et al., |2002; [Siggers & Gordan, 2014; [Lambert et al., 2018). TF binding depends
on the arrangement and logical combination of these motifs. High-throughput experiments provide
a genome-wide view of regulatory activity in various cell types (Consortium et al.l 2012). Tech-
niques like DNase-seq and ATAC-seq identify regions of open chromatin where TFs can bind, while
more targeted methods like ChIP-seq offer insights into specific protein-DNA interactions.

Given the complexity and volume of data from these experiments, accurately predicting genome
activity from DNA sequences requires models that can handle large datasets and capture the intricate
interactions and arrangement of motifs. Deep neural networks (DNNs), with their proven success in
various biological sequence prediction tasks, are well-suited for this challenge. They have achieved
state-of-the-art performance in predicting TF binding from DNA sequences (Alipanahi et al.| 2015;
Avsec et al.| 2021} [Eraslan et al., 2019). Genomic DNNs take DNA sequences as inputs and learn
to predict a label from a regulatory profiling experiment, such as whether a TF binds to a given
sequence. The goal is to use these accurate models to identify the motifs and syntax governing
genomic regulation (Novakovsky et al.|[2023).

Despite their success, the black-box nature of these models makes it difficult to understand how and
why they make specific predictions (Zednik, 2021 Tomsett et al., 2018)). In regulatory genomics,
this has led to the development of post-hoc methods to explain genomic DNNS at the local (sample)
level. Given a model f and an input N-length DNA sequence x = (x1,Z2,...,zy) € RY, these
methods aim to identify important motifs for the prediction f(x) by assigning an importance score
to each base pair x;, and then segmenting out high-importance regions as putative motifs. However,
many of these methods fall short because they evaluate the importance of individual base pairs in
isolation, and do not leverage the fact that motifs are short, contiguous regions. Furthermore, these
methods also fail to capture the complex interactions between motifs.

To address these challenges, [Linder et al.| (2022) introduced scramblers, a model-based explanation
method optimized for the discrete nature of biological sequences. Scramblers outperform traditional
post-hoc methods by identifying important motifs using learned stochastic masks. However, when
the input is a complex DNA sequence with multiple motifs, scramblers struggle to identify multiple
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short contiguous regions as they do not leverage the key properties of motifs we know of. Due
to this shortcoming, like other methods, scramblers cannot adequately uncover the logical syntax
governing regulatory behavior.

In this work, we propose a novel model-based explanation method called Motif Explainer Models
(MEMs), which leverages notions of sufficiency and necessity to produce meaningful explanations.
For complex DNA sequences composed of disjoint and contiguous motifs, we show that MEMs
accurately identify motifs and outperform the current state-of-the-art method of scramblers. Fur-
thermore, by employing sufficient and necessary explanations together, we demonstrate that MEMs
can reveal the logical syntax between motifs that governs genomic regulation.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We address the challenges of interpreting genomic DNNs by proposing a novel model-based ex-
planation method that can identify important motifs and deduce their logical syntax. Specifically,
our methodology identifies both sufficient or necessary motifs, providing more accurate and inter-
pretable explanations for genomic DNNs on complex DNA sequences. Our contributions include:

1. Motif Explainer Models (MEMs): We introduce Motif Explainer Models (MEMs), a model-
based explanation method capable of generating sufficient or necessary explanations for ge-
nomic DNNs. MEMs can handle disjoint and contiguous motifs gracefully, capturing the
intricate arrangements and interactions that other methods miss.

2. Uncovering Logical Syntax via Sufficiency and Necessity: By combining sufficient and nec-
essary explanations, we show that MEMs can reveal the logical syntax governing how motifs
interact to regulate downstream gene expression.

3. Experimental Validation: Through a series of experiments, we demonstrate that MEMs out-
perform scramblers, the current state-of-the-art method in identifying important motifs. Ad-
ditionally, we show how MEMs can deduce common biological syntactical rules, such as
cooperation, repression, and redundancy.

1.2 RELATED WORKS

A comprehensive overview of related works is presented in Appendix [A.1]

2 BACKGROUND

Notation. Random vectors and their observed values are denoted with uppercase (e.g., X) and
lowercase (e.g., x) letters. For a subset of features S C [N] (where [N] = {1,...,N}), we
denote its complement as S = [N]\ S. Additionally, subscripts index features, e.g. the vector
Xg is the restriction of x to the components indexed by S. The input domain of N-length DNA
sequences and output domain of binary labels are denoted as X = {A, ¢, G, T}V and Y =
{0, 1}, respectively. A distribution over features and labels X x ) is denoted as D and the marginal
distribution over features is represented as D y. Lastly, denote p : R X R — R to be any symmetric
function that measures the similarity between elements a, b € R with the property p(a,b) = 0 <=
a = b. A common choice is p(a,b) = (a — b)?, which we use in our experiments.

Setting. We consider a binary classification setting with a distribution D over X x )/, a domain of
N-length DNA sequences and binary labels. Since the inputs are N-length DNA sequences, when
we refer to an input DNA sequence x, note it is implicitly being expressed as a one-hot encoded
pattern, x € {0,1}V>*4 (a N-length sequence of alphabet size 4, representing the 4 base pairs
{pn, C, G, T}). We assume access to a predictor f : X +— Y, pretrained on DNA sequence—
label pairs, (X,Y) ~ D. Our goal of interpretation is: for a fixed DNA sequence x, identify
which short subsequences, i.e. motifs, in x are most important for the prediction f(x). To do
so, our method—as with many other post-hoc methods (Covert et al., 2021} [Fong & Vedaldi, 2017}
Fong et al.|[2019)—relies on evaluating how a predictor’s behavior changes when base-pairs in x are
retained or omitted. Since f can only accept N-length sequences as an input we employ the standard
technique for querying f on subsets of features by evaluating the average restricted prediction

fs(x) = Xgﬂivé[f(xs, Xs)] )

where x is fixed and X g is a random vector sampled from Vs an arbitrary reference distribution
over the features indexed by S (Covert et al.,|2021; [Teneggi et al., 2023; Bharti et al., 2025).

2
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2.1 SUFFICIENCY AND NECESSITY

Our methodology takes as input a pretrained predictor f : X +— ) and a fixed DNA sequence x,
and outputs a subset S C [d] that is considered “important” for the prediction f(x). We define the
importance of .S using slightly modified notions of sufficiency and necessity originally proposed by
Bharti et al.| (2025). We present our modified definitions, below for clarity:

Definition 1 (Sufficiency & Necessity (Bharti et al.,[2025))). Let e and A > 0. Denote p : RxR — R

t0 be a similarity measure. For a predictor f and sample x, denote Y (x) = 1[f(x) > 0.5] o be the
predicted class of x.

A subset S C [d] is e-sufficient with respect to distribution V for f at X if

p(Y (%), fs(x)) < € @)
A subset S C [d] is A-necessary with respect to a distribution V for f at x if
p(Y (%), f5(x)) = A. (3)

In other words, for a reference distribution V), a subset of features S is e-sufficient if, with x5 fixed,
the average restricted prediction fs(x) is € close to the predicted class Y (x). Conversely, a subset
of features S is A-necessary if, when the features in .S are marginalized out, the resulting average
restricted prediction f(x) is A away from Y (x). Later in this work, we will illustrate why sufficient
and necessary explanations are essential for deducing motif syntax and how our method accurately
identifies sufficient and necessary motifs. Furthermore, we show that while scramblers generate
these explanations with some success, our proposed method achieves far greater accuracy, enabling
more reliable deduction of the underlying motifs and their logical syntax.

2.2  SCRAMBLERS

Given a pre-trained predictor f and fixed DNA-sequence x, a scrambler (Linder et al.| [2022) is a
learned model g : X — RJ;[O that predicts a set of real-valued importance scores in (0, co]”. These
scores produce a probability distribution P,(x) that we can sample from. Specifically, P, (x) is a
set of IV categorical softmax-nodes, also known as a position-specific scoring matrix (PSSM) that
interpolates between x € {0, 1}"¥** and a non-informative background distribution B € [0, 1]V %4,
One can learn a scrambler g by solving the following optimization problem

arg min E

4
gCH X~Dx @

L(f, X, P,) + A <tbm _ %KL [B|Pg(X)D2

- 2
where L(f,X, P,) denotes a loss function, (tbits — KL [B HPg(X)D a conservation penalty,

and A > 0 a hyperparameter which controls the magnitude of the penalty. Depending on the type of
scrambler to be learned, the loss function L( f, X, P;) and functional form of probability distribution
P,(X) will vary. There are two types of scramblers, an inclusion scrambler and occlusion scrambler
which aim to identify sufficient and necessary motifs respectively.

Inclusion Scrambler. An inclusion scrambler is trained with

LUAXP) = E [KL[FX)IFX)|] and Py(x) = olog(B) +x x g(x)).  (5)

~Pg(X)

where o denotes the softmax o(L);; = % and g(x) € (0, 00V *M represent the scores
k=1 i

g(x) broadcasted across the base (ACGT) dimension. With these choices of L(f, X, P,), conser-
vation penalty, small value of i, and Py (x), an inclusion scrambler is trained to output scores in
(0, 00]" which produce a distribution P;(x) whose cross entropy relative to B is small, but whose

samples X ~ P,(x) minimize the predictive reconstructive error, = E {KL { FX)f (X)”,

X~ Py (X)
thus identifying sufficient features.
Occlusion Scrambler. An occlusion scrambler is trained with
LX) == E [KL [f(X)Hf(X)H and  P,(x) = o(log(B) + x/¢(x)).  (6)
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With these choices of L(f, X, P,), conservation penalty, appropriately chosen value for ¢, and
P,(x) an occlusion scrambler is trained to output scores in (0, oc]”¥ which produce a distribution

P,(x) whose cross entropy relative to B is approximately ty;, and whose samples X ~ P, (x) max-
imize the predictive reconstructive error. Since the samples from P, (x) maximize the reconstructive
error, this formulation identifies necessary features.

2.3 SHORTCOMINGS OF SCRAMBLERS

While scramblers outperform common post-hoc methods in providing explanations, they still face
some key limitations that affect their overall effectiveness.

Lack of Key Prior Knowledge. DNA motifs are generally recognized as small, contiguous, and
disjoint subsequences within a larger sequence (Klugl [1995;|Alberts et al., [2002; Siggers & Gordan),
2014; |[Lambert et al., 2018}, [Stormol, 2013; Maston et al., |2006). Thus, incorporating this key in-
formation as an inductive bias into explanation methods could greatly improve the quality of the
identified motifs. However, scramblers do not explicitly consider this prior knowledge; instead, they
learn a distribution P, (X) over sequences, which optimizes jointly for the prediction reconstruction
error and for entropy. While this formulation is valid to produce necessary or sufficient explanations,
it fails to capture prior knowledge of motif biology, particularly that motifs occur as one or more
small, contiguous, and disjoint subsequences.

Limitations of the Conservation Penalty. While inclusion and occlusion scramblers aim to max-
imize and minimize the entropy of P,(x) via the conservation penalty, their effectiveness heavily
depends on the choice of the ¢y parameter. This parameter controls the entropy and serves as the
target value for the expected entropy of P,(X). For example, a larger ty; allows more entropy
for Py(x) with respect to the background B. For an inclusion scrambler, tuis =~ 0 is appropriate.
However, for an occlusion scrambler, choosing ;s can be challenging. This is because we often
do not know how many motifs exist or how distinct they are from the background signal, making it
difficult to determine an appropriate target entropy for P, (x) relative to B. Additionally, consider-
ing our prior knowledge of motif biology, there is no theoretically justifiable reason that enforcing
entropy will lead to the identification of small, contiguous motifs, which we will demonstrate in our
experimental section.

3  MOTIF EXPLAINER MODELS

To address the limitations of scramblers and provide more accurate explanations that highlight con-
tiguous and disjoint motifs, we propose Motif Explainer Models (MEMs). This model-based based
explanation approach is designed to incorporate the key properties of motifs, better capturing the
structure and arrangement of motifs within sequences, and offering a more precise and biologically
meaningful interpretation. A MEM is a model m : X ~ [0,1]" that outputs importance scores

in [0, 1]V. For a sequence x = (1, ...,,), a MEM outputs scores m(x) = (mi,...,my) that
produce a probability distribution P,,(x) over the random variable X = (X1, ..., Xx) where

ie., Xi ~ Bernoulli(m;) with outcomes {x;,b;}. Here b; are entries of a vector b € X, a back-
ground vector used to fill the entries of X. A MEM is learned by solving the following general
optimization problem

E;rrlggm’;'i-rll X~EDX [L(f, X, Py) + R(m(X))] (8)

Here, L(f,X, P,,) is a loss function that measures the reconstruction error between original predic-
tions f(X) and predictions on the samples from P,,,(X). The term R(m (X)) is a regularizer that
controls the complexity of the MEM outputs. There are two types of MEMs that can be learned: a

sufficient MEM (s-MEM) and a necessary MEM (n-MEM), depending on the choice of loss func-
tion L(f, X, Pys). The regularizer R remains the same for both types of MEMs.

Loss Function. The choice of loss function determines whether one wants to learn a s-MEM or
n-MEM. To learn an s-MEM the loss function is:

L(F. X, P) = p (f(), E[F(X)] ). ©
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where, p : R x R +— R is a measure of similarity on R and the expectation is over P, and b
(if b is not fixed and instead sampled from some distribution). With this choice of L, an s-MEM
minimizes the reconstruction error between the original prediction f(X) and the average prediction
over P,,,(X). Thus, an s-MEM is specifically designed to identify sufficient sets.

Conversely, a n-MEM is trained using the following loss function:

L(f,X, P) = —p(f(x), E[f(X)]). (10)

where the expectation is over P(l_m(x))ﬂ and b. Minimizing this loss is equivalent to maximizing

p(f(x),E[f(X)]), the reconstruction error between a original predictions f(X) and the average
prediction over P(1 _,(x)). Therefore, an n-MEM is specifically designed to identify necessary sets.

Regularizers. Since motifs are known to be small, contiguous subsequences, we incorporate this
key prior knowledge into our MEMs. Unlike scramblers, we regularize our models with an inductive
bias that directly encourages the identification of disjoint, contiguous regions consisting of a limited
number of base pairs. To construct the regularizer R, we draw inspiration from sentiment analysis
in natural language processing. In NLP, disjoint clusters of words typically interact to convey sen-
timent; similarly, base pairs in DNA sequences interact to form motifs. Indeed, it has been shown
that the syntactical structure of genome regulation has many similarities to natural language (Hwang
et al., 2024). Following the approach of Brinner & Zarrief3| (2023), we assume a linear coordinate
system on DNA sequences x and define a distance d(z, j) between base pairs ¢ and j. With this
assumed structure, instead of having our MEM directly outputting scores m(x) = (mq,...my),
we have it output two vectors w € RN and o € R];[O, and calculate the final scores as follows:

d(i. )2
m; = sigmoid (Z wiﬂ-) where w; ; = w; - exp (_ (4,9) )
7

Thus, the optimization is done with respect to w and o. As noted by (Brinner & Zarriel3, [2023)), this
parametrization of m(X) will encourage neighboring base-pairs to be assigned similar scores if the
corresponding ¢ values are large. With this parametrization, the final regularizer R defined as

Rm(X)) = Ax - ()1 = Xa- - 3 log(or), ar

where || - ||; is the ¢; norm and large o values are promoted with the additional term Ao -
% >_;log(o;). The first term encourages the importance scores to be sparse, meaning only a small
number of base pairs are assigned high scores. The second term encourages neighboring importance
scores to be similar while also promoting sharp boundaries when optimal. This is crucial because it
allows for the discovery of disjoint contiguous regions, enabling a more accurate representation of
the motifs and their distinct properties.

4 EXPERIMENTAL RESULTS

In the following experiments, we demonstrate that MEMs accurately identify motifs and help infer
logical syntax. We compare MEMs to scramblers, the standard model-based explanation method:
s-MEMs to inclusion scramblers, which generate sufficient explanations, and n-MEMs to occlusion
scramblers, which generate necessary explanations. Since prior work has shown that scramblers
outperform traditional post-hoc methods, we focus our comparison on MEMs and scramblers.

4.1 SYNTHETIC DATA

We conduct experiments on synthetic DNA sequences x € {0, 1}%°9%# containing two motifs, A
and B, which correspond to the SPI1 and CTCF DNA-binding motifs of 10 and 12 base pairs,
respectively (Friedman, [2007; [Pchelintsev et al., [2016). We model three common logical syntax
rules—cooperation, repression, and redundancy—to determine the labels Y € {0, 1}. For all three
logical rules, our label predictor f is a residual network with dilated convolutions. To ensure a fair
comparison between MEMs and scramblers, we normalize scrambler attribution scores to [0, 1] by
computing their information content (Shannon, [1948) and applying min-max normalization. The

11 is the vector of all 1’s in R
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Figure 1: Results on positively labeled sequences (Y = 1) under a cooperative syntax

resulting importance scores are thresholded for ¢ € (0,1) to define solution sets S;. Each S; is
represented as a binary vector s; € {0,1}°%, where (s;); = 1if j € S; and 0 otherwise.

To compare MEMs and scramblers, we quantify and report key metrics for the explanations .S; on a
hold-out set of sequences. We measure the sufficiency and necessity of S; using 1— Y (x) — fs, (x)|
and |V (x) — [s,(x)], respectively, where Y (x) is the predicted class of model f. Higher values
indicate greater sufficiency and necessity of .S;. Additionally, we quantify the number of base pairs
in Sy as |Sy| = ||s¢||o and count the number of disjoint regions by identifying clusters of consecutive
‘1‘s in s;. Since, we a prior do not know which threshold generates the explanation .Sy, we compute
our metrics for all t € (0,1). As a result, the effectiveness of MEMs and scramblers is evaluated
based on their ability to generate high-quality explanations across all possible thresholds. We will
show that, unlike MEMs, scrambler performance is highly sensitive to ¢, and in any experiment, there
is no single ¢ for which scramblers outperform MEMs. Further experimental details are provided in

Appendix [A.3]
4.2 LEARNING LOGICAL SYNTAX

We consider the three following types of logical syntax between motifs. These three arguably con-
stitute the vast majority of syntactical constraints between motifs in regulatory biology. We present
the results for the cooperative and redundant syntax and defer repression to Appendix [A2]

Cooperative Redundant Repressive
_J1 ifAAB v — 1 ifAVvB v — 1 ifAAN-B
~ 10 otherwise ~ 10 otherwise ~ 10 otherwise

4.2.1 COOPERATIVE SYNTAX

We begin with a data-generating process that follows a cooperative syntax, where a Y = 1 label is
assigned only when both motifs A and B are present; otherwise, the label is negative. Consequently,
for a predictor trained on this rule, the set { A, B} is sufficient for positive predictions, as both motifs
are required to produce a positive label. Conversely, among positive predictions, either { A} or { B}
is necessary, since removing either results in a changed prediction.

In Fig.[Tal we compare the effectiveness of s-MEM:s and inclusion scramblers in explaining the pre-
dictor and recovering the correct set of sufficient motifs. For the sequences with true label Y = 1, the
results show that for thresholds ¢ € (0, 0.6), both methods successfully identify sufficient features.
However, as ¢ increases, the inclusion scrambler struggles to recover the sufficient set. Notably, the
s-MEM is more accurate and outperforms the inclusion scrambler because it identifies two motifs as
being sufficient for the predictor. Across all ¢ € (0, 1), the s-MEM identifies approximately 20-30
important base pairs across 2-3 disjoint regions, while the inclusion scrambler detects between 0
and 80 base pairs, with 0-5 regions depending on the threshold ¢.
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Figure 2: Results on positively labeled sequences (Y = 1) under a redundant syntax

In Fig. [Ib] we compare the effectiveness of n-MEMs and occlusion scramblers in recovering the
correct necessary motifs. The results indicate that, for all thresholds both methods identify necessary
regions, with the n-MEM detecting more necessary regions. More importantly though, the n-MEM
identifies regions which the scrambler misses. The n-MEM is identifying 0-20 important base-
pairs dispersed over 1-1.5 regions, while the scrambler is detecting anywhere from 0-60 base-pairs
dispersed randomly, as indicated by its identifying 0-0.5 regions on average. Examples are provided

in Figs. [TeJand|[Tf]

Importantly, combining the interpretations from our s-MEM and n-MEM enables us to accurately
and robustly deduce that the logical syntax underpinning the system is cooperation. That is, 2 motifs
are sufficient and 1 is necessary for a positive prediction. Thus, MEMs allow the identification of
logical rules between motifs.

4.2.2 REDUNDANT SYNTAX

We next consider a redundant syntax setting. This rule assigns a positive label if either A, B, or
both are present, and a negative label otherwise. As a result, for a predictor that effectively learns
this rule, either the sets { A} and { B} are sufficient since the true data-generating process assigns
a positive label when either motif is present. On the other hand, depending on whether a sequence
contains either A or B or both, the set of necessary motifs may vary. For sequences that contain
both, the set {A, B} is necessary since only when both are removed will the predictor generate
predictions that yield a classification = 0. For a sequence that contains only A (or B), the set { A}
(or { B}) is necessary as the removal of this single motif will render the label Y = 0.

In Fig. 2b] we compare s-MEMs and inclusion scramblers in a redundant setting. The results show
that for thresholds ¢ € (0, 0.9), both methods identify sufficient regions; however, as ¢ increases, the
inclusion scrambler struggles to recover sufficient regions. Notably, for sequences labeled Y = 1
due to a single motif (either A or B), both methods identify sets that are slightly less sufficient com-
pared to those for positively labeled sequences containing both motifs. More importantly though,
for the Y = 1 sequences with a single motif, the s-MEM is able to detect 1 disjoint region for nearly
all ¢ while the inclusion scrambler identifies more regions for smaller ¢ and less regions for large ¢.
Likewise, for sequences with a ground truth of two motifs, the s-MEM detects 20-30 base-pairs that
are dispersed in 1.5 to 2 regions. Note, theoretically, one motif is sufficient to predict the positive
label but the s-MEM identifies a bit more. We attribute this to the s-MEM’s learning that there are
two motifs present in this sequence and it attributing some importance to the second motif.

In Fig. 2e] we highlight how n-MEMs are able to identify necessary motifs with much greater
success than occlusion scramblers. The results show that across all thresholds, both methods identify
necessary regions, with n-MEMs identifying regions that are much more necessary. Additionally,
n-MEMs are able to accurately detect the correct the number of motifs among the two modes of the
ground truth (i.e., whether there is 1 or 2 motifs). As expected, for sequences with two motifs, our
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n-MEM identifies 10-30 base-pairs over 2-2.5 regions for many ¢, while for sequences with only
one motif, the n-MEM identifies 5-10 base-pairs that make up 1-1.5 regions to be necessary. On
the other hand, the occlusion scrambler fails to distinguish these details. Instead, it outputs the same
(incorrect) explanations for both modes of the ground truth, identifying 20-30 base pairs over 0.5-1
regions to be necessary.

Thus, by combining interpretations from an s-MEM and an n-MEM, we can accurately identify
that 1 motif is sufficient and 1-2 motifs are necessary (depending on the sequence) for a positive
prediction. Therefore, we can conclude this setting indeed follows a redundant syntax.

5 EXPERIMENTAL DATA

We use the CTCF (HepG2) dataset from the ENCODE project to analyze CTCF binding sites in the
HepG?2 cell line and their role in protein-DNA interactions (Consortium et al., [2012)). This dataset
contains 500 base pair DNA sequences with associated IDR peaks from a ChIP-seq experiment.

Our model f is a residual network with dilated convolutions, achieving 76% accuracy on a hold-out
test set. The results in Table|l|compare the explanations of MEMs and scramblers. We compute the
cosine similarity between IDR peak profiles and explanations generated by MEMs and scramblers.
A high cosine similarity indicates that MEM and scrambler explanations assign relative importance
to base pairs in a manner that closely matches the IDR peak profile.

Following our synthetic experiments, we also evaluate sufficiency and the number of base pairs
identified. Both s-MEMs and inclusion scramblers identify sufficient regions with similar alignment
to the IDR peak profile. The key difference is that s-MEMs identify much smaller regions, indicating
they can more accurately pinpoint sufficient motifs compared to inclusion scramblers.

We omit a comparison between n-MEMs and occlusion scramblers because these methods fre-
quently produce attributions that fail to align with actual motif base pairs. We attribute this to the
noisy nature of the experimental data and the fragility of the model f. These properties can result
in a few random base pairs being “necessary,” since even small perturbations can cause significant
changes in model predictions.

Cosine Similarity Sufficiency Number of Base Pairs

s-MEM 0.294 + 0.041 0.979 £ 0.005 36.314 + 3.802
Inclusion Scrambler 0.327 £+ 0.036 0.974 + 0.005 59.952 + 6.996

Table 1: Comparison of s-MEM and Inclusion Scrambler

6 CONCLUSION & FUTURE DIRECTIONS

In this work, we introduced Motif Explainer Models (MEMs), a novel explanation method for ge-
nomic DNNs that identifies both sufficient and necessary motifs in complex DNA sequences. In
contrast to current methods like scramblers, MEMs leverage prior domain knowledge as an induc-
tive bias to cleanly identify individual motifs as disjoint and contiguous subsequences. Furthermore,
by discovering sufficient and necessary motifs separately, MEMs address the limitations of existing
post-hoc methods that often fail to capture the intricate logical relationships between motifs. Our
approach not only improves the interpretability of genomic DNNs, but also uncovers the logical
syntax governing gene regulation, distinguishing between as cooperative, repressive, and redundant
interactions.

Through extensive experiments, we demonstrated that MEMs outperform current methods in de-
tecting important motifs and deciphering their underlying syntax. By providing more accurate and
comprehensive explanations, MEMs offer new insights into the functional roles of motifs in gene
regulation, paving the way for better understanding of transcription-factor binding and genomic
activity. In summary, MEMs represent a significant step forward in interpreting complex genomic
models, offering a robust framework for elucidating the logic behind motif interactions. Future work
may explore extending this framework to more diverse regulatory contexts, ultimately enhancing our
ability to interpret the functional landscape of the genome.
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A APPENDIX

A.1 RELATED WORKS

Several methods have been proposed for discovering motifs from genomic DNNs.

Visualizing Convolutional Filters. Most DNNs used for sequence prediction tasks are convolu-
tional neural networks. (Alipanahi et al., [2015; Zhou & Troyanskaya, [2015; Kelley et al., 2016
Avsec et al., 2021). Thus, to identify important motifs, many works simply visualize CNN filters
(Alipanahi et al., 2015; |[Kelley et al.,|2016)) as early convolutional layers often capture basic patterns,
while deeper layers capture more complex features (Zeiler & Fergus, 2014; |Yosinski et al., 2015}
Simonyan et al.} 2014). However, this approach has shown limited success, as it assumes each filter
learns one motif, and that each motif is learned by only one filter. Recent research shows that motifs
are distributed across multiple filters and layers (Tseng et al., 2024).

Measuring Influence via Post-hoc Explanation Methods. Popular post-hoc explanation meth-
ods like CAM (Zhou et al.|[2016)), LIME (Ribeiro et al.,[2016), gradient-based approaches (Selvaraju
et al., 2017} |Shrikumar et al., 2017; Jiang et al., 2021), Shapley value-based methods (Chen et al.,
2018 [Teneggi et al.| 2022)), and perturbation-based methods (Fong & Vedaldi, 2017} [Fong et al.,
2019) have been adapted to identify motifs. These methods assign importance scores to each base
pair (Sundararajan et al., [2017; [Shrikumar et al., 2017), but they perform poorly for two reasons.
First, by assigning scores to base pairs individually, they miss key motifs because base pairs and
subsequences of subsequences of base pairs inherently interact in complex ways to regulate func-
tion. Second, these methods are computationally expensive. For instance, integrated gradients and
DeepLIFT integrate over the entire DNN, while Shapley-based methods require exponential com-
putations (Strumbelj & Kononenko, 2010; Lundberg & Leel 2017). These shortcomings render the
importance scores noisy and fragile. As a result, they fail to reveal the model’s true decision-making
process (Ghorbani et al.,2019; [Tseng et al., [2020), making it difficult to rely on downstream tools
like MoDISco to cluster them into motifs (Shrikumar et al., 2018]).

Scramblers. To overcome these limitations of traditional post-hoc methods, Linder et al.| (2022)
proposed scramblers, a model-based explanation method that learns stochastic masks to highlight the
base pairs crucial for predictions. Scramblers predict position-specific scoring matrices (PSSMs),
where unimportant base pairs are “scrambled” by increasing their entropy. Scramblers have a dis-
tinct advantage over many traditional post-hoc explanation methods due to their model-based ap-
proach: a scrambler only needs to be trained once for any model predictive f, after which impor-
tance scores for any query DNA sequence can be obtained in a single evaluation. While scramblers
outperform other post-hoc methods, they still struggle with sequences composed of multiple disjoint
and contiguous motifs. This is due to a regularization penalty that focuses on controlling entropy,
rather than incorporating the core characteristics of motifs (small, contiguous, and disjoint). As a
result, scramblers are limited in complex settings and fail to uncover the logical syntax of motif
interactions for genomic regulation.
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Figure 4: Results on negatively labeled sequences (Y = 0) under a repressive syntax

A.2 ADDITIONAL EXPERIMENTS

A.2.1 REPRESSIVE SYNTAX

Lastly, we consider a data-generating process based on a repressive syntax. This rule assigns a
positive label if M is present and M5 is absent, and a negative label in all other cases. The logic
in this rule is more involved as M5 represses M7 from generating a positive label. In this setting,
for sequences with Y = 1, the smallest sufficient and necessary set is { M7} since its sole presence
results in a positive classification and removal in a negative classification. On the other hand, for
negatively labeled sequences Y = 0, the logic is more involved. When the negative label is due to
both M; and M, being present, the sufficient and necessary set is Mo because its presence yields
the correct negative prediction and its removal results in a positive label. For the subset of negatively
labeled sequences that contains M5 only, the set { Ms} is both sufficient and necessary.

In Figs. Ba and [3b] we compare the ability of MEMs and scramblers to identify the sufficient and
necessary motifs on sequences with Y = 1. In, Fig. [3a) we see for thresholds ¢ € (0, 0.8), both
methods identify sufficient regions but as ¢ continues to increase, the inclusion scrambler fails to
recover sufficient regions. Furthermore, the s-MEM outperforms the scrambler for ¢ € (0,0.8) in
correctly identifying a single motif. The s-MEM identifies 15-30 important base pairs dispersed
over 1-1.5 regions, while the scrambler inaccurately identifies 15-50 important base pairs dispersed
over anywhere from 0.5-3 regions. In Fig. 3b both n-MEMs and occlusion scramblers identify
necessary base-pairs with the n-MEM identifying those that are more necessary. Interestingly, the
occlusion scramblers identify a smaller number of important base-pairs. However, for ¢ € [0.1, 0.9]
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the n-MEM detects 0.5-1.5 regions while the occlusion detects nearly no regions on average. This
suggests that the occlusion scrambler is erroneously identifying random base-pairs as necessary and
not the actual important motifs. One can see an example of this in Fig. [3f]

In Fig. b} we highlight how n-MEMs are able to indeed identify necessary motifs for the subpopu-
lation of sequences that have label Y = 0 due to the presence of both A and B. The results show that
both methods identify necessary regions, with n-MEMs identifying regions that are more necessary.
Additionally, both methods identify roughly the same number of important base-pairs, which ranges
form 5-25. However, the n-MEM is able to discern that there are 1-2 important regions (i.e. the B
motif) while the occlusion scrambler cannot, as evidenced by its identifying 0—1 important regions.
An example of this is illustrated in Fig. ]

In conclusion, by using an s-MEM and n-MEM, we are able to accurately discern that, for positive
predictions, one motif (A) is both sufficient and necessary. Additionally, for negative predictions,
there exists a sub population of sequences that for which one motif, B, is sufficient. Furthermore,
among this sub-population there exists sequences for which 1 motif, B, is necessary where removing
it generates a positive prediction, (implying A was repressed by B). Thus, we can ultimately deduce
that this setting indeed follows a repression syntax.

A.3 ADDITIONAL EXPERIMENTAL DETAILS

Implementation of MEMs. To learn MEMs we solve the following optimization problem

%ggm;_lll XNEDX [L(f, X, Py) + A R(m(X))] (12)
To learn s-MEMS we let
L(f,X, Pn) = (Y(X) = Ep, [f(X)])? (13)
and to learn n-MEMS we let
L(f,X, Pn) = =(Y(X) = Ep,_, [F(X)])*. (14)

We solve this problem via empirical risk minimization. Given N samples {X;} ¥, p X, We

learn a model m to minimize

N
¥ 2 (B o B 43+ Rl (X)) 1s)
where B
& o
=2 D F((X4))). (16)
j=1

In theory, the entries of (X;); are Bernoulli(mn;) with outcomes {x;,b;}. where b; are entries
of a vector b € X, a background vector used to fill the entries of X. In practice, to allow for
differentiaion during optimization, we generate approximately discrete samples using the Gumbel-
Softmax distribution. During optimization we set K = 10.

Recall the form of regularizer

R(m(X)) = A1 - [[m(X)[[1 = Az - Zlog (04)- (17)

To learn MEMs use a residual network with dilated convolutions. To learn s-MEMs, we set A\; = 2
and Ao = 0.5. To learn n-MEMSs, we set A\; = 5 and Ao = 0.01. We used a batch size of 32
and trained for each MEM for 25 epochs using an Adam optimizer with default S-parameters of
B1 =0.9, B2 = 0.99 and a fixed learning rate of 0.001.

Implementation of Scramblers. To learn inclusion and occlusion scramblers we simply follow
the protocol in [Linder et al.| (2022) and use a residual network with dilated convolutions. To learn
inclusion scramblers, we set A = 2 and tps = 1 x 10~%. To learn occlusion scramblers, we set
A = 5and tys = 1 x 107%. We use a batch size of 32 and train for 25 epochs using an Adam
optimizer with default S-parameters of 51 = 0.9, 82 = 0.99 and a fixed learning rate of 0.001.
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A.4 ADDITIONAL FIGURES
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Figure 5: Inclusion scrambler importance scores for a cooperative syntax
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Figure 6: s-MEM importance scores for a cooperative syntax
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Figure 8: n-MEM importance scores for a cooperative syntax
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Figure 10: s-MEM importance scores for a redundant syntax
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Figure 12: n-MEM importance scores for a redundant syntax
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Figure 14: s-MEM importance scores for a repressive syntax
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Figure 15: Occlusion scrambler importance scores for a repressive syntax
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Figure 16: n-MEM importance scores for a redundant syntax
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