
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELECTION, REFLECTION AND SELF-REFINEMENT:
REVISIT REASONING TASKS VIA A CAUSAL LENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to their inherent complexity, reasoning tasks have long been regarded as rig-
orous benchmarks for assessing the capabilities of machine learning models, es-
pecially large language models (LLMs). Although humans can solve these tasks
with ease, existing models, even after extensive pre-training and post-training at
scale, still fail to perform reasoning reliably. In this paper, we revisit reasoning
tasks from a causal perspective, seeking to understand their behavior in latent
space and to offer insights for addressing their challenges. Specifically, we cast
reasoning tasks as a selection mechanism, in which high-level logical concepts
function as selection operators on the given observations, such as, identifying the
correct answer in a math problem or filling the appropriate entry in Sudoku. We
emphasize two key properties of this formulation that shed light on the difficulty
of reasoning tasks. First, the latent space exceeds the observation space in com-
plexity, even when the correct answer is fully determined by the observed input.
Second, the latent variables, corresponding to logical thought, are densely struc-
tured and exhibit strong dependencies. Building on this formulation, we intro-
duce a framework, called SR2, that incorporates the estimated latent variables as
feedback into the selection mechanism, thereby facilitating the learning of dense
dependencies among latent representations. The framework consists of three key
modules: reflective representation learning, dependency self-refinement, and pe-
riodic intermediate alignment. Experimentally, we show that our approach yields
significant gains in reasoning accuracy, for example, attaining over 10% improve-
ment in performance with 8× fewer parameters on the Sudoku and Maze tasks
over the recent advances.

1 INTRODUCTION

“We do not learn from experience. . . we learn from reflecting on experience.”

— John Dewey, How We Think

Reasoning, the act of deriving conclusions and principles from information by logical inference,
lies at the heart of human intelligence. From solving arithmetic problems to navigating mazes,
humans perform complex reasoning with ease and reliability. In contrast, machine learning mod-
els continue to struggle with these tasks. Reasoning challenges have therefore become one of the
rigorous benchmarks for assessing the true depth of a model’s capability, particularly for large lan-
guage models (LLMs). Unlike tasks driven by pattern recognition, reasoning requires that models
infer, generalize, and operate over complex abstract relationships, capabilities that are fundamental
to advancing machine intelligence toward human-level performance.

Despite the impressive progress enabled by large-scale pre-training and post-training, current mod-
els still fall short of robust reasoning (Guo et al., 2025). Much of the progress to date has come from
scaling (Kaplan et al., 2020; Brown et al., 2020; Achiam et al., 2023), such as expanding datasets,
model size, and optimization steps. They deliver performance gains but do not explain why reason-
ing remains intrinsically difficult for machines despite being natural for humans. Another line of
work introduces chain-of-thought supervision or human reward to guide models through intermedi-
ate reasoning steps (Jaech et al., 2024; Guo et al., 2025; Wang et al., 2025b). However, they often
encourage models to mimic the surface form of human explanations, such as natural language, rather

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

4 1
3

4
2
6
9

7
9
2
5

6 7
9

9

1
2

3 5
3

4
7

8

(a) Example Sudoku problem

4 1
3

4
2
6
9

7
9
2
5

6 7
9

9

1
2

3 5
3

4
7

8

<latexit sha1_base64="YDDyfzZZUXF7DmP+ZPOe1bBWO78=">AAADeXicZVLdbtMwFPZaGKMw2OCSG0NVqSpV0gxpQ1wNTUhMXDDEuhU1VeU4p62Z40S2Q1tFeQlu4WF4DZ4FIXHcZtLKLFnny/nxd86XE2VSGNvr/d6q1e/c3b63c7/x4OHuo8d7+08uTJprDn2eylQPImZACgV9K6yEQaaBJZGEy+jqxMUvv4E2IlXndpnBKGFTJSaCM4uuwZdxIbr0aznea/a83urQ2yCoQPO4bf7ubi9+nY33a8MwTnmegLJcMmOGQS+zo4JpK7iEshHmBjLGr9gUhggVS8CMilXDJW2hJ6aTVONVlq68NysKlpiE2VmXInApZoXMMomw2EXMJoGdvB4VQmW5BcXX709ySW1K3dA0Fhq4lUsEjGuBLVI+Y5pxi9JsELu3bZpKUzYaLcrkNMX0WUI1SGYh3mB1mhuVJxFoiLvuK+7qXEKMMlwXHqAUrRaNAUXSQBnOmiRMxTQ8QYDiuSjT05WQdC6kpBFQk2ud5ipGkaIl9TvU8zza8RvhZ7Af5lVlUdmywISywDhSUViwJJNAZ9Zm5o3vz+dzL8UNkMAmHpL7CLTy3TQL/+11m6Z5PoPxja7H1ZAV5an6mNvi1AlcVmYjgncVqmxjQ9NMuF/onDFMQs6F5s2gCGOhpkWI+sEi08FR8LIZhE7mRenWMfh/+W6DiwMvOPQOP+FeviPrs0OekRekTQJyRI7Je3JG+oQTSb6TH+Rn7U/9eb1d76xTa1tVzVOyceqv/gHazyEa</latexit>

Yi,j

(b) Single entry in Sudoku

<latexit sha1_base64="r3iJ7W1uvAqHddruLtSxwm0yT8w=">AAADhXicZZLdbtMwFMe9FtgoH/vgkhuLqgKNLWkmtCFuGBoXVFwwxL6kpSqOc9Jac+zIdmirKK/CLbwBz8ILcMkzcJJm0sosWf7nfPgc/3KiTArr+v3fK632nbv3Vtfudx48fPR4fWNz68zq3HA45VpqcxExC1IoOHXCSbjIDLA0knAeXR1V/vNvYKzQ6sTNMximbKxEIjhzaBptbF2MitDBzBU6SXaNnpblaKPb9/r1ordF0Iju4fPBn7+/Wl+PR5utyzDWPE9BOS6ZtZdBP3PDghknuISyE+YWMsav2BguUSqWgh0WdfMl7aElpok2uJWjtfVmRsFSmzI32aEoqhBbKztPI0yuPHa5gEteDwuhstyB4ov7k1xSp2kFgMbCAHdyjoJxI7BFyifMMO4Q01Lh6m6ntbRlp9OjTI41hk9SakAyB/FS1Yq/VXkagYF4p/qKd0wuIUYM14l7iKLXozEgJAOU4VvTlKmYhkcoEF7lZWZcg6RTISWNgNrcGJ2rGCFFc+pvU8/z6LbfCb+A+zhtMovmLAsMKAv0YykKM5ZmEujEucy+8f3pdOppnAYJLPGwuI/CKL96zcx/d92m7Z5MYHSj61HzyKbkQH3KXTGoAJfNseTBXbuas7PENBPVL6yMMSQh58LwblCEsVDjIkR+MMtMcBC87AZhhXlWj2Pw//DdFmd7XrDv7X/GuXxPFmuNPCXPyAsSkANySD6QY3JKOJmR7+QH+dlebe+2X7X3F6GtlSbnCVla7bf/AOA+JeI=</latexit>

Xo!-row

<latexit sha1_base64="oiboLk2HsPO+H06IJCJPr63B8vE=">AAADhHicZVJdb9MwFPVaGKPAWOGRF0NVCY2SNENsiAc0GA9MPDDEulVaqspxbltrjhPZDmkV5afwCr+Jf8N1lkkrs2Tdk/vhc+/JjTIpjB0O/2602nfubt7but958PDR9uOd7pMzk+aaw4inMtXjiBmQQsHICithnGlgSSThPLo8cvHzn6CNSNWpXWUwSdhciZngzKJrutMdT8vQwtKWQr3WaVFV053e0BvWh94GQQN6h73uduv5p+xk2m1dhHHK8wSU5ZIZcxEMMzspmbaCS6g6YW4gY/ySzeECoWIJmElZ917RPnpiOks1XmVp7b1ZUbLEJMwuBhSBSzE1MqskwmIXMesEdvZugsNkuQXFr96f5ZLalLr5aSw0cCtXCBjXAlukfME04xZVWiN2b9s0labqdPqUyXmK6YuEapDMQrzG6uQ3Kk8i0BAP3Fc80LmEGGW4LtxDKfp9GgOKpIEynDVJmIppeIQAxXNRpue1kLQQUtIIqMm1TnMVo0jRivq71PM8uut3wh9gvxZNZdnYqsSEqsQ4UlFYsiSTQBfWZua97xdF4aW4DBLYzENyH4FWvptm6X+8btP0ThcwvdH1tBmyoTxW33JbHjuBq8asRfDWocZ21jTNhPuFzhnDLORcaN4LyjAWal6GqB8sMx0cBK96QehkXtbrGPy/fLfB2Z4X7Hv733EvP5Ors0WekRfkJQnIATkkX8gJGRFOCvKL/CZ/2pvtQftN++1VamujqXlK1k77wz/xZiMu</latexit>

Xin-row

<latexit sha1_base64="Wiu7vi0BBKmdvBTz9UXeEhE7guM=">AAADcnicZVLdbtMwFPZafkb42QZ3cGOIKqFRJc0uNsQNQ+OCiQs2sW5DS1U5zmlrzXEi26GtojwBt3ABb8Qj8B48AMdtJq3sSJY/nx9/53x2UkhhbK/3Z63VvnX7zt31e979Bw8fbWxuPT41eak59Hkuc32eMANSKOhbYSWcFxpYlkg4Sy4PXPzsK2gjcnVi5wUMMjZWYiQ4s+g6/jLc9HtBb2H0Joga4L/9/dPZr6PhVusiTnNeZqAsl8yYi6hX2EHFtBVcQu3FpYGC8Us2hguEimVgBtWi05p20JPSUa5xKUsX3usVFctMxuykSxG4FLNAZp4lWOwiZpXAjl4PKqGK0oLiy/tHpaQ2p25amgoN3Mo5Asa1wBYpnzDNuEVNVojd3TbPpak9r0OZHOeYPsmoBskspCusTmyjyiwBDWnXndKuLiWkKMNV4Q5K0enQFFAkDZThrFnGVErjAwQonosyPV4ISadCSpoANaXWealSFCmZ03CbBkFAt0Mv/gz247SprJq9rjChrjCOVBRmLCsk0Im1hXkThtPpNMjx6SWwUYDkIQKtQjfNLHx31abxTyYwvNb1sBmyoTxUn0pbHTqB62ZbieBahJrdW9G0EO4JnTOFUcy50NyPqjgValzFqB/MCh3tRa/8KHYyz+oav2P0/+e7CU53gmg32D3u+fvvydLWyTPygrwkEdkj++QDOSJ9wgmQb+Q7+dH6237aft72l6mttabmCVmxdvcfh6Af2Q==</latexit>

Y

<latexit sha1_base64="G/DIPb1iSybW9z8PrgUfs3bYhP8=">AAADh3icZVLNbhMxEHYTftrw1wI3LhZRBCrtbraHtOLUqhyIOFBE/6RuFLze2cSq117ZXpKw2nfhCi/As/ACHHkGZrdbqaEjWfN5fjwznyfKpLCu3/+90mrfuXvv/upa58HDR4+frG88PbU6NxxOuJbanEfMghQKTpxwEs4zAyyNJJxFl4eV/+wrGCu0OnaLDEYpmyiRCM4cmsbrz8/HRehg7gqdJNuR1PyyLMfr3b7Xr4XeBkEDuvuvhn/+/mp9ORpvtC7CWPM8BeW4ZNZeBP3MjQpmnOASyk6YW8gYv2QTuECoWAp2VNTtl7SHlpgm2uBRjtbWmxkFS23K3HSLIqhCbI3sIo0wufLY5QIu2RsVQmW5A8Wv3k9ySZ2mFQU0Fga4kwsEjBuBLVI+ZYZxh0QtFa7edlpLW3Y6PcrkRGP4NKUGJHMQL1WtfsCqPI3AQLxV3eItk0uIkYbrxB2kotejMSBJBijDWdOUqZiGhwiQvMrLzKQmks6ElDQCanNjdK5iJClaUH+Tep5HN/1O+Bnch1mTWTS6LDCgLNCPpSjMWZpJoFPnMvvW92ezmadxHySwxMPiPgKj/GqauX9w3abtHk9hfKPrcTNkU3KoPuauGFYEl41a8uCpXY3uLHGaieoLK2MMSci5MLwbFGEs1KQIkT+YZybYDd50g7CieV6vY/D/8t0GpzteMPAGn3Av35ErWSUvyEvymgRkl+yT9+SInBBOvpHv5Af52V5r++1Be+8qtLXS5DwjS9I++AdfISap</latexit>

Xo!-block

<latexit sha1_base64="whsU+52HEWSaks2xsjqykWbt5Rc=">AAADhnicZVJLbxMxEHYTHiFASemRiyGKhErZzVaiQZwK5UDFgSL6krpR5PVOEqtee2V7SaLV/hau8JP4N4y3W6mhI1nzeR6emc+T5FJYNxz+3Wi1791/8LDzqPv4ydPNZ72t52dWF4bDKddSm4uEWZBCwakTTsJFboBliYTz5OrQ+89/grFCqxO3ymGcsZkSU8GZQ9Okt30xKWMHS1cK9TaRml9V1aTXHwbDWuhdEDWgf9Df2my9/JQfT7Zal3GqeZGBclwyay+jYe7GJTNOcAlVNy4s5IxfsRlcIlQsAzsu6+4rOkBLSqfa4FGO1tbbGSXLbMbcfJci8CG2RnaVJZjsPXa9gJu+H+M4eeFA8ev3p4WkTlPPAE2FAe7kCgHjRmCLlM+ZYdwhT2uF/dtOa2mrbndAmZxpDJ9n1IBkDtK1qv4DrCqyBAyku/6W7ppCQoo03CTuIRWDAU0BSTJAGc6aZUylND5EgOR5LzOzmki6EFLSBKgtjNGFSpGkZEXDHRoEAd0Ju/EPcF8XTWbZ6KrEgKpEP5aisGRZLoHOncvthzBcLBaBxnWQwKYBFg8RGBX6aZbhx5s2bf9kDpNbXU+aIZuSR+pb4cojT3DVqDUPntrV6O4ap7nwX+iNKUxjzoXh/aiMU6FmZYz8wTI30Sh6049iT/OyXsfo/+W7C872gmg/2P+Oe/mZXEuHvCCvyGsSkRE5IF/IMTklnKzIL/Kb/Gl32kH7XXt0HdraaHK2yZq0D/4Bb30j9Q==</latexit>

Xin-block

<latexit sha1_base64="DNLrVzdXk89CaGP+WXdXJktvqa8=">AAADhHicZVLNbtNAEN4mUEqAksCRy0IUCZVgx0W0iAMqlAMVB4po2kh1FK3Xk2TV9draXZNElh+FKzwTb8Os40oNHWk1n+d/Pk+USWHsYPB3q9G8c3f73s791oOHj3YftztPzk2aaw5DnspUjyJmQAoFQyushFGmgSWRhIvo6tj5L36CNiJVZ3aVwThhMyWmgjOLpkm7M5oUoYWlLYR6jeXKctLuDrxBJfQ2CGrQPep2dhvPP2Wnk07jMoxTniegLJfMmMtgkNlxwbQVXELZCnMDGeNXbAaXCBVLwIyLavaS9tAS02mq8SlLK+vNjIIlJmF23qcIXIipkFklESY7j9lsYKfvxrhMlltQfF1/mktqU+r2p7HQwK1cIWBcCxyR8jnTjFtkaaOxq23TVJqy1epRJmcphs8TqkEyC/FGV0e/UXkSgYa4777ivs4lxEjDdeI+UtHr0RiQJA2U4a5JwlRMw2MESJ7zMj2riKQLISWNgJpc6zRXMZIUrai/Rz3Po3t+K/wB9uuizixqXRYYUBbox1YUlizJJNC5tZl57/uLxcJL8RgksKmHzX0EWvlum6X/8XpM0z2bw+TG1JN6ybrlifqW2+LEEVzWasODr3LVurXBaSbcL3TGGKYh50LzblCEsVCzIkT+YJnp4DB41Q1CR/OyOsfg/+O7Dc73veDAO/iOd/mZrGWHPCMvyEsSkENyRL6QUzIknCzIL/Kb/GluN/vNN82369DGVp3zlGxI88M/oagjFA==</latexit>

Xin-col
<latexit sha1_base64="6PM264C/3Tu4vUBQBOTN24973P0=">AAADhXicZZLdbtMwFMe9FtgoH/vgkhuLqgKNLWkmtCFuGBoXVFwwxL6kpSqOc9Jac5zIdmirKK/CLbwBz8ILcMkzcJxm0sosWf7nfPgc/3KiXApj+/3fK632nbv3Vtfudx48fPR4fWNz68xkheZwyjOZ6YuIGZBCwakVVsJFroGlkYTz6OrI+c+/gTYiUyd2nsMwZWMlEsGZRdNoY+tiVIYWZrbMkmQX76uq0Ua37/XrRW+LoBHdw+eDP39/tb4ejzZbl2Gc8SIFZblkxlwG/dwOS6at4BKqTlgYyBm/YmO4RKlYCmZY1s1XtIeWmCaZxq0sra03M0qWmpTZyQ5F4UJMrcw8jTDZecxyAZu8HpZC5YUFxRf3J4WkNqMOAI2FBm7lHAXjWmCLlE+YZtwipqXC7m6bZdJUnU6PMjnOMHySUg2SWYiXqjr+RhVpBBriHfcV7+hCQowYrhP3EEWvR2NASBoow7emKVMxDY9QIDznZXpcg6RTISWNgJpC66xQMUKK5tTfpp7n0W2/E34B+3HaZJbNWZUYUJXox1IUZizNJdCJtbl54/vT6dTLcBoksMTD4j4KrXz3mpn/7rpN0z2ZwOhG16PmkU3JgfpU2HLgAFfNseTBXbuas7PENBfuFzpjDEnIudC8G5RhLNS4DJEfzHIdHAQvu0HoMM/qcQz+H77b4mzPC/a9/c84l+/JYq2Rp+QZeUECckAOyQdyTE4JJzPynfwgP9ur7d32q/b+IrS10uQ8IUur/fYfkIAlyA==</latexit>

Xo!-col

<latexit sha1_base64="F/dlfMtX6YSeuzGGQ5OOycSgKc8=">AAADiXicZVLNbhMxEHYbKCXlpwWJCxeLKFIp1W62h7bqqagIUXGgqPRH6oaV1ztJTG3vyvaSRMveeQCegCu8EC/CmXG6lRo6kjWf58cz83nSQgrrer0/C4utO3eX7i3fb688ePjo8erak1Obl4bDCc9lbs5TZkEKDSdOOAnnhQGmUgln6eWB9599BWNFrj+5aQF9xYZaDARnDk3J6rPjpIoVcyOjKoyu68/V+peXdbLa6QW9mdDbIGpAZ3/9e7L098fbo2Rt8SLOcl4q0I5LZu1F1Ctcv2LGCS6hbselhYLxSzaEC4SaKbD9ajZATbtoyeggN3i0ozPrzYyKKeub3KQIfIidITtVKSZ7j50v4Aa7/UroonSg+dX7g1JSl1NPAs2EAe7kFAHjRmCLlI+YYdwhVXOF/dsuz6Wt2+0uZXKYY/hIUQOSOcjmqvo/sLpUKRjINv0t2zSlhAxpuE7cQiq6XZoBkmSAMpxVKaYzGh8gQPK8l5nhjEg6FlLSFKgtjclLnSFJ6ZSGGzQIAroRtuNjcO/HTWbV6LrCgLpCP5aiMGGqkEBHzhV2LwzH43GQ40ZIYIMAi4cIjA79NJPw9XWbtvNpBMmNrpNmyKbkof5QuurQE1w3as6DZ+ZqdHuO00L4L/TGDAYx58LwTlTFmdDDKkb+YFKYaCd61YliT/Ok9usY/b98t8HpVhBtB9sfcS/fkCtZJs/JC7JOIrJD9sk7ckROCCffyE/yi/xurbSi1m5r7yp0caHJeUrmpHXwD9k+JsA=</latexit>

S
(j)
Col

<latexit sha1_base64="WRBVpQRRpD6kchSKSNP7Hn8EuAg=">AAADi3icZVLNbhMxEHYbKCVQaOGCxMUiilRKtZstUosqDoUCouJAUZu2Ujddeb2TxKrXXtlekshazjwAj8AV3ocX4YydbKWGjmTN5/nxzHyetOBMm07nz8Ji49btpTvLd5v37q88eLi69uhEy1JR6FLJpTpLiQbOBHQNMxzOCgUkTzmcppf73n/6FZRmUhybSQG9nAwE6zNKjDMlq0+OEhvnxAxVbt9ySS+r6sKup8+rZLXVCTpTwTdBVIPW3vr3ZOnvjw+HydrieZxJWuYgDOVE6/OoU5ieJcowyqFqxqWGgtBLMoBzBwXJQffsdIQKt50lw32p3BEGT63XMyzJtW9zEzvgQ/QU6UmeumTv0fMFTP9VzzJRlAYEnb3fLzk2EnsacMYUUMMnDhCqmGsR0yFRhBpH1lxh/7aRkuuq2WxjwgfShQ9zrIATA9lcVf8LWpR5CgqyTX/LNlXJIXM0XCVuOSrabZyBI0kBJm7WPCciw/G+A4487yVqMCUSjxjnOAWsS6VkKTJHUjrB4QYOggBvhM34CMynUZ1pa11ZF1BZ53elMIxJXnDAQ2MKvRuGo9EokG4nOJB+4IqHDigR+mnG4ZurNnXreAjJta6Tesi65IH4XBp74AmuajXncWfqqnVzjtOC+S/0xgz6MaVM0VZk44yJgY0dfzAuVLQTvWhFsad5XPl1jP5fvpvgZCuItoPtL24v36GZLKOn6BlaRxHaQXvoIzpEXUTRN/QT/UK/GyuNl43dxutZ6OJCnfMYzUnj/T+SqyeZ</latexit>

S
(b)
Block

<latexit sha1_base64="MnouSKlM5ZDUkK1L9eF7izYyjFg=">AAADiXicZVLbbhMxEHUbLiXl0oLgBQlZRBGlVLvZPrRVn4rCAxUPFHqVuiHy2pPEqi8r20sSLfszvMIP8Qn8BXaylRo6kjXHc/HMHE+WC25dp/Nnablx5+69+ysPmqsPHz1+srb+9MzqwlA4pVpoc5ERC4IrOHXcCbjIDRCZCTjPrrrBf/4djOVanbhpDj1JhooPOCXOm/prL477ZSqJGxlZftXjqvpWbvC3VX+t1Yk6M8G3QVKD1sGbv6+Yfp4d9deXL1OmaSFBOSqItZdJJ3e9khjHqYCqmRYWckKvyBAuPVREgu2VswEq3PYWhgfa+KMcnllvZpRE2tDkFvYghNgZslOZ+eTgsYsF3GCvV3KVFw4Unb8/KAR2GgcSMOMGqBNTDwg13LeI6YgYQp2naqFweNtpLWzVbLYxEUPtw0cSGxDEAVuoGv7AqkJmYIBthRvbMoUA5mm4Ttz2VLTbmIEnyQAmflYpiWI47XrgyQteYoYzIvGYC4EzwLYwRheKeZKyKY43cRRFeDNupsfgPo3rzLLWVekDqtL7fSkMEyJzAXjkXG7343g8Hkfab4QAMoh88dgDo+IwzSR+f92mbZ2MoH+j6349ZF3yUH0uXHkYCK5qteDxZ+aqdXOB05yHLwxGBoOUUm5oKylTxtWwTD1/MMlNspu8ayVpoHlShXVM/l++2+BsO0p2op0vfi8/oLmsoJfoNdpACdpFB+gjOkKniKIf6Cf6hX43VhtJY6+xPw9dXqpznqEFaXT/Ae3uJmw=</latexit>

S
(i)
Row

(c) Validity criteria (row, column, block)

Figure 1: Illustration of reasoning tasks and the selection mechanism, using Sudoku as an example. (a)
A sample 9 × 9 Sudoku puzzle with a subset of given clues; the goal is to fill the remaining cells so that each
row, column, and 3× 3 subgrid contains the digits 1–9 exactly once. (b) A single unfilled cell Yij with its row
(purple), column (blue), and 3×3 block (orange) highlighted; the digits within these groups impose constraints
that determine the admissible values for Yij . (c) Selection mechanism: Y is valid iff the validity criteria are
satisfied S

(i)
Row = S

(j)
Col = S

(b)
Block = 1.

than uncover the underlying structure of reasoning in the latent space. As a result, the generated rea-
soning traces may be verbose, inconsistent, or logically unsound, limiting their value for genuine
generalization. This gap highlights the need for a new perspective that goes beyond scaling and
imitation, aiming instead to model the structural nature of reasoning itself. The detailed discussion
about related work can be found in Appendix A.1.

Specifically, we formulate reasoning tasks as a selection mechanism (Zheng et al., 2024; Elwert
& Winship, 2014), a concept from causality that describes how observed variables co-occur under
certain selection constraints. In reasoning tasks, high-level logical concepts act as operators that
impose constraints on the observed inputs. For example, as illustrated in Figure 1, the numbers in
a Sudoku grid must satisfy the validity criteria, where a given entry that needs to be filled should
consider the selection constraints such that each row, column, and subgrid contains all digits exactly
once. This formulation captures reasoning as the process of narrowing possible latent assignments
to those consistent with the selection mechanism.

Building on the selection mechanism formulation, we propose two fundamental hypotheses that
further characterize its structure and clarify the sources of difficulty in reasoning. First, the latent
space in the selection mechanism is more complex than the observation space, even when the correct
answer is uniquely determined by the observed input. For example, when solving a math problem,
the observed input may consist of a few numbers and operations with a fixed solution, but the
underlying reasoning process involves exploring a vast latent space of intermediate steps, alternative
solution paths, and logical transformations before converging to the unique correct answer. Second,
the latent variables are densely structured and highly interdependent, making them challenging for
current models to disentangle and exploit. This is evident in reasoning processes where a single
change in a principle or logical step often necessitates a cascade of adjustments to other steps in order
to maintain overall consistency. These properties make it difficult for current models to disentangle
and effectively utilize the latent structure, thereby limiting their reasoning capability.

Inspired by this formulation, we propose a new framework SR2 to explicitly model the Selection,
Reflection, and Self-Refinement, enabling iterative refinement of latent space in the reasoning pro-
cess. This design encourages the model to explicitly capture the dense dependencies among latent
representations, rather than treating them as isolated or independent. This framework consists of
three key components. 1) To address the challenge of the intractably large latent space, we propose
a reflective representation learning module. This module incorporates the estimated latent variables
and maps them back into the input space as feedback injection and iteratively refines the represen-
tation. 2) To capture dense dependencies, we propose a dependency self-refinement process that
discards observation signals and relies solely on latent variables as inputs to a fixed-point solver, en-
suring that the resulting solution satisfies the imposed constraints. 3) To mitigate gradient vanishing
in the long iterative refinement process, we introduce periodic intermediate alignment, which injects
supervision (or self-supervision) at selected intervals to provide guidance and preserve consistency
across reasoning steps.

We validate our approach on canonical reasoning benchmarks, including Sudoku and Maze Nav-
igation. Our method achieves substantial improvements in reasoning accuracy, outperforming the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

recent hierarchical reasoning model (HRM (Wang et al., 2025a)) by more than 10% while using up
to 8× fewer parameters. These results not only highlight the effectiveness of our framework but
also demonstrate that reasoning can be advanced through causal modeling of latent structures rather
than relying solely on scaling. In addition, we conduct a detailed ablation study to evaluate the
contribution of each module, providing insights that may guide future research and development.

In summary, this work contributes:

• A causal perspective that formulates reasoning as selection mechanisms, where concepts
act as operators constraining observed inputs;

• The finding of two key properties, including latent space complexity and dense dependen-
cies, that explain the inherent difficulty of reasoning tasks;

• A novel framework with reflective representation learning, dependency self-refinement,
and adaptive alignment to model reasoning more effectively;

• Empirical evidence on reasoning benchmarks showing that our approach achieves state-of-
the-art performance with far fewer parameters.

We believe this study takes a step toward a deeper understanding of reasoning in machine learning
and offers new insights for building models that reason more like humans.

2 METHOD

In this section, we present our framework SR2 (Selection, Reflection, and Self-Refinement), which is
designed to address the inherent difficulty of reasoning tasks through a causal formulation. We begin
by revisiting reasoning tasks as a selection mechanism, then introduce two hypotheses that explain
their complexity, and finally describe our framework components that explicitly model selection,
reflection, and self-refinement.

2.1 REASONING AS CONSTRAINT-SATISFACTION VIA SELECTION MECHANISMS

In a constraint-satisfaction framing, reasoning is understood as the process of aligning different
pieces of information, rules, and procedures so that they cohere with one another. Success, then,
is measured less by whether the final outcome is “correct” in some absolute sense, and more by
whether the reasoning process maintains internal consistency across the constraints. This makes
the characterization of reasoning more about procedural coherence than about reaching a single
externally defined answer. Therefore, we revisit reasoning tasks through the lens of causality and
formalize them as a selection mechanism. In causal modeling, a selection mechanism describes
how observed variables co-occur under certain constraints imposed by latent factors. Analogously,
reasoning tasks can be viewed as a process in which high-level logical concepts act as operators that
constrain the admissible configurations of the observed inputs.

<latexit sha1_base64="Wiu7vi0BBKmdvBTz9UXeEhE7guM=">AAADcnicZVLdbtMwFPZafkb42QZ3cGOIKqFRJc0uNsQNQ+OCiQs2sW5DS1U5zmlrzXEi26GtojwBt3ABb8Qj8B48AMdtJq3sSJY/nx9/53x2UkhhbK/3Z63VvnX7zt31e979Bw8fbWxuPT41eak59Hkuc32eMANSKOhbYSWcFxpYlkg4Sy4PXPzsK2gjcnVi5wUMMjZWYiQ4s+g6/jLc9HtBb2H0Joga4L/9/dPZr6PhVusiTnNeZqAsl8yYi6hX2EHFtBVcQu3FpYGC8Us2hguEimVgBtWi05p20JPSUa5xKUsX3usVFctMxuykSxG4FLNAZp4lWOwiZpXAjl4PKqGK0oLiy/tHpaQ2p25amgoN3Mo5Asa1wBYpnzDNuEVNVojd3TbPpak9r0OZHOeYPsmoBskspCusTmyjyiwBDWnXndKuLiWkKMNV4Q5K0enQFFAkDZThrFnGVErjAwQonosyPV4ISadCSpoANaXWealSFCmZ03CbBkFAt0Mv/gz247SprJq9rjChrjCOVBRmLCsk0Im1hXkThtPpNMjx6SWwUYDkIQKtQjfNLHx31abxTyYwvNb1sBmyoTxUn0pbHTqB62ZbieBahJrdW9G0EO4JnTOFUcy50NyPqjgValzFqB/MCh3tRa/8KHYyz+oav2P0/+e7CU53gmg32D3u+fvvydLWyTPygrwkEdkj++QDOSJ9wgmQb+Q7+dH6237aft72l6mttabmCVmxdvcfh6Af2Q==</latexit>

Y
<latexit sha1_base64="95k7OM36LCI8trkZyscIQsvFuCo=">AAADcnicZVLdbtMwFPZafkb52+AObgxRJTSqpNnFhrhhaFwwccEm1q3SUlWOc9Jac5zIdmirKE/ALVzAG/EIvAcPwHGbSSs7kuXP58ffOZ8dF1IY2+//2Wi1b92+c3fzXuf+g4ePHm9tPzkzeak5DHgucz2MmQEpFAyssBKGhQaWxRLO48tDFz//CtqIXJ3aRQGjjE2USAVnFl0nw/GW1/f7S6M3QdgA793vn85+HY+3WxdRkvMyA2W5ZMZchP3CjiqmreAS6k5UGigYv2QTuECoWAZmVC07rWkXPQlNc41LWbr0Xq+oWGYyZqc9isClmCUyiyzGYhcx6wQ2fTOqhCpKC4qv7k9LSW1O3bQ0ERq4lQsEjGuBLVI+ZZpxi5qsEbu7bZ5LU3c6XcrkJMf0aUY1SGYhWWN1YhtVZjFoSHrulPR0KSFBGa4Kd1GKbpcmgCJpoAxnzTKmEhodIkDxXJTpyVJIOhNS0hioKbXOS5WgSPGCBjvU9326E3SiL2A/zZrKqtnrChPqCuNIRWHOskICnVpbmLdBMJvN/ByfXgJLfSQPEGgVuGnmwfurNo13OoXxta7HzZAN5ZH6XNrqyAlcN9taBNcy1OydNU0L4Z7QORNII86F5l5YRYlQkypC/WBe6HA/fO2FkZN5Xtf4HcP/P99NcLbrh3v+3knfO/hAVrZJnpOX5BUJyT45IB/JMRkQToB8I9/Jj9bf9rP2i7a3Sm1tNDVPyZq1e/8AhJIf2A==</latexit>

X
<latexit sha1_base64="Ypki5gCuaXOweQTIRcy5uc9/MFU=">AAADdXicZVJLbxMxEHYTHiW8WjgikEUIKm20m+2hRRxQUS9UHChq01Zko8jrnWSter0r20sSrfYvcOXxz/glXBknW6mhI1nzeR6emc8T5VIY2+v9WWs0b92+c3f9Xuv+g4ePHm9sPjkzWaE59HkmM30RMQNSKOhbYSVc5BpYGkk4jy4Pnf/8G2gjMnVq5zkMUzZRYiw4s850svX1zWij3fN6C6E3QVCD9sGLX05+H482G4MwzniRgrJcMmMGQS+3w5JpK7iEqhUWBnLGL9kEBggVS8EMy0WzFe2gJabjTONRli6s1zNKlpqU2aRLEbgQs0BmnkaY7DxmtYAdvx2WQuWFBcWX748LSW1G3cA0Fhq4lXMEjGuBLVKeMM24RVpWCru3bZZJU7VaHcrkJMPwJKUaJLMQr1R1fBtVpBFoiLvuFnd1ISFGGq4Sd5GKTofGgCRpoAxnTVOmYhoeIkDynJfpyYJIOhVS0gioKbTOChUjSdGc+tvU8zy67bfCE7CfpnVmWeuqxICqRD+WojBjaS6BJtbm5p3vT6dTL8Pfl8DGHhb3EWjlu2lm/oerNk37NIHRta5H9ZB1ySP1ubDlkSO4qtWKB8/CVevWCqe5cF/ojDGMQ86F5u2gDGOhJmWI/MEs18F+sNMOQkfzrKpwHYP/l+8mONv1gj1v7wvu5XuylHXyjLwkWyQg++SAfCTHpE84Sch38oP8bPxtPm++ar5ehjbW6pynZEWa/j8GyR/s</latexit>

S(Z)

Figure 2: Causal graph of the
selection mechanism where (x,y)
are selected by constrains S(z).

Data-generating process as a selection mechanism. Let x
denote the observed input (e.g., a partially filled Sudoku grid),
y the corresponding solution (e.g., the other entries in Sudoku to
be filled), and z the latent variables representing reasoning rules
(e.g., logical principles or arithmetic laws). As shown in Fig-
ure 2, we model reasoning as a constrained conditional genera-
tion process, where high-level rules z generate observed pairs (x,y) only if they satisfy the selection
constraints S(z) = 1. Formally, the joint distribution is

p(x,y) =

∫
p(z) pg(x,y | z) I

(
S(z) = 1

)
dz. (1)

where p(z) is the prior over latent rules, pg(x,y | z) denotes the base generative distribution pa-
rameterized by the function g, and I(S(z) = 1) enforces that the data satisfies the criteria de-
noted in the selection variables z. In the deterministic case, pg(x,y | z) reduces to a Dirac delta,
pg(x,y | z) = δ

(
(x,y)−g(z)

)
. Formally specifying the data-generating process provides the theo-

retical foundation for our subsequent module design; in Section 2.4, we revisit the SR2 architecture
through the lens of data generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Example: Sudoku. In Sudoku, as illustrated in Figure 1,x is the initial partially filled grid (1a),
y is other entries to be completed (1b), and z represents the latent rules which characterizes the
relationship between X and Y : each row, column, and block (respectively) must contain all digits
exactly once (1c). The set of selection mechanisms is given by

S :=
{
S(·) : Z → {0, 1}

}
. (2)

where S denotes the selection mechanism and the Boolean value S(z) (or Sz) indicates whether
the current pair (X,Y) satisfies rule z. Thus, solving Sudoku corresponds to selecting (x,y) pairs
(which are derived from mapping x to the space of numbers) such that the corresponding z satisfies
(a set of) selection criteria S ∈ S.

Concretely, consider the purple row in Figure 1b. Let Yij be the number to be filled in the i-th row
and j-th column, and let Xin-row denote all already-filled numbers in the same row. If Yij is different
from every number in Xin-row, we set Si

row = 1; otherwise, we set Si
row = 0. Here, z = Row encodes

the rule that each row must contain every digit exactly once; that is, the digits in Xin-row together
with Yij must all be distinct.

Implication. This perspective views reasoning as a selection among latent rules: the task is solved
once (x,y) is identified under the governing z. Unlike direct input-output mapping, this requires
navigating a rule-constrained latent space, highlighting the intrinsic complexity of reasoning tasks.

2.2 TWO FUNDAMENTAL HYPOTHESES

Building on the selection mechanism formulation in Equation 1, we state two hypotheses that for-
mally characterize the sources of difficulty in reasoning tasks.

Hypothesis 1 (Latent space complexity) Let z denote the latent rules, (x,y) the observed input–
answer pair, and S(z) the selection constraints. Even when the mapping (x,y) = g(z) is deter-
ministic for all admissible z with S(z) = 1, the effective latent space ZS = {z : S(z) = 1} is
much larger than the observation space X × Y . Thus, a unique observed pair (x,y) typically
corresponds to a large set of possible latent assignments z ∈ ZS that must be marginalized. For
example, solving a math problem with input x may yield a unique solution y, yet the reasoning
process involves exploring a combinatorial number of intermediate derivations in z.

Hypothesis 2 (Dense interdependence) The admissible latent variables ZS exhibit strong struc-
tural dependencies. Formally, for z = (z1, . . . , zm) ∈ ZS , the conditional distribution p(zi |
z−i, S(z) = 1) is highly concentrated, indicating that any perturbation in one component zi typi-
cally requires coordinated changes in many other components z−i to preserve validity. For instance,
in Sudoku, changing one entry in z propagates constraints across multiple rows, columns, and sub-
grids to restore consistency.

Implication. Together, Hypotheses 1 and 2 indicate that reasoning tasks cannot be solved by re-
lying solely on shallow correlations in (x,y). While the expressive capacity of deep models allows
them to fit mappings from x to y by learning latent z, such solutions often fail to generalize across
tasks. Robust reasoning instead needs the modeling of the complex dependence in the structured
latent space z. Hypothesis 1 motivates the need for a reflection mechanism, where models repeat-
edly explore over-complex latent space and revise latent assignments with feedback. Hypothesis 2
further suggests that even if the mapping from x to z is learned, the dense interdependencies within
z require iterative refinement to reach a consistent solution.

2.3 THE SR2 FRAMEWORK

Based on the implications of our formulation, we propose the SR2 framework, which implements
the Selection Mechanism, Reflection, and Self-Refinement modules. Our approach encourages
the model to iteratively refine latent variables, capture dense dependencies, and enforce consistency
across reasoning steps. The whole pipeline can be found in Figure 3, which is composed of three
modules: Reflective Representation Learning, Dependency Self-Refinement, and Periodic Align-
ment.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Dependency Self-RefinementReflective Representation Learning

<latexit sha1_base64="/lk+AGfEUJNzWksquQ3Ehq575Mc=">AAADe3icZVLdbtMwFPZafkb52QaX3FhElVCpkmYSG+KGoXHBxAVDrNvEUlWOc9Jac5zIdmirKG/BDUjwPjwCD4PEcZtJKzuS5S/nx985X05cSGHsYPBno9W+dfvO3c17nfsPHj7a2t55fGryUnMY8lzm+jxmBqRQMLTCSjgvNLAslnAWXx66+NlX0Ebk6sQuChhlbKJEKjiz6PoSZcxO47Sa1+Ntb+APlkZvgrAB3pvf3539OB7vtC6iJOdlBspyyYy5CAeFHVVMW8El1J2oNFAwfskmcIFQsQzMqFq2XNMuehKa5hqPsnTpvV5Rscy43voUgUsxS2QWWYzFLmLWCWz6alQJVZQWFF+9n5aS2py6sWkiNHArFwgY1wJbpHzKNOMWxVkjdm/bPJem7nS6lMlJjunTjGqQzEKyxupUN6rMYtCQ9N1X0telhARluCrcRSm6XZoAiqSBMpw1y5hKaHSIAMVzUaYnSyHpTEhJY6Cm1DovVYIixQsa9Kjv+7QXdKLPYD/MmsqquesKE+oK40hFYc6yQgKdWluY10Ewm838HHdAAkt9JA8QaBW4aebB26s2jXcyhfG1rsfNkA3lkfpY2urICVw311oEzzLU3J01TQvhfqFzJpBGnAvNvbCKEqEmVYT6wbzQ4X74wgsjJ/O8dusY/r98N8Hprh/u+XufBt7BO7KyTfKUPCPPSUj2yQF5T47JkHCiyDfyk/xq/W177V67v0ptbTQ1T8iatV/+A9pCJBg=</latexit>x

<latexit sha1_base64="QMULIuw4gOIikgwzhUyTFGDxDjM=">AAADd3icZVJLbxMxEHYTHiW8WjhywCIKqkq1m+2hRVwo6oWIA0U0baVuFHntSWLqtVe2lyRa7X/gCr+KKz+FG7ObrdTQkaz5PA/PzOdJMiWd7/f/bLTad+7eu7/5oPPw0eMnT7e2n505k1sOQ26UsRcJc6CkhqGXXsFFZoGliYLz5Oq48p9/B+uk0ad+mcEoZVMtJ5Izj6azWAnj3Xir2w/6tdDbIGpA9/1vUsvJeLt1GQvD8xS054o5dxn1Mz8qmPWSKyg7ce4gY/yKTeESoWYpuFFRt1vSHloEnRiLR3taW29mFCx1KfOzPYqgCnE1css0weTK49YL+MnbUSF1lnvQfPX+JFfUG1qNTIW0wL1aImDcSmyR8hmzjHskZq1w9bY3Rrmy0+lRpqYGw2cptaCYB7FWtWLc6TxNwILYq25iz+YKBNJwnbiPVPR6VACSZIEynDVNmRY0PkaA5FVeZqc1kXQulaIJUJdba3ItkKRkScNdGgQB3Q078Vfwn+ZNZtHossCAskA/lqKwYGmmgM68z9y7MJzP54HB/1fAJgEWDxFYHVbTLMIP12267ukMxje6HjdDNiUH+nPui0FFcNmoNQ+e2tXozhqnmay+sDIKmMScS8u7URELqadFjPzBIrPRYfSmG8UVzYuyxHWM/l++2+BsP4gOgoMv/e7RYLWXZJO8IK/IDonIITkiH8kJGRJOvpEf5Cf51frbftl+3d5ZhbY2mpznZE3a0T+lKR6p</latexit>. . .<latexit sha1_base64="Synd7PV869t9Oa/dj7L2lCefdUo=">AAADcnicZVLNbhMxEHYTfkr4aQs3uBhWkVCJdrM9tIhTUS9EHGhF01bKRpHXO5tY9XpXtpckWu2FK1d4D16Ch+AxkHgAxulWauhI1nyeH8/M54kLKYzt939vtNp37t67v/mg8/DR4ydb2ztPz0xeag5DnstcX8TMgBQKhlZYCReFBpbFEs7jyyPnP/8C2ohcndplAeOMTZVIBWcWTSfpZNvr+/2V0NsgbIB36P359XX4c/94stMaRUnOywyU5ZIZMwr7hR1XTFvBJdSdqDRQMH7JpjBCqFgGZlytOq1pFy0JTXONR1m6st7MqFhmMmZnPYrAhZgVMsssxmTnMesFbPp2XAlVlBYUv3o/LSW1OXXT0kRo4FYuETCuBbZI+Yxpxi1yslbYvW3zXJq60+lSJqc5hs8yqkEyC8laVUe2UWUWg4ak525JT5cSEqThOnEPqeh2aQJIkgbKcNYsYyqh0RECJM95mZ6uiKRzISWNgZpS67xUCZIUL2mwS33fp7tBJ/oM9uO8yawaXVcYUFfox1IUFiwrJNCZtYV5FwTz+dzP8eslsNTH4gECrQI3zSJ4f92m8U5nMLnR9aQZsik5UJ9KWw0cwXWj1jx4Vq5Gd9Y4LYT7QmdMII04F5p7YRUlQk2rCPmDRaHDg/CNF0aO5kVd4zqG/y/fbXC254f7/v4J7uWAXMkmeUFekdckJAfkkHwgx2RIOAHyjXwnP1p/28/bL9veVWhro8l5Rtak3fsHbXcfIg==</latexit>

f

<latexit sha1_base64="KNTYGmEg6hz9CfR6cO6LVD9V+AE=">AAADiXicZVLdbtMwFPZWfrpusA4kbrixqCqhMSXNLrZqV0PdBRNCDLE/aakqxzltrTlOZDu0VcglL8ItPASvwdtwnGbSyixZ/nx+/J3z+USZFMb2en/X1huPHj952txobW49e77d3nlxadJcc7jgqUz1dcQMSKHgwgor4TrTwJJIwlV0O3D+q2+gjUjVuV1kMEzYRImx4MyiadR+FVqRgKGfaGhhbgtaXctRu9PzetWiD0FQg87x1km/+WPjz9loZ/0mjFOeJ6Asl8yYm6CX2WHBtBVcQtkKcwMZ47dsAjcIFUOaYVE1UNIuWmI6TjVuZWllvZ9RsMQkzE73KAIXYipkFkmEyc5jVgnsuD8shMpyC4ov3x/nktqUOhFoLDRwKxcIGNcCS6R8yjTjFqVaIXZv2zSVpmy1upTJSYrh04RqkMxCvMLq/sCoPIlAQ7znbvGeziXEKMNd4j5K0e3SGFAkDZRhr0nCVEzDAQIUz3mZnlRC0pmQkkZATa51mqsYRYoW1N+lnufRXb8VfgX7cVZnFvVZFhhQFuhHKgpzlmQS6NTazBz5/mw281KcCAls7CG5j0Ar33Uz99/flWk651MY3at6VDdZU56qz7ktTp3AZX2seHBXrvpsrWiaCfeFzhjDOORcaN4JijAWalKEqB/MMx0cBu86QehknpduHIP/h+8huNz3ggPv4AvO5QlZriZ5Td6QtyQgh+SYfCBn5IJw8p38JL/I78ZmI2j0G0fL0PW1OuclWVmNwT/llCVp</latexit>→M times
<latexit sha1_base64="Synd7PV869t9Oa/dj7L2lCefdUo=">AAADcnicZVLNbhMxEHYTfkr4aQs3uBhWkVCJdrM9tIhTUS9EHGhF01bKRpHXO5tY9XpXtpckWu2FK1d4D16Ch+AxkHgAxulWauhI1nyeH8/M54kLKYzt939vtNp37t67v/mg8/DR4ydb2ztPz0xeag5DnstcX8TMgBQKhlZYCReFBpbFEs7jyyPnP/8C2ohcndplAeOMTZVIBWcWTSfpZNvr+/2V0NsgbIB36P359XX4c/94stMaRUnOywyU5ZIZMwr7hR1XTFvBJdSdqDRQMH7JpjBCqFgGZlytOq1pFy0JTXONR1m6st7MqFhmMmZnPYrAhZgVMsssxmTnMesFbPp2XAlVlBYUv3o/LSW1OXXT0kRo4FYuETCuBbZI+Yxpxi1yslbYvW3zXJq60+lSJqc5hs8yqkEyC8laVUe2UWUWg4ak525JT5cSEqThOnEPqeh2aQJIkgbKcNYsYyqh0RECJM95mZ6uiKRzISWNgZpS67xUCZIUL2mwS33fp7tBJ/oM9uO8yawaXVcYUFfox1IUFiwrJNCZtYV5FwTz+dzP8eslsNTH4gECrQI3zSJ4f92m8U5nMLnR9aQZsik5UJ9KWw0cwXWj1jx4Vq5Gd9Y4LYT7QmdMII04F5p7YRUlQk2rCPmDRaHDg/CNF0aO5kVd4zqG/y/fbXC254f7/v4J7uWAXMkmeUFekdckJAfkkHwgx2RIOAHyjXwnP1p/28/bL9veVWhro8l5Rtak3fsHbXcfIg==</latexit>

f
<latexit sha1_base64="M/Sr8JRmOqeYH6E6Tl3mWImGL0g=">AAADi3icZVLdahQxFE53/amr1a3eCN4El4Vay8xOhVaKYKUKFhErdttCZ10yyZnd0EwyJBl312F8D732Vt/DR/BtTLZT6NoD4Xw5PznnfDlJLrixvd7fpUbz2vUbN5dvtW7fWbl7r716/8ioQlPoUyWUPkmIAcEl9C23Ak5yDSRLBBwnZ3vef/wFtOFKHtpZDoOMjCRPOSXWmYbth3FG7DhJy6/V53JtE8eUKYvfP6mG7U4v6M0FXwVRDTov/3z38uNguNo4jZmiRQbSUkGMOY16uR2URFtOBVStuDCQE3pGRnDqoCQZmEE5H6HCXWdhOFXaHWnx3Ho5oySZ8Z1uYAd8iJkjM8sSl+w9ZrGATZ8PSi7zwoKk5++nhcBWYU8DZlwDtWLmAKGauxYxHRNNqHVkLRT2b1ulhKlarS4mYqRc+DjDGgSxwBaq+l8wssgS0MA2/I1t6EIAczRcJG46KrpdzMCRpAETN2uWEclwvOeAI897iR7NicQTLgROAJtCa1VI5khKZjhcx0EQ4PWwFX8C+25SZ5a1rkoXUJXO70phmJIsF4DH1uZmJwwnk0mg3E4IIGngiocOaBn6aabhq4s2TedwDMNLXQ/rIeuS+/JDYct9T3BVqwWPO3NXrVsLnObcf6E3MkhjSrmmnaiMGZejMnb8wTTX0Xb0tBPFnuZp5dcx+n/5roKjzSDaCrY+9jq7r9G5LKNH6DFaQxHaRrvoLTpAfUTRN/QT/UK/myvNZ82d5ovz0MZSnfMALUjzzT9YiChE</latexit>

z(2·M)
<latexit sha1_base64="oAULbHJIgRMpkqko09mutr5+Cjg=">AAADhXicZZLdbtMwFMe9FdgoH+vGJTcWVaWxjaSZUIe42dC4YEKIIfYlLaVynJPWmuNEtkNbojwIXHALr8Ij8DYct5m0siNZ/ud8+Bz/4iiXwthu9+/ScuPO3Xsrq/ebDx4+erzWWt84M1mhOZzyTGb6ImIGpFBwaoWVcJFrYGkk4Ty6OnTx86+gjcjUiZ3m0E/ZUIlEcGbRNWhthCmzoygpv1Vfys0P28HzatBqd73uzOhtEdSivf/nu7Mfx4P15cswzniRgrJcMmMug25u+yXTVnAJVTMsDOSMX7EhXKJULAXTL2fDV7SDnpgmmcalLJ15b1aULDVuxh2KwqWYmTLTNMJiFzGLDWzyql8KlRcWFJ+fnxSS2ow6ADQWGriVUxSMa4EjUj5imnGLmBYau7NtlklTNZsdyuQww/RRSjVIZiFe6Or4G1WkEWiId9xXvKMLCTFiuC7cRRSdDo0BIWmgDO+apkzFNDxEgfBclOnhDCQdCylpBNQUWmeFihFSNKX+FvU8j275zfAz2PfjurKs96rEhKrEOLaiMGFpLoGOrM3Na98fj8dehq9BAks8bO6j0Mp3t5n4b67HNO2TEQxuTD2oL1m3PFIfC1seOcBVvS1EcM1C9d5cYJoL9wudM4Yk5Fxo3g7KMBZqWIbIDya5DvaC7XYQOsyTyj3H4P/Hd1uc7XpBz+t96rYP3pK5rZKn5BnZJAHZIwfkHTkmp4STCflJfpHfjZXGi8bLRm+eurxU1zwhC9bY/wfQ6yXs</latexit>

z(M+1) <latexit sha1_base64="QMULIuw4gOIikgwzhUyTFGDxDjM=">AAADd3icZVJLbxMxEHYTHiW8WjhywCIKqkq1m+2hRVwo6oWIA0U0baVuFHntSWLqtVe2lyRa7X/gCr+KKz+FG7ObrdTQkaz5PA/PzOdJMiWd7/f/bLTad+7eu7/5oPPw0eMnT7e2n505k1sOQ26UsRcJc6CkhqGXXsFFZoGliYLz5Oq48p9/B+uk0ad+mcEoZVMtJ5Izj6azWAnj3Xir2w/6tdDbIGpA9/1vUsvJeLt1GQvD8xS054o5dxn1Mz8qmPWSKyg7ce4gY/yKTeESoWYpuFFRt1vSHloEnRiLR3taW29mFCx1KfOzPYqgCnE1css0weTK49YL+MnbUSF1lnvQfPX+JFfUG1qNTIW0wL1aImDcSmyR8hmzjHskZq1w9bY3Rrmy0+lRpqYGw2cptaCYB7FWtWLc6TxNwILYq25iz+YKBNJwnbiPVPR6VACSZIEynDVNmRY0PkaA5FVeZqc1kXQulaIJUJdba3ItkKRkScNdGgQB3Q078Vfwn+ZNZtHossCAskA/lqKwYGmmgM68z9y7MJzP54HB/1fAJgEWDxFYHVbTLMIP12267ukMxje6HjdDNiUH+nPui0FFcNmoNQ+e2tXozhqnmay+sDIKmMScS8u7URELqadFjPzBIrPRYfSmG8UVzYuyxHWM/l++2+BsP4gOgoMv/e7RYLWXZJO8IK/IDonIITkiH8kJGRJOvpEf5Cf51frbftl+3d5ZhbY2mpznZE3a0T+lKR6p</latexit>. . .<latexit sha1_base64="xmHum2OP9CjndbAxFXMap7HzReM=">AAADg3icZVLdbtMwFPZWBqP8dXDJjUVVaWxT0lRoQ0iIoXHBhBBDrNukpVSOc9Jac5zIdtaWKA8C4hbehUfgbThuM2llR7L85fz4O+fLiXIpjO12/66sNm6t3b6zfrd57/6Dh49aG49PTFZoDn2eyUyfRcyAFAr6VlgJZ7kGlkYSTqOLAxc/vQRtRKaO7SyHQcpGSiSCM4uuYasVpsyOo6T8Vn0tNz8+r4atdtfrzo3eBEEN2m/+fHf242i4sXoexhkvUlCWS2bMedDN7aBk2gouoWqGhYGc8Qs2gnOEiqVgBuW89Yp20BPTJNN4lKVz7/WKkqXGdbhDEbgUM0dmlkZY7CJmmcAmLwelUHlhQfHF+0khqc2oG5/GQgO3coaAcS2wRcrHTDNuUaQlYve2zTJpqmazQ5kcZZg+TqkGySzES6xOfaOKNAIN8Y77ind0ISFGGa4KeyhFp0NjQJE0UIazpilTMQ0PEKB4Lsr0aC4knQgpaQTUFFpnhYpRpGhG/S3qeR7d8pvhF7AfJnVlWd9ViQlViXGkojBlaS6Bjq3NzSvfn0wmXoa7IIElHpL7CLTy3TRT/+1Vm6Z9PIbhta6H9ZA15aH6VNjy0Alc1ddSBM88VN/NJU1z4X6hc8aQhJwLzdtBGcZCjcoQ9YNproO9YLsdhE7maeXWMfh/+W6Ck54X7Hq7n7vt/XdkYevkKXlGNklA9sg+eU+OSJ9wckl+kl/kd2Otsd3oNV4sUldX6ponZMkar/8BXn0lfA==</latexit>

z(M)
<latexit sha1_base64="4aUNdB16Wqj+b2dGnYJwDAoNMUw=">AAADg3icZVLdbtMwFPZWBqP8rINLbiyqSmObkqZCG0JCDI0LJi4YYt0mLaVynJPWmuNEtrO2RHkQELfwLjwCb8Nxm0krO5LlL+fH3zlfTpRLYWy3+3dltXFn7e699fvNBw8fPd5obT45NVmhOfR5JjN9HjEDUijoW2ElnOcaWBpJOIsuD1387Aq0EZk6sbMcBikbKZEIziy6hq1WmDI7jpLyW/W13ApeVMNWu+t150Zvg6AG7bd/vjv7cTzcXL0I44wXKSjLJTPmIujmdlAybQWXUDXDwkDO+CUbwQVCxVIwg3LeekU76Ilpkmk8ytK592ZFyVLjOtylCFyKmSMzSyMsdhGzTGCTV4NSqLywoPji/aSQ1GbUjU9joYFbOUPAuBbYIuVjphm3KNISsXvbZpk0VbPZoUyOMkwfp1SDZBbiJVanvlFFGoGGeNd9xbu6kBCjDNeFPZSi06ExoEgaKMNZ05SpmIaHCFA8F2V6NBeSToSUNAJqCq2zQsUoUjSj/jb1PI9u+83wC9iPk7qyrO+qxISqxDhSUZiyNJdAx9bm5rXvTyYTL8NdkMASD8l9BFr5bpqp/+66TdM+GcPwRtfDesia8kh9Kmx55ASu6mspgmcequ/mkqa5cL/QOWNIQs6F5u2gDGOhRmWI+sE018F+sNMOQifztHLrGPy/fLfBac8L9ry9z932wXuysHXyjDwnWyQg++SAfCDHpE84uSI/yS/yu7HW2Gn0Gi8Xqasrdc1TsmSNN/8ACL0lYA==</latexit>

z(1)
<latexit sha1_base64="XBSRQHdjLdqIfapsSzs8VJNr6hA=">AAADg3icZVLbbtNAEN02FEq4NIVHXlZEkUpb+RKhFiEhisoDFQ8U0ZtUh2i9HierrtfW7rpJsPwhIF7hX/gE/obZ1JUaOtJqj+eyZ+Z44kIKY4Pg79Jy687K3Xur99sPHj56vNZZf3Ji8lJzOOa5zPVZzAxIoeDYCivhrNDAsljCaXyx7+Knl6CNyNWRnRUwyNhIiVRwZtE17HSijNlxnFbf6q/VRvCiHna6gRfMjd4GYQO6b/98d/bjcLi+fB4lOS8zUJZLZsx5GBR2UDFtBZdQt6PSQMH4BRvBOULFMjCDat56TXvoSWiaazzK0rn3ZkXFMuM63KYIXIqZIzPLYix2EbNIYNNXg0qoorSg+NX7aSmpzakbnyZCA7dyhoBxLbBFysdMM25RpAVi97bNc2nqdrtHmRzlmD7OqAbJLCQLrE59o8osBg3JtvtKtnUpIUEZrgv7KEWvRxNAkTRQhrNmGVMJjfYRoHguyvRoLiSdCClpDNSUWuelSlCkeEb9Tep5Ht3029EXsB8nTWXV3HWFCXWFcaSiMGVZIYGOrS3Ma9+fTCZejrsggaUekvsItPLdNFP/3XWbpns0huGNrofNkA3lgfpU2urACVw310IEzzzU3O0FTQvhfqFzJpBGnAvNu2EVJUKNqgj1g2mhw91wqxtGTuZp7dYx/H/5boOTvhfueDufg+7ee3Jlq+QZeU42SEh2yR75QA7JMeHkkvwkv8jv1kprq9VvvbxKXV5qap6SBWu9+QcFrSVf</latexit>

z(0)

<latexit sha1_base64="VIgOjI6w5C9v/POKLp3Pq0JzTw8=">AAADjXicZVLtbtMwFPVWPkb52Ab/4I9FqTTGSJpJbAghNDQkmJBgiHWb1FSV49y01hwnsh3aKorE0/AXXoe34TrNpJVdyfLx/fDxPb5RLoWxvd7fldXWjZu3bq/dad+9d//B+sbmw1OTFZpDn2cy0+cRMyCFgr4VVsJ5roGlkYSz6OLQxc9+gDYiUyd2nsMwZWMlEsGZRddo43FoRQqGbn15GTynoYWZLWntqkYbnZ7Xq41eB0EDOgfPktqOR5urgzDOeJGCslwyYwZBL7fDkmkruISqHRYGcsYv2BgGCBVDmmFZN1HRLnpimmQal7K09l6tKFlqUmYnOxSBSzE1MvM0wmIXMcsENnk9LIXKCwuKL+5PCkltRp0QNBYauJVzBIxrgU+kfMI04xblWiJ2d9ssk6Zqt7uUyXGG6ZOUapDMQrzE6v7BqCKNQEO8407xji4kxCjDZeEuStHt0hhQJA2UYa9pylRMw0MEKJ6LMj2uhaRTISWNgJpC66xQMYoUzam/TT3Po9t+O/wO9vO0qSybvSoxoSoxjlQUZizNJdCJtbl54/vT6dTLcCoksMRDch+BVr7rZua/v3ym6ZxMYHTl1aOmyYbySH0tbHnkBK6abSmCqw41e3tJ01y4L3TOGJKQc6F5JyjDWKhxGaJ+MMt1sB+86AShk3lWuXEM/h++6+B01wv2vL1vOJcfyMLWyBPylGyRgOyTA/KJHJM+4eQn+UV+kz+t9dar1tvWu0Xq6kpT84gsWevjP5vVJus=</latexit>

→(N ↑ 1) times

<latexit sha1_base64="QMULIuw4gOIikgwzhUyTFGDxDjM=">AAADd3icZVJLbxMxEHYTHiW8WjhywCIKqkq1m+2hRVwo6oWIA0U0baVuFHntSWLqtVe2lyRa7X/gCr+KKz+FG7ObrdTQkaz5PA/PzOdJMiWd7/f/bLTad+7eu7/5oPPw0eMnT7e2n505k1sOQ26UsRcJc6CkhqGXXsFFZoGliYLz5Oq48p9/B+uk0ad+mcEoZVMtJ5Izj6azWAnj3Xir2w/6tdDbIGpA9/1vUsvJeLt1GQvD8xS054o5dxn1Mz8qmPWSKyg7ce4gY/yKTeESoWYpuFFRt1vSHloEnRiLR3taW29mFCx1KfOzPYqgCnE1css0weTK49YL+MnbUSF1lnvQfPX+JFfUG1qNTIW0wL1aImDcSmyR8hmzjHskZq1w9bY3Rrmy0+lRpqYGw2cptaCYB7FWtWLc6TxNwILYq25iz+YKBNJwnbiPVPR6VACSZIEynDVNmRY0PkaA5FVeZqc1kXQulaIJUJdba3ItkKRkScNdGgQB3Q078Vfwn+ZNZtHossCAskA/lqKwYGmmgM68z9y7MJzP54HB/1fAJgEWDxFYHVbTLMIP12267ukMxje6HjdDNiUH+nPui0FFcNmoNQ+e2tXozhqnmay+sDIKmMScS8u7URELqadFjPzBIrPRYfSmG8UVzYuyxHWM/l++2+BsP4gOgoMv/e7RYLWXZJO8IK/IDonIITkiH8kJGRJOvpEf5Cf51frbftl+3d5ZhbY2mpznZE3a0T+lKR6p</latexit>. . . <latexit sha1_base64="8UcQIyu7/ukoUgITygOJybh+Qj8=">AAADi3icZVLdahQxFE67/tTV6lZvBG+Cy0KtZWanQitFsFIFi6gV+wed7ZJJzuyGZpIhybi7DuN76LW3+h4+gm9jsjuFrj0Qzpfzk3POl5Pkghvb7f5dWGxcu37j5tKt5u07y3fvtVbuHxlVaAqHVAmlTxJiQHAJh5ZbASe5BpIlAo6T813vP/4C2nAlD+wkh15GBpKnnBLrTP3Wwzgjdpik5dfqrFz9gGPKlMXvn1T9VrsbdKeCr4KoBu2Xf757+bHfX1k8jZmiRQbSUkGMOY26ue2VRFtOBVTNuDCQE3pOBnDqoCQZmF45HaHCHWdhOFXaHWnx1Ho5oySZ8Z2uYwd8iJkiM8kSl+w9Zr6ATZ/3Si7zwoKks/fTQmCrsKcBM66BWjFxgFDNXYuYDokm1Dqy5gr7t61SwlTNZgcTMVAufJhhDYJYYHNV/S8YWWQJaGDr/sbWdSGAORouEjccFZ0OZuBI0oCJmzXLiGQ43nXAkee9RA+mROIRFwIngE2htSokcyQlExyu4SAI8FrYjD+DfTeqM8taV6ULqErnd6UwjEmWC8BDa3OzHYaj0ShQbicEkDRwxUMHtAz9NOPw1UWbpn0whP6lrvv1kHXJPfmxsOWeJ7iq1ZzHnamr1s05TnPuv9AbGaQxpVzTdlTGjMtBGTv+YJzraCt62o5iT/O48usY/b98V8HRRhBtBpufuu2d12gmS+gReoxWUYS20A56i/bRIaLoG/qJfqHfjeXGs8Z248UsdHGhznmA5qTx5h+vKChg</latexit>

z(N ·M)

<latexit sha1_base64="9r2DBlBITcXcrDB+zUGRjymFQyU=">AAADcnicZVLNbhMxEHYTfkr4aQs3uBhWkVCJdrM9pIhTUS9EHGhF01bKRpHXO0mser0r20sSrfbClSu8By/BQ/AYSDwA42QrNXQkaz7Pj2fm88S5FMZ2u7+3Gs07d+/d337Qevjo8ZOd3b2n5yYrNIcBz2SmL2NmQAoFAyushMtcA0tjCRfx1bHzX3wBbUSmzuwyh1HKpkpMBGcWTafT8a7X9bsrobdBWAPvyPvz6+vgZ+9kvNcYRknGixSU5ZIZMwy7uR2VTFvBJVStqDCQM37FpjBEqFgKZlSuOq1oGy0JnWQaj7J0Zb2ZUbLUpMzOOhSBCzErZJZpjMnOYzYL2MnbUSlUXlhQfP3+pJDUZtRNSxOhgVu5RMC4Ftgi5TOmGbfIyUZh97bNMmmqVqtNmZxmGD5LqQbJLCQbVR3ZRhVpDBqSjrslHV1ISJCG68QDpKLdpgkgSRoow1nTlKmERscIkDznZXq6IpLOhZQ0BmoKrbNCJUhSvKTBPvV9n+4Hregz2I/zOrOsdVViQFWiH0tRWLA0l0Bn1ubmXRDM53M/w6+XwCY+Fg8QaBW4aRbB++s2jXc2g/GNrsf1kHXJvvpU2LLvCK5qteHBs3LVurXBaS7cFzpjApOIc6G5F5ZRItS0jJA/WOQ6PAzfeGHkaF5UFa5j+P/y3QbnB37Y83unuJd9spZt8oK8Iq9JSA7JEflATsiAcALkG/lOfjT+Np83Xza9dWhjq855Rjak2fkHcIUfIw==</latexit>g <latexit sha1_base64="OVptuOPjN7klZgpyI2SrdVWFVLk=">AAADe3icZVJLb9NAEN4mPIp5tIUjB1ZEkaoQ2XElWoQ4FJUDFQeK6EvEUbRej5NV12trd00SWf4B3LnC/+IncOeKxGzqSg1daTWf57HfzOeJCymMHQx+rbXat27fubt+z7v/4OGjjc2tx6cmLzWHE57LXJ/HzIAUCk6ssBLOCw0siyWcxRcHLn72FbQRuTq2iwJGGZsokQrOLLq+RBmz0zitFvV4szPwB8tDb4KwAZ39Z7/ffPvjbR+Nt1rDKMl5mYGyXDJjhuGgsKOKaSu4hNqLSgMF4xdsAkOEimVgRtWy5Zp20ZPQNNd4laVL7/WKimXG9danCFyKWSKzyGIsdhGzSmDTV6NKqKK0oPjl+2kpqc2pG5smQgO3coGAcS2wRcqnTDNuUZwVYve2zXNpas/rUiYnOaZPM6pBMgvJCqtT3agyi0FD0ndfSV+XEhKU4apwB6XodmkCKJIGynDWLGMqodEBAhTPRZmeLIWkMyEljYGaUuu8VAmKFC9o0KO+79Ne4EWfwX6YNZVVY+sKE+oK40hFYc6yQgKdWluY10Ewm838HHdAAkt9JA8QaBW4aebB26s2Ted4CuNrXY+bIRvKQ/WxtNWhE7huzEoE7zLUWG9F00K4X+icCaQR50LzTlhFiVCTKkL9YF7ocC980QkjJ/O8dusY/r98N8Hpjh/u+rufcC/fkcuzTp6S52SbhGSP7JP35IicEE4U+U5+kJ+tv+1Ou9fuX6a21pqaJ2TltF/+A8QfIq0=</latexit>y
<latexit sha1_base64="9r2DBlBITcXcrDB+zUGRjymFQyU=">AAADcnicZVLNbhMxEHYTfkr4aQs3uBhWkVCJdrM9pIhTUS9EHGhF01bKRpHXO0mser0r20sSrfbClSu8By/BQ/AYSDwA42QrNXQkaz7Pj2fm88S5FMZ2u7+3Gs07d+/d337Qevjo8ZOd3b2n5yYrNIcBz2SmL2NmQAoFAyushMtcA0tjCRfx1bHzX3wBbUSmzuwyh1HKpkpMBGcWTafT8a7X9bsrobdBWAPvyPvz6+vgZ+9kvNcYRknGixSU5ZIZMwy7uR2VTFvBJVStqDCQM37FpjBEqFgKZlSuOq1oGy0JnWQaj7J0Zb2ZUbLUpMzOOhSBCzErZJZpjMnOYzYL2MnbUSlUXlhQfP3+pJDUZtRNSxOhgVu5RMC4Ftgi5TOmGbfIyUZh97bNMmmqVqtNmZxmGD5LqQbJLCQbVR3ZRhVpDBqSjrslHV1ISJCG68QDpKLdpgkgSRoow1nTlKmERscIkDznZXq6IpLOhZQ0BmoKrbNCJUhSvKTBPvV9n+4Hregz2I/zOrOsdVViQFWiH0tRWLA0l0Bn1ubmXRDM53M/w6+XwCY+Fg8QaBW4aRbB++s2jXc2g/GNrsf1kHXJvvpU2LLvCK5qteHBs3LVurXBaS7cFzpjApOIc6G5F5ZRItS0jJA/WOQ6PAzfeGHkaF5UFa5j+P/y3QbnB37Y83unuJd9spZt8oK8Iq9JSA7JEflATsiAcALkG/lOfjT+Np83Xza9dWhjq855Rjak2fkHcIUfIw==</latexit>g <latexit sha1_base64="9r2DBlBITcXcrDB+zUGRjymFQyU=">AAADcnicZVLNbhMxEHYTfkr4aQs3uBhWkVCJdrM9pIhTUS9EHGhF01bKRpHXO0mser0r20sSrfbClSu8By/BQ/AYSDwA42QrNXQkaz7Pj2fm88S5FMZ2u7+3Gs07d+/d337Qevjo8ZOd3b2n5yYrNIcBz2SmL2NmQAoFAyushMtcA0tjCRfx1bHzX3wBbUSmzuwyh1HKpkpMBGcWTafT8a7X9bsrobdBWAPvyPvz6+vgZ+9kvNcYRknGixSU5ZIZMwy7uR2VTFvBJVStqDCQM37FpjBEqFgKZlSuOq1oGy0JnWQaj7J0Zb2ZUbLUpMzOOhSBCzErZJZpjMnOYzYL2MnbUSlUXlhQfP3+pJDUZtRNSxOhgVu5RMC4Ftgi5TOmGbfIyUZh97bNMmmqVqtNmZxmGD5LqQbJLCQbVR3ZRhVpDBqSjrslHV1ISJCG68QDpKLdpgkgSRoow1nTlKmERscIkDznZXq6IpLOhZQ0BmoKrbNCJUhSvKTBPvV9n+4Hregz2I/zOrOsdVViQFWiH0tRWLA0l0Bn1ubmXRDM53M/w6+XwCY+Fg8QaBW4aRbB++s2jXc2g/GNrsf1kHXJvvpU2LLvCK5qteHBs3LVurXBaS7cFzpjApOIc6G5F5ZRItS0jJA/WOQ6PAzfeGHkaF5UFa5j+P/y3QbnB37Y83unuJd9spZt8oK8Iq9JSA7JEflATsiAcALkG/lOfjT+Np83Xza9dWhjq855Rjak2fkHcIUfIw==</latexit>gPeriodic Alignment

<latexit sha1_base64="4s3XhXyToARnxO5WVF4/2emelgI=">AAADmXicZVLNbtQwEHa7/JTw0xaOPWCxWlSVKtn00KKKQ6tyaOFAUX+hWa0cZzZr1XEi22F3FeUBkHgarvAiPAJ3HoDxNhVdOpLlz/Pjmflm4kIKY7vdX3PzrTt3791feOA9fPT4yeLS8tNTk5eawwnPZa7PY2ZACgUnVlgJ54UGlsUSzuLLPWc/+wLaiFwd20kBvYylSgwEZxZV/aWX6TaNMmaHnMnqc00jLdKhZVrno3/6T3V/qd31u1Oht0HYgPbO899vvv7xVg/7y/MXUZLzMgNluWTGXITdwvYqpq3gEmovKg0UjF+yFC4QKpaB6VXThmraQU1CB7nGoyydam9GVCwzrrh1isC5mCkykyzGYGcxswns4HWvEqooLSh+9f+glNTm1JFCE6GBWzlBwLgWWCLlQ6YZt0jdTGL3t81zaWrP61Am0xzdhxnVIJmFZCarm4lRZRaDhmTdvZJ1XUpIkIbrwA2kotOhCSBJGijDXrOMqYRGewiQPGdlOp0SSUdCShoDNSUOqFQJkhRPaLBGfd+na4EXHYF9P2oiq+auK3SoK7RjKgpjlhUS6NDawmwHwWg08nPcEAls4GPyAIFWgetmHOxel2nax0Po36i63zTZpDxQH0pbHTiC6+aaseCZmprbm+G0EG6ETpnAIOJcaN4OqygRKq0i5A/GhQ63wlftMHI0j2u3juH/y3cbnG744aa/+RH38i25kgWyQl6QVRKSLbJD9skhOSGcfCPfyQ/ys7XS2m3tt95duc7PNTHPyIy0jv4Ca9MtbQ==</latexit>

g : Z → Y <latexit sha1_base64="OVptuOPjN7klZgpyI2SrdVWFVLk=">AAADe3icZVJLb9NAEN4mPIp5tIUjB1ZEkaoQ2XElWoQ4FJUDFQeK6EvEUbRej5NV12trd00SWf4B3LnC/+IncOeKxGzqSg1daTWf57HfzOeJCymMHQx+rbXat27fubt+z7v/4OGjjc2tx6cmLzWHE57LXJ/HzIAUCk6ssBLOCw0siyWcxRcHLn72FbQRuTq2iwJGGZsokQrOLLq+RBmz0zitFvV4szPwB8tDb4KwAZ39Z7/ffPvjbR+Nt1rDKMl5mYGyXDJjhuGgsKOKaSu4hNqLSgMF4xdsAkOEimVgRtWy5Zp20ZPQNNd4laVL7/WKimXG9danCFyKWSKzyGIsdhGzSmDTV6NKqKK0oPjl+2kpqc2pG5smQgO3coGAcS2wRcqnTDNuUZwVYve2zXNpas/rUiYnOaZPM6pBMgvJCqtT3agyi0FD0ndfSV+XEhKU4apwB6XodmkCKJIGynDWLGMqodEBAhTPRZmeLIWkMyEljYGaUuu8VAmKFC9o0KO+79Ne4EWfwX6YNZVVY+sKE+oK40hFYc6yQgKdWluY10Ewm838HHdAAkt9JA8QaBW4aebB26s2Ted4CuNrXY+bIRvKQ/WxtNWhE7huzEoE7zLUWG9F00K4X+icCaQR50LzTlhFiVCTKkL9YF7ocC980QkjJ/O8dusY/r98N8Hpjh/u+rufcC/fkcuzTp6S52SbhGSP7JP35IicEE4U+U5+kJ+tv+1Ou9fuX6a21pqaJ2TltF/+A8QfIq0=</latexit>y<latexit sha1_base64="OVptuOPjN7klZgpyI2SrdVWFVLk=">AAADe3icZVJLb9NAEN4mPIp5tIUjB1ZEkaoQ2XElWoQ4FJUDFQeK6EvEUbRej5NV12trd00SWf4B3LnC/+IncOeKxGzqSg1daTWf57HfzOeJCymMHQx+rbXat27fubt+z7v/4OGjjc2tx6cmLzWHE57LXJ/HzIAUCk6ssBLOCw0siyWcxRcHLn72FbQRuTq2iwJGGZsokQrOLLq+RBmz0zitFvV4szPwB8tDb4KwAZ39Z7/ffPvjbR+Nt1rDKMl5mYGyXDJjhuGgsKOKaSu4hNqLSgMF4xdsAkOEimVgRtWy5Zp20ZPQNNd4laVL7/WKimXG9danCFyKWSKzyGIsdhGzSmDTV6NKqKK0oPjl+2kpqc2pG5smQgO3coGAcS2wRcqnTDNuUZwVYve2zXNpas/rUiYnOaZPM6pBMgvJCqtT3agyi0FD0ndfSV+XEhKU4apwB6XodmkCKJIGynDWLGMqodEBAhTPRZmeLIWkMyEljYGaUuu8VAmKFC9o0KO+79Ne4EWfwX6YNZVVY+sKE+oK40hFYc6yQgKdWluY10Ewm838HHdAAkt9JA8QaBW4aebB26s2Ted4CuNrXY+bIRvKQ/WxtNWhE7huzEoE7zLUWG9F00K4X+icCaQR50LzTlhFiVCTKkL9YF7ocC980QkjJ/O8dusY/r98N8Hpjh/u+rufcC/fkcuzTp6S52SbhGSP7JP35IicEE4U+U5+kJ+tv+1Ou9fuX6a21pqaJ2TltF/+A8QfIq0=</latexit>y

<latexit sha1_base64="R+GbChTuahq3M7C2IjC2oMj1pAc=">AAADe3icZVLbbtNAEN0mXEq4tIVHXlZYkVCJfKlEi3ihqDxQ8UARvYk6itbrcbLqem3trkkiy3/BC0jwP3wCH4PEbOJKDR1ptcdz2TNzPEkphbFh+Get0711+87d9Xu9+w8ePtrY3Hp8aopKczjhhSz0ecIMSKHgxAor4bzUwPJEwllyeeDiZ19BG1GoYzsvYZizsRKZ4Myi60ucMztJsjpsRpte6IcLozdB1ALvze/vzn4cjbY6F3Fa8CoHZblkxlxEYWmHNdNWcAlNL64MlIxfsjFcIFQsBzOsFy03tI+elGaFxqMsXXivV9QsN663AUXgUswCmXmeYLGLmFUCm70a1kKVlQXFl+9nlaS2oG5smgoN3Mo5Asa1wBYpnzDNuEVxVojd27YopGl6vT5lclxg+iSnGiSzkK6wOtWNqvIENKQD95UOdCUhRRmuCndQin6fpoAiaaAMZ81zplIaHyBA8VyU6fFCSDoVUtIEqKm0LiqVokjJnAbb1Pd9uh304s9gP0zbyrq9mxoTmhrjSEVhxvJSAp1YW5rXQTCdTv0Cd0ACy3wkDxBoFbhpZsHbqzaNdzyB0bWuR+2QLeWh+ljZ+tAJ3LTXSgTPItTevRVNS+F+oXOmkMWcC829qI5TocZ1jPrBrNTRXvTCi2In86xx6xj9v3w3wemOH+36u59Cb/8dWdo6eUqekeckIntkn7wnR+SEcKLIN/KT/Or87Xrd7e5gmdpZa2uekBXrvvwH/fsj0A==</latexit>

0

Figure 3: Overall framework of the SR2 method. The framework consists of three main modules: Reflec-
tive Representation Learning (in blue), Dependency Self-Refinement (in orange), and Periodic Alignment (in
green). f denotes the weight-shared atomic block that updates the latent state, and g projects the latent space to
the final answers. In the representation learning stage, f recurrently updates the latent state with the observation
as injection, z(t+1) = f(z(t),x), for M steps to obtain a refined initialization. Next, in the self-refinement
stage, the model drops the observation signal, z(t+1) = f(z(t),0), and updates for a long M × (N−1) steps
to resolve dense dependencies and approach a fixed point. Throughout training, the supervision is conducted
periodically (e.g., every M steps) to stabilize long recurrences and mitigate gradient vanishing. When adding
supervision, the gradients from future states are blocked (as the red arrows).

Reflective Representation Learning. A key challenge posed by Hypothesis 1 is the intractability
of the large latent space z, which makes direct inference difficult. To address this issue, we propose a
reflective representation learning module, which explicitly models reasoning as a reflection process.

We define reflection as a fixed-point equation of the form
z = f(z,x), (3)

where f(·) is a parametric function (e.g., Transformer model) that updates the latent representation
z conditioned on the observed input x. This formulation captures the intuition that reasoning is not
a one-shot mapping from x to z, but rather an iterative process in which z is repeatedly revised
until it becomes consistent with both the observed data and the latent constraints. Concretely, equa-
tion 3 formalizes reflection by refining the latent solution z through fixed-point updates rather than
producing it in one step. This directly addresses Hypothesis 1: when the latent space far exceeds
the observation space, iterative fixed-point updates provide a practical route to contract toward a
constraint-satisfying z.

Equation equation 3 can be solved by iterative refinement:

z(n+1) = f
(
z(n),x

)
, n = 0, 1, . . . , N, (4)

starting from an initial estimate z(0) initialized as zeros. After T iterations, the fixed-point solution
z∗ is expected to approximate the reflective latent representation satisfying equation 3. This iterative
mechanism enables the model to explore the latent space incrementally, progressively eliminating
invalid assignments and converging towards rule-consistent solutions.

In large latent spaces, explicit conditioning on the previous state is often essential for guiding in-
ference. Although direct mapping from x to z is mathematically equivalent to reflection, it fails to
sufficiently constrain the solution space. Appendix B provides a motivating example showing that
iterative conditioning yields strictly better solutions by progressively reducing the solution space.

Flattened recurrent Transformer. While the reflective update function f(z,x) in equation 3 can
in principle be instantiated by any deep neural network, such as a standard Transformer, we take
particular inspiration from recent advances in Deep Equilibrium Models (DEQ) (Bai et al., 2019),
which establish a duality between model depth and iterative refinement.

Consider a standard Transformer model with L stacked layers, where each layer applies the same
structural transformation to its input representation. Formally, let h(l) denote the hidden state at
layer l. The forward propagation can be expressed as

h(l+1) = T l
(
h(l),x

)
, l = 0, 1, . . . , L− 1, (5)

where T (·) is a Transformer block. Instead of explicitly stacking L distinct layers, we propose to
flatten the architecture by reusing a single Transformer block T recurrently across iterations:

h(m+1) = T
(
h(m),x

)
, m = 0, 1, . . . ,M, (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This unrolled architecture can be viewed as solving a fixed-point problem, where repeated applica-
tions of T iteratively refine the latent state. Equivalently, a depth-L Transformer can be reinterpreted
as a depth-one recurrent Transformer unrolled for M = L steps. By replacing M distinct layers with
a single shared module, the model reduces parameters while preserving expressiveness through iter-
ation. Such aligned iterative refinement allows the model to achieve effective depths much greater
than its deep explicit architecture.

Unlike DEQ, which seeks an equilibrium state and computes gradients via the implicit function
theorem without storing intermediate iterates, we explicitly unroll a fixed number of refinement
steps. In this sense, our approach is a truncated, explicitly unrolled variant that trains the refinement
trajectory itself rather than directly optimizing an implicit fixed point.

Dependency Self-Refinement. Hypothesis 2 highlights that the latent variables z are densely
structured and strongly interdependent. A change in one latent component typically requires a
cascade of adjustments to other components in order to maintain global consistency. Therefore,
a reasoning model needs to capture and refine such interdependencies, rather than relying solely on
direct mappings from the observed input x.

To model these dependencies, we propose a self-refinement process in which the input signal x is
removed, and the latent dynamics evolve autonomously:

z(t+1) = fs
(
z(t),0

)
, t = 0, 1, . . . , T, (7)

where z(0) is initialized from the reflective representation learning stage, and fs(·) is an iterative
solution of the fixed-point operator defined on the latent space. This formulation forces the model
to refine z using only its internal structure, ensuring that the converged solution satisfies the logical
constraints implied by the selection mechanism. By eliminating direct dependence on x, the model is
discouraged from learning spurious shortcuts and instead is compelled to resolve latent dependencies
through iterative updates.

Experimentally, we found that both reflective representation learning and dependency self-
refinement can be realized by a single atomic module, such as a Transformer block fs() = f(),
reused across iterations. This design substantially reduces the parameter footprint while maintain-
ing competitive performance. Finally, we repeat a Transformer block with T = M × N times
and re-order them, where the first M iterations inject x for representation learning, and the last
(M − 1)×N iterations are used for dependency learning.

Periodic Alignment. With the flattened recurrent model, we have T = M × N iterations. Such
long iterative refinement processes often suffer from optimization challenges. In particular, gra-
dients propagated through many iterations tend to vanish, leading to unstable training and poor
convergence. To address this challenge, we propose a periodic alignment mechanism. Instead of
applying supervision only at the final step T , we inject additional supervision (or self-supervision)
signals at regular intervals throughout the iterative refinement process. Formally, for refinement
states {z(t)}Tt=1, the training objective is augmented as

L =
∑
t∈A

ℓ
(
g(z(t)),y

)
, (8)

where g(·) is a prediction head mapping latent variables to task outputs, ℓ(·, ·) is a task-specific
loss function, and A ⊆ {1, . . . , T} specifies the alignment intervals. Typical choices of A include
uniform spacing (e.g., every M steps) or adaptive spacing based on convergence criteria. To ensure
stability, we detach the computational graph at each alignment step, so that each iteration only re-
ceives near gradients from its own supervision signal rather than from far future steps. This periodic
alignment stabilizes optimization by providing intermediate guidance that mitigates gradient van-
ishing and enforces consistency, ensuring that latent states z(t) remain progressively aligned with
the target throughout the refinement process.

2.4 CONNECTING SR2 TO THE DATA GENERATING PROCESS

From Eq. equation 1 to the target. Equation equation 1 describes the data generating process for
our task rather than the model design. In implementation, SR2 learns the conditional distribution

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

p(y | x) instead of the joint p(x,y), and this conditional is derived from the joint as

p(y | x) =
∫

p(z | x) pg(y | x, z) I
(
S(z) = 1

)
dz, (9)

Implementation map in SR2. Latent inference p(z | x). A single Transformer layer produces
a latent state z. SR2 refines it through reflection updates zt+1 = f(x, zt), yielding the final state
used for prediction. Prediction head pg(y | x, z). Since z summarizes x, a lm_head is trained to
model p(y | z) as a surrogate. Selection I

(
S(z) = 1

)
. Training pairs (x,y) satisfy the task rules, so

SR2 concentrates probability on rule consistent states without an explicit selector.

3 EXPERIMENTS

3.1 BENCHMARKS

Sudoku-Extreme The Sudoku task requires filling a 9×9 grid with the digits 1–9 such that each
row, each column, and each 3×3 subgrid contains all digits without repetition. Due to the logical
complexity of its constraints, Sudoku is a widely used benchmark for evaluating the logical reason-
ing ability of machine learning models (Palm et al., 2017; Long, 2023; Du et al., 2024). For a fair
comparison, we use the same dataset, Sudoku-Extreme, and follow the setup strictly with the recent
SOTA method, HRM (Wang et al., 2025a). Specifically, the benchmark comprises limited 1,000
training puzzles and 422,786 test puzzles, with an average difficulty of 22 backtracking steps.

Maze-Hard The maze navigation task asks a model to find the optimal path between a desig-
nated start and goal within a 30×30 maze. The requirement to plan long, intricate paths makes
it an effective probe of a model’s reasoning ability (Darlow et al., 2025; Su et al., 2025; Lehnert
et al., 2024b). We use the Maze-Hard dataset released by (Wang et al., 2025a), which follows the
instance-generation procedure of (Lehnert et al., 2024a). The generated mazes are filtered to retain
only the hardest cases, i.e., those whose shortest paths are the longest(Kapadia et al., 2013). The
benchmark comprises 1,000 training instances and 1,000 test instances.

ARC AGI The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC AGI)
evaluates abstract pattern induction and compositional generalization via small grid–transformation
tasks that require minimal prior knowledge and probe fluid intelligence (Chollet, 2019). Each task
provides a few input–output demonstrations; the solver must produce exactly matching outputs for
novel inputs. Following the official protocol, we use ARC AGI 1 (Chollet, 2024) and ARC AGI 2
(ARC Prize Foundation, 2025): ARC AGI 1 has 400 training and 400 evaluation tasks; ARC AGI
2 has 1,000 public training and 120 public evaluation tasks. We adopt a two-trial success criterion
and report pass@2 accuracy.

3.2 BASELINE AND IMPLEMENTATION

We compare our SR2 framework with several canonical network architectures used for reasoning,
as well as the recent HRM (Wang et al., 2025a) model, which are summarized below:

• Standard Transformer (Vaswani et al., 2017). Implements a standard multi-layer Trans-
former architecture.

• Block Universal Transformer (Dehghani et al., 2018). Replaces a deep stack of Trans-
former blocks with a flat recurrent architecture that repeatedly applies a Transformer block
(a single Transformer layer in the experiments)

• Recurrent Depth (Geiping et al., 2025b). Applies the same Transformer layer iteratively,
while additionally mapping each layer’s latent representation back to the input space. In
other words, each unit is injected by both inputs and latent states.

• HRM (Wang et al., 2025a). HRM employs an interactive recurrent structure, with a high-
level module responsible for abstract planning and a low-level module dedicated to detailed
computation. For implementation, we follow the officially released HRM configurations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Main results comparing SR2 with baselines on Sudoku-Extreme and Maze-Hard benchmarks.
We report pass@1 accuracy (%) and the number of learnable parameters (“Params”). With only 3.4M parame-
ters (1/8 of the 27.3M Transformer), SR2 achieves the best accuracy on both tasks (best in bold).

Method Params Sudoku-Extreme Maze-Hard ARC-1 ARC-2
Transformer 27.3M 1.17 0 21.0 0
Block Universal Transformer 3.4M 0 30.4 - -
Recurrent Depth 3.4M 42.52 48.4 - -
HRM 27.3M 55.0 74.5 40.3 5.0
Reflective Model 27.3M 53.12 70.8 - -
SR2 3.4M 66.63 93.7 44.3 6.7

• Reflective Model (Our baseline model). In this baseline, we consider only the reflective
representation learning stage, excluding the subsequent self-refinement process. Each unit
is implemented as an 8-layer Transformer without flattening, equipped with both input
injection and supervision.

For fairness, all methods are trained with the same optimizer, learning rate, and batch size. Parameter
counts are matched across similar designs: the Transformer, Reflective Model, and HRM uses 8
Transformer layers (4 high-level layers, 4 low-level layers in HRM), while the Block Universal
Transformer, Recurrent Depth, and our SR2 model adopt a single Transformer layer as the backbone.
More discussions with other recurrent models can be found in Appendix A.1.

3.3 EXPERIMENTAL RESULTS

We report the performance and parameter counts of SR2 and competing methods on the Sudoku-
Extreme and Maze-Hard benchmarks, as summarized in Table 1. For ARC-1 and ARC-2, due to
computational resource limitations, we did not evaluate all baseline models. Several key observa-
tions emerge:

• Standard Transformer. Standard Transformer architectures fail to solve these demanding
reasoning tasks. Even with extended training, the model does not acquire the necessary
reasoning skills, underscoring the importance of reflective mechanisms.

• Block Universal Transformer. Flattening the architecture by reusing a single Transformer
block yields modest gains over the standard Transformer, but overall performance remains
unsatisfactory.

• Recurrent Depth. Adding input injections to the recurrent architecture leads to clear im-
provements, demonstrating the benefit of feeding intermediate states back into the model.

• Reflective Model. Further improvements are observed when both input injections and su-
pervisory signals are balanced. The Reflective Model outperforms Recurrent Depth, high-
lighting the importance of combining multiple feedback pathways.

• HRM vs. Reflective Model. HRM achieves results comparable to the Reflective Model,
suggesting that hierarchical recurrent structures are not strictly necessary for reasoning
tasks of this type.

• SR2. Compared with Recurrent Depth, SR2 achieves substantial improvements such as
over 20% on Sudoku-Extreme and nearly 2× on Maze-Hard. This demonstrates the crucial
role of self-refinement. Moreover, SR2 surpasses HRM by 11.6% on Sudoku-Extreme and
19.2% on Maze-Hard, while using only one eighth of HRM’s parameters.

3.4 TRAINING & INFERENCE COST ANALYSIS

We evaluate the computational efficiency of SR2 against Transformer and HRM baseline on
Sudoku Extreme under same settings, reporting training speed in batches per second, train-
ing memory as the average per GPU across devices, and inference speed as samples pro-
cessed per second computed from the wall clock runtime on the test set. The Periodic Align-
ment module makes SR2 slower than Transformer baseline during both training and infer-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ence, yet SR2 remains faster than HRM because it uses a single layer without a hierarchi-
cal structure. SR2 also consumes somewhat more training memory than the other baselines.

Table 2: Training and inference efficiency compari-
son.

Method Training
Speed

(Batch/s)1

Training
Mem
(GB)2

Inference
Speed

(Sample/s)3
Direct Pred 21.39 3.024 7489.6
HRM 10.57 3.231 1487.7
SR2 14.73 3.950 2073.6

3.5 ABLATION STUDIES

We perform a comprehensive set of ablation
studies to systematically evaluate the contribu-
tion of each component. No Self-Refinement
removes Dependency Self-Refinement; all T =
M × N iterations inject input x and do not
explicitly model dependencies among latent z.
No Reflection removes Reflective Representa-
tion Learning process; x is injected only at the
first iteration (no repeated injections across the first M). Mixture (2/4 Reflection) performs multiple
self-refinement phases by re-injecting x at evenly spaced blocks rather than only at the first block.
Separate Function uses two distinct parameterized functions for the reflective and self-refinement
stages instead of a shared one. Flattened Reflective Model replaces the multi-layer stack of the
Reflective Model with a single recurrent Transformer layer, unrolled across iterations.

Table 3: Ablation of the SR2 framework.

Ablations Accuracy (%)
No Self-Refinement 53.11

No Reflection 0

Mixture (2 Reflections) 63.32

Mixture (4 Reflections) 55.25

Separate Function 59.76

Reflective Model 53.12

Flattened Reflective Model 53.75

SR2 66.63

Is every component of SR2 necessary? Yes.
To assess the roles of the Reflective Rep-
resentation Learning and Dependency Self-
Refinement modules, we conduct ablations that
remove each module in turn. As reported in Ta-
ble 3, eliminating the self-refinement loop pre-
vents the model from capturing dependencies
and leads to a clear drop in accuracy, while re-
moving feedback altogether leaves the model
unable to retain input features, causing perfor-
mance to collapse to zero.

Does more reflections feedback always help?
No. We modify the default SR2 design (only
one reflective representation learning block in
M × N iterations) to test using two and four
reflections. As reported in Table 3, Mixture (2
Reflections) produces a slight decrease in accuracy relative to the default, while Mixture (4 Reflec-
tions) suffers a large degradation. These results indicate that injecting input too frequently biases
the model toward fitting superficial input patterns and distracts it from learning deeper dependencies
among latent states. In practice, a single reflection per alignment offers the best trade-off for SR2.

8 6 4 2 0 2 4 6 8
log2 (M/N)

0

20

40

60

Ac
cu

ra
cy

 (%
)

1:2562:128 4:64 8:32 16:16 32:8 64:4 128:2256:1
M : N (fixed M×N = 256)

Figure 4: Choosing N and M under a fixed
compute budget.

How should m and n be chosen under a fixed bud-
get? As Figure 4 shows, accuracy peaks when M ≈ N
and declines as their ratio departs from 1. The decline
is asymmetric: settings with M > N degrade more
gently than their mirrored N > M counterparts, so if
imbalance is unavoidable, favor a larger M . The results
indicate that balanced configurations are preferable.

Does the Reflection and Self-Refinement modules
have to learn two distinct functions? No. We replace
the single shared function in SR2 with two Transformer
layers that do not share parameters, assigning one to the
Reflection module and the other to the Self-Refinement
module. As shown in Table 3, the decoupled design Separate Function even reduces accuracy. These
results suggest that a single unified function is sufficient to support both representation learning and
refinement.

Is the flat architecture effective? Yes. To test whether a recurrent single-layer Transformer can
replace a stack of distinct layers in our framework, we compare Reflective Model with Flattened

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2 4 8 16 32
N (M fixed at 16)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

34.63
42.87

60.47
66.63

57.20

Acc
Log-linear fit

(a) Accuracy vs. N with M=16 fixed.

2 4 8 16 32
M (N fixed at 16)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

7.02

39.89

52.97

66.63 69.08

Acc
Log-linear fit

(b) Accuracy vs. M with N=16 fixed.

Figure 5: Accuracy scaling with the hyperparameter N and M : the left panel varies N at M=16, and the
right varies M at N=16.

Reflective Model, where the former uses eight distinct Transformer layers, whereas the latter applies
a single Transformer layer recurrently with shared weights. The results show a comparable accuracy
between the two, indicating that parameter sharing in depth can serve as a drop-in alternative to a
deeper stack without degrading reasoning performance.

How does performance scale with the hyperparameter M and N? Using the results in Figure 5,
we observe a near-monotonic improvement as M increases with N fixed at 16, well captured by a
log-linear trend. Holding M=16 and sweeping N , the precision increases to a rapid peak before
dropping, indicating early saturation and eventual regression when N becomes too large. Although
larger M and moderately large N yield stronger results, they also inflate training time and slow
inference. To balance accuracy with computational cost, we adopt M=N=16 as the default setting
for our main experiments.

2.0k 4.0k 6.0k 8.0k 10.0k
Speed (samples/s)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

step=32

step=16
step=8

step=4

step=2

Pareto-optimal
Dominated

Figure 6: Accuracy–throughput trade-off
vs. test-time alignment steps.

How many alignment steps should we use at test
time? As shown in Figure 6, reducing the test-
time alignment horizon steps monotonically lowers ac-
curacy but increases throughput (samples / s), trace
a clear accuracy-speed Pareto frontier over steps ∈
{32, 16, 8, 4, 2}. Notably, for a model trained with
M=16, evaluating with a larger steps (e.g., 32) does
not yield additional accuracy gains, indicating that the
training-time horizon effectively caps test-time bene-
fits. In practice, steps can be tuned at deployment to
satisfy latency budgets with a predictable accuracy cost,
whereas pushing steps beyond the training setting offers
little return.

4 CONCLUSION

We revisited reasoning tasks through the lens of causality and formulated them as a selection mech-
anism, identifying latent space complexity and dense interdependence as key sources of difficulty.
Building on these insights, we introduced SR2, a framework that models reasoning as iterative
refinement with three components: reflective representation learning, dependency self-refinement,
and periodic intermediate alignment, instantiated by a flat recurrent Transformer. Experiments on
Sudoku and Maze Navigation benchmarks demonstrate that SR2 achieves significant gains in rea-
soning accuracy while using up to 8× fewer parameters than recent baselines. Limitations: Despite
its insight, the assumption of reasoning as a selection mechanism may oversimplify the richness of
human reasoning. Besides, our evaluation is limited to benchmarks with clear and simple logical
constraints, and we leave more comprehensive evaluations on complex or open-domain tasks, as
well as large-scale implementations, to future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

ARC Prize Foundation. Abstraction and reasoning corpus for artificial general intelligence v2.
GitHub repository, 2025. URL [https://github.com/arcprize/ARC-AGI-2.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances in
neural information processing systems, 33:5238–5250, 2020.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann,
Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Consti-
tutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022. doi:
10.48550/arXiv.2212.08073. URL https://arxiv.org/abs/2212.08073.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019. URL
[https://arxiv.org/abs/1911.01547.

François Chollet. Abstraction and reasoning corpus for artificial general intelligence v1. GitHub
repository, 2024. URL [https://github.com/fchollet/ARC-AGI.

Luke Darlow, Ciaran Regan, Sebastian Risi, Jeffrey Seely, and Llion Jones. Continuous thought
machines. arXiv preprint arXiv:2505.05522, 2025.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Yunlong Deng, Guangyi Chen, Tianpei Gu, Lingjing Kong, Yan Li, Zeyu Tang, and Kun Zhang.
Towards self-refinement of vision-language models with triangular consistency. In Advances in
Neural Information Processing Systems (NeurIPS), 2025. Poster.

Yilun Du, Jiayuan Mao, and Josh Tenenbaum. Learning iterative reasoning through energy diffusion.
ArXiv, abs/2406.11179, 2024.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

Felix Elwert and Christopher Winship. Endogenous selection bias: The problem of conditioning on
a collider variable. Annual review of sociology, 40(1):31–53, 2014.

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K Ng, Zhen-
guo Li, and Zhaoqiang Liu. Algoformer: An efficient transformer framework with algorithmic
structures. arXiv preprint arXiv:2402.13572, 2024.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025a.

11

[https://github.com/arcprize/ARC-AGI-2
https://arxiv.org/abs/2212.08073
[https://arxiv.org/abs/1911.01547
[https://github.com/fchollet/ARC-AGI

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
reasoning: A recurrent depth approach, 2025b. URL https://arxiv.org/abs/2502.
05171.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Mubbasir Kapadia, Francisco Garcia, Cory D. Boatright, and Norman I. Badler. Dynamic search
on the gpu. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3332–3337, 2013. doi: 10.1109/IROS.2013.6696830.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Kenji Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers.
arXiv preprint arXiv:2102.07346, 2021.

Erwin Kreyszig. Introductory Functional Analysis with Applications. John Wiley & Sons, New
York, 1978.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
ping, 2024a. URL https://arxiv.org/abs/2402.14083.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul McVay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
ping. In First Conference on Language Modeling, 2024b.

Mingjie Li, Yisen Wang, and Zhouchen Lin. Cerdeq: Certifiable deep equilibrium model. In Inter-
national Conference on Machine Learning, pp. 12998–13013. PMLR, 2022.

Jieyi Long. Large language model guided tree-of-thought. ArXiv, abs/2305.08291, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Karl Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023. doi: 10.48550/
arXiv.2303.17651. URL https://arxiv.org/abs/2303.17651.

John McCarthy. Mathematical logic in artificial intelligence. Daedalus, pp. 297–311, 1988.

Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. Cotformer: A chain-of-
thought driven architecture with budget-adaptive computation cost at inference. arXiv preprint
arXiv:2310.10845, 2023.

Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. Advances in neural
information processing systems, 31, 2018.

12

https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/2502.05171
https://arxiv.org/abs/2402.14083
https://arxiv.org/abs/2303.17651

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In Neural
Information Processing Systems, 2017.

Judea Pearl. Causality. Cambridge university press, 2009.

Stuart J Russell and Peter Norvig. Artificial intelligence-a modern approach, third international
edition. 2010.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023. doi: 10.48550/arXiv.2303.11366. URL https://arxiv.org/
abs/2303.11366.

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dualformer:
Controllable fast and slow thinking by learning with randomized reasoning traces, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011.

Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
Yasin Abbasi Yadkori. Hierarchical reasoning model. arXiv preprint arXiv:2506.21734, 2025a.

Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu, Fangzhen Lin, and Wenhu Chen. Emergent hi-
erarchical reasoning in llms through reinforcement learning. arXiv preprint arXiv:2509.03646,
2025b.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022. doi: 10.48550/arXiv.2203.11171. URL
https://arxiv.org/abs/2203.11171.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
reasoning. arXiv preprint arXiv:2203.14465, 2022. doi: 10.48550/arXiv.2203.14465. URL
https://arxiv.org/abs/2203.14465.

Yujia Zheng, Zeyu Tang, Yiwen Qiu, Bernhard Schölkopf, and Kun Zhang. Detecting and identify-
ing selection structure in sequential data. arXiv preprint arXiv:2407.00529, 2024.

13

https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.14465

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix for “Selection, Reflection and Self-Refinement: Revisit
Reasoning Tasks via a Causal Lens”

A MORE DETAILS OF PAPER

A.1 RELATED WORK

Reasoning in Machine Learning Reasoning, the process of deriving conclusions from informa-
tion through logical inference, has long been viewed as a central challenge for artificial intelligence.
Classical approaches in symbolic AI treated reasoning as explicit rule-based deduction, but these
systems struggled with scalability and generalization (McCarthy, 1988; Russell & Norvig, 2010).
In contrast, recent advances in machine learning have shifted toward data-driven reasoning, where
models learn to approximate reasoning behaviors from large-scale corpora. Large language models
(LLMs) such as GPT-o1 (Jaech et al., 2024), and Gemini (Team et al., 2023) have demonstrated
impressive progress on reasoning tasks, benefiting from advances in scaling post-training. Meth-
ods such as chain-of-thought supervised finetuning and reinforcement learning optimization provide
improvements (Guo et al., 2025; Wang et al., 2025b; Yue et al., 2025; Xie et al., 2025).

Recurrent Latent Reasoning Another line of research relevant to our work is recurrent latent
reasoning, where reasoning is modeled as an iterative process over hidden states or latent rep-
resentations. Unlike single-pass architectures, these methods refine intermediate representations
through recurrence or iterative updates, aiming to capture long-range dependencies and structured
constraints. Classical instances include recurrent relational networks (Palm et al., 2018), which it-
eratively propagate messages between entities to perform relational reasoning. More recent work,
such as Universal transformers (Dehghani et al., 2018), Algoformer (Gao et al., 2024), and Looped
Transformers (Giannou et al., 2023) Furthermore, CoTFormer (Mohtashami et al., 2023) and Re-
current Depth (Geiping et al., 2025a) enhance dependency modeling by injecting intermediate rep-
resentations and original representations into each recurrent unit, respectively. The recent HRM
model (Wang et al., 2025a) introduces a hierarchical recurrent structure, where a high-level module
is responsible for slow, abstract planning, while a low-level module manages fast, fine-grained com-
putations. Our work shares this motivation of recurrent refinement but differs in two key aspects.
First, we formulate reasoning as a selection mechanism grounded in causality, which provides a
principled explanation for the difficulty of reasoning tasks. Second, we propose a new recurrent
refinement framework that incorporates an early reflection module with dense input injection, a long
dependency self-refinement procedure, and periodic intermediate alignment.

Selection Mechanisms in Causality Within causal inference, selection mechanisms describe how
observed variables co-occur under specific constraints (Pearl, 2009). This perspective has proven
valuable in understanding selection bias and identifiability. Recent work (Deng et al., 2025; Zheng
et al., 2024) extends this concept beyond selection bias and shows that sequential data, such as
natural language, music, and poems, inherently follow this mechanism. In this paper, we show
that the reasoning task also fits this mechanism, where high-level logical concepts act as operators
imposing constraints on observed inputs.

Fixed-Point Solutions for Structured Prediction Fixed-point methods have been widely applied
in optimization and equilibrium modeling, where the solution is defined as a stable point under re-
peated updates (Bai et al., 2019; 2020; El Ghaoui et al., 2021; Li et al., 2022; Kawaguchi, 2021).
This paradigm departs from explicit layer stacking in conventional deep networks (He et al., 2016)
or Transformers (Vaswani et al., 2017) and instead characterizes representations as equilibria of
nonlinear transformations. Deep Equilibrium Model (DEQ)(Bai et al., 2019; 2020) directly solves
for the equilibrium point of a single-layer transformation using root-finding methods, thereby repre-
senting infinitely deep networks with constant memory cost. In parallel, the broader field of implicit
deep learning (El Ghaoui et al., 2021; Kawaguchi, 2021) has established theoretical guarantees for
convergence and optimization, highlighting the potential of implicit formulations to provide com-
pact yet powerful representations. Besides, iterative refinement methods (Geiping et al., 2025a) have
also demonstrated effectiveness in reasoning and structured prediction tasks.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 SUPPLEMENT TO RELATED WORK

Verbal self-correction in LLMs. A growing body of work investigates explicit self-correction for
LLMs via verbal feedback, critique, and planning. Reflexion Shinn et al. (2023) introduces verbal
self-reflection and episodic memory to iteratively improve task success; Self-Refine Madaan et al.
(2023) performs critique-and-edit loops using model-generated feedback; Self-Consistency Wang
et al. (2022) reduces reasoning errors by sampling and aggregating multiple chains of thought; STaR
Zelikman et al. (2022) bootstraps rationales through iterative data augmentation and fine-tuning;
and Constitutional AI Bai et al. (2022) uses a set of principles to guide model-written critiques
and refine outputs. While related in spirit, our approach differs in that SR2 does not explicitly
generate token sequences to steer self-correction. Instead, the correction process is implemented
implicitly through iterative updates of the latent variables (z), integrating self-correction into the
latent reasoning dynamics without additional verbal overhead.

A.3 COUNTING THE LATENT AND OBSERVATION SPACES IN SUDOKU

Setup and counting argument. Consider a standard 9 × 9 Sudoku. Let C = {1, . . . , 81} be
the index set of cells and let K ⊂ C be the indices of revealed entries in the initial grid. Define
M = C \ K as the masked cells with |M | = n. A full solution is an assignment z ∈ [9]C that
satisfies all Sudoku constraints on rows, columns, and 3×3 blocks and that agrees with the revealed
entries on K. Let Z be the set of full solutions consistent with the given clues and write S := |Z|.
The observation for a fixed instance is the single partially filled grid x∗, hence the observation space
is a singleton.

|O| = 1.

We count the latent objects that we call valid solution trajectories. Starting from the initial grid and
for each step t = 1, . . . , n we choose one still empty cell ct ∈ M \ {c1, . . . , ct−1} and fill it with
the digit z(ct) taken from some full solution z ∈ Z. The partial assignment after every step must
satisfy all Sudoku constraints.

Prefix feasibility. Fix any z ∈ Z. For any subset T ⊆ M , the partial assignment {(c, z(c)) : c ∈
T} satisfies all Sudoku constraints, since z already assigns pairwise consistent digits to every row,
column, and block, hence any restriction of z remains feasible.

By prefix feasibility, if we commit to one fixed z ∈ Z then every ordering of the n masked positions
yields a valid trajectory. Therefore for a fixed full solution z the number of valid trajectories equals
the number of permutations of M .

|L(z)| = n!.

Trajectories coming from different full solutions are disjoint when viewed as ordered sequences of
cell and digit pairs. Indeed, if two ordered sequences coincide then the underlying assignments
agree on all masked and revealed cells, hence the two full solutions are the same. Summing over all
full solutions gives the size of the latent space.

|L| = S n!.

Asymptotics and comparison. Using Stirling approximation we obtain

n! =
√
2πn

(
n
e

)n
(1 + o(1)) = exp

(
Θ(n logn)

)
.

Thus for fixed board size and any fixed S in particular S = 1 for uniquely solvable puzzles the latent
space grows as

|L| = Θ
(
S
√
n
(
n
e

)n)
,

|L|
|O| = Θ(S n!).

This formalizes that the latent space is much larger than the observation space for fixed instances.

Remark on stricter move policies. If trajectories are restricted to fill only logically forced cells
at each step then the admissible orders are the linear extensions of a problem dependent partial order
on M . Exact counting is difficult, but the bounds below always hold, which preserves the factorial
upper bound.

1 ≤ |Lforced| ≤ n!.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 THEOREM (EXISTENCE OF CONVERGENCE IN SR2).

Let f : Z×X → Z be the shared update function used in both the Reflection and Self-Refinement
stages of SR2. Define the update rules:

Reflection: zt+1 = f(zt, x), t = 0, . . . ,M − 1,

Self-Refinement: zt+1 = f(zt, 0), t ≥ M.

(A1) Completeness The latent space (Z, ∥ · ∥) is a complete metric space, and for any fixed input
x ∈ X , f(·, x) maps Z to itself.

(A2) Contraction There exists a constant L ∈ (0, 1) such that

∥f(z1, x)− f(z2, x)∥ ≤ L ∥z1 − z2∥. (10)

for all z1, z2 ∈ Z and x ∈ {x, 0}.

Then:

(i) Each update function f(·, x) and f(·, 0) admits a unique fixed point z⋆x and z⋆0 , respectively.

(ii) The iterative sequences defined by Reflection and Self-Refinement converge to their corre-
sponding fixed points:

zt → z⋆x for t < M, and zt → z⋆0 for t ≥ M.

Proof. Step 1. Define the contraction operators. Define two operators on the latent space:
Tx(z) := f(z, x), T0(z) := f(z, 0). By assumption (A1), both Tx and T0 map Z into itself.

Step 2. Show that Tx and T0 are contractions. By (A2),

∥Tx(z1)− Tx(z2)∥ = ∥f(z1, x)− f(z2, x)∥ ≤ L∥z1 − z2∥,
and similarly for T0. Hence, both Tx and T0 are contraction mappings on the complete metric space
(Z, ∥ · ∥).

Step 3. Apply the Banach fixed-point theorem Kreyszig (1978). By Banach’s theorem, every
contraction on a complete metric space has a unique fixed point, and successive applications of the
map converge to it. Thus, there exist unique points z⋆x, z

⋆
0 ∈ Z such that

Tx(z
⋆
x) = z⋆x, T0(z

⋆
0) = z⋆0 .

Moreover, for any initialization z0 ∈ Z ,

zt+1 = Tx(z
t) =⇒ zt → z⋆x, zt+1 = T0(z

t) =⇒ zt → z⋆0 .

Step 4. Apply the result to SR2 dynamics. In SR2, the reflection phase iterates Tx for a finite
number of steps (M). Therefore, after sufficiently many steps, the latent variable zM approaches
z⋆x. The self-refinement phase then iterates T0 starting from zM , so by Banach’s theorem, zt → z⋆0
as t → ∞.

Conclusion. Under mild contraction and completeness assumptions (standard in implicit and
equilibrium formulations) the SR2 updates possess unique equilibria for both reflection and self-
refinement, and their iterative applications converge to these equilibria. The theorem guarantees
existence of convergence for the latent representations and therefore for the predictions of SR2. □

B A MOTIVATING EXAMPLE

We have thoroughly discussed in the main text the necessity of incorporating latent variable recur-
rence into the update process. Whether through a selection mechanism that guides the represen-
tation, or via a fixed-point iterative formulation, the current arguments focus on the existence of a

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

latent optimal state z∗ such that the iterative update z(t) = f(x, z(t−1)) converges, in which case
the introduction of last latent state z(t−1) into the estimation of z(t) matters.

However, one critical question remains unresolved: why is it insufficient—or fundamentally dif-
ficult—to learn a high-quality latent representation z using only the observation x, i.e., through a
direct mapping z = g(x)? Towards this question, we consider a simple yet illustrative example
using a linear state-space model:

z(1) ∈ N(0, P0),

z(t) = Az(t) + wt, A ∈ Rd×d, wt ∼ N(0, Q),

x(t) = Cz(t) + vt, C ∈ Rm×d, vt ∼ N(0, R),

(11)

with Q ≻ 0, R ≻ 0, and the observation is under-determined m < d.

Our objective is to estimate the hidden state z(1:T) from the observation x(1:T) only. We compare
two formulations: (1) estimating z(t) using only x(t), and (2) estimating z(t) using both x(t) and
z(t−1). We demonstrate that modeling the explicit dependence on z(t−1) constrains the solution
space and improves the conditioning of the estimation problem. In contrast, estimating z(t) directly
from x(t) alone is generally ill-posed.

Specifically, the second formulation—by incorporating z(t−1)—forms a recursive structure that
leads to a unique maximum a posterior (MAP) estimate under mild assumptions. It leverages both
the observation likelihood and the latent dynamics prior, thereby regularizing the solution and re-
solving ambiguity. In contrast, the first formulation estimates z(t) solely from x(t) , and thus its
solution lies on an affine subspace determined by the null space of C, making it non-unique.

B.1 DIRECT ESTIMATION USING OBSERVATION ONLY

Estimating z(t) through x(t) without considering the history information amounts to maximize the
likelihood p(x(t)|z(t)) at each time step. Since the observation is a linear mixing of latent variables
and Gaussian noise according to equation 11,

x(t)|z(t) ∼ N(Cz(t), R). (12)

Consider all time steps, as long as the x(t) is conditional independent with all other variables given
z(t) for all time steps, the conditional distribution:

p(x(1:T)|z(1:T)) =

T∏
t=1

N(x(t);Cz(t), R)

=

T∏
t=1

1

(2π)m/2|R|−1
exp

(
− 1

2
(x(t) − Cz(t))TR−1(x(t) − Cz(t))

) (13)

Take the log,

log p(x(1:T)|z(1:T)) =

T∑
i=1

−1

2
(x(t) − Cz(t))TR−1(x(t) − Cz(t))− m

2
log 2π − 1

2
log |R|. (14)

Our goal is to estimate z(t) by maximizing the likelihood above, we further stack the observations
and latent variables as:

x :=

x
(1)

...
x(t)

 ∈ RmT , z :=

z
(1)

...
z(t)

 ∈ RdT , (15)

and define the block-diagonal matrices

Cb :=


C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

 ∈ RmT×dT , Rb =


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

 ∈ RmT×mT . (16)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Maximizing equation 14 over z is equivalent to minimizing

L(z) := 1

2
(x−Cbz)

TR−1
b (x−Cbz), (17)

where all constant terms are dropped. The first order optimality condition is

CT
b R

−1
b (Cbz− x) = 0. (18)

Since rank(Cb) ≤ mT < dT , the matrix B := CT
b R

−1
b Cb is singular and the solution set is an

affine subspace; the obtained ẑ is non-unique and ill-posed.

B.2 INCORPORATE HISTORY VIA A DYNAMIC PRIOR

We note that explicitly consider the contribution from last latent state into the estimation of current
state is exactly the Bayes rule that maximize the posterior, whose form is

p(z(1:T)|x(1:T)) =
p(x(1:T)|z(1:T))p(z(1:T))

p(x(1:T))

∝ p(x(1:T)|z(1:T))p(z(1:T))

=

T∏
t=1

p(x(t)|z(t))
T∏

t=2

p(z(t)|z(t−1))p(z(1)).

(19)

Take the log, we have

p(z(1:T)|x(1:T)) ∝
T∑

t=1

log p(x(t)|z(t)) +
T∑

t=2

log p(z(t)|z(t−1)) + log p(z(1)). (20)

In this content, maximizing the posterior above is equivalent to minimize the following log terms
where all terms not depending on z are dropped:

• Initial prior

log p(z(1)) := −1

2
(z(1) − µ0)

TP−1
0 (z(1) − µ0). (21)

• Transition prior

log p(z(t)|z(t−1)) := −1

2
(z(t) −Az(t−1))TQ−1(z(t) −Az(t−1)), t ≥ 2. (22)

• Likelihood

log p(x(t)|z(t)) := −1

2
(x(t) − Cz(t))TR−1(x(t) − Cz(t)). (23)

Similarly, we can stack observations and latents as equation 15, the negative likelihood over multiple
steps is

− log p(x(1:T)|z(1:T)) =

T∑
t=1

log p(x(t)|z(t))

=
1

2
(x−Cbz)

TR−1
b (x−Cbz)

=
1

2
zTCT

b R
−1
b Cbz− xTR−1

b Cbz+ constant

:=
1

2
zTBz− hT

dataz+ constant,

(24)

where we simplify the notation as B := CT
b R

−1
b Cb, and hdata := CT

b R
−1
b x. Expand the negative

transition prior, we have

− log p(z(t)|z(t−1)) =
1

2
z(t)

T
Q−1z(t) − 1

2
z(t−1)TATQ−1z(t)−

1

2
z(t)

T
Q−1Az(t−1) +

1

2
z(t−1)TATQ−1Az(t−1).

(25)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Expand the negative initial prior

− log p(z(1)) =
1

2
z(1)

T
P−1
0 z(1) − z(1)

T
P−1
0 µ0 + constant. (26)

Expand the prior terms over all time steps and collect coefficients of the stacked quadratic zT (·)z.
The resulting block-tridiagonal weighting matrix is

Ddyn =


P−1
0 +A⊤Q−1A −A⊤Q−1

−Q−1A Q−1 +A⊤Q−1A −A⊤Q−1

.
−Q−1A Q−1 +A⊤Q−1A −A⊤Q−1

−Q−1A Q−1

 ∈ RTd×Td.

(27)
Similarly, collect coefficients of the stacked linear term (·)T z. There is no linear term from the
dynamics t = 2, . . . , T ; only the prior mean contributes, in which we define

hinit =


P−1
0 µ0

0
...
0

 . (28)

Now we collect everything, maximizing the posterior in equation 20 is equivalent to minimize

J (z) :=
1

2
zT (B+Ddyn)z− (hdata + hinit)

T z+ constant. (29)

As long as Q and P0 is positive definite, and B is positive semi-definite, there summation should
also be positive definite. Thus, the J (z) is strictly convex and the solution is unique.

C IMPLEMENTATION DETAILS

Data Preparation. For the Sudoku-Extreme training set, we follow the HRM configuration and
apply band and digit permutations to each training instance, generating 1,000 augmented variants
per example. No data augmentation is used for Maze-Hard. All baselines are trained and evaluated
on the same fixed training and test splits.

Model Architecture. To ensure fairness, every baseline uses exactly the same Transformer-layer
implementation as its atomic building block: one attention layer, one MLP, and an RMSNorm. The
Transformer-layer hyperparameter (e.g., hidden size) and the initialization scheme are kept identical
across all baselines.

Training Protocol. All baselines adopt a common backbone and therefore share the same op-
timization settings, including learning rate, batch size, optimizer, and loss function. Concretely,
all experiments use a learning rate of 1 × 10−4, a batch size of 768, and the AdamAtan2 opti-
mizer, with an identical loss function across methods. Each baseline is trained for 60,000 epochs on
SUDOKU-EXTREME and, separately, for 60,000 epochs on MAZE-HARD.

Hardware and Runtime. All training runs are executed on 8× AMD MI210 (64 GB) GPUs. The
average wall-clock training time is approximately 1 h for SUDOKU-EXTREME and approximately
15 h for MAZE-HARD.

In training and test cost analysis, all measurements were obtained under identical training hyper-
parameters using eight AMD MI210 64 GB GPUs. Speeds are reported as batches per second for
training and samples per second for inference, with memory averaged per GPU across the eight de-
vices and inference speed computed from total samples divided by wall clock time on the Sudoku
Extreme test set.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D PSEUDO CODE

1

2 # ===============================
3 # Hyper-parameters and components
4 # ===============================
5 m # number of inner iterations per block (e.g., 16)
6 n # number of outer blocks per batch (e.g., 16)
7

8 T # the ONLY recurrent transformer layer
9 Head # readout head producing y from z

10 Opt # optimizer over parameters of T and Head
11 Loss # criterion, e.g., cross-entropy / L2
12

13

14 def init_state(batch):
15 """z0 = 0 for each batch."""
16 return zeros_like_state(batch)
17

18 # ===============================
19 # Training loop
20 # ===============================
21 for epoch in range(num_epochs):
22 for batch in DataLoader:
23 x, target = batch
24 z = init_state(batch_size(x)) # z0 = 0
25

26 # ---- Periodic Alignment ----
27 for block_idx in range(1, n + 1):
28

29 Opt.zero_grad(set_to_none=True) # we update once per block
30

31 # ---- Flat recurrent Transformer ----
32 for t in range(1, m + 1):
33

34 if block_idx == 1:
35 # Only in the 1st block do reflection injection of x
36 # Inject both x and the previous z into next z.
37 # ---- Reflective Represent Learning ----
38 z_in = ReflectFuse(z, x)
39 else:
40 # From the 2nd block on, DO NOT inject x anymore
41 z_in = z # use z only
42

43 # One layer applied repeatedly (weight sharing)
44 z = T(z_in) # same layer, different

time step
45

46 # ---- End of a block: produce Y and train immediately ----
47 y_pred = Head(z) # predict from current z
48

49 cur_target = target if is_scalar_label(target) else
target[block_idx]

50

51 loss = Loss(y_pred, cur_target)
52 # backprop within this block only
53 loss.backward()
54 Opt.step() # update T and Head now
55

56 # ---- Detach for the next block ----
57 # Break the graph so gradients from the next block cannot
58 # flow back into the current/previous blocks.
59 z = z.detach()

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: Analysis of the applicability of SR2. M denotes how many times we forward the model
within a single alignment (supervision) step.

We provide the pseudo code for SR2. This pseudo code serves as a high-level description of the
algorithm’s workflow, outlining its core computational steps and logical structure.

E ANALYSIS OF SR2 APPLICABILITY

From another perspective, not all tasks require iterative updates. For relatively simple problems
such as image classification where the mapping from input to output is more direct and the latent
space is less entangled, a single forward pass is often sufficient. To probe this, we instantiated the
SR2 architecture on CUB-200-2011 (Caltech–UCSD Birds 200–2011) Wah et al. (2011), a fine-
grained classification benchmark, using the same backbone and comparable parameter budget as a
standard ViT baseline, identical training data splits, and a conventional top-1 accuracy protocol. As
summarized in Fig. 7, the ViT baseline attains roughly 75% top-1 accuracy, whereas SR2 equipped
with Reflection and Self-Refinement reaches under 45%. This gap, together with the learning curves
in the figure, supports our claim that iterative refinement is especially advantageous in complex
constraint-satisfaction or reasoning settings, but offers limited benefits and can even be detrimental
when the latent structure is comparatively simple and direct, as in standard classification.

DISCLOSURE OF LLM USAGE

In accordance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we disclose
that LLMs were used solely to assist with grammar refinement and language polishing in this paper.
No part of the research ideation, experimental design, implementation, or analysis relied on LLMs.
The authors take full responsibility for the technical content and conclusions of the work.

21

	Introduction
	Method
	Reasoning as Constraint-Satisfaction via Selection Mechanisms
	Two Fundamental Hypotheses
	The SR2 Framework
	Connecting SR2 to the data generating process

	Experiments
	Benchmarks
	Baseline and Implementation
	Experimental results
	Training & Inference Cost Analysis
	Ablation studies

	Conclusion
	More Details of Paper
	Related Work
	Supplement to Related Work
	Counting the Latent and Observation Spaces in Sudoku
	Theorem (Existence of Convergence in SR2).

	A motivating example
	Direct estimation using observation only
	Incorporate history via a dynamic prior

	Implementation Details
	Pseudo Code
	Analysis of SR2 Applicability

