

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SELECTION, REFLECTION AND SELF-REFINEMENT: REVISIT REASONING TASKS VIA A CAUSAL LENS

Anonymous authors

Paper under double-blind review

ABSTRACT

Due to their inherent complexity, reasoning tasks have long been regarded as rigorous benchmarks for assessing the capabilities of machine learning models, especially large language models (LLMs). Although humans can solve these tasks with ease, existing models, even after extensive pre-training and post-training at scale, still fail to perform reasoning reliably. In this paper, we revisit reasoning tasks from a causal perspective, seeking to understand their behavior in latent space and to offer insights for addressing their challenges. Specifically, we cast reasoning tasks as a selection mechanism, in which high-level logical concepts function as selection operators on the given observations, such as, identifying the correct answer in a math problem or filling the appropriate entry in Sudoku. We emphasize two key properties of this formulation that shed light on the difficulty of reasoning tasks. First, the latent space exceeds the observation space in complexity, even when the correct answer is fully determined by the observed input. Second, the latent variables, corresponding to logical thought, are densely structured and exhibit strong dependencies. Building on this formulation, we introduce a framework, called **SR²**, that incorporates the estimated latent variables as feedback into the selection mechanism, thereby facilitating the learning of dense dependencies among latent representations. The framework consists of three key modules: reflective representation learning, dependency self-refinement, and periodic intermediate alignment. Experimentally, we show that our approach yields significant gains in reasoning accuracy, for example, attaining over 10% improvement in performance with 8 \times fewer parameters on the Sudoku and Maze tasks over the recent advances.

1 INTRODUCTION

“We do not learn from experience... we learn from reflecting on experience.”

— John Dewey, *How We Think*

Reasoning, the act of deriving conclusions and principles from information by logical inference, lies at the heart of human intelligence. From solving arithmetic problems to navigating mazes, humans perform complex reasoning with ease and reliability. In contrast, machine learning models continue to struggle with these tasks. Reasoning challenges have therefore become one of the rigorous benchmarks for assessing the true depth of a model’s capability, particularly for large language models (LLMs). Unlike tasks driven by pattern recognition, reasoning requires that models infer, generalize, and operate over complex abstract relationships, capabilities that are fundamental to advancing machine intelligence toward human-level performance.

Despite the impressive progress enabled by large-scale pre-training and post-training, current models still fall short of robust reasoning (Guo et al., 2025). Much of the progress to date has come from scaling (Kaplan et al., 2020; Brown et al., 2020; Achiam et al., 2023), such as expanding datasets, model size, and optimization steps. They deliver performance gains but do not explain why reasoning remains intrinsically difficult for machines despite being natural for humans. Another line of work introduces chain-of-thought supervision or human reward to guide models through intermediate reasoning steps (Jaech et al., 2024; Guo et al., 2025; Wang et al., 2025b). However, they often encourage models to mimic the surface form of human explanations, such as natural language, rather

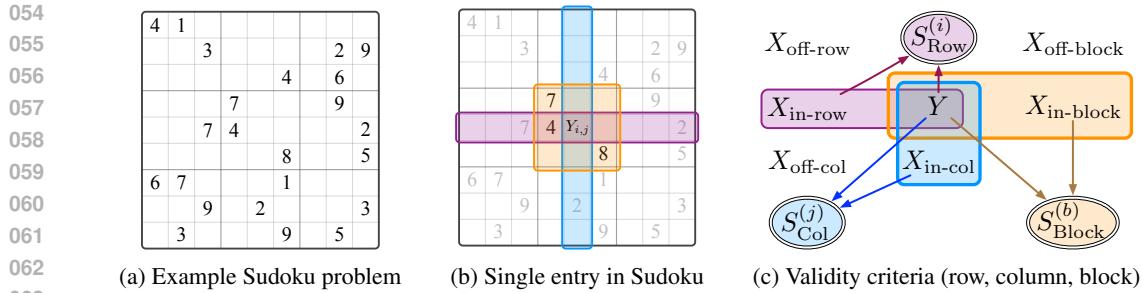


Figure 1: **Illustration of reasoning tasks and the selection mechanism, using Sudoku as an example.** (a) A sample 9×9 Sudoku puzzle with a subset of given clues; the goal is to fill the remaining cells so that each row, column, and 3×3 subgrid contains the digits 1–9 exactly once. (b) A single unfilled cell $Y_{i,j}$ with its row (purple), column (blue), and 3×3 block (orange) highlighted; the digits within these groups impose constraints that determine the admissible values for $Y_{i,j}$. (c) Selection mechanism: Y is valid iff the validity criteria are satisfied $S_{\text{Row}}^{(i)} = S_{\text{Col}}^{(j)} = S_{\text{Block}}^{(b)} = 1$.

than uncover the underlying structure of reasoning in the latent space. As a result, the generated reasoning traces may be verbose, inconsistent, or logically unsound, limiting their value for genuine generalization. This gap highlights the need for a new perspective that goes beyond scaling and imitation, aiming instead to model the structural nature of reasoning itself. The detailed discussion about related work can be found in Appendix A.1.

Specifically, we formulate reasoning tasks as a selection mechanism (Zheng et al., 2024; Elwert & Winship, 2014), a concept from causality that describes how observed variables co-occur under certain selection constraints. In reasoning tasks, high-level logical concepts act as operators that impose constraints on the observed inputs. For example, as illustrated in Figure 1, the numbers in a Sudoku grid must satisfy the validity criteria, where a given entry that needs to be filled should consider the selection constraints such that each row, column, and subgrid contains all digits exactly once. This formulation captures reasoning as the process of narrowing possible latent assignments to those consistent with the selection mechanism.

Building on the selection mechanism formulation, we propose two fundamental hypotheses that further characterize its structure and clarify the sources of difficulty in reasoning. First, the latent space in the selection mechanism is more complex than the observation space, even when the correct answer is uniquely determined by the observed input. For example, when solving a math problem, the observed input may consist of a few numbers and operations with a fixed solution, but the underlying reasoning process involves exploring a vast latent space of intermediate steps, alternative solution paths, and logical transformations before converging to the unique correct answer. Second, the latent variables are densely structured and highly interdependent, making them challenging for current models to disentangle and exploit. This is evident in reasoning processes where a single change in a principle or logical step often necessitates a cascade of adjustments to other steps in order to maintain overall consistency. These properties make it difficult for current models to disentangle and effectively utilize the latent structure, thereby limiting their reasoning capability.

Inspired by this formulation, we propose a new framework **SR²** to explicitly model the Selection, Reflection, and Self-Refinement, enabling iterative refinement of latent space in the reasoning process. This design encourages the model to explicitly capture the dense dependencies among latent representations, rather than treating them as isolated or independent. This framework consists of three key components. 1) To address the challenge of the intractably large latent space, we propose a reflective representation learning module. This module incorporates the estimated latent variables and maps them back into the input space as feedback injection and iteratively refines the representation. 2) To capture dense dependencies, we propose a dependency self-refinement process that discards observation signals and relies solely on latent variables as inputs to a fixed-point solver, ensuring that the resulting solution satisfies the imposed constraints. 3) To mitigate gradient vanishing in the long iterative refinement process, we introduce periodic intermediate alignment, which injects supervision (or self-supervision) at selected intervals to provide guidance and preserve consistency across reasoning steps.

We validate our approach on canonical reasoning benchmarks, including Sudoku and Maze Navigation. Our method achieves substantial improvements in reasoning accuracy, outperforming the

recent hierarchical reasoning model (HRM (Wang et al., 2025a)) by more than 10% while using up to $8\times$ fewer parameters. These results not only highlight the effectiveness of our framework but also demonstrate that reasoning can be advanced through causal modeling of latent structures rather than relying solely on scaling. In addition, we conduct a detailed ablation study to evaluate the contribution of each module, providing insights that may guide future research and development.

In summary, this work contributes:

- A causal perspective that formulates reasoning as selection mechanisms, where concepts act as operators constraining observed inputs;
- The finding of two key properties, including latent space complexity and dense dependencies, that explain the inherent difficulty of reasoning tasks;
- A novel framework with reflective representation learning, dependency self-refinement, and adaptive alignment to model reasoning more effectively;
- Empirical evidence on reasoning benchmarks showing that our approach achieves state-of-the-art performance with far fewer parameters.

We believe this study takes a step toward a deeper understanding of reasoning in machine learning and offers new insights for building models that reason more like humans.

2 METHOD

In this section, we present our framework **SR²** (Selection, Reflection, and Self-Refinement), which is designed to address the inherent difficulty of reasoning tasks through a causal formulation. We begin by revisiting reasoning tasks as a selection mechanism, then introduce two hypotheses that explain their complexity, and finally describe our framework components that explicitly model selection, reflection, and self-refinement.

2.1 REASONING AS CONSTRAINT-SATISFACTION VIA SELECTION MECHANISMS

In a constraint-satisfaction framing, reasoning is understood as the process of aligning different pieces of information, rules, and procedures so that they cohere with one another. Success, then, is measured less by whether the final outcome is “correct” in some absolute sense, and more by whether the reasoning process maintains internal consistency across the constraints. This makes the characterization of reasoning more about procedural coherence than about reaching a single externally defined answer. Therefore, we revisit reasoning tasks through the lens of causality and formalize them as a selection mechanism. In causal modeling, a selection mechanism describes how observed variables co-occur under certain constraints imposed by latent factors. Analogously, reasoning tasks can be viewed as a process in which high-level logical concepts act as operators that constrain the admissible configurations of the observed inputs.

Data-generating process as a selection mechanism. Let x denote the observed input (e.g., a partially filled Sudoku grid), y the corresponding solution (e.g., the other entries in Sudoku to be filled), and z the latent variables representing reasoning rules (e.g., logical principles or arithmetic laws). As shown in Figure 2, we model reasoning as a constrained conditional generation process, where high-level rules z generate observed pairs (x, y) only if they satisfy the selection constraints $S(z) = 1$. Formally, the joint distribution is

$$p(x, y) = \int p(z) p_g(x, y | z) \mathbb{I}(S(z) = 1) dz. \quad (1)$$

where $p(z)$ is the prior over latent rules, $p_g(x, y | z)$ denotes the base generative distribution parameterized by the function g , and $\mathbb{I}(S(z) = 1)$ enforces that the data satisfies the criteria denoted in the selection variables z . In the deterministic case, $p_g(x, y | z)$ reduces to a Dirac delta, $p_g(x, y | z) = \delta((x, y) - g(z))$. Formally specifying the data-generating process provides the theoretical foundation for our subsequent module design; in Section 2.4, we revisit the **SR²** architecture through the lens of data generation.

Figure 2: Causal graph of the selection mechanism where (x, y) are selected by constraints $S(z)$.

162 **Example: Sudoku.** In Sudoku, as illustrated in Figure 1, \mathbf{x} is the initial partially filled grid (1a),
 163 \mathbf{y} is other entries to be completed (1b), and \mathbf{z} represents the latent rules which characterizes the
 164 relationship between X and Y : each row, column, and block (respectively) must contain all digits
 165 exactly once (1c). The set of selection mechanisms is given by

$$\mathcal{S} := \{S(\cdot) : \mathcal{Z} \rightarrow \{0, 1\}\}. \quad (2)$$

168 where S denotes the selection mechanism and the Boolean value $S(z)$ (or S_z) indicates whether
 169 the current pair (X, Y) satisfies rule z . Thus, solving Sudoku corresponds to selecting (\mathbf{x}, \mathbf{y}) pairs
 170 (which are derived from mapping \mathbf{x} to the space of numbers) such that the corresponding \mathbf{z} satisfies
 171 (a set of) selection criteria $S \in \mathcal{S}$.

172 Concretely, consider the purple row in Figure 1b. Let Y_{ij} be the number to be filled in the i -th row
 173 and j -th column, and let $X_{\text{in-row}}$ denote all already-filled numbers in the same row. If Y_{ij} is different
 174 from every number in $X_{\text{in-row}}$, we set $S_{\text{row}}^i = 1$; otherwise, we set $S_{\text{row}}^i = 0$. Here, $z = \text{Row}$ encodes
 175 the rule that each row must contain every digit exactly once; that is, the digits in $X_{\text{in-row}}$ together
 176 with Y_{ij} must all be distinct.

178 **Implication.** This perspective views reasoning as a *selection among latent rules*: the task is solved
 179 once (\mathbf{x}, \mathbf{y}) is identified under the governing \mathbf{z} . Unlike direct input-output mapping, this requires
 180 navigating a rule-constrained latent space, highlighting the intrinsic complexity of reasoning tasks.

182 2.2 TWO FUNDAMENTAL HYPOTHESES

184 Building on the selection mechanism formulation in Equation 1, we state two hypotheses that for-
 185 mally characterize the sources of difficulty in reasoning tasks.

187 **Hypothesis 1 (Latent space complexity)** *Let \mathbf{z} denote the latent rules, (\mathbf{x}, \mathbf{y}) the observed input-
 188 answer pair, and $S(\mathbf{z})$ the selection constraints. Even when the mapping $(\mathbf{x}, \mathbf{y}) = g(\mathbf{z})$ is deter-
 189 ministic for all admissible \mathbf{z} with $S(\mathbf{z}) = 1$, the effective latent space $\mathcal{Z}_S = \{\mathbf{z} : S(\mathbf{z}) = 1\}$ is
 190 much larger than the observation space $\mathcal{X} \times \mathcal{Y}$. Thus, a unique observed pair (\mathbf{x}, \mathbf{y}) typically
 191 corresponds to a large set of possible latent assignments $\mathbf{z} \in \mathcal{Z}_S$ that must be marginalized. For
 192 example, solving a math problem with input \mathbf{x} may yield a unique solution \mathbf{y} , yet the reasoning
 193 process involves exploring a combinatorial number of intermediate derivations in \mathbf{z} .*

194 **Hypothesis 2 (Dense interdependence)** *The admissible latent variables \mathcal{Z}_S exhibit strong struc-
 195 tural dependencies. Formally, for $\mathbf{z} = (z_1, \dots, z_m) \in \mathcal{Z}_S$, the conditional distribution $p(z_i |$
 196 $z_{-i}, S(\mathbf{z}) = 1)$ is highly concentrated, indicating that any perturbation in one component z_i typi-
 197 cally requires coordinated changes in many other components z_{-i} to preserve validity. For instance,
 198 in Sudoku, changing one entry in \mathbf{z} propagates constraints across multiple rows, columns, and sub-
 199 grids to restore consistency.*

200 **Implication.** Together, Hypotheses 1 and 2 indicate that reasoning tasks cannot be solved by re-
 201 lying solely on shallow correlations in (\mathbf{x}, \mathbf{y}) . While the expressive capacity of deep models allows
 202 them to fit mappings from \mathbf{x} to \mathbf{y} by learning latent \mathbf{z} , such solutions often fail to generalize across
 203 tasks. Robust reasoning instead needs the modeling of the complex dependence in the structured
 204 latent space \mathbf{z} . Hypothesis 1 motivates the need for a reflection mechanism, where models repeat-
 205 edly explore over-complex latent space and revise latent assignments with feedback. Hypothesis 2
 206 further suggests that even if the mapping from \mathbf{x} to \mathbf{z} is learned, the dense interdependencies within
 207 \mathbf{z} require iterative refinement to reach a consistent solution.

209 2.3 THE \mathbf{SR}^2 FRAMEWORK

211 Based on the implications of our formulation, we propose the \mathbf{SR}^2 framework, which implements
 212 the **Selection Mechanism**, **Reflection**, and **Self-Refinement** modules. Our approach encourages
 213 the model to iteratively refine latent variables, capture dense dependencies, and enforce consistency
 214 across reasoning steps. The whole pipeline can be found in Figure 3, which is composed of three
 215 modules: Reflective Representation Learning, Dependency Self-Refinement, and Periodic Align-
 216 ment.

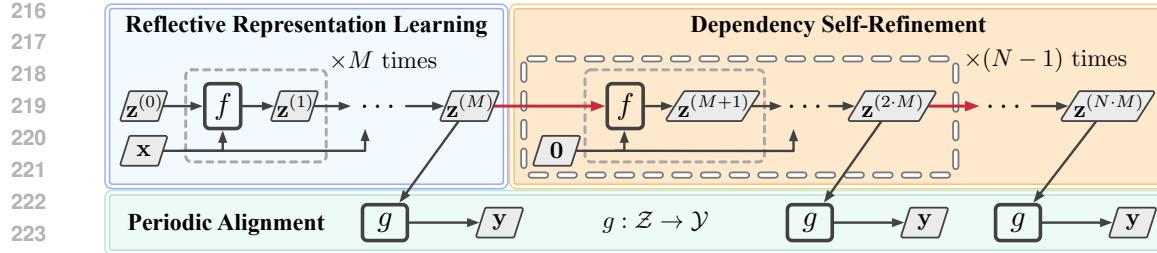


Figure 3: **Overall framework of the SR^2 method.** The framework consists of three main modules: Reflective Representation Learning (in blue), Dependency Self-Refinement (in orange), and Periodic Alignment (in green). f denotes the weight-shared atomic block that updates the latent state, and g projects the latent space to the final answers. In the representation learning stage, f recurrently updates the latent state with the observation as injection, $\mathbf{z}^{(t+1)} = f(\mathbf{z}^{(t)}, \mathbf{x})$, for M steps to obtain a refined initialization. Next, in the self-refinement stage, the model drops the observation signal, $\mathbf{z}^{(t+1)} = f(\mathbf{z}^{(t)}, \mathbf{0})$, and updates for a long $M \times (N-1)$ steps to resolve dense dependencies and approach a fixed point. Throughout training, the supervision is conducted periodically (e.g., every M steps) to stabilize long recurrences and mitigate gradient vanishing. When adding supervision, the gradients from future states are blocked (as the red arrows).

Reflective Representation Learning. A key challenge posed by Hypothesis 1 is the intractability of the large latent space \mathbf{z} , which makes direct inference difficult. To address this issue, we propose a reflective representation learning module, which explicitly models reasoning as a reflection process.

We define reflection as a fixed-point equation of the form

$$\mathbf{z} = f(\mathbf{z}, \mathbf{x}), \quad (3)$$

where $f(\cdot)$ is a parametric function (e.g., Transformer model) that updates the latent representation \mathbf{z} conditioned on the observed input \mathbf{x} . This formulation captures the intuition that reasoning is not a one-shot mapping from \mathbf{x} to \mathbf{z} , but rather an iterative process in which \mathbf{z} is repeatedly revised until it becomes consistent with both the observed data and the latent constraints. Concretely, equation 3 formalizes reflection by refining the latent solution \mathbf{z} through fixed-point updates rather than producing it in one step. This directly addresses Hypothesis 1: when the latent space far exceeds the observation space, iterative fixed-point updates provide a practical route to contract toward a constraint-satisfying \mathbf{z} .

Equation 3 can be solved by iterative refinement:

$$\mathbf{z}^{(n+1)} = f(\mathbf{z}^{(n)}, \mathbf{x}), \quad n = 0, 1, \dots, N, \quad (4)$$

starting from an initial estimate $\mathbf{z}^{(0)}$ initialized as zeros. After T iterations, the fixed-point solution \mathbf{z}^* is expected to approximate the reflective latent representation satisfying equation 3. This iterative mechanism enables the model to explore the latent space incrementally, progressively eliminating invalid assignments and converging towards rule-consistent solutions.

In large latent spaces, explicit conditioning on the previous state is often essential for guiding inference. Although direct mapping from \mathbf{x} to \mathbf{z} is mathematically equivalent to reflection, it fails to sufficiently constrain the solution space. Appendix B provides a motivating example showing that iterative conditioning yields strictly better solutions by progressively reducing the solution space.

Flattened recurrent Transformer. While the reflective update function $f(\mathbf{z}, \mathbf{x})$ in equation 3 can in principle be instantiated by any deep neural network, such as a standard Transformer, we take particular inspiration from recent advances in Deep Equilibrium Models (DEQ) (Bai et al., 2019), which establish a duality between model depth and iterative refinement.

Consider a standard Transformer model with L stacked layers, where each layer applies the same structural transformation to its input representation. Formally, let $h^{(l)}$ denote the hidden state at layer l . The forward propagation can be expressed as

$$h^{(l+1)} = \mathcal{T}^l(h^{(l)}, \mathbf{x}), \quad l = 0, 1, \dots, L-1, \quad (5)$$

where $\mathcal{T}(\cdot)$ is a Transformer block. Instead of explicitly stacking L distinct layers, we propose to *flatten* the architecture by reusing a single Transformer block \mathcal{T} recurrently across iterations:

$$h^{(m+1)} = \mathcal{T}(h^{(m)}, \mathbf{x}), \quad m = 0, 1, \dots, M, \quad (6)$$

270 This unrolled architecture can be viewed as solving a fixed-point problem, where repeated applications
 271 of \mathcal{T} iteratively refine the latent state. Equivalently, a depth- L Transformer can be reinterpreted
 272 as a depth-one recurrent Transformer unrolled for $M = L$ steps. By replacing M distinct layers with
 273 a single shared module, the model reduces parameters while preserving expressiveness through iteration.
 274 Such aligned iterative refinement allows the model to achieve effective depths much greater
 275 than its deep explicit architecture.

276 **Unlike DEQ, which seeks an equilibrium state and computes gradients via the implicit function**
 277 **theorem without storing intermediate iterates, we explicitly unroll a fixed number of refinement**
 278 **steps. In this sense, our approach is a truncated, explicitly unrolled variant that trains the refinement**
 279 **trajectory itself rather than directly optimizing an implicit fixed point.**

280 **Dependency Self-Refinement.** Hypothesis 2 highlights that the latent variables \mathbf{z} are densely
 281 structured and strongly interdependent. A change in one latent component typically requires a
 282 cascade of adjustments to other components in order to maintain global consistency. Therefore,
 283 a reasoning model needs to capture and refine such interdependencies, rather than relying solely on
 284 direct mappings from the observed input \mathbf{x} .

285 To model these dependencies, we propose a self-refinement process in which the input signal \mathbf{x} is
 286 removed, and the latent dynamics evolve autonomously:

$$287 \mathbf{z}^{(t+1)} = f_s(\mathbf{z}^{(t)}, \mathbf{0}), \quad t = 0, 1, \dots, T, \quad (7)$$

290 where $\mathbf{z}^{(0)}$ is initialized from the reflective representation learning stage, and $f_s(\cdot)$ is an iterative
 291 solution of the fixed-point operator defined on the latent space. This formulation forces the model
 292 to refine \mathbf{z} using only its internal structure, ensuring that the converged solution satisfies the logical
 293 constraints implied by the selection mechanism. By eliminating direct dependence on \mathbf{x} , the model is
 294 discouraged from learning spurious shortcuts and instead is compelled to resolve latent dependencies
 295 through iterative updates.

296 Experimentally, we found that both reflective representation learning and dependency self-
 297 refinement can be realized by a single atomic module, such as a Transformer block $f_s() = f()$,
 298 reused across iterations. This design substantially reduces the parameter footprint while maintaining
 299 competitive performance. Finally, we repeat a Transformer block with $T = M \times N$ times
 300 and re-order them, where the first M iterations inject \mathbf{x} for representation learning, and the last
 301 $(M - 1) \times N$ iterations are used for dependency learning.

302 **Periodic Alignment.** With the flattened recurrent model, we have $T = M \times N$ iterations. Such
 303 long iterative refinement processes often suffer from optimization challenges. In particular, gra-
 304 dients propagated through many iterations tend to vanish, leading to unstable training and poor
 305 convergence. To address this challenge, we propose a periodic alignment mechanism. Instead of
 306 applying supervision only at the final step T , we inject additional supervision (or self-supervision)
 307 signals at regular intervals throughout the iterative refinement process. Formally, for refinement
 308 states $\{\mathbf{z}^{(t)}\}_{t=1}^T$, the training objective is augmented as

$$310 \mathcal{L} = \sum_{t \in \mathcal{A}} \ell(g(\mathbf{z}^{(t)}), \mathbf{y}), \quad (8)$$

312 where $g(\cdot)$ is a prediction head mapping latent variables to task outputs, $\ell(\cdot, \cdot)$ is a task-specific
 313 loss function, and $\mathcal{A} \subseteq \{1, \dots, T\}$ specifies the alignment intervals. Typical choices of \mathcal{A} include
 314 uniform spacing (e.g., every M steps) or adaptive spacing based on convergence criteria. To ensure
 315 stability, we detach the computational graph at each alignment step, so that each iteration only re-
 316 ceives near gradients from its own supervision signal rather than from far future steps. This periodic
 317 alignment stabilizes optimization by providing intermediate guidance that mitigates gradient van-
 318 ishing and enforces consistency, ensuring that latent states $\mathbf{z}^{(t)}$ remain progressively aligned with
 319 the target throughout the refinement process.

321 2.4 CONNECTING SR2 TO THE DATA GENERATING PROCESS

322 **From Eq. equation 1 to the target.** Equation equation 1 describes the data generating process for
 323 our task rather than the model design. In implementation, SR2 learns the conditional distribution

324 $p(\mathbf{y} \mid \mathbf{x})$ instead of the joint $p(\mathbf{x}, \mathbf{y})$, and this conditional is derived from the joint as
 325

$$326 \quad p(\mathbf{y} \mid \mathbf{x}) = \int p(\mathbf{z} \mid \mathbf{x}) p_g(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) \mathbb{I}(S(\mathbf{z}) = 1) d\mathbf{z}, \quad (9)$$

327

329 **Implementation map in SR2.** **Latent inference** $p(\mathbf{z} \mid \mathbf{x})$. A single Transformer layer produces
 330 a latent state \mathbf{z} . SR2 refines it through reflection updates $\mathbf{z}^{t+1} = f(\mathbf{x}, \mathbf{z}^t)$, yielding the final state
 331 used for prediction. **Prediction head** $p_g(\mathbf{y} \mid \mathbf{x}, \mathbf{z})$. Since \mathbf{z} summarizes \mathbf{x} , a `lm_head` is trained to
 332 model $p(\mathbf{y} \mid \mathbf{z})$ as a surrogate. **Selection** $\mathbb{I}(S(\mathbf{z}) = 1)$. Training pairs (\mathbf{x}, \mathbf{y}) satisfy the task rules, so
 333 SR2 concentrates probability on rule consistent states without an explicit selector.

335 3 EXPERIMENTS

336

337 3.1 BENCHMARKS

338

339 **Sudoku-Extreme** The Sudoku task requires filling a 9×9 grid with the digits 1–9 such that each
 340 row, each column, and each 3×3 subgrid contains all digits without repetition. Due to the logical
 341 complexity of its constraints, Sudoku is a widely used benchmark for evaluating the logical reasoning
 342 ability of machine learning models (Palm et al., 2017; Long, 2023; Du et al., 2024). For a fair
 343 comparison, we use the same dataset, Sudoku-Extreme, and follow the setup strictly with the recent
 344 SOTA method, HRM (Wang et al., 2025a). Specifically, the benchmark comprises limited 1,000
 345 training puzzles and 422,786 test puzzles, with an average difficulty of 22 backtracking steps.

346 **Maze-Hard** The maze navigation task asks a model to find the optimal path between a designated
 347 start and goal within a 30×30 maze. The requirement to plan long, intricate paths makes
 348 it an effective probe of a model’s reasoning ability (Darlow et al., 2025; Su et al., 2025; Lehnert
 349 et al., 2024b). We use the Maze-Hard dataset released by (Wang et al., 2025a), which follows the
 350 instance-generation procedure of (Lehnert et al., 2024a). The generated mazes are filtered to retain
 351 only the hardest cases, i.e., those whose shortest paths are the longest (Kapadia et al., 2013). The
 352 benchmark comprises 1,000 training instances and 1,000 test instances.

354 **ARC AGI** The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC AGI)
 355 evaluates abstract pattern induction and compositional generalization via small grid-transformation
 356 tasks that require minimal prior knowledge and probe fluid intelligence (Chollet, 2019). Each task
 357 provides a few input–output demonstrations; the solver must produce exactly matching outputs for
 358 novel inputs. Following the official protocol, we use ARC AGI 1 (Chollet, 2024) and ARC AGI 2
 359 (ARC Prize Foundation, 2025): ARC AGI 1 has 400 training and 400 evaluation tasks; ARC AGI
 360 2 has 1,000 public training and 120 public evaluation tasks. We adopt a two-trial success criterion
 361 and report pass@2 accuracy.

363 3.2 BASELINE AND IMPLEMENTATION

364

365 We compare our **SR²** framework with several canonical network architectures used for reasoning,
 366 as well as the recent HRM (Wang et al., 2025a) model, which are summarized below:

- 368 • **Standard Transformer** (Vaswani et al., 2017). Implements a standard multi-layer Transformer
 369 architecture.
- 370 • **Block Universal Transformer** (Dehghani et al., 2018). Replaces a deep stack of Transformer
 371 blocks with a flat recurrent architecture that repeatedly applies a Transformer block
 372 (a single Transformer layer in the experiments)
- 373 • **Recurrent Depth** (Geiping et al., 2025b). Applies the same Transformer layer iteratively,
 374 while additionally mapping each layer’s latent representation back to the input space. In
 375 other words, each unit is injected by both inputs and latent states.
- 376 • **HRM** (Wang et al., 2025a). HRM employs an interactive recurrent structure, with a high-
 377 level module responsible for abstract planning and a low-level module dedicated to detailed
 378 computation. For implementation, we follow the officially released HRM configurations.

378 **Table 1: Main results comparing \mathbf{SR}^2 with baselines on Sudoku-Extreme and Maze-Hard benchmarks.**
 379 We report pass@1 accuracy (%) and the number of learnable parameters (“Params”). With only 3.4M parame-
 380 ters (1/8 of the 27.3M Transformer), \mathbf{SR}^2 achieves the best accuracy on both tasks (best in bold).

Method	Params	Sudoku-Extreme	Maze-Hard	ARC-1	ARC-2
Transformer	27.3M	1.17	0	21.0	0
Block Universal Transformer	3.4M	0	30.4	-	-
Recurrent Depth	3.4M	42.52	48.4	-	-
HRM	27.3M	55.0	74.5	40.3	5.0
Reflective Model	27.3M	53.12	70.8	-	-
\mathbf{SR}^2	3.4M	66.63	93.7	44.3	6.7

391 • **Reflective Model** (Our baseline model). In this baseline, we consider only the reflective
 392 representation learning stage, excluding the subsequent self-refinement process. Each unit
 393 is implemented as an 8-layer Transformer without flattening, equipped with both input
 394 injection and supervision.

395 For fairness, all methods are trained with the same optimizer, learning rate, and batch size. Parameter
 396 counts are matched across similar designs: the Transformer, Reflective Model, and HRM uses 8
 397 Transformer layers (4 high-level layers, 4 low-level layers in HRM), while the Block Universal
 398 Transformer, Recurrent Depth, and our \mathbf{SR}^2 model adopt a single Transformer layer as the backbone.
 399 More discussions with other recurrent models can be found in Appendix A.1.

401 3.3 EXPERIMENTAL RESULTS

403 We report the performance and parameter counts of \mathbf{SR}^2 and competing methods on the *Sudoku-Extreme*
 404 and *Maze-Hard* benchmarks, as summarized in Table 1. **For ARC-1 and ARC-2, due to**
 405 **computational resource limitations, we did not evaluate all baseline models.** Several key observa-
 406 tions emerge:

407 • **Standard Transformer.** Standard Transformer architectures fail to solve these demanding
 408 reasoning tasks. Even with extended training, the model does not acquire the necessary
 409 reasoning skills, underscoring the importance of reflective mechanisms.

410 • **Block Universal Transformer.** Flattening the architecture by reusing a single Transformer
 411 block yields modest gains over the standard Transformer, but overall performance remains
 412 unsatisfactory.

413 • **Recurrent Depth.** Adding input injections to the recurrent architecture leads to clear im-
 414 provements, demonstrating the benefit of feeding intermediate states back into the model.

415 • **Reflective Model.** Further improvements are observed when both input injections and su-
 416 pervisory signals are balanced. The Reflective Model outperforms Recurrent Depth, high-
 417 lighting the importance of combining multiple feedback pathways.

418 • **HRM vs. Reflective Model.** HRM achieves results comparable to the Reflective Model,
 419 suggesting that hierarchical recurrent structures are not strictly necessary for reasoning
 420 tasks of this type.

421 • **\mathbf{SR}^2 .** Compared with Recurrent Depth, \mathbf{SR}^2 achieves substantial improvements such as
 422 over 20% on *Sudoku-Extreme* and nearly 2× on *Maze-Hard*. This demonstrates the crucial
 423 role of self-refinement. Moreover, \mathbf{SR}^2 surpasses HRM by 11.6% on *Sudoku-Extreme* and
 424 19.2% on *Maze-Hard*, while using only one eighth of HRM’s parameters.

426 3.4 TRAINING & INFERENCE COST ANALYSIS

428 We evaluate the computational efficiency of \mathbf{SR}^2 against Transformer and HRM baseline on
 429 *Sudoku Extreme* under same settings, reporting training speed in batches per second, training
 430 memory as the average per GPU across devices, and inference speed as samples pro-
 431 cessed per second computed from the wall clock runtime on the test set. The Periodic Align-
 432 ment module makes \mathbf{SR}^2 slower than Transformer baseline during both training and infer-

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
ence, yet **SR²** remains faster than HRM because it uses a single layer without a hierarchical structure. **SR²** also consumes somewhat more training memory than the other baselines.

3.5 ABLATION STUDIES

We perform a comprehensive set of ablation studies to systematically evaluate the contribution of each component. **No Self-Refinement** removes Dependency Self-Refinement; all $T = M \times N$ iterations inject input x and do not explicitly model dependencies among latent z . **No Reflection** removes Reflective Representation Learning process; x is injected only at the first iteration (no repeated injections across the first M). **Mixture (2/4 Reflection)** performs multiple self-refinement phases by re-injecting x at evenly spaced blocks rather than only at the first block. **Separate Function** uses two distinct parameterized functions for the reflective and self-refinement stages instead of a shared one. **Flattened Reflective Model** replaces the multi-layer stack of the Reflective Model with a single recurrent Transformer layer, unrolled across iterations.

Is every component of SR² necessary? Yes. To assess the roles of the Reflective Representation Learning and Dependency Self-Refinement modules, we conduct ablations that remove each module in turn. As reported in Table 3, eliminating the self-refinement loop prevents the model from capturing dependencies and leads to a clear drop in accuracy, while removing feedback altogether leaves the model unable to retain input features, causing performance to collapse to zero.

Does more reflections feedback always help? No. We modify the default **SR²** design (only one reflective representation learning block in $M \times N$ iterations) to test using two and four reflections. As reported in Table 3, Mixture (2 Reflections) produces a slight decrease in accuracy relative to the default, while Mixture (4 Reflections) suffers a large degradation. These results indicate that injecting input too frequently biases the model toward fitting superficial input patterns and distracts it from learning deeper dependencies among latent states. In practice, a single reflection per alignment offers the best trade-off for **SR²**.

How should m and n be chosen under a fixed budget? As Figure 4 shows, accuracy peaks when $M \approx N$ and declines as their ratio departs from 1. The decline is asymmetric: settings with $M > N$ degrade more gently than their mirrored $N > M$ counterparts, so if imbalance is unavoidable, favor a larger M . The results indicate that balanced configurations are preferable.

Does the Reflection and Self-Refinement modules have to learn two distinct functions? No. We replace the single shared function in **SR²** with two Transformer layers that do not share parameters, assigning one to the Reflection module and the other to the Self-Refinement module. As shown in Table 3, the decoupled design Separate Function even reduces accuracy. These results suggest that a single unified function is sufficient to support both representation learning and refinement.

Is the flat architecture effective? Yes. To test whether a recurrent single-layer Transformer can replace a stack of distinct layers in our framework, we compare *Reflective Model* with *Flattened*

Table 2: Training and inference efficiency comparison.

Method	Training Speed (Batch/s) ¹	Training Mem (GB) ²	Inference Speed (Sample/s) ³
Direct Pred	21.39	3.024	7489.6
HRM	10.57	3.231	1487.7
SR²	14.73	3.950	2073.6

Table 3: Ablation of the **SR²** framework.

Ablations	Accuracy (%)
No Self-Refinement	53.11
No Reflection	0
Mixture (2 Reflections)	63.32
Mixture (4 Reflections)	55.25
Separate Function	59.76
Reflective Model	53.12
Flattened Reflective Model	53.75
SR²	66.63

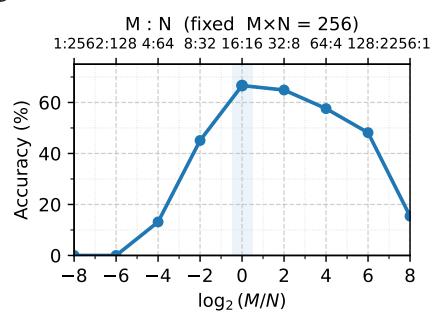
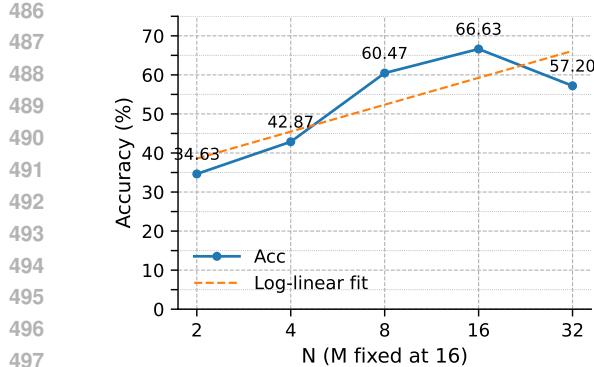
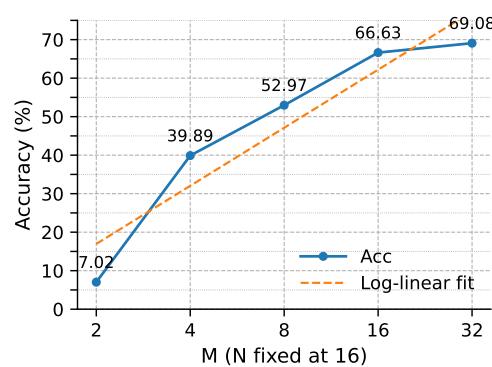


Figure 4: Choosing N and M under a fixed compute budget.

(a) Accuracy vs. N with $M=16$ fixed.(b) Accuracy vs. M with $N=16$ fixed.Figure 5: **Accuracy scaling with the hyperparameter N and M :** the left panel varies N at $M=16$, and the right varies M at $N=16$.

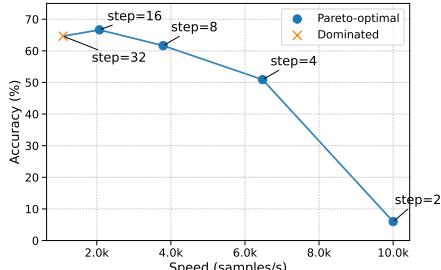
Reflective Model, where the former uses eight distinct Transformer layers, whereas the latter applies a single Transformer layer recurrently with shared weights. The results show a comparable accuracy between the two, indicating that parameter sharing in depth can serve as a drop-in alternative to a deeper stack without degrading reasoning performance.

How does performance scale with the hyperparameter M and N ? Using the results in Figure 5, we observe a near-monotonic improvement as M increases with N fixed at 16, well captured by a log-linear trend. Holding $M=16$ and sweeping N , the precision increases to a rapid peak before dropping, indicating early saturation and eventual regression when N becomes too large. Although larger M and moderately large N yield stronger results, they also inflate training time and slow inference. To balance accuracy with computational cost, we adopt $M=N=16$ as the default setting for our main experiments.

How many alignment steps should we use at test time? As shown in Figure 6, reducing the test-time alignment horizon steps monotonically lowers accuracy but increases throughput (samples / s), trace a clear accuracy-speed Pareto frontier over $steps \in \{32, 16, 8, 4, 2\}$. Notably, for a model trained with $M=16$, evaluating with a larger steps (e.g., 32) does not yield additional accuracy gains, indicating that the training-time horizon effectively caps test-time benefits. In practice, steps can be tuned at deployment to satisfy latency budgets with a predictable accuracy cost, whereas pushing steps beyond the training setting offers little return.

4 CONCLUSION

We revisited reasoning tasks through the lens of causality and formulated them as a selection mechanism, identifying latent space complexity and dense interdependence as key sources of difficulty. Building on these insights, we introduced **SR²**, a framework that models reasoning as iterative refinement with three components: reflective representation learning, dependency self-refinement, and periodic intermediate alignment, instantiated by a flat recurrent Transformer. Experiments on Sudoku and Maze Navigation benchmarks demonstrate that **SR²** achieves significant gains in reasoning accuracy while using up to $8\times$ fewer parameters than recent baselines. **Limitations:** Despite its insight, the assumption of reasoning as a selection mechanism may oversimplify the richness of human reasoning. **Besides, our evaluation is limited to benchmarks with clear and simple logical constraints, and we leave more comprehensive evaluations on complex or open-domain tasks, as well as large-scale implementations, to future work.**

Figure 6: **Accuracy-throughput trade-off vs. test-time alignment steps.**

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 ARC Prize Foundation. Abstraction and reasoning corpus for artificial general intelligence v2.
546 GitHub repository, 2025. URL [<https://github.com/arcprize/ARC-AGI-2>].
547

548 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in neural*
549 *information processing systems*, 32, 2019.

550 Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. *Advances in*
551 *neural information processing systems*, 33:5238–5250, 2020.

552 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
553 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
554 son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
555 Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
556 Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
557 cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
558 Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
559 erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann,
560 Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional
561 ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022. doi:
562 10.48550/arXiv.2212.08073. URL <https://arxiv.org/abs/2212.08073>.
563

564 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
565 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
566 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

567 François Chollet. On the measure of intelligence. *arXiv preprint arXiv:1911.01547*, 2019. URL
568 [<https://arxiv.org/abs/1911.01547>].
569

570 François Chollet. Abstraction and reasoning corpus for artificial general intelligence v1. GitHub
571 repository, 2024. URL [<https://github.com/fchollet/ARC-AGI>].
572

573 Luke Darlow, Ciaran Regan, Sebastian Risi, Jeffrey Seely, and Llion Jones. Continuous thought
574 machines. *arXiv preprint arXiv:2505.05522*, 2025.

575 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
576 transformers. *arXiv preprint arXiv:1807.03819*, 2018.

577 Yunlong Deng, Guangyi Chen, Tianpei Gu, Lingjing Kong, Yan Li, Zeyu Tang, and Kun Zhang.
578 Towards self-refinement of vision-language models with triangular consistency. In *Advances in*
579 *Neural Information Processing Systems (NeurIPS)*, 2025. Poster.
580

581 Yilun Du, Jiayuan Mao, and Josh Tenenbaum. Learning iterative reasoning through energy diffusion.
582 *ArXiv*, abs/2406.11179, 2024.

583 Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
584 learning. *SIAM Journal on Mathematics of Data Science*, 3(3):930–958, 2021.
585

586 Felix Elwert and Christopher Winship. Endogenous selection bias: The problem of conditioning on
587 a collider variable. *Annual review of sociology*, 40(1):31–53, 2014.

588 Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K Ng, Zhen-
589 guo Li, and Zhaoqiang Liu. Algoformer: An efficient transformer framework with algorithmic
590 structures. *arXiv preprint arXiv:2402.13572*, 2024.
591

592 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
593 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025a.

594 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
 595 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
 596 reasoning: A recurrent depth approach, 2025b. URL <https://arxiv.org/abs/2502.05171>.

598 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
 599 Papailiopoulos. Looped transformers as programmable computers. In *International Conference
 600 on Machine Learning*, pp. 11398–11442. PMLR, 2023.

602 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 603 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 604 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

606 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recogni-
 607 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 608 770–778, 2016.

609 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 610 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 611 preprint arXiv:2412.16720*, 2024.

613 Mubbasis Kapadia, Francisco Garcia, Cory D. Boatright, and Norman I. Badler. Dynamic search
 614 on the gpu. In *2013 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp.
 615 3332–3337, 2013. doi: 10.1109/IROS.2013.6696830.

616 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 617 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 618 models. *arXiv preprint arXiv:2001.08361*, 2020.

620 Kenji Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers.
 621 *arXiv preprint arXiv:2102.07346*, 2021.

622 Erwin Kreyszig. *Introductory Functional Analysis with Applications*. John Wiley & Sons, New
 623 York, 1978.

625 Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qingqing Zheng, Paul McVay, Michael Rabbat, and
 626 Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
 627 ping, 2024a. URL <https://arxiv.org/abs/2402.14083>.

628 Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qingqing Zheng, Paul McVay, Michael Rabbat, and
 629 Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
 630 ping. In *First Conference on Language Modeling*, 2024b.

632 Mingjie Li, Yisen Wang, and Zhouchen Lin. Cerdeq: Certifiable deep equilibrium model. In *Inter-
 633 national Conference on Machine Learning*, pp. 12998–13013. PMLR, 2022.

634 Jieyi Long. Large language model guided tree-of-thought. *ArXiv*, abs/2305.08291, 2023.

636 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 637 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
 638 Majumder, Karl Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
 639 Iterative refinement with self-feedback. *arXiv preprint arXiv:2303.17651*, 2023. doi: 10.48550/
 640 arXiv.2303.17651. URL <https://arxiv.org/abs/2303.17651>.

641 John McCarthy. Mathematical logic in artificial intelligence. *Daedalus*, pp. 297–311, 1988.

643 Amirkeivan Mohtashami, Matteo Pagliardini, and Martin Jaggi. Cotformer: A chain-of-
 644 thought driven architecture with budget-adaptive computation cost at inference. *arXiv preprint
 645 arXiv:2310.10845*, 2023.

647 Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. *Advances in neural
 648 information processing systems*, 31, 2018.

648 Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In *Neural*
 649 *Information Processing Systems*, 2017.

650

651 Judea Pearl. *Causality*. Cambridge university press, 2009.

652

653 Stuart J Russell and Peter Norvig. Artificial intelligence-a modern approach, third international
 654 edition. 2010.

655

656 Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
 657 Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. *arXiv preprint*
 658 *arXiv:2303.11366*, 2023. doi: 10.48550/arXiv.2303.11366. URL <https://arxiv.org/abs/2303.11366>.

659

660 DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qingqing Zheng. Dualformer:
 661 Controllable fast and slow thinking by learning with randomized reasoning traces, 2025.

662

663 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 664 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 665 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

666

667 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 668 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 669 *tion processing systems*, 30, 2017.

670

671 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 672 birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
 673 2011.

674

675 Guan Wang, Jin Li, Yuhao Sun, Xing Chen, Changling Liu, Yue Wu, Meng Lu, Sen Song, and
 676 Yasin Abbasi Yadkori. Hierarchical reasoning model. *arXiv preprint arXiv:2506.21734*, 2025a.

677

678 Haozhe Wang, Qixin Xu, Che Liu, Junhong Wu, Fangzhen Lin, and Wenhua Chen. Emergent hi-
 679 erarchical reasoning in llms through reinforcement learning. *arXiv preprint arXiv:2509.03646*,
 680 2025b.

681

682 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
 683 hery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 684 models. *arXiv preprint arXiv:2203.11171*, 2022. doi: 10.48550/arXiv.2203.11171. URL
 685 <https://arxiv.org/abs/2203.11171>.

686

687 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 688 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 689 learning. *arXiv preprint arXiv:2502.14768*, 2025.

690

691 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 692 inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 693 *preprint arXiv:2504.13837*, 2025.

694

695 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
 696 reasoning. *arXiv preprint arXiv:2203.14465*, 2022. doi: 10.48550/arXiv.2203.14465. URL
 697 <https://arxiv.org/abs/2203.14465>.

698

699 Yujia Zheng, Zeyu Tang, Yiwen Qiu, Bernhard Schölkopf, and Kun Zhang. Detecting and identify-
 700 ing selection structure in sequential data. *arXiv preprint arXiv:2407.00529*, 2024.

701

702 Appendix for “Selection, Reflection and Self-Refinement: Revisit 703 Reasoning Tasks via a Causal Lens” 704

705 706 A MORE DETAILS OF PAPER

707 708 A.1 RELATED WORK

711 **Reasoning in Machine Learning** Reasoning, the process of deriving conclusions from information
 712 through logical inference, has long been viewed as a central challenge for artificial intelligence.
 713 Classical approaches in symbolic AI treated reasoning as explicit rule-based deduction, but these
 714 systems struggled with scalability and generalization (McCarthy, 1988; Russell & Norvig, 2010).
 715 In contrast, recent advances in machine learning have shifted toward data-driven reasoning, where
 716 models learn to approximate reasoning behaviors from large-scale corpora. Large language models
 717 (LLMs) such as GPT-01 (Jaech et al., 2024), and Gemini (Team et al., 2023) have demonstrated
 718 impressive progress on reasoning tasks, benefiting from advances in scaling post-training. Meth-
 719 ods such as chain-of-thought supervised finetuning and reinforcement learning optimization provide
 720 improvements (Guo et al., 2025; Wang et al., 2025b; Yue et al., 2025; Xie et al., 2025).

721 **Recurrent Latent Reasoning** Another line of research relevant to our work is recurrent latent
 722 reasoning, where reasoning is modeled as an iterative process over hidden states or latent rep-
 723 resentations. Unlike single-pass architectures, these methods refine intermediate representations
 724 through recurrence or iterative updates, aiming to capture long-range dependencies and structured
 725 constraints. Classical instances include recurrent relational networks (Palm et al., 2018), which it-
 726 eratively propagate messages between entities to perform relational reasoning. More recent work,
 727 such as Universal transformers (Dehghani et al., 2018), Algoformer (Gao et al., 2024), and Looped
 728 Transformers (Giannou et al., 2023) Furthermore, CoTFormer (Mohtashami et al., 2023) and Re-
 729 current Depth (Geiping et al., 2025a) enhance dependency modeling by injecting intermediate rep-
 730 resentations and original representations into each recurrent unit, respectively. The recent HRM
 731 model (Wang et al., 2025a) introduces a hierarchical recurrent structure, where a high-level module
 732 is responsible for slow, abstract planning, while a low-level module manages fast, fine-grained com-
 733 putations. Our work shares this motivation of recurrent refinement but differs in two key aspects.
 734 First, we formulate reasoning as a selection mechanism grounded in causality, which provides a
 735 principled explanation for the difficulty of reasoning tasks. Second, we propose a new recurrent
 736 refinement framework that incorporates an early reflection module with dense input injection, a long
 737 dependency self-refinement procedure, and periodic intermediate alignment.

738 **Selection Mechanisms in Causality** Within causal inference, selection mechanisms describe how
 739 observed variables co-occur under specific constraints (Pearl, 2009). This perspective has proven
 740 valuable in understanding selection bias and identifiability. Recent work (Deng et al., 2025; Zheng
 741 et al., 2024) extends this concept beyond selection bias and shows that sequential data, such as
 742 natural language, music, and poems, inherently follow this mechanism. In this paper, we show
 743 that the reasoning task also fits this mechanism, where high-level logical concepts act as operators
 744 imposing constraints on observed inputs.

745 **Fixed-Point Solutions for Structured Prediction** Fixed-point methods have been widely applied
 746 in optimization and equilibrium modeling, where the solution is defined as a stable point under re-
 747 peated updates (Bai et al., 2019; 2020; El Ghaoui et al., 2021; Li et al., 2022; Kawaguchi, 2021).
 748 This paradigm departs from explicit layer stacking in conventional deep networks (He et al., 2016)
 749 or Transformers (Vaswani et al., 2017) and instead characterizes representations as equilibria of
 750 nonlinear transformations. Deep Equilibrium Model (DEQ)(Bai et al., 2019; 2020) directly solves
 751 for the equilibrium point of a single-layer transformation using root-finding methods, thereby repre-
 752 senting infinitely deep networks with constant memory cost. In parallel, the broader field of implicit
 753 deep learning (El Ghaoui et al., 2021; Kawaguchi, 2021) has established theoretical guarantees for
 754 convergence and optimization, highlighting the potential of implicit formulations to provide com-
 755 pact yet powerful representations. Besides, iterative refinement methods (Geiping et al., 2025a) have
 also demonstrated effectiveness in reasoning and structured prediction tasks.

756 A.2 SUPPLEMENT TO RELATED WORK
757

758 **Verbal self-correction in LLMs.** A growing body of work investigates explicit self-correction for
759 LLMs via verbal feedback, critique, and planning. Reflexion Shinn et al. (2023) introduces verbal
760 self-reflection and episodic memory to iteratively improve task success; Self-Refine Madaan et al.
761 (2023) performs critique-and-edit loops using model-generated feedback; Self-Consistency Wang
762 et al. (2022) reduces reasoning errors by sampling and aggregating multiple chains of thought; STaR
763 Zelikman et al. (2022) bootstraps rationales through iterative data augmentation and fine-tuning;
764 and Constitutional AI Bai et al. (2022) uses a set of principles to guide model-written critiques
765 and refine outputs. While related in spirit, our approach differs in that SR² does not explicitly
766 generate token sequences to steer self-correction. Instead, the correction process is implemented
767 implicitly through iterative updates of the latent variables (z), integrating self-correction into the
768 latent reasoning dynamics without additional verbal overhead.

769 A.3 COUNTING THE LATENT AND OBSERVATION SPACES IN SUDOKU
770

771 **Setup and counting argument.** Consider a standard 9×9 Sudoku. Let $C = \{1, \dots, 81\}$ be
772 the index set of cells and let $K \subset C$ be the indices of revealed entries in the initial grid. Define
773 $M = C \setminus K$ as the masked cells with $|M| = n$. A full solution is an assignment $z \in [9]^C$ that
774 satisfies all Sudoku constraints on rows, columns, and 3×3 blocks and that agrees with the revealed
775 entries on K . Let Z be the set of full solutions consistent with the given clues and write $S := |Z|$.

776 The observation for a fixed instance is the single partially filled grid x^* , hence the observation space
777 is a singleton.

$$|\mathcal{O}| = 1.$$

779 We count the latent objects that we call valid solution trajectories. Starting from the initial grid and
780 for each step $t = 1, \dots, n$ we choose one still empty cell $c_t \in M \setminus \{c_1, \dots, c_{t-1}\}$ and fill it with
781 the digit $z(c_t)$ taken from some full solution $z \in Z$. The partial assignment after every step must
782 satisfy all Sudoku constraints.

783 **Prefix feasibility.** Fix any $z \in Z$. For any subset $T \subseteq M$, the partial assignment $\{(c, z(c)) : c \in T\}$
784 satisfies all Sudoku constraints, since z already assigns pairwise consistent digits to every row,
785 column, and block, hence any restriction of z remains feasible.

787 By prefix feasibility, if we commit to one fixed $z \in Z$ then every ordering of the n masked positions
788 yields a valid trajectory. Therefore for a fixed full solution z the number of valid trajectories equals
789 the number of permutations of M .

$$|\mathcal{L}(z)| = n!.$$

791 Trajectories coming from different full solutions are disjoint when viewed as ordered sequences of
792 cell and digit pairs. Indeed, if two ordered sequences coincide then the underlying assignments
793 agree on all masked and revealed cells, hence the two full solutions are the same. Summing over all
794 full solutions gives the size of the latent space.

$$|\mathcal{L}| = S n!.$$

797 **Asymptotics and comparison.** Using Stirling approximation we obtain

$$799 n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + o(1)) = \exp(\Theta(n \log n)).$$

800 Thus for fixed board size and any fixed S in particular $S = 1$ for uniquely solvable puzzles the latent
801 space grows as

$$802 |\mathcal{L}| = \Theta\left(S \sqrt{n} \left(\frac{n}{e}\right)^n\right), \quad \frac{|\mathcal{L}|}{|\mathcal{O}|} = \Theta(S n!).$$

804 This formalizes that the latent space is much larger than the observation space for fixed instances.

806 **Remark on stricter move policies.** If trajectories are restricted to fill only logically forced cells
807 at each step then the admissible orders are the linear extensions of a problem dependent partial order
808 on M . Exact counting is difficult, but the bounds below always hold, which preserves the factorial
809 upper bound.

$$1 \leq |\mathcal{L}_{\text{forced}}| \leq n!.$$

810 A.4 THEOREM (EXISTENCE OF CONVERGENCE IN SR²).
811812 Let $f : \mathcal{Z} \times \mathcal{X} \rightarrow \mathcal{Z}$ be the shared update function used in both the **Reflection** and **Self-Refinement**
813 stages of SR². Define the update rules:

814 **Reflection:** $z^{t+1} = f(z^t, x), \quad t = 0, \dots, M-1,$
815

816 **Self-Refinement:** $z^{t+1} = f(z^t, 0), \quad t \geq M.$
817

818 **(A1) Completeness** The latent space $(\mathcal{Z}, \|\cdot\|)$ is a complete metric space, and for any fixed input
819 $x \in \mathcal{X}$, $f(\cdot, x)$ maps \mathcal{Z} to itself.820 **(A2) Contraction** There exists a constant $L \in (0, 1)$ such that

821
$$\|f(z_1, x) - f(z_2, x)\| \leq L \|z_1 - z_2\|. \quad (10)$$

822

823 for all $z_1, z_2 \in \mathcal{Z}$ and $x \in \{x, 0\}$.
824

825 Then:

826 (i) Each update function $f(\cdot, x)$ and $f(\cdot, 0)$ admits a unique fixed point z_x^* and z_0^* , respectively.
827828 (ii) The iterative sequences defined by Reflection and Self-Refinement converge to their corre-
829 sponding fixed points:

830
$$z^t \rightarrow z_x^* \quad \text{for } t < M, \quad \text{and} \quad z^t \rightarrow z_0^* \quad \text{for } t \geq M.$$

831

832 **Proof.** **Step 1. Define the contraction operators.** Define two operators on the latent space:
833 $T_x(z) := f(z, x)$, $T_0(z) := f(z, 0)$. By assumption (A1), both T_x and T_0 map \mathcal{Z} into itself.
834835 **Step 2. Show that T_x and T_0 are contractions.** By (A2),

837
$$\|T_x(z_1) - T_x(z_2)\| = \|f(z_1, x) - f(z_2, x)\| \leq L \|z_1 - z_2\|,$$

838 and similarly for T_0 . Hence, both T_x and T_0 are contraction mappings on the complete metric space
839 $(\mathcal{Z}, \|\cdot\|)$.
840841 **Step 3. Apply the Banach fixed-point theorem Kreyszig (1978).** By Banach's theorem, every
842 contraction on a complete metric space has a unique fixed point, and successive applications of the
843 map converge to it. Thus, there exist unique points $z_x^*, z_0^* \in \mathcal{Z}$ such that

844
$$T_x(z_x^*) = z_x^*, \quad T_0(z_0^*) = z_0^*.$$

845

846 Moreover, for any initialization $z^0 \in \mathcal{Z}$,

847
$$z^{t+1} = T_x(z^t) \implies z^t \rightarrow z_x^*, \quad z^{t+1} = T_0(z^t) \implies z^t \rightarrow z_0^*.$$

848

849 **Step 4. Apply the result to SR² dynamics.** In SR², the reflection phase iterates T_x for a finite
850 number of steps (M). Therefore, after sufficiently many steps, the latent variable z^M approaches
851 z_x^* . The self-refinement phase then iterates T_0 starting from z^M , so by Banach's theorem, $z^t \rightarrow z_0^*$
852 as $t \rightarrow \infty$.
853854 **Conclusion.** Under mild contraction and completeness assumptions (standard in implicit and
855 equilibrium formulations) the SR² updates possess unique equilibria for both reflection and self-
856 refinement, and their iterative applications converge to these equilibria. The theorem guarantees
857 existence of convergence for the latent representations and therefore for the predictions of SR². \square
858859 B A MOTIVATING EXAMPLE
860862 We have thoroughly discussed in the main text the necessity of incorporating latent variable recur-
863 rence into the update process. Whether through a selection mechanism that guides the represen-
864 tation, or via a fixed-point iterative formulation, the current arguments focus on the existence of a

latent optimal state z^* such that the iterative update $z^{(t)} = f(x, z^{(t-1)})$ converges, in which case the introduction of last latent state $z^{(t-1)}$ into the estimation of $z^{(t)}$ matters.

However, one critical question remains unresolved: why is it insufficient—or fundamentally difficult—to learn a high-quality latent representation z using only the observation x , i.e., through a direct mapping $z = g(x)$? Towards this question, we consider a simple yet illustrative example using a linear state-space model:

$$\begin{aligned} z^{(1)} &\in N(0, P_0), \\ z^{(t)} &= Az^{(t)} + w_t, \quad A \in \mathbb{R}^{d \times d}, \quad w_t \sim N(0, Q), \\ x^{(t)} &= Cz^{(t)} + v_t, \quad C \in \mathbb{R}^{m \times d}, \quad v_t \sim N(0, R), \end{aligned} \quad (11)$$

with $Q \succ 0, R \succ 0$, and the observation is under-determined $m < d$.

Our objective is to estimate the hidden state $z^{(1:T)}$ from the observation $x^{(1:T)}$ only. We compare two formulations: (1) estimating $z^{(t)}$ using only $x^{(t)}$, and (2) estimating $z^{(t)}$ using both $x^{(t)}$ and $z^{(t-1)}$. We demonstrate that modeling the explicit dependence on $z^{(t-1)}$ constrains the solution space and improves the conditioning of the estimation problem. In contrast, estimating $z^{(t)}$ directly from $x^{(t)}$ alone is generally ill-posed.

Specifically, the second formulation—by incorporating $z^{(t-1)}$ —forms a recursive structure that leads to a unique maximum a posterior (MAP) estimate under mild assumptions. It leverages both the observation likelihood and the latent dynamics prior, thereby regularizing the solution and resolving ambiguity. In contrast, the first formulation estimates $z^{(t)}$ solely from $x^{(t)}$, and thus its solution lies on an affine subspace determined by the null space of C , making it non-unique.

B.1 DIRECT ESTIMATION USING OBSERVATION ONLY

Estimating $z^{(t)}$ through $x^{(t)}$ without considering the history information amounts to maximize the likelihood $p(x^{(t)}|z^{(t)})$ at each time step. Since the observation is a linear mixing of latent variables and Gaussian noise according to equation 11,

$$x^{(t)}|z^{(t)} \sim N(Cz^{(t)}, R). \quad (12)$$

Consider all time steps, as long as the $x^{(t)}$ is conditional independent with all other variables given $z^{(t)}$ for all time steps, the conditional distribution:

$$\begin{aligned} p(x^{(1:T)}|z^{(1:T)}) &= \prod_{t=1}^T N(x^{(t)}; Cz^{(t)}, R) \\ &= \prod_{t=1}^T \frac{1}{(2\pi)^{m/2}|R|^{-1}} \exp\left(-\frac{1}{2}(x^{(t)} - Cz^{(t)})^T R^{-1} (x^{(t)} - Cz^{(t)})\right) \end{aligned} \quad (13)$$

Take the log,

$$\log p(x^{(1:T)}|z^{(1:T)}) = \sum_{i=1}^T -\frac{1}{2}(x^{(t)} - Cz^{(t)})^T R^{-1} (x^{(t)} - Cz^{(t)}) - \frac{m}{2} \log 2\pi - \frac{1}{2} \log |R|. \quad (14)$$

Our goal is to estimate $z^{(t)}$ by maximizing the likelihood above, we further stack the observations and latent variables as:

$$\mathbf{x} := \begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(T)} \end{bmatrix} \in \mathbb{R}^{mT}, \quad \mathbf{z} := \begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(T)} \end{bmatrix} \in \mathbb{R}^{dT}, \quad (15)$$

and define the block-diagonal matrices

$$\mathbf{C}_b := \begin{bmatrix} C & 0 & \dots & 0 \\ 0 & C & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & C \end{bmatrix} \in \mathbb{R}^{mT \times dT}, \quad \mathbf{R}_b = \begin{bmatrix} R & 0 & \dots & 0 \\ 0 & R & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & R \end{bmatrix} \in \mathbb{R}^{mT \times mT}. \quad (16)$$

918 Maximizing equation 14 over \mathbf{z} is equivalent to minimizing
 919

$$920 \quad \mathcal{L}(\mathbf{z}) := \frac{1}{2}(\mathbf{x} - \mathbf{C}_b \mathbf{z})^T \mathbf{R}_b^{-1} (\mathbf{x} - \mathbf{C}_b \mathbf{z}), \quad (17)$$

921 where all constant terms are dropped. The first order optimality condition is
 922

$$923 \quad \mathbf{C}_b^T \mathbf{R}_b^{-1} (\mathbf{C}_b \mathbf{z} - \mathbf{x}) = \mathbf{0}. \quad (18)$$

924 Since $\text{rank}(\mathbf{C}_b) \leq mT < dT$, the matrix $\mathbf{B} := \mathbf{C}_b^T \mathbf{R}_b^{-1} \mathbf{C}_b$ is singular and the solution set is an
 925 affine subspace; the obtained $\hat{\mathbf{z}}$ is non-unique and ill-posed.
 926

927 B.2 INCORPORATE HISTORY VIA A DYNAMIC PRIOR

929 We note that explicitly consider the contribution from last latent state into the estimation of current
 930 state is exactly the Bayes rule that maximize the posterior, whose form is
 931

$$932 \quad p(z^{(1:T)} | x^{(1:T)}) = \frac{p(x^{(1:T)} | z^{(1:T)}) p(z^{(1:T)})}{p(x^{(1:T)})} \\ 933 \quad \propto p(x^{(1:T)} | z^{(1:T)}) p(z^{(1:T)}) \\ 934 \quad = \prod_{t=1}^T p(x^{(t)} | z^{(t)}) \prod_{t=2}^T p(z^{(t)} | z^{(t-1)}) p(z^{(1)}). \quad (19)$$

938 Take the log, we have
 939

$$940 \quad p(z^{(1:T)} | x^{(1:T)}) \propto \sum_{t=1}^T \log p(x^{(t)} | z^{(t)}) + \sum_{t=2}^T \log p(z^{(t)} | z^{(t-1)}) + \log p(z^{(1)}). \quad (20)$$

943 In this content, maximizing the posterior above is equivalent to minimize the following log terms
 944 where all terms not depending on z are dropped:
 945

- 946 • Initial prior

$$947 \quad \log p(z^{(1)}) := -\frac{1}{2}(z^{(1)} - \mu_0)^T P_0^{-1} (z^{(1)} - \mu_0). \quad (21)$$

- 949 • Transition prior

$$950 \quad \log p(z^{(t)} | z^{(t-1)}) := -\frac{1}{2}(z^{(t)} - Az^{(t-1)})^T Q^{-1} (z^{(t)} - Az^{(t-1)}), \quad t \geq 2. \quad (22)$$

- 953 • Likelihood

$$954 \quad \log p(x^{(t)} | z^{(t)}) := -\frac{1}{2}(x^{(t)} - Cz^{(t)})^T R^{-1} (x^{(t)} - Cz^{(t)}). \quad (23)$$

956 Similarly, we can stack observations and latents as equation 15, the negative likelihood over multiple
 957 steps is
 958

$$959 \quad -\log p(x^{(1:T)} | z^{(1:T)}) = \sum_{t=1}^T \log p(x^{(t)} | z^{(t)}) \\ 960 \quad = \frac{1}{2}(\mathbf{x} - \mathbf{C}_b \mathbf{z})^T \mathbf{R}_b^{-1} (\mathbf{x} - \mathbf{C}_b \mathbf{z}) \\ 961 \quad = \frac{1}{2} \mathbf{z}^T \mathbf{C}_b^T \mathbf{R}_b^{-1} \mathbf{C}_b \mathbf{z} - \mathbf{x}^T \mathbf{R}_b^{-1} \mathbf{C}_b \mathbf{z} + \text{constant} \\ 963 \quad = \frac{1}{2} \mathbf{z}^T \mathbf{B} \mathbf{z} - \mathbf{h}_{\text{data}}^T \mathbf{z} + \text{constant}, \\ 965 \quad 966$$

967 where we simplify the notation as $\mathbf{B} := \mathbf{C}_b^T \mathbf{R}_b^{-1} \mathbf{C}_b$, and $\mathbf{h}_{\text{data}} := \mathbf{C}_b^T \mathbf{R}_b^{-1} \mathbf{x}$. Expand the negative
 968 transition prior, we have
 969

$$970 \quad -\log p(z^{(t)} | z^{(t-1)}) = \frac{1}{2} z^{(t)}^T Q^{-1} z^{(t)} - \frac{1}{2} z^{(t-1)}^T A^T Q^{-1} z^{(t)} - \\ 971 \quad \frac{1}{2} z^{(t)}^T Q^{-1} A z^{(t-1)} + \frac{1}{2} z^{(t-1)}^T A^T Q^{-1} A z^{(t-1)}. \quad (25)$$

972 Expand the negative initial prior
 973

$$974 -\log p(z^{(1)}) = \frac{1}{2} z^{(1)T} P_0^{-1} z^{(1)} - z^{(1)T} P_0^{-1} \mu_0 + \text{constant.} \quad (26)$$

977 Expand the prior terms over all time steps and collect coefficients of the stacked quadratic $\mathbf{z}^T(\cdot)\mathbf{z}$.
 978 The resulting block-tridiagonal weighting matrix is

$$979 D_{\text{dyn}} = \begin{bmatrix} P_0^{-1} + A^T Q^{-1} A & -A^T Q^{-1} & & \\ 980 -Q^{-1} A & Q^{-1} + A^T Q^{-1} A & -A^T Q^{-1} & \\ 981 & \ddots & \ddots & \ddots \\ 982 & & -Q^{-1} A & Q^{-1} + A^T Q^{-1} A & -A^T Q^{-1} \\ 983 & & & -Q^{-1} A & Q^{-1} \\ 984 & & & & \ddots \\ 985 \end{bmatrix} \in \mathbb{R}^{T^d \times T^d}. \quad (27)$$

986 Similarly, collect coefficients of the stacked linear term $(\cdot)^T \mathbf{z}$. There is no linear term from the
 987 dynamics $t = 2, \dots, T$; only the prior mean contributes, in which we define

$$988 \mathbf{h}_{\text{init}} = \begin{bmatrix} P_0^{-1} \mu_0 \\ 989 0 \\ 990 \vdots \\ 991 0 \end{bmatrix}. \quad (28)$$

992 Now we collect everything, maximizing the posterior in equation 20 is equivalent to minimize

$$993 \mathcal{J}(\mathbf{z}) := \frac{1}{2} \mathbf{z}^T (\mathbf{B} + \mathbf{D}_{\text{dyn}}) \mathbf{z} - (\mathbf{h}_{\text{data}} + \mathbf{h}_{\text{init}})^T \mathbf{z} + \text{constant.} \quad (29)$$

994 As long as Q and P_0 is positive definite, and \mathbf{B} is positive semi-definite, there summation should
 995 also be positive definite. Thus, the $\mathcal{J}(\mathbf{z})$ is strictly convex and the solution is unique.

1001 C IMPLEMENTATION DETAILS

1002 **Data Preparation.** For the Sudoku-Extreme training set, we follow the HRM configuration and
 1003 apply band and digit permutations to each training instance, generating 1,000 augmented variants
 1004 per example. No data augmentation is used for Maze-Hard. All baselines are trained and evaluated
 1005 on the same fixed training and test splits.

1006 **Model Architecture.** To ensure fairness, every baseline uses exactly the same Transformer-layer
 1007 implementation as its atomic building block: one attention layer, one MLP, and an RMSNorm. The
 1008 Transformer-layer hyperparameter (e.g., hidden size) and the initialization scheme are kept identical
 1009 across all baselines.

1010 **Training Protocol.** All baselines adopt a common backbone and therefore share the same op-
 1011 timization settings, including learning rate, batch size, optimizer, and loss function. Concretely,
 1012 all experiments use a learning rate of 1×10^{-4} , a batch size of 768, and the AdamAtan2 opti-
 1013 mizer, with an identical loss function across methods. Each baseline is trained for 60,000 epochs on
 1014 SUDOKU-EXTREME and, separately, for 60,000 epochs on MAZE-HARD.

1015 **Hardware and Runtime.** All training runs are executed on $8 \times$ AMD MI210 (64 GB) GPUs. The
 1016 average wall-clock training time is approximately 1 h for SUDOKU-EXTREME and approximately
 1017 15 h for MAZE-HARD.

1018 In training and test cost analysis, all measurements were obtained under identical training hyper-
 1019 parameters using eight AMD MI210 64 GB GPUs. Speeds are reported as batches per second for
 1020 training and samples per second for inference, with memory averaged per GPU across the eight de-
 1021 vices and inference speed computed from total samples divided by wall clock time on the Sudoku
 1022 Extreme test set.

1026 D PSEUDO CODE
1027

```

1028
1029 1
1030 2
1031 3
1032 4
1033 5
1034 6
1035 7
1036 8
1037 9
1038 10
1039 11
1040 12
1041 13
1042 14
1043 15
1044 16
1045 17
1046 18
1047 19
1048 20
1049 21
1050 22
1051 23
1052 24
1053 25
1054 26
1055 27
1056 28
1057 29
1058 30
1059 31
1060 32
1061 33
1062 34
1063 35
1064 36
1065 37
1066 38
1067 39
1068 40
1069 41
1070 42
1071 43
1072 44
1073 45
1074 46
1075 47
1076 48
1077 49
1078 50
1079 51
# =====
# Hyper-parameters and components
# =====
m # number of inner iterations per block (e.g., 16)
n # number of outer blocks per batch (e.g., 16)

T # the ONLY recurrent transformer layer
Head # readout head producing y from z
Opt # optimizer over parameters of T and Head
Loss # criterion, e.g., cross-entropy / L2

def init_state(batch):
    """z0 = 0 for each batch."""
    return zeros_like_state(batch)

# =====
# Training loop
# =====
for epoch in range(num_epochs):
    for batch in DataLoader:
        x, target = batch
        z = init_state(batch_size(x)) # z0 = 0

        # ---- Periodic Alignment ----
        for block_idx in range(1, n + 1):

            Opt.zero_grad(set_to_none=True) # we update once per block

            # ---- Flat recurrent Transformer ----
            for t in range(1, m + 1):

                if block_idx == 1:
                    # Only in the 1st block do reflection injection of x
                    # Inject both x and the previous z into next z.
                    # ---- Reflective Represent Learning ----
                    z_in = ReflectFuse(z, x)
                else:
                    # From the 2nd block on, DO NOT inject x anymore
                    z_in = z # use z only

                # One layer applied repeatedly (weight sharing)
                z = T(z_in) # same layer, different
                             # time step

                # ---- End of a block: produce Y and train immediately ----
                y_pred = Head(z) # predict from current z

                cur_target = target if is_scalar_label(target) else
                             target[block_idx]

                loss = Loss(y_pred, cur_target)
                # backprop within this block only
                loss.backward()
                Opt.step() # update T and Head now

                # ---- Detach for the next block ----
                # Break the graph so gradients from the next block cannot
                # flow back into the current/previous blocks.
                z = z.detach()


```

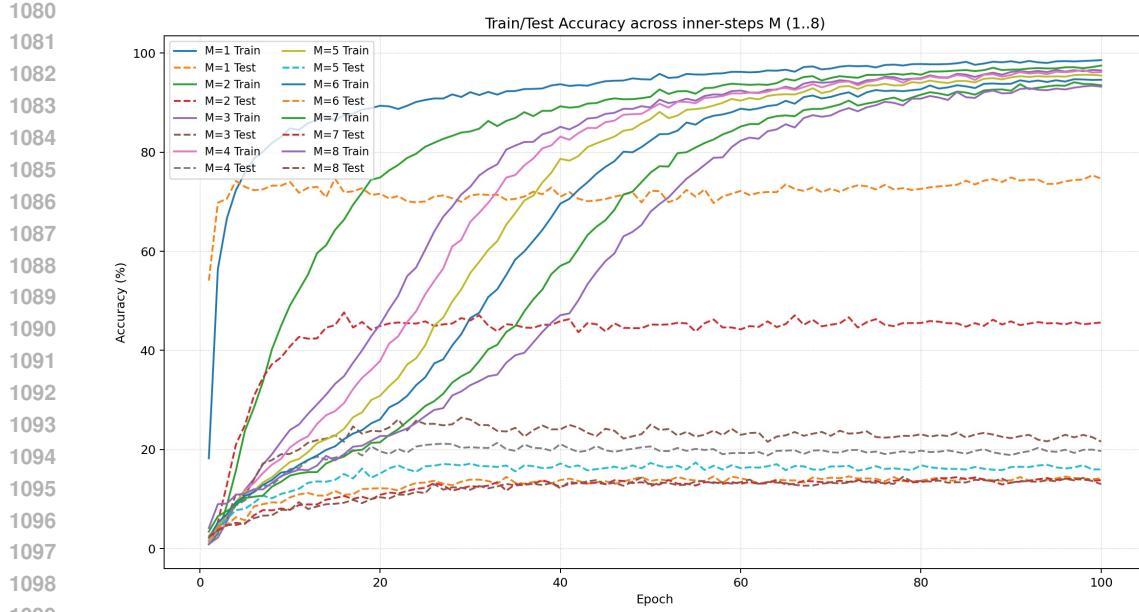


Figure 7: Analysis of the applicability of \mathbf{SR}^2 . M denotes how many times we forward the model within a single alignment (supervision) step.

We provide the pseudo code for \mathbf{SR}^2 . This pseudo code serves as a high-level description of the algorithm’s workflow, outlining its core computational steps and logical structure.

E ANALYSIS OF \mathbf{SR}^2 APPLICABILITY

From another perspective, not all tasks require iterative updates. For relatively simple problems such as image classification where the mapping from input to output is more direct and the latent space is less entangled, a single forward pass is often sufficient. To probe this, we instantiated the \mathbf{SR}^2 architecture on CUB-200-2011 (Caltech–UCSD Birds 200–2011) Wah et al. (2011), a fine-grained classification benchmark, using the same backbone and comparable parameter budget as a standard ViT baseline, identical training data splits, and a conventional top-1 accuracy protocol. As summarized in Fig. 7, the ViT baseline attains roughly 75% top-1 accuracy, whereas \mathbf{SR}^2 equipped with *Reflection* and *Self-Refinement* reaches under 45%. This gap, together with the learning curves in the figure, supports our claim that iterative refinement is especially advantageous in complex constraint-satisfaction or reasoning settings, but offers limited benefits and can even be detrimental when the latent structure is comparatively simple and direct, as in standard classification.

DISCLOSURE OF LLM USAGE

In accordance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we disclose that LLMs were used solely to assist with grammar refinement and language polishing in this paper. No part of the research ideation, experimental design, implementation, or analysis relied on LLMs. The authors take full responsibility for the technical content and conclusions of the work.