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Motivation and Al task

As the global population rises, food demand grows in parallel, driving an increased reliance on
nitrogen-based fertilizers to sustain agricultural productivity. This necessitates large-scale ammonia
production through the Haber—Bosch process, which consumes roughly 2% of the world’s energy
and contributes about 3% of global CO; emissions [Ishaq and Crawford, 2024]]. Thus, novel catalysts
that operate under milder conditions with higher efficiency are highly sought-after. Machine learning
(ML) offers a promising approach to accelerate the discovery of efficient processes for greener
chemical reactions and a carbon-neutral future. However, much of catalytic chemistry lies in the
multireference (MR) regime, where near-degenerate orbitals and competing spin states challenge
single-reference (SR) methods. Despite this, existing ML datasets are skewed toward closed-shell,
near-equilibrium organic molecules, and thus fail to capture the MR challenges central to many
catalytic reactions [[Cramer and Truhlar, [2009].

While exact MR calculations such as full configuration interaction scale combinatorially and are
intractable for realistic catalysts, the density matrix renormalization group (DMRG) algorithm
provides a scalable yet highly accurate alternative for treating strongly correlated electronic structures.
DMRG leverages a variational treatment of static correlation through a systematic approximation of
the full MR wavefunction as a matrix product state (MPS) [White, 1992} |Schollwockl, 2011f]. The
DMRG accuracy is governed by the bond dimension m, ensuring the energy monotonically converges
to the exact value. Modern implementations exploit spin and particle-number symmetries to further
reduce the computational cost, and by combining DMRG with state-averaged self-consistent field
procedures (DMRG-SCF) a balanced description can be obtained also for nearly-degenerate states.

To enable ML-based catalyst design, we propose a 50k-point dataset of DMRG calculations
targeting structure—property prediction for molecular systems with pronounced MR character.
The primary goal is to learn ground-state energies and low-lying spin-state gaps based on structure,
charge, and multiplicity. Secondary targets are correlation-sensitive observables (spin densities,
natural-orbital occupations) and entanglement metrics that can guide active-space selection. The
dataset is designed to train surrogates that remain predictive when bonds stretch, spin states cross, or
multiple electronic configurations compete. This is precisely the regime where current ML models
fail, yet it’s most critical for advancing catalyst discovery.

Dataset design and DMRG setup

While performing fully converged DMRG calculations for catalytic systems like metalloenzymatic
clusters (e.g. the FeMo-cofactor) is infeasible at the 50k-point scale today, the essential MR behavior
can be captured already in smaller systems. We will therefore assemble a diverse set of small and
intermediate-size molecules that exhibit strong correlation: transition-metal diatomics and triatomics
(e.g., FeO, NiO, MnOs), minimal metal-ligand fragments, organic radicals and diradicals, open-shell
ions, and bond-stretch scans. For each species, we will sample spin multiplicities and multiple spatial
symmetries. To complete our set, as well as for the validation of future ML models, we will select
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representative transition metal complexes from the MOR41 dataset for relevant transition metal
reactions [Dohm et al.,[2018]] and its extension to barrier heights in the MOBH35 benchmark database
[Iron and Janes, |[2019]. This strategy ensures that our dataset covers the MR phenomena that defeat
SR models while keeping active spaces small enough for accurate yet affordable DMRG calculations.

The dataset will be generated using a fully automated pipeline: First, geometries are optimized at a
hybrid-functional level such as PBEO. Next, active spaces are selected automatically to include all
near-degenerate valence shells (metal d and key ligand 7 /o) using occupation- and entropy-based
heuristics. We then use quantum-information diagnostics from DMRG to guide both active-space
choice and the linear basis set ordering on the MPS lattice in the spirit of the autoCAS algorithm
Stein and Reiher|[2019]. By employing a Fiedler-vector ordering based on the mutual-information
graph, long-range entanglement is minimized and the bond dimension m required for convergence
will be reduced [Legeza and Solyom, [2003]]. For production calculations, state-averaged DMRG-SCF
in triple-( bases will be performed with SU2 spin adaptation and Abelian point-group symmetries to
obtain block-sparse tensors to further reduce the computational cost. To guarantee the accuracy of our
single point calculations, we employ the two-site DMRG algorithm with adaptive bond-dimension
schedules and explicit monitoring of discarded weights, and enforce tight energy convergence
thresholds on the order of 1 mHa.

In addition to ground- and excited-state energies, each calculation will provide 1- and 2-
particle reduced density matrices, spin densities, natural-orbital occupations, and entanglement
diagnostics. These richer outputs expand the dataset beyond energy labels, enabling ML approaches
that learn from electronic structure in real space. Such data can be directly applied to surrogate
modeling, active-space selection, or even inverse density functional parametrization [Kanungo et al.|
2019], thereby supporting a wide range of workflows in ML-driven catalyst design.

Feasibility, cost, and impact

The data generation workflow will be implemented in Python, relying only on open source packages.
For integral generation and mean-field references, we will use pySCF [Sun et al.| 2018]], and the
DMRG-SCF calculations will be performed with block2 [Zhai et al., 2023]], a highly optimized
DMRG engine. It allows for symmetry-adaptation of the MPS, two-site DMRG sweeps, Fiedler
ordering, state-average DMRG-SCF procedures via a readily available pySCF interface, convergence
monitoring diagnostics, as well as access to 1- and 2-particle reduced electron densities and related
quantities. Importantly, block2 also enables multi-level parallelism over sites, symmetry sectors,
and matrix multiplication operations, allowing for efficient single-point calculations [Zhai and Chan,
2021].

Indicative timings range from one CPU-hour for small systems to several CPU-days for transition-
metal fragments (see Appendix [A]). Aggregated across the proposed molecular mix, the 50k-point
dataset will require approximately one million CPU-hours. Using a standard cloud TCO model, this
corresponds to a computational cost of around $20k. The full dataset, including density matrices, is
expected to require single-digit terabytes of storage.

The proposed data set provides what the field lacks: standardized, high-fidelity results in the om-
nipresent MR regime. Fully exploiting the information contained in DMRG results, our data set
contributes more than just highly accurate correlated energies. The availability of reduced density
matrices, orbital entropies, and mutual information enables training objectives that directly penalize
electronic delocalization errors and reward correct entanglement structure signals absent from com-
mon density functional theory based datasets. By training models on DMRG references, we expect
improved robustness at dissociation limits, spin crossings, and symmetry breaking. In downstream
science, models trained on this corpus will accelerate screening of metal-ligand motifs and open-shell
intermediates, and will provide correlation-aware embeddings for hybrid QM/ML treatments of larger
active sites. While exhaustive DMRG over full metalloclusters remains a future goal, the proposed
dataset captures the physics that matters for catalysis and provides a realistic foundation on which Al
models can learn to capture effects of strongly correlated electrons in novel catalytic candidates.
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A Computational cost details

Indicative timings for representative molecules demonstrate the project’s feasibility, with costs
ranging from one CPU-hour for small systems to several days for transition-metal fragments (Table
[I). Aggregated across the proposed molecular mix, the 50k-point dataset requires approximately
one million CPU-hours. Based on a standard Total Cost of Ownership (TCO) model at $0.02 per
CPU-hour, this corresponds to a computational cost of around $20k. The full dataset, including
reduced density matrices and diagnostics, is expected to require single-digit terabytes of storage. This
scalable approach is tractable for a high-throughput dataset, unlike calculations on large clusters like
the FeMo-cofactor, which are computationally prohibitive.

Table 1: Indicative DMRG-SCF timings for representative systems. Timings are per single-point
calculation on multi-core hardware and are used to estimate the overall project cost.

System Active Space Time per point (CPU-h) 50k-point Corpus
Ny (dissociation) CAS(10e, 80) 1 Feasible
O, (open-shell) CAS(12e, 100) 3 Feasible
FeO (diatomic) CAS(16e, 120) 24 Feasible
Cus 04 (minimal core) CAS(16e, 140) 96 Feasible
FeMo-cofactor CAS(54e, 540) >1000 Infeasible
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