
Published in Transactions on Machine Learning Research (07/2023)

Execution-based Code Generation using Deep Reinforce-
ment Learning

Parshin Shojaee parshinshojaee@vt.edu
Aneesh Jain aneeshj@vt.edu
Sindhu Tipirneni sindhut@vt.edu
Chandan K Reddy reddy@cs.vt.edu
Department of Computer Science, Virginia Tech, Arlington, VA

Reviewed on OpenReview: https: // openreview. net/ forum? id= 0XBuaxqEcG

Abstract

The utilization of programming language (PL) models, pre-trained on large-scale code cor-
pora, as a means of automating software engineering processes has demonstrated consider-
able potential in streamlining various code generation tasks such as code completion, code
translation, and program synthesis. However, current approaches mainly rely on supervised
fine-tuning objectives borrowed from text generation, neglecting unique sequence-level char-
acteristics of code, including but not limited to compilability as well as syntactic and func-
tional correctness. To address this limitation, we propose PPOCoder, a new framework for
code generation that synergistically combines pre-trained PL models with Proximal Policy
Optimization (PPO) which is a widely used deep reinforcement learning technique. By uti-
lizing non-differentiable feedback from code execution and structure alignment, PPOCoder
seamlessly integrates external code-specific knowledge into the model optimization process.
It is important to note that PPOCoder is a task-agnostic and model-agnostic framework
that can be used across different code generation tasks and PLs. Extensive experiments on
three code generation tasks demonstrate the effectiveness of our proposed approach com-
pared to SOTA methods, achieving significant improvements in compilation success rates
and functional correctness across different PLs. The source code for PPOCoder can be
found at https://github.com/reddy-lab-code-research/PPOCoder.

1 Introduction

Recent years have seen a surge of attention towards the use of deep learning and neural language models
to automate code generation and other software engineering processes, as a means to enhance developer
productivity. The software development process encompasses a variety of code generation tasks, including
code completion (Code2Code) (Li et al., 2018), code translation (Code2Code) (Zhu et al., 2022b), and
program synthesis (NL2Code) (Li et al., 2022). Inspired by the great performance of pre-trained neural
language models (LMs) in different natural language processing (NLP) tasks, these pre-training techniques
have been recently employed on large-scale code corpuses to automate code generation tasks. Examples
of such pre-trained models include CodeBERT (Feng et al., 2020), CodeGPT (Lu et al., 2021), PLBART
(Ahmad et al., 2021), and CodeT5 (Wang et al., 2021). However, the code generation domain brings its
unique challenges. While it is essential for code to be human-readable, it is imperative that the generated
code maintains syntactic and functional correctness, i.e., being able to pass the compilation and unit tests.

Despite the advancements of pre-trained code models, they are heavily influenced by NLP’s self-supervised
masked language modeling (MLM) and often struggle to ensure the execution correctness of the generated
codes. For example, recent works (Chen et al., 2021a; Li et al., 2022; Jha & Reddy, 2023) have shown that
a significant number of programs generated from pre-trained PL models using simple sampling methods
may not pass the unit tests. To improve code generation towards operational accuracy, several approaches

1

https://openreview.net/forum?id=0XBuaxqEcG
https://github.com/reddy-lab-code-research/PPOCoder


Published in Transactions on Machine Learning Research (07/2023)

Figure 1: An overview of the proposed PPOCoder framework. The actor and critic networks are �rst
initialized from the pre-trained PL model for the desired task. Following the sampling of a synthetic program
from the stochastic policy, the reward is determined using the execution feedback and the ground truth target
code. The values are estimated by the critic network. Finally, both actor and critic networks are updated
based on the obtained values and returns.

are followed: (i ) �ltering and repairing the non-executable synthesized programs (Kulal et al., 2019),(ii )
using energy-based generation models with execution constraints (Korbak et al., 2021), and(iii ) using
reinforcement learning (RL) �ne-tuning mechanisms (Wang et al., 2022; Zhong et al., 2017; Le et al., 2022).
However, existing approaches are often tailored to a speci�c programming language (PL) or task, e.g., (Le
et al., 2022) is exclusively designed for program synthesis task in Python, and (Roziere et al., 2020) only
targets code translation tasks in Python, Java, and C++ PLs. We propose PPOCoder, illustrated in
Fig. 1, an RL framework for code generation that incorporates non-di�erentiable feedback derived from
code execution and structure alignment as external, code-speci�c knowledge into the model optimization.
PPOCoder utilizes the PPO (Schulman et al., 2017) algorithm for RL optimization which is based on
the proximal actor-critic advantage policy gradient objective and a trust region mechanism, making the
model optimization more stable and less sensitive to new environments (tasks, PLs, or datasets). Also,
PPOCoder integrates discrete compiler feedback with the syntactic and semantic matching scores between
the generated codes and executable targets. This integration reduces the sparsity of the reward function,
leading to a better guidance of the policy to generate higher-quality code.To the best of our knowledge,
our work is the �rst one to integrate pre-trained PL models with PPO and incorporate non-di�erentiable
execution and code structure elements into the feedback.Inspired by (Ouyang et al., 2022), PPOCoder
also incorporates the KL-divergence penalty into the reward function to control explorations and prevent
catastrophic forgetting, i.e., drastic deviations from the priors already acquired by the pre-trained model.
Previous works (Le et al., 2022) have employed token-level matching objectives (i.e., cross-entropy loss) in
the �ne-tuning stage as well as pre-training of PL models to constrain these drastic deviations; however,
overoptimizing for token-level matching frequently results in memorization and restricted performance when
faced with new tasks and datasets. We observe that incorporating the KL-divergence penalty instead of
token-matching objectives during �ne-tuning can e�ectively minimize the likelihood of memorization (check
zero-shot results of program synthesis in Table 4), fostering a more controlled and e�cient exploration that
generalizes adeptly to diverse environments. To summarize, the major contributions of this paper are as
follows:

ˆ We present a PPO-based RL framework for code generation, PPOCoder, that utilizes non-di�erentiable
code-speci�c feedback as the external source of knowledge in model optimization. PPOCoder provides a
more stable and generalizable yet accurate model optimization that is less sensitive to new environments
(tasks, PLs, or datasets) and generate higher-quality codes.

ˆ We develop a new code-speci�c reward function based on the discrete compiler feedback (compilation or
unit test signal when available) received at the end of the generation episode as well as the syntactic and

2



Published in Transactions on Machine Learning Research (07/2023)

semantic matching scores between the AST sub-trees and DFG edges of the sampled generations and the
correct targets.

ˆ We reduce the chance of memorization by incorporating a KL-divergence penalty into reward instead of a
cross-entropy loss used in earlier works during the �ne-tuning phase to control explorations and prevent
deviations from the pre-trained priors.

ˆ We demonstrate the e�ectiveness of PPOCoder through an extensive set of experiments across diverse code
generation tasks (code completion, code translation, program synthesis) and PLs (C++, Java, Python,
C#, PHP, C). PPOCoder outperforms the SOTA baselines, improving the compilation rate and functional
correctness over di�erent PLs. We also investigate the bene�ts of PPOCoder's reward elements and PPO
optimization through ablation study.

The organization of the remainder of this paper is as follows: In Section 2, existing code generation meth-
ods utilizing pre-trained models, structure-based approaches, and RL methods for sequence generation are
summarized. Section 3 delves into the speci�cs of our proposed PPOCoder method, including its various
components. The experimental evaluation of our method on three code generation tasks: code completion,
code translation, and program synthesis tasks, as well as the ablation study and case study, can be found in
Section 4. Finally, the paper concludes in Section 5.

2 Related Work

2.1 Pre-trained Models for Code Generation

Recent research has focused on using pre-trained language models to automate code generation tasks leverag-
ing large-scale pre-training on the extensive code corpus data available in open-source repositories (Lu et al.,
2021; Zan et al., 2022; Niu et al., 2022). Notable examples of these pre-trained models include:(i ) CodeBERT
(Feng et al., 2020), which conducts encoder-only pre-training using Masked Language Modeling (MLM) and
Replaced Token Detection tasks;(ii ) CodeGPT (Lu et al., 2021), a comparable decoder-only GPT-based
pre-trained model introduced alongside the CodeXGLUE benchmark;(iii ) PLBART (Ahmad et al., 2021),
an encoder-decoder transformer model pre-trained employing the denoising autoencoding (DAE) objective;
and (iv ) CodeT5 (Wang et al., 2021), another encoder-decoder pre-trained model subsequently proposed,
built upon the T5 (Ra�el et al., 2020) architecture and trained with code data in eight PLs. However, these
pre-trained PL models tend to rely heavily on self-supervised objectives for text generation, while grappling
with maintaining essential sequence-level attributes of code such as syntactic and operational accuracy in
the generations.

2.2 Leveraging Structure in Code Generation

Lately, there has been a surge of interest in combining PL models with logical constructs such as abstract
syntax trees (ASTs) (Kim et al., 2021; Rabinovich et al., 2017; Wang & Li, 2021), code sketches (Nye et al.,
2019), and data-�ow graphs (DFGs) (Yasunaga & Liang, 2020; Guo et al., 2021). For example, GraphCode-
BERT (Guo et al., 2021) uses DFGs to incorporate semantic information into the encoded representations,
but its decoder is unaware of the code structures. StructCoder (Tipirneni et al., 2022) presents a pre-trained
structure-aware encoder-decoder architecture, where both the encoder and decoder components are aware
of syntax and semantic relations. However, despite these e�orts, many of these structure-aware code gen-
eration models still struggle to ensure the syntactic and operational accuracy of the generated codes. The
primary reason is the misalignment between code-speci�c evaluation metrics and model optimization objec-
tives. In other words, these models are not optimized for the non-di�erentiable code-speci�c objectives such
as compilability, readability, or passing test cases. Consequently, this results in performance de�ciencies.

2.3 RL for Sequence Generation

RL has been used to optimize non-di�erentiable metrics in sequence generation tasks (Ranzato et al., 2016;
Bahdanau et al., 2017), such as using the REINFORCE (Williams, 1992) algorithm to improve BLEU
(Papineni et al., 2002a) and ROUGE (Lin, 2004) scores in the translation and summarization models.
Recently, InstructGPT (Ouyang et al., 2022) has introduced a new Reinforcement with Human Feedback
(RLHF) �ne-tuning procedure which shows that language models �ne-tuned with RL can better follow non-
di�erentiable human feedback. Unlike natural language tokens, generated code should follow some unique

3




	Introduction
	Related Work
	Pre-trained Models for Code Generation
	Leveraging Structure in Code Generation
	RL for Sequence Generation

	PPOCoder
	Problem Formulation
	Reward Function
	Compiler Signal
	Syntactic Matching Score
	Semantic Matching Score
	KL-Divergence Constraint

	Loss Function

	Experiments
	Code Completion
	Code Translation
	Program Synthesis
	Ablation Study

	Conclusion
	Implementation Details
	Code Completion
	Code Translation
	Program Synthesis

	Additional XLCoST Dataset Details
	Additional Evaluation of Code Translation on TransCoder Benchmark
	Additional Ablation Experimetns
	Discussion and Comparison with SOTA Large Models
	Case Studies

