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ABSTRACT

Optimizing the parameters of partial differential equations (PDEs), i.e., PDE-
constrained optimization (PDE-CO), allows us to model natural systems from
observations or perform rational design of structures with complicated mechanical,
thermal, or electromagnetic properties. However, PDE-CO is often computationally
prohibitive due to the need to solve the PDE—typically via finite element analysis
(FEA)—at each step of the optimization procedure. In this paper we propose
amortized finite element analysis (AmorFEA), in which a neural network learns
to produce accurate PDE solutions, while preserving many of the advantages of
traditional finite element methods. As FEA is a variational procedure, AmorFEA
is a direct analogue to popular amortized inference approaches in latent variable
models, with the finite element basis acting as the variational family. AmorFEA
can perform PDE-CO without the need to repeatedly solve the associated PDE,
accelerating optimization when compared to a traditional workflow using FEA and
the adjoint method.

1 INTRODUCTION

Partial differential equations (PDEs) are widely used to describe the properties of physical systems,
including heat transfer, electromagnetics, and elasticity. PDE-constrained optimization (PDE-CO)
addresses the situation in which an objective function must be minimized minimized or maximized,
subject to the constraints of real-world physics as expressed by PDEs. Common examples include
optimal design, optimal control, and the identification of parameters to relate a simulation to observed
data (Rees et al., 2010; Ulbrich & van Bloemen Waanders, 2018). PDE-CO can be computationally
challenging, however, for even moderately sized problems, as it is usually necessary to solve the
associated PDE at every iteration of the outer-loop optimization, e.g., by the widely used finite
element analysis (FEA) (Hughes, 2012).

We propose a two-stage optimization framework to efficiently tackle sequences of related PDE-
constrained optimization problems. At the first stage, we introduce amortized finite element analysis
(AmorFEA) to efficiently learn the physics governed by the PDE without requiring supervised data
provided by expensive PDE solvers. We borrow the idea of amortized optimization, widely used in
amortized variational inference (Kingma & Welling, 2013; Gershman & Goodman, 2014; Ravi &
Beatson, 2018; Choi et al., 2019). By learning to jump directly to the FEA solution with a neural
network, we obtain a surrogate model that is able to predict the solutions directly from the control
parameters. At the second stage, we perform gradient-based PDE-CO using the AmorFEA-enabled
neural surrogate model. During each optimization iteration, the gradient is efficiently computed via
one forward and one backward pass through the neural network, instead of querying an expensive
PDE solver as in the traditional adjoint method requires (Cao et al., 2003).

2 AMORTIZED FINITE ELEMENT ANALYSIS

Many physical systems governed by PDEs obey variational principles. For a given control field λ (e.g.,
heat source), the true solution field u (e.g., temperature) is the one that minimizes the total potential
energy of the system. In a discretized FEA problem (see a full description of FEA in Appendix A),
given a fixed control vector λ ∈ Rm, we find the solution vector (or the state vector) u ∈ Rn by
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solving an optimization problem:
min
u∈Rn

L(u,λ), (1)

where L(u,λ) denotes the total potential energy.

Our amortized finite element analysis (AmorFEA) approach reframes the per-control-vector opti-
mization process into a shared regression problem. We use a neural network to build a deterministic
mapping gψ : Rm → Rn, whose weights ψ are learned by minimizing the expected potential energy:

min
ψ

Ep(λ)[L(gψ(λ),λ)], (2)

where p(λ) is the distribution of typical control parameters associated with specific problems and we
hope that u ≈ û = gψ(λ). Since FEA is an approximate variational procedure (in the general sense
of minimizing a functional), it resembles variational inference in latent variable models in that the
finite element basis functions are analogous to the variational family of distributions and the FEA
solution vector mirrors the variational parameters.

Amortization Suboptimality For amortized variational inference, Cremer et al. (2018) introduced
the notions of approximation, amortization, and inference gap. Similar to gaps for amortized inference,
we propose the approximation, amortization and “inference” (total error) gaps for AmorFEA:

∆ap = Ep(λ)

[
L(u?λ,λ)− L(ue, λ)

]
(3)

∆am = Ep(λ)

[
L(gψ?(λ),λ)− L(u?λ,λ)

]
(4)

∆inf = ∆ap + ∆am, (5)
where ψ? is the optimal solution to Eq. 2, u?λ is the optimal solution to Eq. 1 for a given λ, and ue is
the exact solution to the governing PDE which is generally impossible to obtain. Note that we are
abusing notation somewhat here in allowing L(·, ·) to take inputs of either functions (e.g., normal
font u) or FEA vectors (e.g., bold font u).

PDE-constrained Optimization The discretized PDE-constrained optimization is formulated as
min

u∈Rn,λ∈Rm
J (u,λ)

s.t. c(u,λ) = 0, (6)
whereJ (·, ·) : Rn × Rm → R is the objective function and c(·, ·) : Rn × Rm → Rn is the constraint
function imposed by the governing PDE. A reduced formulation is often used to embed the PDE
constraint as

min
λ∈Rm

Ĵ (λ), (7)

where Ĵ (λ) := J (u(λ),λ) and u(λ) is the implicit function arising from the solution to Eq. 1.
Gradient-based optimization algorithms require the evaluation of the derivative of the objective
function with respect to the control vector:

dĴ
dλ

=
∂J
∂u

du

dλ
+
∂J
∂λ

. (8)

A common way to compute this gradient is to use the adjoint method Cao et al. (2003) (see Ap-
pendix B). We propose to accelerate PDE-CO with AmorFEA. AmorFEA yields a differentiable map
from the control vector λ to the state vector u, which does not require solving the governing PDE
via traditional FEA, and which can be used to approximate the costly term du

dλ in Eq. 8. With the
differentiable neural surrogate model, we formulate the PDE-constrained optimization problem as

min
λ∈Rm

J̃ (λ), (9)

where J̃ (λ) := J (gψ?(λ),λ) and ψ? are the learned weights of the neural network. The derivative
is given by

dJ̃
dλ

=
∂J
∂u

dgψ?

dλ
+
∂J
∂λ

. (10)

We employ reverse-mode automatic differentiation, since m� 1. A summary for the procedures of
AmorFEA along with AmorFEA based PDE-CO can be found in Fig. 1 by visualizing the computation
graph. We demonstrate AmorFEA using a simple linear example in Appendix C.
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Figure 1: Computation graph for AmorFEA based PDE-CO. Red arrows denote automatic differ-
entiation. Left: AmorFEA training for the surrogate model. Right: PDE-CO with the learned
model.

FEA mesh source (control parameter) solution (state variable)

Figure 2: Setup of the problem. Left: the finite element mesh for a irregular domain with a dolphin-
shaped hole. Middle: an example source field λ(x) = 100sin(2πx1). Right: the solution field u(x)
associated with the source field.

3 EXAMPLES

Source Field Finding We consider a two-dimensional optimal source control problem simplified
from superconductivity theory (De Melo et al., 1993). Mathematically, the problem is to minimize
the functional

J (u, λ) =
1

2

∫
Ω

(u− ud)2dx+
α

2

∫
Ω

λ2dx (11)

subject to a nonlinear Poisson’s equation with Dirichlet boundary conditions:

−∆u+ 10(u+ u3) = λ in Ω,

u = ub on Γ. (12)

Fig. 2 shows more details. Note that we employ an irregular domain with a dolphin-shaped hole in
the middle. The irregular domain cannot be discretized using a structured mesh (a lattice). We record
the wall-clock time in Table 1. As shown, AmorFEA based PDE-CO achieves similar optimized
objective values compared with the adjoint method, but with significantly less computation time,
excluding time to train the network.

Method α Optimized objective Wall time [ms] Iteration steps [#]

Adjoint Method
10−6 3.35× 10−4 700 13
10−3 2.47× 10−3 600 11

1 2.56× 10−3 337 6

AmorFEA
10−6 3.40× 10−4 38 13
10−3 2.47× 10−3 37 11

1 2.56× 10−3 16 7

Table 1: PDE-CO results for the adjoint method and AmorFEA. For different regularity coefficient α,
AmorFEA achieves similar optimal objectives compared with the adjoint method, but with less wall
time.

Inverse Kinematics of a Soft Robot We consider the control of a snake-like soft robot made of
elastic material. Such robots represent promising solutions to minimally invasive surgery (Runciman
et al., 2019). We control the static position of the robot by expanding or contracting “muscles” on the
left and right sides of the robot, quantitatively described by an actuation field λ(x) that controls the
stretch ratio on the two sides. We focus on the middle point x0 at the top of the robot and specify an
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FEA mesh fixed bottom

contraction 
expansion

Figure 3: Setup of the problem. Left: the finite element mesh for the soft robot in an undeformed
configuration. Right: with the actuation field λ(x) set to be half-and-half for contraction and
expansion, but upside down for the two sides, the robot can deform to a specific configuration. Colors
indicate the displacement magnitude ‖u‖2.
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Figure 4: Wall time measurement for both the adjoint method and AmorFEA. There are four target
displacements for the tip point displacement u(x0) to achieve. In these plots, one blue dot indicate
one gradient descent step of the adjoint method, while one red dot indicate multiple gradient steps for
AmorFEA.

arbitrary two-dimensional displacement u0 that we hope this tip point can achieve by optimizing the
actuation field λ(x). Mathematically, the problem is to minimize the functional

J (u, λ) = ‖u(x0)− u0)‖22 (13)
subject to an equilibrium equation for hyperelastic material with appropriate boundary conditions:

Div P (u) = 0 in Ω,

r(u, λ) = 0 on Γ, (14)
where “Div” is the divergence operator, P is the a second-order stress tensor and r is the boundary
constraint. For more precise definitions of these terms, refer to Appendix D. Fig. 3 shows more
details of the problem setup. We pick four equally-spaced target points on a circle centered at the
robot tip and perform PDE-CO to find actuations. As shown in Fig. 4, we use gradient descent for
both the adjoint method and AmorFEA. AmorFEA consumes significantly less time than the adjoint
method.

4 CONCLUSIONS

In this work, we proposed a novel formulation (AmorFEA) that amortizes the solving process of
classic finite element analysis. AmorFEA enables fast, differentiable prediction of PDE solutions,
which accelerates PDE-constrained optimization. We quantitatively studied the amortization gap
for both linear problems and nonlinear problems. Numerical experiments show that our method
outperforms the traditional adjoint method on a per-iteration basis.

4



Under review as a workshop paper at ICLR 2020

REFERENCES

Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods, volume 15. Springer
Science & Business Media, 2012.

Yang Cao, Shengtai Li, Linda Petzold, and Radu Serban. Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE system and its numerical solution. SIAM Journal on
Scientific Computing, 24(3):1076–1089, 2003.

Kristy Choi, Mike Wu, Noah Goodman, and Stefano Ermon. Meta-amortized variational inference
and learning. arXiv preprint arXiv:1902.01950, 2019.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders.
arXiv preprint arXiv:1801.03558, 2018.
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A FINITE ELEMENT ANALYSIS

The Finite Element Analysis (FEA) is arguably the most powerful approach known for the numerical
solutions of problems characterized by partial differential equations (PDEs). We demonstrate the
basic idea by considering the linear Poisson’s equation as a model problem. As shown in Fig. 5,
we start with the strong formulation of the problem and then introduce the weak formulation upon
which the finite element approximation is built, namely, the Galerkin weak formulation. We further
introduce the minimization formulation and the corresponding Galerkin minimization formulation,
which is the cornerstone for the proposed amortized finite element analysis (AmorFEA).

Figure 5: FEA roadmap.

The strong formulation of the Poisson’s equation reads as

−∆u = λ in Ω,

u = 0 on Γ. (15)

For simplicity, we have assumed homogenous Dirichlet boundary conditions. Instead of heuristically
approximating the differential operator like the Finite Difference Method (FDM), FEA employs a
more systematic approach by searching the best possible solution over a constructed finite-dimensional
function space.

First, let us multiply a test function v for both sides of the PDE in Eq. 15, integrate over Ω, and use
integration by parts to obtain the weak formulation: find u ∈ V := {v sufficiently smooth

∣∣ v|Γ = 0}
such that

a(u, v) = l(λ, v), for all v ∈ V, (16)

where

a(u, v) =

∫
Ω

∇u · ∇v dx, l(λ, v) =

∫
Ω

λv dx. (17)

Second, we construct a finite-dimensional subspace Vh ⊂ V and Vh = span{φ1, ..., φn}
is the piece-wise polynomial function space. Note that for any function v ∈ Vh, there
is a unique representation v =

∑n
i=1 viφi. We thus can define an isomorphism Vh ∼= Rn

by v =
∑n
i=1 viφi ↔ v = (v1, ..., vn)>.

The Galerkin weak formulation yields an approximation to Eq. 16 by solving the following system of
linear equations:

Au = f , (18)

where A ∈ Rn×n is the stiffness matrix with Aij = a(φi, φj), u ∈ Rn is the solution vector and
f ∈ Rn is the source vector with fi = l(φi, λ). As a remark, if λ is also represented by piece-wise
polynomial basis functions, we could further write f = Bλ withB ∈ Rn×m and Bij = l(φi, φj).
It is not difficult to verify that A is symmetric and positive definite. By solving Eq. 18, the FEM
gives the best possible solution we can find in Vh.

The minimization formulation states that

min
u∈V
L(u), (19)

where

L(u) =
1

2

∫
Ω

∇u · ∇u dx−
∫

Ω

λu dx. (20)
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By setting the functional derivative to be zero, we recover the weak formulation.

Finally, we introduce the Galerkin minimization formulation, which is the discretized version of the
minimization formulation above. Replace u ∈ V in Eq. 19 with u =

∑n
i=1 uiφi ∈ Vh, we get the

following finite-dimensional optimization problem:

min
u∈Rn

L(u), (21)

where

L(u) =
1

2
u>Au− f>u. (22)

The quadratic programming problem yields the same solution as Eq. 18. AmorFEA is based on
the Galerkin minimization formulation. Note that for a nonlinear problem, we may have a more
complicated nonlinear optimization problem rather than the quadratic programming.

For further details regarding FEA and its variational formulation, we refer readers to Brezzi & Fortin
(2012).

B THE ADJOINT METHOD

Consider the same PDE-CO setup as introduced in Eq. 6. Taking the derivative of the constraint
equations in Eq. 6 with respect to λ yields chains of Jacobian matrices:

dc

dλ
=
∂c

∂u

du

dλ
+
∂c

∂λ
= 0. (23)

Hence,

du

dλ
= −

( ∂c
∂u

)−1 ∂c

∂λ
. (24)

Substitute Eq. 24 to Eq. 8, we obtain

dĴ
dλ

= −

adjoint PDE︷ ︸︸ ︷
∂J
∂u

( ∂c
∂u

)−1 ∂c

∂λ︸ ︷︷ ︸
tangent linear PDE

+
∂J
∂λ

. (25)

Resembling the two different modes of automatic differentiation, we could choose to either solve the
adjoint PDE first (reverse-mode) or the tangent linear PDE first (forward-mode). When the size of
the control vector is larger than that of the objective (e.g., m� 1 in our case), it is more efficient to
solve the adjoint PDE first, giving the name adjoint method (Cao et al., 2003).

C LINEAR EXAMPLES

An important and general class of PDE-CO problems impose a linear relationship between the control
parameter and the state variable. These linear problems provide a useful testbed for examining the
AmorFEA approach. We focus on the model problem in Appendix A, where the source vector λ
is linearly related to the solution vector u. We show that by employing a linear regression model
and performing AmorFEA, we are able to fully recover the underlying physics and achieve an
amortization gap of zero; this result is unsurprising due to the assumption of a linear relationship
between u and λ. Though simple to analyze, the linear case gives intuition about the proposed
scheme. We also compare AmorFEA with supervised learning, where we run FEA simulations to
obtain labeled data and train the linear model in a traditional fashion. FEA simulations are carried
out using an open source Python package FEniCS (Logg et al., 2012). Neural network training is
performed in PyTorch (Paszke et al., 2019). We show that both AmorFEA and supervised training
have the same global optimality condition.

We use AmorFEA to train a single-layer network that predicts u ∈ Rn from λ ∈ Rm, wherem = 811
and n = 721 in this case. We assume the distribution over source terms λ is a uniform distribution
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on the hypercube [−1, 1]m. 10, 000 samples were drawn from this distribution to form the training
data. FEA converts the minimization problem in Eq. 1 into a linear system to solve:

Au = Bλ, (26)

where A ∈ Rn×n and B ∈ Rn×m arise from the assembly procedure of the weak form in FEA
(see details in Appendix A). Let us denote f = Bλ. The linear model we employ has a weight
matrixW ∈ Rn×n and no bias vector so that û = Wf . The potential energy in this case is therefore
equivalent to the least-squares loss for the solution to the linear system, preconditioned by the stiffness
matrixA:

La(W ;f) =
1

2
(Wf)>A(Wf)− f>(Wf). (27)

As an instantiation of Eq. 2 using the Monte Carlo estimate of the expectation, AmorFEA leads to the
following optimization problem:

min
W∈Rn×n

La(W ), (28)

where

La(W ) =
1

K

K∑
k=1

(1

2
(Wfk)>A(Wfk)− f>k (Wfk)

)
.

Next, we study supervised learning in the same environment. We expand the empirical data
set D = {λ(i)} to D′ = {(λ,u)(i)} by running FEA simulations. The supervised loss function
for each data point is defined as

Ls(W ;f) =
1

2
‖û− u‖22 =

1

2
‖Wf −A−1f‖22. (29)

Supervised training solves the following minimization problem:

min
W∈Rn×n

Ls(W ), (30)

where

Ls(W ) =
1

K

K∑
k=1

(1

2
(Wfk−A−1fk)>(Wfk−A−1fk)

)
.

We show next that both La(W ) and Ls(W ) are convex. The following lemma makes the proof more
concise.
Lemma 1. A function f : Rn → R is convex if and only if the function g : R→ R given
by g(t) = f(x+ ty) is convex (as a univariate function) for all x in domain of f and all y ∈ Rn.
(The domain of g here is all t for which x+ ty is in the domain of f .)

We first show for AmorFEA training:
Proposition 1. The empirical loss function La(W ) of AmorFEA in the linear model is convex.

Proof. We use Lemma 1 to show the function La : Rn×n → R is convex. For any fixedW1 ∈ Rn×n
andW2 ∈ Rn×n, let

g(t) =La(W1 + tW2)

=
1

K

K∑
k=1

(1

2

(
(W1 + tW2)fk

)>
A
(
(W1 + tW2)fk

)
− f>k

(
(W1 + tW2)fk

))
=
( 1

2K

K∑
k=1

f>k W
>
2 AW2fk

)
t2 +

( 1

2K

K∑
k=1

(
f>k W

>
2 AW1fk + f>k W

>
1 AW2fk − 2f>k W2fk

))
t

−
( 1

2K

K∑
k=1

f>k W1fk
))

(31)
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SinceA is symmetric and positive definite, the coefficient of the quadratic term is always positive:

1

2K

K∑
k=1

f>k W
>
2 AW2fk =

1

2K

K∑
k=1

‖A 1
2W2fk‖22 ≥ 0. (32)

This shows that g(t) is always convex.

We then show for supervising training:

Proposition 2. The empirical loss function Ls(W ) of supervised learning in the linear model is
convex.

Proof. We use Lemma 1 to show the function Ls : Rn×n → R is convex. For any fixedW1 ∈ Rn×n
andW2 ∈ Rn×n, let

g(t) =Ls(W1 + tW2)

=
1

K

K∑
k=1

(1

2

(
(W1 + tW2)fk −A−1fk

)>(
(W1 + tW2)fk −A−1fk

))
=
( 1

2K

K∑
k=1

f>k W
>
2 W2fk

)
t2 −

( 1

2K

K∑
k=1

(
f>k (W1 −A−1)>W2fk + f>k W

>
2 (W1 −A−1)fk

))
t

+
( 1

2K

K∑
k=1

f>k (W1 −A−1)>(W1 −A−1)fk
))

(33)

The coefficient of the quadratic term is always positive:

1

2K

K∑
k=1

f>k W
>
2 W2fk =

1

2K

K∑
k=1

‖W2fk‖22 ≥ 0. (34)

This shows that g(t) is always convex.

We also see that the first order condition (FOC) for AmorFEA gives

∂La
∂W

= (AW − I)
( 1

K

K∑
k=1

fkf
>
k

)
= 0. (35)

Similarly, the FOC for supervised training gives

∂Ls
∂W

= (W −A−1)
( 1

K

K∑
k=1

fkf
>
k

)
= 0. (36)

By Proposition 1 and Proposition 2 along with Eq. 35 and Eq. 36, we conclude that both AmorFEA
and supervised learning achieve the global minimum with same condition W = A−1. The only
difference between these problems is the “physical” preconditioning from A. As a supporting
experiment, we show in Fig. 6 that both AmorFEA and supervised training have similar capabilities
to recover the underlying model. Since the fully trained linear model is able to produce û = u, we
have a zero amortization gap as computed by Eq. 4.

D NONLINEAR EXAMPLES

We examine two more realistic nonlinear settings and perform PDE-CO in this section. Here the
solution vector u and the control vector λ have a nonlinear relationship, which naturally motivates
the use a neural network as the predictive mapping.

9



Under review as a workshop paper at ICLR 2020

Training Epoch
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r

Figure 6: Normalized error versus training epochs. We define the normalized error ε = ‖W−A−1‖∞
‖A−1‖∞ .

Source Field Finding The potential energy is

L(u, λ) =
1

2

∫
Ω

‖∇u‖22dx+
1

2

∫
Ω

(10u2 + 5u4)dx−
∫

Ω

λudx. (37)

The governing PDE (Eq. 12) can be derived by minimizing Eq. 37.

We set λ(x) = 100exp(
‖x−(0.1,0.1)‖22

0.02 ), solve the governing PDE by FEA and set the solution to be
the desired field ud(x) for Eq. 11.

We use AmorFEA to train a neural network that predicts u ∈ Rn from λ ∈ Rm, where m = n = 759
in this case. The assumed distribution over λ is constructed from a zero-mean Gaussian process given
by

f(x) ∼ GP
(
µ(·), k(·, ·)

)
µ(x) = 0

k(x(i), x(j)) = σ2exp
(
− ‖x

(i) − x(j)‖22
l2

)
, (38)

where we set the output variance σ = 102 and the lengthscale l = 0.1. To construct the training and
testing data from this distribution, 30, 000 source terms were generated. Compared with supervised
data generated by expensive FEA simulations, our data are almost free to obtain.

For the neural network model, we use a MLP with “scaled exponential linear units” (SELUs) for the
activation functions (Klambauer et al., 2017). We perform a 90/10 train-test split for our data. For
the 10% test data, we run FEA simulation so that we can report test error by comparing the AmorFEA
solutions with the FEA solutions. Since our data represent functions, it is more meaningful to define
an error quantification metric for functions than to use simple mean squared error (MSE). We define
the relative error ε using norms on the L2(Ω) space:

ε = Ep(λ)

[‖u? − ua‖L2

‖u?‖L2

]
, (39)

where u? is the FEA solution and ua is the AmorFEA solution. With FEA simulations available in
the test set, we can also compute the amortization gap introduced in Eq. 4. Since analytical solutions
are generally not possible, we cannot explicitly evaluate the approximation gap or the inference gap.
However, the approximation gap is a well-studied subject in the literature on finite element analysis
(Hughes, 2012).

We run experiments using MLPs with different layers and report the amortization gap and relative
error in Table 2. The layers in all MLPs have equal widths. As shown in the table, a single-layer
network cannot perfectly solve this nonlinear problem, in contrast to the linear problem in Section C.
We observe that both the amortization gap and the relative error decrease with deeper neural networks.
Using bigger neural networks may give us smaller amortization gaps, but there is a trade-off between
training time and performance. We show next that a MLP with 2 hidden layers provides adequate
accuracy for the PDE-CO problem while being trained cheaply.

10



Under review as a workshop paper at ICLR 2020

MLP-0 MLP-1 MLP-2
∆am 1.58× 10−1 1.47× 10−2 4.62× 10−3

ε 4.60× 10−2 9.44× 10−3 7.50× 10−3

Table 2: Test performance. The amortization gap ∆am is computed according Eq. 4. The relative
error ε is computed as Eq. 39. The number suffix to “MLP” refers to the number of hidden layers.

Inverse Kinematics of a Soft Robot We model the soft robot with a neo-Hookean hyperelastic
solid (Ogden, 1997). The total potential energy is

L(u, λ) =

∫
Ω

Wdx, (40)

where the energy density W is defined for material bulk and shear moduli µ and κ as:

W =
µ

2

(
(detF )−2/3tr(FFT )− 3

)
+
κ

2
(detF − 1)2, (41)

and F is the deformation gradient,

F = ∇u+ I. (42)

Since our problem is in 2d, we have assumed plain strain condition. The governing PDE (Eq. 14) can
be derived by minimization Eq. 40. The stress tensor P in Eq. 14 is known as the first Piola-Kirchoff
stress and can be obtained by

P =
∂W

∂F
. (43)

The boundary constraint r(u, λ) in Eq. 14 is expressed over the bottom side boundary Γb, top side
boundary Γt and the side boundaries Γs respectively as

u = 0 on Γb, (44)
P ·N = 0 on Γt, (45)

Λ = h(λ) on Γs, (46)

where N is the normal vector to the boundary, Λ is the stretch ratio (see definition in (Holzapfel,
2000)) and h(λ) = 1

1+e−λ
+ 1

2 forces the range of Λ to (0.5, 1.5) in order to avoid extreme and
unrealistic deformations.

We use AmorFEA to train a neural network to predict u ∈ Rn from λ ∈ Rm, where m = 40
and n = 206 in this case. The assumed distribution over actuation fields is constructed from a
uniform distribution over the hypercube [−a, a]m with a > 0. 30, 000 training data were generated
from this distribution. The potential energy L(u, λ) in this case is sensitive to the displacement u.
For a displacement field that causes any overlap of the deformed robot, the energy will be infinite.
We take a warm-start strategy to train the network by varying a from 0.1, 0.2, 0.4 until 0.8, and train
the network successively. Training took 5− 10 minutes.

We additionally demonstrate that AmorFEA follows a similar optimization path to the adjoint method,
by showing the objective function versus the number of gradient descent steps in Fig. 7 for each of
the four cases. Wall time measurements in [s] of these four cases are (119, 218, 133, 113) for the
adjoint method and (0.215, 0.210, 0.226, 0.249) for AmorFEA. For completeness, we also explored
gradient-free techniques such as the Nelder–Mead method (Lagarias et al., 1998), but they typically
converged to an unsatisfactory local minimum.
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Figure 7: Objective function versus gradient descent steps for both AmorFEA and the adjoint method.
The four cases correspond to the same scenarios in Fig. 4.
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