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Abstract
We investigate the trade-off between the repre-
sentation power of graph generative models and
model overlap, i.e., the degree to which the model
generates diverse outputs versus regurgitating its
training data. In particular, we delineate a nested
hierarchy of graph generative models categorized
into three levels of complexity: edge independent,
node independent, and arbitrarily dependent mod-
els. This hierarchy encapsulates a wide range of
prevalent methods. We derive theoretical bounds
on the number of triangles and other short-length
cycles producible by each level of the hierarchy,
finding that more complex dependency structure
allows an improved trade-off between represen-
tation power and overlap. We provide instances
demonstrating the asymptotic optimality of our
bounds. Furthermore, we introduce new gener-
ative models for each of the three hierarchical
levels, leveraging dense subgraph discovery. Our
evaluation, conducted on real-world datasets, fo-
cuses on assessing the output quality and overlap
of our proposed models in comparison to other
popular models. Our results indicate that our
simple, interpretable models provide competitive
baselines to popular generative models. Through
this investigation, we offer a structured and robust
evaluation scheme, thereby facilitating the devel-
opment of models capable of generating accurate
and edge-diverse graphs.

1. Introduction
Mathematicians and physicists have long studied random
discrete structures, such as sets, permutations (Kolchin &
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Chistyakov, 1975), and graphs (Erdös & Rényi, 1960). In
recent decades, random graphs (also known as graph gen-
erative models) have become increasingly important for
modeling and understanding complex networks across a
wide range of domains (Easley & Kleinberg, 2010; Frieze
& Karoński, 2016; Janson et al., 2011). Random graph
models provide a way to capture the uncertainty that is in-
herent in many real-world networks. For example, in the
social sciences, random graphs have been used to study
the spread of information and disease (Keliger et al., 2023)
and the evolution of social networks (Newman et al., 2002).
In economics, random graphs have been used to study the
behavior of financial markets and the spread of economic
shocks (Jackson et al., 2008). In physics, random graphs
have been used to study the behavior of disordered materials,
the spread of traffic jams, and the emergence of synchroniza-
tion in complex systems (Dorogovtsev & Mendes, 2003).
In drug discovery, random graphs have been used to study
the interaction between drugs and proteins, the design of
new drugs, and the prediction of drug toxicity (Pan et al.,
2022). In bioinformatics, random graphs have been used
to study the structure of DNA and proteins and brain net-
works (Simpson et al., 2011).

Deep learning (LeCun et al., 2015) has led to the develop-
ment of new methods for fitting random graph models such
as graph autoencoders (Kipf & Welling, 2016; Simonovsky
& Komodakis, 2018), NetGAN (Bojchevski et al., 2018),
GraphGAN (Wang et al., 2018), GraphRNN (You et al.,
2018), among many others. Such methods are typically
evaluated based on two key dimensions: efficiency and
output quality. Output quality measures how closely the
generated graphs resemble real-world graphs that they aim
to model. A common way to measure output quality is to
measure a model’s tendency to produce graphs that have
similar statistical properties to a target input graph or set
of graphs. Common examples of statistics that are consid-
ered include the average degree, maximum degree, degree
assortativity, motif counts, and shortest-path measures. In
terms of motif counts triangles play a major role. This is
due to the fact that triangle density is a hallmark property of
several types of networks, especially social networks, and
plays an important role in network analysis, e.g., Watts &
Strogatz (1998); Yin et al. (2017); Tsourakakis et al. (2017).

Despite the development of the aforementioned sophisti-
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Figure 1. Minimum overlap levels necessary to match the expected
triangle counts of certain real-world networks per hierarchy level.

cated algorithms for fitting graph generative models, Chan-
puriya et al. (2021) highlight significant limitations of any
method that fits an edge independent random graph model,
where each edge is added independently with some (non-
uniform) probability. Informally (see Section 2 for details),
any edge independent model is limited with respect to how
many triangles it can generate, unless it memorizes a single
target network. The study’s findings have implications for
the use of neural-network-based graph generative models,
such as NetGAN (Bojchevski et al., 2018; Rendsburg et al.,
2020), Graphite (Grover et al., 2019), and MolGAN (De Cao
& Kipf, 2018), all of which fit edge independent models.

The results of Chanpuriya et al. (2021) introduce the notion
of overlap, to quantify the diversity of the graphs generated
by a given model. Intuitively, useful models that produce di-
verse output graphs have bounded overlap. Further, without
the requirement of bounded overlap, it is trivial to generate
graphs that have the same statistical properties as a given in-
put graph, by simply memorizing that graph and outputting
it with probability 1. Formally, Chanpuriya et al. (2021)
show a trade-off between the number of triangles that an
edge independent model can generate and the model over-
lap.

The notion of overlap will play a central role in our work.
In particular, we introduce the following definition, which
generalizes the concept of overlap beyond edge independent
models. For simplicity, we focus on models that generate
unweighted and undirected graphs on a fixed set of n nodes.

Definition 1 (Overlap). Suppose A is a distribution over
binary adjacency matrices of undirected unweighted graphs
on n nodes without self-loops. Let the ‘volume’ of A be

the expected number of edges in a sample: Vol(A) :=

EA∼A

[∑
i<j Aij

]
. The overlap of A is the expected num-

ber of shared edges between two independent samples, nor-
malized by volume:

Ov(A) :=
EA,A′∼A

[∑
i<j Aij ·A′

ij

]
Vol(A)

.

Contributions. Our key contributions are as follows:

• We present a structured and nested hierarchy of graph
generative models organized into three levels of complex-
ity: edge independent, node independent, and arbitrarily
dependent models. These levels encompass a wide array
of today’s prevalent methods as depicted in Table 1.

• We establish theoretical limits on the number of triangles
and other short-length cycles that can be generated by
each level of our hierarchy, based on the model overlap
– see Table 1 for a summary. We also present instances
demonstrating that our bounds are (asymptotically) op-
timal. Our results generalize those of Chanpuriya et al.
(2021), which only considered edge independent models:
we show that models at higher levels of our hierarchy
can achieve higher triangle density given a fixed level of
overlap. This finding matches empirical observations that
such models can replicate triangle counts of a network
with a much lower edge overlap – see Figure 1.

• We introduce new generative models across three com-
plexity levels, fundamentally based on dense subgraph
discovery (Gionis & Tsourakakis, 2015) and maximal
clique detection (Eppstein et al., 2010). This approach
leverages the insight that dense sets indicate higher-order
dependencies, simplifying the model design. We evaluate
our models against other well-known models using real-
world datasets, concentrating on the quality of output and
overlap. Our findings reveal that these straightforward
models perform comparably to more complex deep learn-
ing models in matching graph statistics across different
overlap levels, despite the universal challenge across all
models of achieving accuracy at lower overlaps.

2. Related Work
Random graph theory has a long history dating back to the
seminal works of Gilbert (1959) and Erdös & Rényi (1960).
The G(n, p) Erdös-Rényi model is a model of a random
graph in which each possible edge on n labeled nodes is
present with a given probability p. For convenience, we
set the vertex set V = [n] = {1, . . . , n}. As in the G(n, p)

model, we focus in this work on the set of all 2
(
n
2

)
possible

labeled graphs. In recent decades, random graphs have
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Model Upper Bound on ∆/n3 Examples

Edge Independent Ov(A)3 Erdős–Rényi, SBM, NetGAN
Node Independent Ov(A)3/2 Variational Graph Auto-Encoder (VGAE)
Arbitrarily Dependent Ov(A) GraphVAE, GraphVAE-MM, ERGM

Table 1. Preview of results. The level of edge dependency in graph generative models inherently limits the range of graph statistics, such
as triangle counts, that they can produce. Note that Ov(A) ∈ [0, 1], so a higher power on Ov(A) means a tighter bound on the number of
triangles.

become a crucial area of study. A wealth of random graph
models that mimic properties of real world networks have
been developed, including the Barabási-Albert-Bollobas-
Riordan model (Albert & Barabási, 2002; Bollobás et al.,
2001), the Watts-Strogatz model (Watts & Strogatz, 1998),
Kronecker graphs (Leskovec et al., 2010a), and the Chung-
Lu model (Chung et al., 2006).

An important class of random graph models consider nodes
with latent embeddings in Rd and set the probability of an
edge between each pair u, v to be some function of the in-
ner product of their embeddings (Young & Scheinerman,
2007; Athreya et al., 2017). Significant work has studied
neural-network based embedding methods such as Deep-
Walk (Perozzi et al., 2014), node2vec (Grover & Leskovec,
2016), VERSE (Tsitsulin et al., 2018), and NetMF (Qiu
et al., 2018). Seshadhri et al. (2020) proved that even when
the probability function is non-linear, certain types of mod-
els based on low-dimensional embeddings cannot simulta-
neously encode edge sparsity and high triangle density, a
hallmark property of real-world networks (Easley & Klein-
berg, 2010; Tsourakakis, 2008).

In recent years, there has been a growing interest in
deep graph generation methods (Zhu et al., 2022), such
as graph autoencoders (Kipf & Welling, 2016), Graph-
GAN (Wang et al., 2018), GraphRNNs (You et al., 2018),
MolGAN (De Cao & Kipf, 2018), GraphVAE (Simonovsky
& Komodakis, 2018), NetGAN (Bojchevski et al., 2018),
and CELL (Rendsburg et al., 2020).

As discussed in Section 1, Chanpuriya et al. (2021) con-
sidered the class of edge independent models, namely all
generative models that toss independent coins for each pos-
sible edge. This class of models is more widely known in
the literature as inhomogeneous random graphs (Bollobás
et al., 2007; Bollobás & Riordan, 2011), and it includes
both classic models such as the classic Erdős-Rényi G(n, p)
model (Erdös & Rényi, 1960; Frieze & Karoński, 2016;
Gilbert, 1959) and modern methods such as NetGAN (Bo-
jchevski et al., 2018). These models can be encoded by a
symmetric probability matrix P ∈ [0, 1]n×n, where Pij is
the probability that nodes i, j are connected. Whereas prior
work has studied the spectral properties of these models (Le
et al., 2017; Benaych-Georges et al., 2019), Chanpuriya

et al. study them from a new lens of overlap, which they
define as the expected fraction of common edges between
two sampled graphs from P . Their key result is that any
edge independent model with bounded overlap cannot have
too many triangles in expectation. However, many gener-
ative models are not edge independent and therefore their
results do not provide any insights into how many triangles
they can generate for a bounded overlap. For example, ex-
ponential random graph models (ERGMs) (Frank & Strauss,
1986) go beyond edge independent models as they model
the probability of observing a specific network as a func-
tion of the network’s features, such as the number of edges,
triangles, and other network motifs (e.g., stars and cycles).
This allows for modeling higher order dependencies at the
cost of learning efficiency (Chatterjee & Diaconis, 2013).

3. Hierarchy of Graph Generative Models
Our primary theoretical contribution introduces a hierarchi-
cal framework for categorizing graph generative models into
three distinct, nested layers: edge independent, node inde-
pendent, and arbitrarily dependent. Within each layer of the
hierarchy, we establish upper limits for the triangle count
relative to overlap, with the detailed proofs presented in
Section 4, and we extend these findings to offer generalized
limits for k-cycles in Appendix A.2. Additionally, for every
layer, we identify a specific family of graphs that meets
these maximum triangle counts, demonstrating the asymp-
totic precision of our bounds. Furthermore, we explore
previous models that align with each hierarchical level.

3.1. Edge Independent (EI) Model

We begin with the most constrained level of our hierarchy,
edge independent models, more widely known as inhomoge-
neous Erdős-Rényi model This class includes many impor-
tant models, such as the classical Erdős-Rényi and stochas-
tic block models (SBM) (Abbe, 2017), along with modern
deep-learning based models such as NetGAN (Bojchevski
et al., 2018; Rendsburg et al., 2020), Graphite (Grover et al.,
2019), and MolGAN (De Cao & Kipf, 2018) as they ulti-
mately output a probability matrix based on which edges
are sampled independently.
Definition 2 (Edge Independent Graph Model). An edge
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independent (EI) graph generative model is a distribution
A over symmetric adjacency matrices A ∈ {0, 1}n×n, such
that, for some symmetric P ∈ [0, 1]n×n, Aij = Aji = 1
with probability Pij for all i, j ∈ [n], otherwise Aij =
Aji = 0. Furthermore, all entries (i.e., in the upper diago-
nal) of A are mutually independent.

Any EI graph generative model satisfies the following theo-
rem:

Theorem 1. Any edge independent graph model A with
overlap Ov(A) has at most 1

6n
3 · Ov(A)3 triangles in ex-

pectation. That is, for A drawn from A, letting ∆(A) be
the number of triangles in A,

E [∆(A)] ≤ n3

6
· Ov(A)3. (1)

Chanpuriya et al. (2021) give a spectral proof of Theorem 1.
We provide an alternative proof based on an elegant general-
ization of Shearer’s Entropy Lemma (Alon & Spencer, 2016;
Chung et al., 1986) due to Friedgut (2004). Furthermore,
we show that the upper bound is tight. Consider the G(n, p)
model. The expected volume is Vol(A) = p ·

(
n
2

)
, whereas

the expected number of shared edges between two samples
is p2 ·

(
n
2

)
, yielding an overlap of p (see Definition 1). Fur-

thermore, since any triangle is materialized with probability
p3, by the linearity of expectation there are O(n3 · p3) trian-
gles, which shows that inequality 1 is tight up to constant
factors.

3.2. Arbitrarily Dependent (AD) Model

We now move to the other end of the edge dependency
spectrum, namely to models that allow for arbitrary edge
dependencies. A classic arbitrarily dependent model is the
ERGM (Frank & Strauss, 1986; Chatterjee & Diaconis,
2013) as it can model any higher order dependencies. Simi-
larly, auto-regressive approaches, including recent diffusion
models like DiGress (Vignac et al., 2022) and flow-based
models like GraphAF (Shi et al., 2020), can also be arbitrar-
ily dependent in our hierarchy.

Definition 3 (Arbitrarily Dependent Graph Model). An ar-
bitrarily dependent graph generative model allows for any
possible distribution A over symmetric adjacency matrices
A ∈ {0, 1}n×n.

Allowing for arbitrary edge dependencies enables us to have
models with significantly more triangles as a function of the
overlap.

Theorem 2. For any arbitrarily dependent model A with
overlap Ov(A), the expected number of triangles is at most
1
2n

3 · Ov(A).

As in the case of EI models, there is a simple instance that
shows that the bound is tight. Specifically, consider a model

that outputs a complete graph with probability p and an
empty graph otherwise. Each edge occurs with probability
p, so by the same computation as for EI models, the overlap
is p. As for the triangle count, there are no triangles when
the graph is empty, but when it is complete, there are all

(
n
3

)
possible triangles. Thus, the expected number of triangles is
O(n3 · p) = O(n3 · Ov(A)), again showing that our bound
is tight up to constant factors

At a high level, arbitrarily dependent graph generative mod-
els often arise when methods sample a graph-level embed-
ding, then produce a graph sample from this embedding,
allowing for complex dependencies between edges in the
sample. A specific example is the graph variational auto-
encoder (GraphVAE) (Simonovsky & Komodakis, 2018),
in which decoding involves sampling a single graph-level
embedding xG ∈ Rk, and the presence of each edge is an in-
dependent Bernoulli random variable with a parameter that
is some function fij of x: Aij = Bernoulli(fij(xG)). In
particular, these functions are encoded by a fully-connected
neural network. Assuming these fij can closely approx-
imate the sign function, with a 1-dimensional graph em-
bedding (k = 1), this model can in fact match the triangle
bound of Theorem 2 by simulating the tight instance de-
scribed above (outputting a complete graph with probability
p and the empty graph otherwise).

3.3. Node Independent (NI) Model

We next focus on the middle level of our hierarchy, between
the two extremes of EI and AD generative models. This
level is built upon the common concept of node embeddings
that are stochastic and generated independently for each
node.

Definition 4 (Node Independent Graph Model). A node
independent (NI) graph generative model is a distributionA
over symmetric adjacency matrices A ∈ {0, 1}n×n, where,
for some embedding space E , some mutually independent
random variables x1, . . . ,xn ∈ E , and some symmetric
function e : E × E → [0, 1], the entries of A are Bernoulli
random variables Aij = Bernoulli (e(xi,xj)) that are
mutually independent conditioned on x1, . . . ,xn.

Observe that NI models encompass the important special
case of random graph models defined by graphons (Dia-
conis & Janson, 2007; Orbanz & Roy, 2014; Klopp et al.,
2017). Such models are essentially a special case of NI
in which the embedding space E is the interval [0, 1], and
each node’s embedding is an independent uniform random
variable drawn on this interval. A famous result for these
graphon models (also known as vertex-exchangeable ran-
dom graph models) is that, since all of the nodes’ embedding
distributions are identical, they are unable to produce sparse
but non-empty graphs. By contrast, in our definition, nodes
can have different embedding distributions, and hence this
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limitation does not apply.

Node independent graph models most commonly arise
when methods independently sample n node-level embed-
dings, then determine the presence of edges between two
nodes based on some compatibility function of their em-
beddings. One notable example is the variational graph
auto-encoder (VGAE) model (Kipf & Welling, 2016). In
the decoding step of this model, a Gaussian-distributed
node embedding is sampled independently for each node,
and the presence of each possible edge is an independent
Bernoulli random variable with a parameter that varies with
the dot product of the corresponding embeddings as follows:
Aij = Bernoulli(σ(xi · xj)). Thus, the VGAE model
seamlessly fits into our node independent category.

Interestingly, the triangle bound for this class of generative
models lies in the middle of the EI and AD triangle bounds.

Theorem 3. Any node independent graph model A with
overlap Ov(A) has at most 1

6n
3 · Ov(A)3/2 triangles in

expectation.

The proof of Theorem 3 requires expressing the probability
of edges and triangles appearing as integrals in the space of
node embeddings. Then we apply a continuous version of
Shearer’s inequality. We show that the bound of Theorem 3
is tight. Generate a random graph by initially starting with
an empty graph comprising n nodes. Subsequently, each
node independently becomes “active” with a probability of√
p, and any edges connecting active nodes are subsequently

added into the graph. Note that for a given edge to be added,
both of its endpoint nodes must be active, which occurs with
probability p; this again yields an overlap of p as with the
prior tight examples. For a triangle to be added, all three
of its endpoint nodes must be active, which occurs with
probability p

3/2. Hence the expected number of triangles is
O(n3 · p3/2) = O(n3 · Ov(A)3/2).

The random graph can be represented using embeddings
based on the provided definition. Consider a 1-dimensional
embedding x ∈ Rn×1. Let xi = 1 with probability

√
p

and otherwise let xi = 0, independently for each i ∈ [n].
These coin tosses are made independently for each i ∈ [n].
To capture the edges between nodes, we define e(xi,xj)
as 1 when both arguments are 1, and 0 otherwise. This
embedding-based representation precisely implements the
described random graph.

4. Proof of Main Results
In this section, we will prove the triangle count bounds
stated in Section 3. We begin by introducing certain con-
cepts that will be useful throughout our proofs.

4.1. Theoretical Preliminaries

Inner product space formulation of overlap. We first
state equivalent definitions for volume and overlap that will
be useful for proofs. We first make the following observa-
tion:

Observation 1 (Inner Product Space of Distributions over
Vectors). Suppose U ,V are distributions over real-valued
d-dimensional vectors. Then the following operation defines
an inner product:

⟨U ,V⟩ := E
u∼U,v∼V

[u · v],

where u · v is the standard vector dot product.

Throughout, we deal with adjacency matrices of undirected
graphs on n nodes without self-loops, and distributions over
such matrices. Dot products and inner products of these
objects are taken over

(
n
2

)
-dimensional vectorizations of

entries below the diagonal. Let F denote the distribution
that returns the adjacency matrix F of a graph which is fully
connected (i.e., has all possible edges) with probability 1.
Then Vol(A) = ⟨A,F⟩ and Ov(A) = ⟨A,A⟩

Vol(A) .

These expressions allow us to derive the following upper
bound on volume in terms of overlap, which applies to any
graph generative model:

Lemma 1. For a graph generative model A with overlap
Ov(A), the expected number of edges Vol(A) is at most(
n
2

)
· Ov(A).

Proof. By the definition of overlap and Cauchy-Schwarz,

Ov(A) = ⟨A,A⟩
⟨A,F⟩

≥ ⟨A,F⟩2

⟨A,F⟩ · ⟨F ,F⟩
=
⟨A,F⟩
⟨F ,F⟩

=
Vol(A)
⟨F ,F⟩

.

Since ⟨F ,F⟩ = ⟨F ,F ⟩ =
(
n
2

)
, rearranging yields the

desired inequality, Vol(A) ≤
(
n
2

)
· Ov(A).

4.2. Proofs of Triangle Count Bounds

We now prove the upper bounds on expected triangle count
for edge independent, node independent, and arbitrarily
dependent models appearing in Theorems 1, 2, and 3.

Edge independent. A proof for Theorem 1 based on ex-
pressing triangle count in terms of eigenvalues of P follows
directly from Lemma 1 and Chanpuriya et al. (2021), but
we present a different proof based on the following variant
of Cauchy-Schwarz from Friedgut (2004):∑

ijk
aijbjkcki ≤

√∑
ij
a2ij
∑

ij
b2ij
∑

ij
c2ij . (2)

Proof of Theorem 1. Let P be the edge probability matrix
of the edge independent model A. Then, by the above
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inequality, for a sample A from A,

E[∆(A)] = 1
6

∑
ijk

PijPjkPki ≤ 1
6

√(∑
ij
P 2

ij

)3
= 1

6

(
2
∑

i<j
P 2

ij

)3/2

= 1
6 (2 · Ov(A)Vol(A))3/2

=
√
2
3 · Ov(A)3/2Vol(A)3/2.

Applying Lemma 1 yields

E[∆(A)] ≤
√
2
3

(
n
2

)3/2 · Ov(A)3 ≤ 1
6n

3 · Ov(A)3.

Arbitrarily dependent. We now prove the triangle bound
for arbitrary graph generative models, which follows from
Lemma 1. Note that, given a random adjacency matrix
A ∈ {0, 1}n×n, the product AijAjkAik is an indicator
random variable for the existence of a triangle between
nodes i, j, k ∈ [n].

Proof of Theorem 2. Let A be a sample from A. From
Lemma 1, we have∑

i<j
E[Aij ] = Vol(A) ≤

(
n
2

)
· Ov(A).

So, for the expected number of triangles in a sample, we
have:

E[∆(A)] = E
[∑

i<j<k
AijAjkAik

]
=
∑

i<j<k
E [AijAjkAik]

≤
∑

i<j<k
E[Aij ] ≤ n ·

∑
i<j

E[Aij ]

≤ n ·
(
n
2

)
· Ov(A) ≤ 1

2n
3 · Ov(A).

Node independent. Proving Theorem 3 is more involved
than the prior proofs, and requires first establishing the
following lemma:

Lemma 2. For a sample A from any node independent
model on n nodes and any three nodes i, j, k ∈ [n], the
probability that i, j, k form a triangle is upper-bounded as
follows:

E[AijAjkAik] ≤
√

E[Aij ]E[Ajk]E[Aik].

We prove Lemma 2 in Appendix A.1 by expressing the
probability of edges and triangles appearing as integrals
in the space of node embeddings, after which we can ap-
ply a theorem of Friedgut (2004) (also proved by Finner
(1992)), which can be seen as a continuous version of In-
equality 2. With Lemma 2 in place, it is straightforward to
prove Theorem 3:

Proof of Theorem 3. Let A be a sample from a node in-
dependent model. For the expected number of triangles
E[∆(A)] in the sample, we have that

E[∆(A)] =
∑

i<j<k
E[AijAikAjk]

≤
∑

i<j<k

√
E[Aij ] · E[Aik] · E[Ajk]

≤
√(

n
3

)
·
∑

i<j<k
E[Aij ] · E[Aik] · E[Ajk]

≤
√(

n
3

)
· 16n3 · Ov(A)3 ≤ 1

6n
3 · Ov(A)3/2,

where second line follows from Cauchy-Schwarz and the
third from Theorem 1 for EI models.

Note that we favor simplicity and interpretability of the final
result over tightness. In particular, as our proofs reveal, the
bound for EI models, and hence the one for NI models, is
tighter when expressed in terms of both overlap and volume.

5. Generative Models Leveraging
Maximal-Clique Detection

We shift our focus towards empirically evaluating the real-
world trade-off between overlap and performance across
several specific models on real-world networks. In this en-
deavor, we concentrate on graph generative models that,
given an input adjacency matrix A ∈ {0, 1}n×n, yield a dis-
tributionA over adjacency matrices in {0, 1}n×n. Typically,
a trade-off is observed between two desired characteristics
in these distributions:

1. Samples from A should closely align with various graph
statistics of the input A, such as the degree distribution
and triangle count.

2. A should not exhibit very high overlap, to deter the model
from merely memorizing and reproducing A.

Due to the inherent conflict between these two objectives for
A, it is advantageous for the model to allow for easy tuning
of overlap. Note that this is a different goal from simply
seeking low overlap. While our theoretical results focus on
limitations of graph generative models as they tend away
from very high overlap (which would correspond to memo-
rization and regurgitation), it is not necessarily true that a
very low overlap is ideal. We expect the acceptable range
of overlap to be application-dependent, so it is desirable to
be able to easily adjust overlap and to achieve reasonable
fidelity in matching graph statistics across a wide range of
overlap values.

Recent graph generative models, especially those that in-
corporate edge dependency, often involve complex deep
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architectures with a large number of parameters that are
trained with gradient descent. The abundance of parameters
implies that these models may have the capacity to simply
memorize the input graph. At the same time, the complexity
of the approaches obscures the roles of each component
in yielding performance (in particular, the role of edge de-
pendency is unclear), and specifying a desired overlap with
the input graph is generally not possible, short of heuristics
like early stopping. Altogether, the preceding discussion
inspires the following research questions:

1. Do the relaxed theoretical constraints on triangle counts
and other graph statistics, as applied in graph generative
models with edge dependency, manifest in the modeling
of real-world networks?

2. Can straightforward baselines be employed to achieve
edge dependency while also allowing for easy adjustment
of overlap?

3. Can these simple models attain graph statistics compara-
ble to deep models across different degrees of overlap?

As a glimpse into our findings, we ascertain overall affirma-
tive responses to all three of these inquiries.

5.1. Proposed Models

We introduce three graph generative models, one for each
of the categories of our framework: EI, NI, and AD. These
baseline models mainly exploit the dense subgraph structure
of the input graph, specifically the set of maximal cliques
(MCs) (Eppstein et al., 2010). We refer to our models as
MCEI, MCNI, and MCAD, respectively. The high-level
concept of these models is to start with an empty graph and
plant edges from each of the target (input) graph Gt’s max
cliques with some fixed probability hyperparameter p. How
the edges are planted depends on the desired type of edge
dependency and reflects the characteristic ‘tight’ examples
for each category of the hierarchy from Section 3 – see
Algorithm 1 for details.

Observe that, the lower p, the fewer the expected edges
in the final sampled graph Gp. To compensate for this
‘residual’ with respect to the target graph Gt, we also sample
a second graph Gr and return the union of Gp and Gr.
Specifically, we produce Gr by sampling from a simple
edge independent model that is configured so that the node
degrees of the union of Gp and Gr match those of Gt in
expectation. We defer details of this auxiliary EI model to
Section B. The end result is that, in each of our models,
ranging the hyperparameter p from 0 to 1 ranges the overlap
of the resulting distribution from very low to 1. In particular,
the distribution A goes from being nearly agnostic to the
input A (depending only on its degree sequence), to exactly
returning A with probability 1.

We note that these models are not intended to be suitable for
all kinds of graphs. The focus on max cliques is meant to
cover the common case of graphs with strong community
structure and a tendency towards triadic closure. Given
this focus on local structure, we do not expect the models
to be strong at capturing global connectivity patterns. We
introduce these models not to assert that they should be
used for real-world applications, but rather to show two
things: first, that there is room for improvement in modern
generative models in the low-to-mid overlap regime; and
second, that versions of our otherwise similar models are
stronger at capturing local structure when granted stronger
edge dependency, which aligns with our theoretical results.

Algorithm 1 Sampling Gp based on max cliques
Input : target graph Gt, planting probability p,

model type (MCEI, MCAD, or MCNI)
Output :sampled graph Gp

initialize the sampled graph Gp to be empty
foreach max clique M ∈ target graph Gt do

if model type is MCEI then
foreach edge e ∈M do

with probability p, add e to Gp

else if model type is MCAD then
with probability p, add all edges in M to Gp

else if model type is MCNI then
foreach node v ∈M do

with probability
√
p, set v to be ‘active’ in M

add edges between all pairs of nodes active in M to Gp

return Gp

5.2. Experimental Setup and Results

Setup. We perform an evaluation of different graph gener-
ative models under the perspective of the overlap criterion.
Specifically, we see how these models match different statis-
tics of an input graph as overlap is varied. We choose 8
statistics that capture both the connectivity of a graph, as
well local patterns within it. We evaluate six models in total:
the three models we introduce in Section 5.1, as well as
three deep learning-based models, CELL (Rendsburg et al.,
2020), VGAE (Kipf & Welling, 2016), and GraphVAE (Si-
monovsky & Komodakis, 2018), which are EI, NI, and AD,
respectively. For our methods, we vary overlap by simply
varying the p hyperparameter; for the other methods, we
use early stopping or vary the representation dimensionality.
Further details of the experimental setup are included in
Appendix C. We evaluate on 8 real-world networks and 1
synthetic network. In Figure 2, we include results for LES
MISERABLES (Knuth, 1993), a co-appearance network of
characters in the eponymous novel; the remaining results
are deferred to Appendix D.
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is the ith connected component; and characteristic (average) path length. We plot the mean and 90% confidence interval across 10 trials.

Results. Our findings highlight the importance of over-
lap as a third dimension in the evaluation of graph genera-
tive models. We see that deep-learning based models, like
GraphVAE and CELL, can almost fit the input graph as we
allow the training to be performed for a sufficient number
of epochs. However, when one wants to generate a diverse
set of graphs, these models fail to match certain statistics of
the input graph. For example, we see in Figure 2 that the
CELL method generates graphs with a low number of tri-
angles for the LES MISERABLES dataset when the overlap
between the generated graphs is small. We observe similar
results for almost all datasets and other statistics, especially
those pertaining to small dense subgraphs (like 4-cliques
and 4-cycles). Similarly, the GraphVAE method almost al-
ways fits the input graph in a high overlap regime. Although
GraphVAE possesses greater theoretical capacity as an AD
generative model, we observe that instances with low over-
lap deviate significantly from the statistical characteristics
of the input graph, as illustrated in Figure 2. Consequently,
this approach fails to achieve generalization when trained
on a single graph instance. The VGAE model encounters ad-
ditional limitations due to its dot-product kernel, which has
been demonstrated to have certain constraints in generating
graphs with sparsity and triangle density (Seshadhri et al.,
2020; Chanpuriya et al., 2020). As depicted in Figures 2,
we observe that this model fails to adequately capture the
characteristics of the input graph, even when trained for
many epochs.

Surprisingly, despite their simplicity, the three introduced
models exhibit desirable characteristics. Firstly, the overlap
can be easily adjusted by increasing the probability hyperpa-
rameter p, providing more predictability compared to other
models (refer to the results for the POLBLOGS dataset in
the Appendix). Secondly, these models generally generate
a higher number of triangles, which closely aligns with the
input graph, in comparison to methods such as CELL. For
instance, in Figure 2, these baselines produce graphs with
a greater number of triangles, 4-cliques, and 4-cycles than
CELL and GraphVAE, particularly when the overlap is low.
Furthermore, as the level of dependency rises (from edge
independent to arbitrarily dependent), we observe a higher
triangle count for a fixed overlap. This finding supports
our theoretical assertions from Section 3 regarding the ef-
ficacy of different models within the introduced hierarchy.
However, a drawback of these two-stage methods is their
inability to capture the connectivity patterns of the input
graph, as evident from the fraction of connected pairs and
the characteristic path length statistics.

6. Conclusion
We have proved tight trade-offs for graph generative mod-
els between their ability to produce networks that match
the high triangle densities of real-world graphs, and their
ability to achieve low overlap and generate a diverse set of
networks. We show that as the models are allowed higher
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levels of edge dependency, they are able to achieve higher
triangle counts with lower overlap, and we formalize this
finding by introducing a three-level hierarchy of edge de-
pendency. An interesting future direction is to refine this
hierarchy to be finer-grained, and also to investigate the
roles of embedding length and complexity of the embedding
distributions. We also emphasize our introduction of overlap
as a third dimension along which to evaluate graph gener-
ative models, together with output quality and efficiency.
We believe these directions can provide a solid groundwork
for the systematic theoretical and empirical study of graph
generative models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Deferred Proofs and Theoretical Results
A.1. Proof of Lemma 2

We prove Lemma 2 using the following theorem from Friedgut (2004) (see also Finner (1992)), which can be seen as a
continuous version of Inequality 2:

Theorem 4 (Friedgut (2004)). Let X,Y, Z be three independent probability spaces and let

f : X × Y → R, g : Y × Z → R, and h : Z ×X → R

be functions that are square-integrable with respect to the relevant product measures. Then∫
f(x, y)g(y, z)h(z, x) dx dy dz ≤

√∫
f2(x, y) dx dy

∫
g2(y, z) dy dz

∫
h2(z, x) dz dx.

Proof of Lemma 2. Consider any set of three distinct nodes (i, j, k). Then, by assumption, the embeddings of these nodes
Zi, Zj , Zk are independent random variables. Let ρZi

, ρZj
, ρZk

be the PDFs of the respective nodes’ embeddings. Recall
that there exists a symmetric function e : Rk × Rk → [0, 1] of two nodes’ embeddings that determines the probability of an
edge between them. Based on this, the probability that nodes i, j, k form a triangle is:

E[AijAjkAik] =

∫
ρZi

(zi)ρZj
(zj)ρZk

(zk)e(zi, zj)e(zj , zk)e(zi, zk) dzi dzj dzk

Now, define f(zi, zj) =
√

ρZi
(zi) · ρZj

(zj) · e(zi, zj), g(zj , zk) =
√
ρZj

(zj) · ρZk
(zk) · e(zj , zk), and h(zi, zk) =√

ρZi
(zi) · ρZk

(zk) · e(zi, zk), so that

E[AijAjkAik] =

∫
f(zi, zj)g(zj , zk)h(zi, zk) dzi dzj dzk

Now, we can apply Theorem 4, yielding:

E[AijAjkAik] ≤

√∫
f2(zi, zj) dzi dzj

∫
g2(zj , zk) dzj dzk

∫
h2(zi, zk) dzi dzk

=

√∫
ρZi

(zi)ρZj
(zj)e2(zi, zj) dzi dzj

∫
ρZj

(zj)ρZk
(zk)e2(zj , zk) dzj dzk

∫
ρZi

(zi)ρZk
(zk)e2(zi, zk) dzi dzk

≤

√∫
ρZi(zi)ρZj (zj)e(zi, zj) dzi zj

∫
ρZj (zj)ρZk

(zk)e(zj , zk) dzj dzk

∫
ρZi(zi)ρZk

(zk)e(zi, zk) dzi dzk.

where the last inequality simply uses the fact that since the image of the function e is [0, 1], it must be that e2(x, y) ≤ e(x, y).
Finally, the lemma follows from observing that∫

ρZi
(zi)ρZj

(zj)e(zi, zj) dzi dzj = E[Aij ].

A.2. Generalized Bounds for Squares and Other k-cycles

We can extend the prior bounds on triangles to bounds on the expected number of k-cycles in graphs sampled from the
generative model A in terms of Ov(A). For the adjacency matrix A of a graph G, let Ck(A) denote the number of k-cycles
in G. We can prove the following bounds, where the random graph models from Section 3 also provide tight examples for
any generalized k-cycles.

Theorem 5 (Bound on Expected k-cycles). Let A be an adjacency matrix sampled from a graph generative model A, and
let Ck(A) denote the number of k-cycles in the graph corresponding to A. If A is edge independent, node independent, or
arbitrarily dependent then E[Ck(A)] is bounded above asymptotically by nk · Ov(A)k, nk · Ov(A)k/2, and nk · Ov(A),
respectively.
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Proof. For notational simplicity, we focus on k = 4. The proof directly extends to general k. Let C4(G) be the number of
non-backtracking 4-cycles in G (i.e. squares), which can be written as

EA∼A [C4(A)] =
1

8
·

n∑
i=1

∑
j∈[n]\{i}

∑
k∈[n]\{i,j}

∑
ℓ∈[n]\{i,j,k}

AijAjkAkℓAℓi.

The 1/8 factor accounts for the fact that in the sum, each square is counted 8 times – once for each potential starting vector i
and once for each direction it may be traversed. For general k-cycles this factor would be 1

2k . We then can bound

EA∼A [C4(A)] ≤ 1

8
·
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

∑
ℓ∈[n]

AijAjkAkℓAℓi.

If A is an edge independent model, the bound on the expected number of 4-cycles proceeds like the one for triangles, except
using the following variant of Cauchy-Schwarz:

∑
ijkl

aijbjkckldli ≤
√∑

ij
a2ij
∑

ij
b2ij
∑

ij
c2ij
∑

ij
d2ij ,

which, letting P = E[A] be the edge probability matrix for A ∼ A, yields

E[C4(A)] = 1
8

∑
ijkl

PijPjkPklPli ≤ 1
8

√(∑
ij
P 2

ij

)4
= 1

8 (2 · Ov(A)Vol(A))4/2 = O
(
n4Ov(A)4

)
,

where again the last step is applying Lemma 1.

If A is an arbitrarily dependent model, the proof of the bound carries through almost exactly:

E[C4(A)] =
∑

i<j<k<l

E [AijAjkAklAli] ≤
∑

i<j<k<l

E[Aij ]

= O(n2)
∑

i<j
E[Aij ] = O(n2) · Vol(A) ≤ O(n4) · Ov(A).

If A is a node independent model, the bound on the expected number of 4-cycles follows as before, except using the
following extended version of Theorem 4 (that we prove in Sec. A.3):∫

f(x, y)g(y, z)h(z, w)l(w, x) dx dy dz dw

≤

√∫
f2(x, y) dx dy

∫
g2(y, z) dy dz

∫
h2(z, w) dz dw

∫
l2(w, x) dw dx.

Applying this equation as before yields

E[AijAjkAklAli] ≤
√

E[Aij ]E[Ajk]E[Akl]E[Ali],

which allows us to apply the edge independent bound for squares:

E[C4(A)] =
∑

i<j<k<l

E[AijAjkAklAli] ≤
∑

i<j<k<l

√
E[Aij ]E[Ajk]E[Akl]E[Ali]

≤
√(

n
4

)∑
i<j<k<l

E[Aij ]E[Ajk]E[Akl]E[Ali]

≤
√
O ((n4)2 · Ov(A)4) = O(n4Ov(A)4/2).

14



On the Role of Edge Dependency in Graph Generative Models

A.3. Integral Inequality and Proof

Here we prove the following theorem that was referenced in Section 4.2:

Theorem 6. For square integrable functions f1, . . . fk, we have:

∫
x1

∫
x2

. . .

∫
xk

f1(x1, x2) · f2(x2, x3) · . . . · fk(xk, x1) dx1 . . . dxk

≤

√∫
x1

∫
x2

f2
1 (x1, x2)dx1dx2 · . . . ·

∫
xk

∫
x1

f2
k (xk, x1)dxkdx1

Before we prove this theorem, we first prove an intermediate result that will be useful:

Lemma 3. For k ≥ 3, we have:

∫
x1

∫
x2

(∫
x3

. . .

∫
xk

f2(x2, x3) · . . . · fk(xk, x1)dx3 . . . dxk

)2

dx1dx2

≤
∫
x2

∫
x3

f2
2 (x2, x3)dx2dx3 · . . . ·

∫
xk

∫
x1

f2
k (xk, x1)dxkdx1

Proof. We proceed using induction. For k = 3, we have

∫
x1

∫
x2

(∫
x3

f2(x2, x3) · f3(x3, x1)dx3

)2

dx1dx2

≤
∫
x1

∫
x2

∫
x3

f2
2 (x2, x3)dx3

∫
x3

f2
3 (x3, x1)dx3dx2dx1

=

∫
x2

∫
x3

f2
2 (x2, x3)dx2dx3 ·

∫
x1

∫
x3

f2
3 (x3, x1)dx3dx1,

where the first inequality follows from Cauchy-Schwarz.
Now assume the statement is true for some k > 3. We will prove the induction step for k + 1:

∫
x1

∫
x2

(∫
x3

. . .

∫
xk+1

f2(x2, x3) · . . . · fk+1(xk+1, x1)dx3 . . . dxk+1

)2

dx1dx2

=

∫
x1

∫
x2

(∫
x3

f2(x2, x3)

(∫
x4

∫
xk+1

f2(x2, x3) · . . . · fk+1(xk+1, x1) . . . dxk+1

)
dx3

)2

dx1dx2

≤
∫
x2

∫
x3

f2
2 (x2, x3)dx3dx2

∫
x1

∫
x3

(∫
x4

. . .

∫
xk+1

f3(x3, x4) . . . fk+1(xk+1, x1)dx4 . . . dxk+1

)2

dx3dx1

≤
∫
x2

∫
x3

f2
2 (x2, x3)dx2dx3 · . . . ·

∫
xk+1

∫
x1

f2
k+1(xk+1, x1)dxk+1dx1,

where the first inequality follows from Cauchy-Schwarz, and the last one from the inductive hypothesis.

Now, we are ready to prove Theorem 6.
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Proof.

∫
x1

∫
x2

. . .

∫
xk

f1(x1, x2) · f2(x2, x3) · . . . · fk(xk, x1) dx1 . . . dxk

=

∫
x1

∫
x2

f1(x1, x2)

(∫
x3

. . .

∫
xk

f2(x2, x3) · . . . · fk(xk, x1)dx3 . . . dxk

)
dx2dx1

≤

√∫
x1

∫
x2

f2
1 (x1, x2)dx1dx2

∫
x1

∫
x2

(∫
x3

. . .

∫
xk

f2(x2, x3) · . . . · fk(xk, x1)dx3 . . . dxk

)2

dx1dx2

≤

√∫
x1

∫
x2

f2
1 (x1, x2)dx1dx2 · . . . ·

∫
xk

∫
x1

f2
k (xk, x1)dxkdx1,

where the first inequality follows from Cauchy-Schwarz and the second from Lemma 3.

B. Further Details on Our Baseline Graph Generative Models
We provide additional details on our new graph generative models that were introduced in Section 5.1. Recall that our
models are based on sampling a primary graph Gp based on the maximal cliques of the target (input) graph Gt, then a
‘residual’ graph Gr based on the node degrees of Gt, and finally returning the union of Gp and Gr. Specifically, we produce
Gr by sampling from a simple edge independent model, the odds product model (Hoff, 2003; De Bie, 2011; Chanpuriya
et al., 2021). This is as a variant of the well-known Chung-Lu configuration model (Aiello et al., 2001; Chung & Lu,
2002a;b), which produces graphs that match an input degree sequence in expectation. The odds product model does the
same, except without constraints on the input degree sequence. In this work, we generalize this model to produce a sampled
graph Gr such that its union with a Gp matches the input graph’s degree distribution in expectation. Here we discuss some
more details about fitting and sampling from the odds product model to produce Gr.

In the odds product model, there is a logit ℓ ∈ R assigned to each node, and the probability of an edge occurring between
two nodes i and j rises with the sum of their logits, and is given by σ(ℓi + ℓj), where σ is the logistic function. To fit this
model, we find a vector ℓ ∈ Rn of n logits, one for each node, such that a sample from the model has the same expected
node degrees (i.e., row and column sums) as the original graph. This model is edge independent, so to use it, we simply find
the expected adjacency matrix of edge probabilities, then sample entries independently to produce a graph.

We use largely the same algorithm as Chanpuriya et al. (2021) to fit the model, but with some modifications, since our
goal is slightly more complex. Recall that in the context of this work, we actually sample from this model to produce a
‘residual’ graph with adjacency matrix Ar; we then return the union Au of this graph with the primary sampled graph
Ap, with the goal that, in expectation, Au has the same node degrees as the input graph Ai. (Note that this is a strict
generalization of the same problem without the primary sampled graph, which is apparent from setting Ap to be all zeros.)
Denote the degree sequence of the input graph and the expected degree sequence of the union graph by d = Ai1 ∈ Rn

and d̂ = E[Au]1 ∈ Rn, respectively. Fitting the model is a root-finding problem: we seek ℓ ∈ Rn such that the degree
errors are zero, that is, d̂− d = 0. We employ the multivariate Newton-Raphson method to find the root, for which we must
calculate the Jacobian matrix J of derivatives of the degree errors with respect to the entries of ℓ. The following calculation
largely mirrors that of Chanpuriya et al. (2021), though we must account for the union of graphs. If an edge is planted in the
primary sample with probability p and in the residual sample with probability q, then it exists in the union with probability
1− (1− p)(1− q). In our notation,

E[Auij ] = 1−
(
1− E[Apij ]

)
·
(
1− E[Arij ]

)
= 1−

(
1− E[Apij ]

)
·
(
1− σ(ℓi + ℓj)

)
.

Letting δij be 1 if i = j and 0 otherwise (i.e. the Kronecker delta), we have
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∂d̂i

∂ℓj
= ∂

∂ℓj

∑
k∈[n]

E[Auik]

= ∂
∂ℓj

∑
k∈[n]

(
1−

(
1− E[Apik]

)
·
(
1− σ(ℓi + ℓk)

))
= ∂

∂ℓj

(
1−

(
1− E[Apij ]

)
·
(
1− σ(ℓi + ℓj)

))
+ δij

∑
k∈[n]

∂
∂ℓi

(
1−

(
1− E[Apik]

)
·
(
1− σ(ℓi + ℓk)

))
=
(
1− E[Apij ]

)
· σ(ℓi + ℓj) ·

(
1− σ(ℓi + ℓj)

)
+ δij

∑
k∈[n]

(
1− E[Apik]

)
· σ(ℓi + ℓk) ·

(
1− σ(ℓi + ℓk)

)
=
(
1− E[Auij ]

)
· σ(ℓi + ℓj) + δij

∑
k∈[n]

(
1− E[Auik]

)
· σ(ℓi + ℓk)

= E[Arij ] ·
(
1− E[Auij ]

)
+ δij

∑
k∈[n]

E[Arij ] ·
(
1− E[Auik]

)
.

The expression for the gradient in this context closely resembles the one presented in Chanpuriya et al. (2021), with the only
variation being the substitution of E[Au] matrices with additional E[Ar] matrices. This substitution is reasonable since
the referenced work does not involve a primary sampled graph, and therefore the union graph corresponds precisely to the
residual graph. This modified gradient translates directly into a modified fitting algorithm, pseudocode for which is given in
Algorithm 2.

Algorithm 2 Fitting the modified odds-product model
input : target degrees d ∈ Rn, primary expected adjacency E[Ap] ∈ [0, 1]n×n, error threshold ϵ
output :symmetric probability matrix E[Ar] ∈ [0, 1]n×n

ℓ← 0 ▷ ℓ ∈ Rn is the vector of logits, initialized to all zeros
E[Ar]← σ

(
ℓ1⊤ + 1ℓ⊤

)
▷ σ is an entrywise logistic function, 1 is a length-n all-ones column vector

E[Au]← 11⊤ −
(
11⊤ − E[Ap]

)
◦
(
11⊤ − E[Ar]

)
▷ ◦ is an entrywise product

d̂← E[Au]1 ▷ expected degree sequence of E[Au]

while ∥d̂− d∥2 > ϵ do
B ← E[Ar] ◦

(
11⊤ − E[Au]

)
J ← B + diag (B1) ▷ diag is the diagonal matrix with the input vector along its diagonal

ℓ← ℓ− J−1
(
d̂− d

)
▷ rather than inverting J , we solve this linear system

E[Ar]← σ
(
ℓ1⊤ + 1ℓ⊤

)
E[Au]← 11⊤ −

(
11⊤ − E[Ap]

)
◦
(
11⊤ − E[Ar]

)
d̂← E[Au]1

return E[Ar]

C. Further Details on Experimental Setting
We now expand on the discussion of our experimental setting from Section 5.

Statistics. We choose 8 statistics that capture both the connectivity of a graph, as well local patterns within it. We look at
the following network statistics:

• Pearson correlation coefficient (PCC) of the input and generated degree sequences (number of nodes incident to each
node), as well as max degree.

• PCC of the input and generated triangle sequences (number of triangles each node belongs to).

• Triangle, 4-clique, and 4-cycle counts, each normalized by the respective counts in the input graph.

• Characteristic (average) path length and fraction of node pairs which are connected. Letting |Ci| be the size of i-th
connected component, the latter quantity is

∑
i

(|Ci|
2

)
/
(
n
2

)
).
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Datasets. In our experiments we use the following eight publicly available datasets (together with one synthetic dataset)
that we describe next. Table 2 also provides a summary of them.

• CITESEER: A graph of papers from six scientific categories and the citations among them

• CORA: A collection of scientific publications and the citations among them.

• PPI: A subgraph of the PPI network for Homo Sapiens. Vertices represent proteins and edges represent interactions.

• POLBLOGS: A collection of political blogs and the links between them.

• WEB-EDU: A web-graph from educational institutions.

We also include the following smaller sized datasets where we additional evaluate the GraphVAE method, as it is designed
for datasets of that scale.

• LES MISERABLES: Co-appearance network of characters in the novel Les Miserables.

• FACEBOOK-EGO: A small-sized ego-network of Facebook users.

• WIKI-ELECT: A (temporal) network of Wikipedia users voting in administrator elections for or against other users to
be promoted to administrator. We use the first 15% of edges.

• RING OF CLIQUES: A union of 10 cliques of size 10 connected in a ring.

Table 2. Dataset summaries
Dataset Nodes Edges Triangles

CITESEER (Sen et al., 2008) 2,110 3,668 1,083
CORA (Sen et al., 2008) 2,485 5,069 1,558
PPI (Stark et al., 2010) 3,852 37,841 91,461
POLBLOGS (Adamic & Glance, 2005) 1,222 16,714 101,043
WEB-EDU (Gleich et al., 2004) 3,031 6,474 10,058

LES MISERABLES (Knuth, 1993) 77 254 467
WIKI-ELECT (Leskovec et al., 2010b) 367 1,475 2,249
FACEBOOK-EGO (Leskovec & Mcauley, 2012) 324 2,514 10,740
RING OF CLIQUES (synthetic dataset) 100 4,600 1,200

Hyperparameters and ranging overlap. We range overlap in the following way for each method:

• MCEI, MCNI, MCAD: We range, respectively, the probability p of including an edge of a clique, or node of a clique,
or a clique in the sampled graph. We typically use evenly spaced numbers for p over the interval between 0 and 1. For
graphs with larger number of maximal cliques (PolBlogs and PPI), we additionally take the square of these values to
decrease the probability.

• CELL: We set the dimension of the embeddings at 32 for the larger datasets and 8 for the smaller ones. In order to
range overlap, we follow the same early-stopping approach as in the original paper. Namely, we stop training at every
iteration and sample 10 graphs every time the overlap between the generated graphs and the input graph exceeds some
value (we set 10 equally spaced thresholds between 0.05 and 0.75).

• GraphVAE: We use 512 dimensions for the graph-level embedding that precedes the MLP and 32 dimensions for the
hidden layers of the graph autoencoder. Again, we follow the early-stopping approach during training. We use the
following implementation: https://github.com/kiarashza/graphvae-mm.

• VGAE: As this method relies on a dot-product kernel that has been shown to be unable to generate sparse and
triangle-dense graphs, instead of fixing the embedding dimensions at a small number, we increase the dimensions of
the hidden layers from 4 to 1024 and train for 5, 000 epochs. We use the publicly available implementation by the
authors of this method: https://github.com/tkipf/gae.
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Implementation. Our implementation of the methods we introduce is written in Python and uses the NumPy (Harris et al.,
2020) and SciPy (Virtanen et al., 2020) packages. Additionally, to calculate the various graph metrics, we use the following
packages: MACE (MAximal Clique Enumerator) (Takeaki, 2012) for maximal clique enumeration (it takes O(|V ||E|) time
for each maximal clique) and Pivoter (Jain & Seshadhri, 2020) for k-clique counting.

D. Additional Statistics Plots
We also include plots for the statistics of the remaining networks: CITESEER, CORA, POLBLOGS, WEB-EDU, WIKIELECT,
FACEBOOK-EGO, and the synthetic RING OF CLIQUES graph. The results largely follow the same pattern as results for the
dataset presented in Section 5. Note that our baseline methods typically outperform other methods in generating a graphs
with a higher number of triangles in a low overlap regime. This is especially more evident in sparse networks, e.g., compare
CORA with POLBLOGS.
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Figure 3. Statistics for CITESEER as a function of the overlap.
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Figure 4. Statistics for CORA as a function of the overlap.
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Figure 5. Statistics for POLBLOGS as a function of the overlap.
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Figure 6. Statistics for WEB-EDU as a function of the overlap.
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Figure 7. Statistics for WIKIELECT as a function of the overlap.
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Figure 8. Statistics for FACEBOOK-EGO as a function of the overlap.
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Figure 9. Statistics for PPI as a function of the overlap.
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Figure 10. Statistics for the RING OF CLIQUES graph. All nodes are incident to the same number of triangles, so correlation is not defined
for this graph. We replace it with transitivity.

21


