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Abstract

Indian classical music relies on a sophisticated microtonal system of 22 Shrutis
(pitch intervals), which provides expressive nuance beyond the 12-tone equal tem-
perament system. Existing symbolic music processing tools fail to account for these
microtonal distinctions and culturally-specific raga grammars that govern melodic
movement. We present ShrutiSense, a comprehensive symbolic pitch process-
ing system designed for Indian classical music, addressing two critical tasks: (1)
correcting westernized or corrupted pitch sequences, and (2) completing melodic
sequences with missing values. Our approach employs complementary models
for different tasks: a Shruti-aware Finite-State Transducer (FST) that performs
contextual corrections within the 22-Shruti framework and a Grammar-Constrained
Shruti Hidden Markov Model (GC-SHMM) that incorporates raga-specific tran-
sition rules for contextual completions. Comprehensive evaluation on simulated
data across five ragas demonstrates that ShrutiSense (FST model) achieves 91.3%
Shruti classification accuracy for correction tasks, with example sequences showing
86.7–90.0% accuracy at corruption levels of 0.2 to 0.4. The system exhibits robust
performance under pitch noise up to ±50 cents, maintaining consistent accuracy
across ragas (90.7–91.8%), thus preserving the cultural authenticity of Indian
classical music expression.

1 Introduction

Indian classical music represents one of the world’s most sophisticated microtonal systems, employing
22 distinct pitch intervals called Shrutis within each octave Muni [Circa 200 BCE–200 CE]. Unlike
Western music’s 12-tone equal temperament, this system provides finer granular control over pitch
relationships, enabling the subtle melodic ornamentations and emotional expressions that characterize
ragas (melodic frameworks for improvisation akin to a melodic mode in Indian classical music).
The concept of Shruti, first formalized in Bharata’s Natya Shastra (circa 200 BCE–200 CE), divides
the octave into 22 mathematically precise intervals, each serving specific melodic and emotional
functions within different raga contexts.

1.1 Problem Definition and Real-World Applications

Processing Indian classical music poses distinct challenges for contemporary digital music technolo-
gies due to its microtonal structure and grammar-rich melodic design. These challenges appear across
multiple real-world domains. In digital music education, online platforms and mobile applications
need precise pitch feedback for learners practicing ragas, yet existing Western-oriented tools often
miscorrect notes in ways that violate raga grammar. For archival digitization, historical recordings
and manuscripts require symbolic transcription methods that retain cultural nuance, but most tools
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reduce pitch data to the 12-tone equal temperament (12-TET) system, erasing vital microtonal con-
tent. Performance assistance technologies, such as live accompaniment and tuning systems, demand
real-time correction algorithms that honor microtonal aesthetics without compromising melodic
flow. Similarly, music information retrieval platforms, such as search engines and recommendation
systems, benefit from culturally-aware analyses capable of identifying raga-specific structures and
pitch relationships. To support these domains, ShrutiSense introduces two key computational tasks:
pitch correction, which transforms noisy or Western-biased pitch sequences into culturally appropriate
output conforming to Shruti resolution and raga grammar; and melodic completion, which fills in
missing pitches using contextual musical cues and embedded cultural knowledge to restore and
enhance symbolic content for interactive composition, transcription, and preservation purposes.

1.2 Technical Contributions

Our primary contributions include: (1) formalization of the 22-Shruti system within a computa-
tional framework with explicit raga grammar encoding, (2) development of grammar-constrained
probabilistic models that balance pitch accuracy with cultural authenticity, (3) comprehensive evalu-
ation framework demonstrating superior performance over naive quantization approaches, and (4)
open-source implementation2 enabling reproducible research in computational ethnomusicology.

2 Mathematical Foundations

2.1 Shruti Theory and Scale Selection

We formalize the 22-Shruti system as a logarithmic frequency division of the octave. Let f0 denote
the fundamental frequency of the tonic (shadja). Following the theoretical framework established by
Bhatkhande [1934], we define each Shruti si as fi = f0 · 2ci/1200 where ci represents the cent value
of the i-th Shruti relative to the tonic. Our implementation uses the widely-accepted 22-Shruti scale
with cent values:

C = {0, 90, 112, 182, 204, 294, 316, 386, 408, 498, 520,
590, 612, 702, 792, 814, 884, 906, 996, 1018, 1088, 1110} (1)

This scale selection represents a consensus among contemporary musicologists and provides compu-
tational tractability while preserving essential microtonal distinctions. Alternative Shruti theories
exist (e.g., Sarangadeva’s 22-Shruti system, Ramamatya’s modifications), but our chosen scale aligns
with modern performance practice and digital applications.

The minimum distinguishable pitch interval is:

δshruti = min
i,j

|ci − cj |, i ̸= j = 22 cents (2)

2.2 Raga Grammar Construction

We model each raga as a directed graph G = (S, T ) where S = {s1, s2, . . . , s22} is the set of
Shruti positions and T ⊆ S × S represents permissible transitions between Shrutis. The raga
grammar construction process involves classical treatises defining arohana (ascending) and avarohana
(descending) scales, vadi-samvadi (the tonic and dominant notes of a raga) relationships, and varjya
(forbidden) notes. Our current implementation covers five major ragas: Yaman, Bhairavi, Bilaval,
Kalyan, and Khamaaj, representing diverse tonal structures and transition patterns. The grammar
function G(si, sj) is defined as:

G(si, sj) =

{
1 if (si, sj) ∈ T

0 otherwise
(3)

Transition weights incorporate both theoretical and empirical preferences:

2The code is available at https://github.com/rajarshi51382/microtonal-carnatic
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w(si, sj) = G(si, sj) · exp(−α · d(si, sj)) · pakad_bonus(si, sj) (4)

where d(si, sj) represents interval distance, α = 0.1 controls stepwise preference, and pakad_bonus
provides additional weight for characteristic phrase patterns (pakad), which are defining melodic
phrases of a raga.

3 Data Collection and Preprocessing

3.1 Dataset Construction

We synthesized 1,000 pitch sequences from canonical raga grammar rules (without model-generated
sequences), then applied controlled corruption patterns simulating common digitization errors such as
random note substitutions (10-50% of sequence), and missing value patterns (10-50% missing rates).

ShrutiSense accepts multiple input formats, including MIDI data (Note-on events converted to
cent deviations from tonic), symbolic notation (manual pitch annotations in cents or Shruti labels),
and audio-derived pitch (fundamental frequency tracks from audio analysis). The preprocessing
pipeline normalizes all inputs to cent values relative to a detected or specified tonic, handles octave
disambiguation, and segments long sequences into musically meaningful phrases (typically 8-32
notes).

4 Grammar-Constrained Hidden Markov Model

The Grammar-Constrained Shruti Hidden Markov Model (GC-SHMM) is defined over a state space
S = {s1, s2, . . . , sN}, where N represents the number of active Shrutis in a given raga, typically
ranging from 7 to 10. The observation sequence O = {o1, o2, . . . , oT } contains noisy pitch values
measured in cents. Emission probabilities are modeled using Gaussian distributions centered around
the theoretical frequencies of each Shruti, with variance σ = 25 cents reflecting empirical pitch
deviation

P (ot|si) =
1√
2πσ2

exp

(
− (ot − µi)

2

2σ2

)
where µi is the cent value of state si.

A key feature of GC-SHMM is its enforcement of raga grammar through constrained transitions.
The probability of transitioning from state si to sj is given by P (sj |si) = w(si, sj)/Zi if the pair
satisfies the grammar function G(si, sj) = 1, and zero otherwise, where

Zi =
∑

k:G(si,sk)=1

w(si, sk)

ensures proper normalization. Additionally, direction-aware transition matrices Aup and Adown
distinguish ascending and descending movements, with melodic direction inferred via pitch gradients.

For task-specific inference, the correction task utilizes the Viterbi algorithm to identify the most
probable Shruti sequence, computed by maximizing over permissible transitions and emissions:

δt(j) = max
i:G(si,sj)=1

[δt−1(i) · P (sj |si)] · P (ot|sj)

For completion tasks with missing pitches, the forward-backward algorithm is employed, where αt(i)
and βt(i) represent the forward and backward probabilities respectively, and the marginal probability
γt(i) is computed as

γt(i) =
αt(i)βt(i)∑
j αt(j)βt(j)

At missing positions, a uniform emission P (ot|si) = 1 is used, ensuring the model relies entirely on
contextual grammar constraints to infer the correct Shruti.
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5 Shruti-Aware Finite-State Transducer

The Shruti-aware Finite-State Transducer (FST), denoted as T , maps input pitch sequences to
corrected or completed outputs by applying weighted edit operations. The transducer supports four
operation types: direct matches mapping input pitches to their nearest Shruti states, insertions to add
missing Shruti symbols, deletions to remove spurious tokens, and substitutions to correct misclassified
pitches. The total path cost combines three components: pitch fidelity, grammar compliance, and edit
penalties, computed as

w(qi, qj , o, s) = λ1 · cpitch(o, s) + λ2 · cgrammar(sprev, s) + λ3 · cedit (5)

where cpitch(o, s) = −|o−µs|/50 represents the normalized pitch distance, cgrammar(sprev, s) evaluates
raga transition validity and likelihood, and cedit applies fixed penalties for non-match operations. In
cases where transitions violate raga rules (G(sprev, s) = 0), grammar cost is set to −∞ to prohibit
the path. We choose the parameters λ1 = 0.6, λ2 = 0.3, and λ3 = 0.1, to ensure that pitch fidelity is
emphasized without compromising grammatical integrity.

For context-aware completion, the FST leverages a sliding window of three surrounding notes to
enhance prediction accuracy. The scoring function score(scandidate) = wbase + wtransition + wpakad +
wposition integrates multiple musical features: the base raga membership of the candidate note,
its transition probability with contextual neighbors, alignment with known pakad motifs, and its
positional relevance within the tala cycle (a rhythmic cycle in Indian classical music)—especially
when the candidate occupies a metrically significant location such as vadi or samvadi on a strong
beat. This holistic weighting strategy enables informed and musically meaningful completions in
performance scenarios where input is sparse or noisy.

6 Implementation Details

The GC-SHMM algorithm operates with a time complexity of O(TN2), where T denotes the
sequence length and N the number of active states, and a space complexity of O(TN). In contrast,
the Finite-State Transducer (FST) approach exhibits a time complexity of O(TM2) with lattice size
M , typically set to 23 to account for 22 Shrutis plus epsilon transitions. An analysis of common
failure cases reveals several limitations in the current implementation. First, ornament boundaries
such as rapid microtonal oscillations (e.g., gamak, a type of melodic ornamentation, and meend, a
smooth, gliding transition between notes) pose challenges due to the system’s assumption of note-level
granularity. Second, cross-raga modulation—where melodic sequences blend characteristics from
multiple ragas—exceeds the model’s capacity under a single-grammar assumption. Third, extreme
pitch deviations over ±75 cents often result in incorrect Shruti classification, particularly in noisy
input conditions. Finally, context sparsity in completion tasks—such as missing values at sequence
boundaries or in contiguous gaps of five or more notes—significantly reduces prediction accuracy. We
hope these observed limitations help guide future development, refinement of algorithmic strategies,
and best practices for effective system use.

6.1 Preprocessing

We focus on the correction aspect of ShrutiSense, as it’s the most applicable real-world use; the
completion task is included only to test model capability. The preprocessing pipeline extracts
microtonal pitch from a WAV file and represents it as a sequence of cents. Using Librosa, we load
the audio and retrieve its time series and sample rate (typically 44.1 kHz). Pitch is extracted via
Librosa’s piptrack, which estimates fundamental frequencies and magnitudes across time frames. The
dominant pitch per frame is selected based on maximum magnitude, excluding zero values. These
frequencies are then converted to cents relative to 440 Hz (A4) using a logarithmic scale. ShrutiSense
processes the cents sequence along with a user-specified raga (e.g., Yaman), applying raga-specific
rules to transform the pitch sequence into a Carnatic form, outputting a new cents sequence. To
convert this back to audio, each cent value is transformed into frequency, then rendered as 0.5-second
stereo 16-bit PCM sine waves at 44.1 kHz. These are concatenated into a continuous stream, played
in real-time via an audio mixer, and saved as a WAV file.
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7 Experimental Evaluation and Results

To evaluate our system, we employ a comprehensive set of metrics addressing both technical accuracy
and cultural authenticity. Pitch assessment includes Shruti Classification Accuracy, which measures
the percentage of correctly identified Shruti states, and Average Pitch Error (APE), calculated as the
mean deviation in cents between predicted and true pitches over time. Musical grammar is evaluated
via Raga Grammar Compliance, which reflects the alignment of melodic transitions with raga-specific
rules, and Pakad Pattern Recognition, which measures detection accuracy for characteristic melodic
phrases. Computational performance is analyzed through processing time per sequence, memory
usage and scalability, and real-time responsiveness.

7.1 Correction Task Performance

Table 1: Pitch Correction Performance Comparison (Yaman Raga, Corruption = 0.4)

Method Shruti Acc. (%) Mean Error (cents) Time (ms)
GC-SHMM 84.0 ± 0.4 107.6 ± 3.6 12.5 ± 0.3
Shruti FST 91.3 ± 0.2 45.6 ± 1.4 0.1
Nearest Cent 89.4 ± 0.3 51.8 ± 1.4 0.1
Random 12.6 ± 0.3 452.6 ± 2.4 0.0

Because the correction task is the most similar to a real-world example, we deemed it necessary to
compare our models against some baselines and include statistical significance tests. Namely, we
compare them against a basic model that corrects pitches to the nearest cent value in our 22-Shruti
scale and a model that corrects pitches to a random cent value in the scale. The statistics for the
correction task are displayed in Figure 1. We can clearly see that the FST beats the other models and
significantly outperforms the HMM in terms of accuracy and processing speed over 900 simulations.
The HMM portion of ShrutiSense achieved a mean accuracy of 84± 0.4%, while the FST portion
achieved a mean accuracy of 91.3± 0.2%. Our confidence interval is 95%.

The statistical analysis reveals strong and significant differences in accuracy across the models
evaluated. Pairwise comparisons show that both FST and Nearest Cent outperform HMM, while all
structured models far exceed the random baseline. The Cohen’s d values outputted by the evaluation
code indicate large effect sizes for each contrast, especially against random, with FST showing the
greatest improvement. A one-way ANOVA further confirms significant disparities among models
with an exceptionally high F-statistic. Overall, the findings suggest that FST is the most accurate
model, followed closely by nearest cent, while HMM lags behind but still vastly outperforms random.
Thus, when users choose to use ShrutiSense to correct an audio file, the audio-file will go through the
FST pipeline.

7.2 Completion Task Performance

Table 2: Melodic Completion Performance by Missing Pattern

Missing Pattern HMM FST
Acc. Error (cents) Acc. Error (cents)

Random 57.1 203.0 62.6 158.7
Clustered 40.3 344.9 26.6 317.0
Structured 82.9 48.5 70.5 228.1

As the completion task is not generally a real-world use case, we deemed it unnecessary to compare
it against baseline models. The statistics for the completion task are displayed in Figure 2. Clearly,
the correction task is much easier for ShrutiSense than the completion task, which is expected.
Overall, the HMM performed better with a mean accuracy of 60.1± 30.9% vs the FST which had a
mean accuracy of 48.6± 22.2%. That being said, the FST actually beat the HMM for the Bhairava
(0.2 corruption), the Bilawal (0.2 corruption), and the Khamaaj (0.2 corruption), showing that the
FST actually does as good if not better than the HMM when corruption is low. Additionally, the
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completion error distribution was much less spread out for the FST than the HMM. The FST was
significantly faster than the HMM, as expected because of the differences in algorithmic complexity.

Figure 1: Correction Statistic: Accuracy vs. Cor-
ruption Level

Figure 2: Completion Statistic: Performance by
Missing Pattern

7.3 Robustness Analysis

Noise resilience testing demonstrates that ShrutiSense (FST model) maintains an average accuracy of
91.3% with input noise up to ±50 cents, as introduced by quantization corruption. Example sequences
at corruption levels of 0.2 to 0.4 show FST accuracies ranging from 86.7% to 90.0%. Performance
degrades gracefully at higher corruption levels, maintaining accuracy around 86.7% at 0.4 corruption.

The system exhibits consistent performance across ragas, with minor variations: Yaman (91.1%
accuracy), Bhairavi (90.7%), Bilaval (91.2%), Kalyan (91.8%), and Khamaaj (91.8%). These results,
derived from 900 simulations across sequence lengths of 30, 50, and 100, validate the generalizability
of the grammar-based approach.

8 Discussion and Future Work

ShrutiSense highlights the theoretical advantage of encoding explicit cultural knowledge, demon-
strating that grammar-constrained frameworks outperform purely statistical approaches in microtonal
music processing. By incorporating domain expertise, the system maintains computational effi-
ciency while respecting musical traditions. The complementary strengths of Hidden Markov Models
(HMMs), which capture complex temporal dependencies, and Finite-State Transducers (FSTs), which
enable fine-grained correction, suggest that hybrid architectures may further enhance performance.
Our results have shown that for most real-life scenarios (correction task), the FST is most promising
for ShrutiSense. However, in cases when users need to fill in missing notes (completion task), the
HMM is most efficient. Despite promising results, current limitations include reliance on pre-defined
raga grammars, assumption of monophonic input, limited modeling of ornamental nuances, and
the requirement for tonic identification. Future work will focus on adaptive raga learning through
unsupervised corpus analysis, end-to-end audio integration with robust pitch estimation for noisy
inputs, expanded ornament modeling that treats gamakas and other microtonal inflections as first-class
entities, and multi-voice extensions to handle drones and polyphonic textures common in Indian
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classical ensembles. We also envision cross-cultural adaptation to diverse microtonal traditions such
as Carnatic music, Middle Eastern maqam systems, and contemporary non-Western composition
practices.
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