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ABSTRACT

The integration of neural networks into actor-critic frameworks has been pivotal in
advancing the field of reinforcement learning, enabling agents to perform complex
tasks with greater efficiency and adaptability. However, neural network-based
actor-critic models remain opaque “black boxes,” concealing their decision-making
processes and hindering their use in critical applications where transparent and
explainable reasoning is essential. This work introduces an innovative adaptation of
the actor-critic framework that unites neural networks with rule ensembles to tackle
key challenges in reinforcement learning. We harness the computational power,
scalability, and adaptability of neural networks to model the critic, while integrating
a rule ensemble system for the actor, ensuring transparency and interpretability
for decision-making. Our study establishes a theoretical foundation for integrating
rule ensembles into the Advantage Actor-Critic (A2C) framework. Experimental
results from seven classic and complex environments demonstrate that our proposed
method matches or exceeds the performance of representative RL models, including
symbolic methods, while offering self-interpretability and transparency.

1 INTRODUCTION

Actor-critic reinforcement learning (RL) methods, such as Advantage Actor-Critic (A2C) and
Proximal Policy Optimization (PPO), have delivered exceptional performance across diverse RL
tasks (Mnih et al.,[2016; [Schulman et al.,2017)), largely due to the use of neural networks to effectively
manage complex, high-dimensional state-action spaces. Yet, as actor-critic RL models expand to
broader real-world domains, such as healthcare, finance, and law, interpretability becomes essential
for ensuring trust, transparency, and regulation compliance in decision-making. By revealing how
actions are chosen or why specific decisions are made, interpretability supports debugging, model
improvement, and the ability to explain automated decisions in line with legal and ethical standards.

Despite the effectiveness of neural network-based actor-critic models, their opaque nature and lack of
transparency can limit their use in sensitive or critical applications where comprehending the rationale
behind each decision is crucial (Benitez et al.| [1997} (Castelvecchil [2016). Symbolic models, e.g.,
expert systems, decision trees, and rule-based systems, rely on clear, well-defined rules and logic to
make decisions, allowing for easier tracing of how conclusions are reached (Ernst et al.| | 2005; Gupta
et al.,[2015a; Tao et al., 2018} Bastani et al., 2018 [llanes et al., [2020). These methods use symbols
(which can represent objects, properties, or relationships) and logic to process and reason about data,
making the decision-making process transparent and understandable.

However, substituting neural network-based models with symbolic models in reinforcement learning
tasks can be challenging. (i) While symbolic methods are highly valued for their interpretability
and transparency, current implementations in reinforcement learning typically rely on predefined
knowledge or pre-trained models (Garcez et al., 2018} |Lyu et al.,[2019). (ii) These symbolic methods
can face challenges in managing the complexity and ambiguity that non-symbolic approaches, such
as neural networks, are often better equipped to handle (Illanes et al.,2020; |[Landajuela et al., [2021)).

To tackle the above challenges, we propose a new “Neural plus Symbolic” framework for Actor-
Critic models, namely NSAC, as shown in Figure[T] NSAC integrates the strengths of both neural
networks and symbolic rule-based systems. Specifically, the neural critic leverages powerful function
approximation capabilities to estimate the value of states and state-action pairs effectively. Meanwhile,
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SAC (Kong et al., [2021), SACBBF (Zhang et al., [2024), and A2C (Mnih et al.| 2016). By integrating
the adaptability and generalization capabilities of neural networks with the transparency of rule-based
decision-making, our model provides a balanced solution that retains high performance while en-
abling interpretable and trustworthy decision-making processes. It is worth noting that, our work
belongs to the broader neural-symbolic family, but differs from compile-logic approaches. NSAC
uniquely couples a data-driven neural critic with a rule-based symbolic actor, enabling both statistical
learning and explicit reasoning within an actor—critic loop. This work makes three main contributions:

* We propose a novel actor—critic architecture that combines a neural critic for accurate value
estimation with a symbolic, rule-based actor that delivers intrinsic interpretability.

* We provide a formal proof of convergence and demonstrate that our rule-based policy
satisfies the established interpretability criteria of simulatability, modularity, and low com-
plexity (Murdoch et al.,[2019).

* We empirically demonstrate that NSAC matches state-of-the-art RL methods on classic con-
trol and energy-system tasks, while uniquely preserving transparency and trustworthiness.

2 RELATED WORK

Interpretability has become increasingly important in RL and motivated symbolic approaches that
provide transparent reasoning while retaining RL’s adaptive capabilities. Existing approaches can
be categorized based on their interpretability characteristics, knowledge requirements, and learning
paradigms, each with distinct limitations. Tree-based policies represent a widely studied approach
to interpretable RL. Native tree methods (Ding et al., [2020; [Ernst et al.| 2005} |Gupta et al., [2015a}
Roth et al.,[2019; [Tao et al.; 2018)) learn decision trees directly from environmental interactions, often
achieving strong performance on small to medium-scale problems but facing scalability challenges
where large trees become difficult to interpret. Recent gradient boosting approaches (Fuhrer et al.}
2024) and programmatic tree policies (Kohler et al.l 2024) extend this line by offering editable
representations and improved handling of structured features, though interpretability-performance
trade-offs remain. Distillation-based tree methods (Bastani et al., [2018}; |Coppens et al., 2019} |Gupta
et al, [2015b; [Liu et al.l [2019) extract tree policies from pre-trained neural networks, but face
a size versus fidelity trade-off. Their differentiable variants (Silva et al., 2020) and specialized
architectures (Ding et al.,[2020; [Liu et al.} 2019) attempt to address these limitations but may produce
mathematical notations and complex tree structures that remain difficult for humans to interpret.

Symbolic RL with predefined knowledge leverages domain expertise to guide policy learning. These
methods (Garcez et al., [2018; [[llanes et al., |2020; [Lyu et al., |2019) can maintain interpretability
through symbolic rules, modules, or plans, and may achieve strong performance when domain priors
are well-specified. However, they require substantial predefined knowledge, making them sensitive to
domain assumptions and limiting their applicability to new domains where such expertise may not be
available. To remove this dependency, symbolic policies learn from neural teachers or direct search
to discover symbolic representations, such as neural-guided symbolic policy discovery (Landajuela
et al., 2021), genetic programming for symbolic expressions (Hein et al., 2018), and program
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synthesis approaches (Wu et al., [2020; |Qiu & Zhul [2022). While these methods avoid predefined
knowledge, they often yield complex mathematical expressions involving trigonometric functions,
logarithms, or program syntax that are challenging for humans to simulate and interpret (Murdoch
et al.,|2019). Recent approaches (Delfosse et al.| [2023} |Luo et al., 2024} |Shindo et al.,2024) improve
the interpretability through nerve guide, end-to-end or mixed framework, although they still produce
complex models, or external tools are needed to generate rules. Post-hoc approaches additionally
may suffer from approximation errors inherited from neural teachers. The importance of interpretable
RL is underscored by recent findings on fundamental challenges in agent behavior, including goal
misgeneralization (D1 Langosco et al.,|2022) and systematic failures on task variations (Delfosse et al.,
2025)), which have motivated approaches such as concept bottlenecks (Delfosse et al., [2024b)) for
detecting misalignments and object-centric environments (Delfosse et al.,[2024a) for visual domains,
highlighting the need for transparent and verifiable RL systems.

As discussed, most previous methods either require a certain amount of predefined knowledge, which
influences the search space or establishes the programmatic rules, or they are post-hoc solutions that
learn from a pre-trained model rather than directly from the environment, potentially distorting the
learning objectives, or they generate complex representations or rely on external tools for rule genera-
tion rather than learning directly from environmental interactions( See Appendix [H). In contrast, our
method effectively integrates a neural network-based critic with a symbolic, rule-based, interpretable
actor by learning directly through environmental interactions without requiring predefined knowledge
or external rule generation tools. Specifically, we address the tree scalability problem by using
additive rule ensembles rather than hierarchical structures, where each rule contributes equally to the
decision-making process. We employ Orthogonal Gradient Boosting (OGB) (Yang et al.| 2024) to
discover rule conditions automatically, requiring only basic feature comparisons rather than domain-
specific knowledge. Our rule-based actor is trained directly via policy gradients on environmental
rewards, ensuring the symbolic representation accurately reflects true decision-making process rather
than approximating a black-box teacher. Our approach achieves interpretability through symbolic
rules while learning directly from the environment, addressing both the knowledge requirements
and post-hoc limitations of existing methods. Post-hoc explainers are only approximations: they
often flag correlates, not causes. SHAP (Lundberg & Lee, 2017), for example, mark a feature as
“important” while the model flips under tiny perturbations. Worse, black-box models can even be
trained to emit persuasive but misleading rationales (Rudin, [2019). Because these explanations are
extrinsic, they guarantee neither consistency, fidelity, nor out-of-distribution robustness.

3 PRELIMINARIES

3.1 ADVANTAGE ACTOR-CRITIC REINFORCEMENT LEARNING

The A2C algorithm represents a synergy of two foundational approaches in reinforcement learning:
the actor-critic method and the advantage function estimation. In the actor-critic framework, the critic
in the A2C framework estimates the value function V'(s), which represents the expected return from a
state s. The critic is updated by minimizing its loss function, typically the mean squared error between
the estimated value and the computed target value. The target value is derived from the rewards

obtained and the discounted values of subsequent states: Ly (¢) = E | (R: + YV (s¢41) — V¢(st))2 ,

where R; is the reward received after taking action a; in state s at ¢, +y is the discount factor, Vi, (s;41)
is the value estimate for the next state at £+ 1, and ¢ are the parameters of the critic network. The actor
updates the policy by adjusting parameters 6 in the direction suggested by the critic’s evaluations.
The update is guided by the gradient of the policy’s performance, estimated using the advantage
function: Vo L(0) = E [V log mg(at|st)As] , where Ay = Ry + vV (s¢41) — V(s¢) is the advantage
at time ¢, indicating how much better (or worse) the action a; is than the policy’s average at state s;.
Through these updates, the actor learns to choose actions yielding higher returns than predicted by
the critic, while the critic learns to make more accurate predictions about expected returns, forming a
feedback loop that enhances both policy and value estimation in the A2C framework.

3.2 ADDITIVE RULE ENSEMBLES

Additive rule ensembles are a class of probabilistic models (Friedman & Popescu, [2008) that
estimate the expected value of a target variable Y € R given an input vector X € R¢, which is
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Figure 2: A diagram illustrating the NSAC algorithm with detailed rule update steps.

expressed as E[Y | X = x| = u(f(x)), where, x is an instance of X, u : R — R is an inverse
link function mapping f(z) to the target variable Y, and f : R? — R is a linear combination of &
Boolean query functions:

k k Ci
f(x) = Zwi%‘(m) = Zwi szg(fﬂ) (1)
i=1 i=1  j=1
In equation w; (0 < ¢ < k) is the weight of the i-th Boolean query function g;
R? — {0,1}, and ¢; is a conjunction or product of ¢; Boolean propositions, where Dij €
{]I (sx(j) < sxl(j)> cjeld,len],se {:l:l}} is a threshold function ([z] = {1,...,z} is the

index set). Each term w;qg;(x) in equation |I|can be represented as an ‘IF... THEN ...’ rule, where
the query ¢; defines the condition of the rule, and the weight w; is the rule’s consequent.

Boosting is an iterative approach for learning additive models (Schapirel |1990; Friedman) 2001}
Dembczynski et al.,2010). Given a training set of size n, {(x1,41),. .., (®n, yn)}, where x; is the
input and y; is the corresponding target, through approximately minimizing the empirical risk

: RS Allw|?
L =— l i) Yi) + ———, 2
M) =5 @) + = @
boosting iteratively adds terms into the model and yields a sequence of models f(1), ..., f(*). The

last term of equation [2|is the regularization term, w = (wy, ..., wy)? € R is the weight vector, and
A > 0 is the regularization parameter. Note that [ is a loss function derived as shifted negative log
likelihood, measuring the cost of outputting f(x;) while the true value is y;.

4 METHODOLOGY

4.1 FRAMEWORK DESIGN

Actor implemented with Rule-Based Ensembles: As shown in Figure 2] we replace the neural
network-based action function approximation with an actor composed of additive rule ensembles.
Let F(s) = {fa(s) : Ya € A} represent the collection of ensemble models for action « in the
action space A at state s € S. The size for A is m. The ensemble f,(s) for an action a predicts
the expected advantages directly, simplifying its expression as A(s,a) = f,(s). This prediction is
based on a linear combination of Boolean query functions, weighted by coefficients specific to each
actiona € A: fo(s) = 25:1 Wa,jqa,j(8), Where w, ; are the coefficients for ¢, ;. For each action a,

there are k£ Boolean query functions ¢, ;, (j =1...,k) specific to the action a. The actor’s policy,
represented as m, is defined by the probability distribution over action values for a given state, which
exp(fa(s))

is derived from F using the softmax function: 7(als) = S een(f.(5)) The softmax function
fa€F @

ensures that 7(als) is a proper probability distribution over the action space.

Critic implemented with Neural Network: In our framework, the critic functions similarly to
traditional actor-critic systems, leveraging the computational capabilities of neural networks. It
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serves as a function approximator, implemented using a neural network that estimates the value of
being in a specific state s. This neural network, paramount in computing state-value functions, is
parameterized by weights ¢, and the value function it approximates is denoted by V4(s). This design
choice ensures that our critic effectively harnesses the processing power of neural networks to deliver
precise value estimations for each state. The pseudocode for the algorithm is shown in Appendix [B]
and the theoretical analysis in Appendix [C].

4.2 PoLicy UPDATE

Critic Policy Update: The critic in our framework estimates the value function V'(s) using a neural
network, representing the expected return from a state s. The critic is updated by minimizing the
loss function, typically the mean squared error between the estimated value and the target value. The
target value is derived from the rewards obtained and the discounted values of subsequent states:

Ly(p)=E [(Rt + 9V (s441) — V¢(st))2} , where R; is the reward received after taking action a;

in state sy, y is the discount factor, V¢(st+1) is the value estimate for the next state, and ¢ are the
parameters of the critic network.

Actor Update: The learning process involves iterative updates to the coefficient vector w, and the
query functions ¢, based on observed rewards and state transitions, aiming to refine the ensembles
for optimal decision-making. This approach leverages the interpretability of rule-based systems in
the actor’s policy formulation, enhancing transparency in complex or high-dimensional state spaces.
The advantage function, used by the actor for updates, is computed using the critic’s value function
and the immediate reward: A;(s¢,ar) = R + vV (s¢41) — V(s¢). This expression calculates how
much better the current action a; is compared to the average action at state s; at time ¢, considering
the immediate reward and discounted future values. The actor updates the policy by adjusting the
parameters (w, q) in the direction suggested by the critic’s evaluations. The update is guided by
the gradient of the policy’s performance, which is estimated using the advantage function. The loss
function derived from the policy gradient is

VLA(W,q) = —E [V qlog m(at|st, W, @) At] + AVw,q] w]3. )

To make the loss function locally convex, we add a regularization term \||w||3 to the original loss,
where ) is the regularization parameter (see Appendix D). The actor is updated by modifying each
rule ensemble model f, in accordance with the calculated policy gradient objective for each action. To
obtain the gradient for each action, we use softmax for action selection, taking the natural logarithm
of the policy yields:

Va logm(a|s;w,q) =waqq — log ZeXp(Wajqaj)' 4)
j=1

Substituting equation 4] into equation 3] we have:

m
VL)\(W, q) =-E Vw,q-At Wa,da;, — IOgZ eXp(Waqulj) + )\Vw,qHWH% (5)
j=1

Treating w and q as a combined vector @ = (w; q), the gradient of Vo L(w, q), i.e., V3 L(w,q) can
be derived as

Vi 4,0 .
Valatwnd) = 5o e = 7B | Ve Gy g | Worhn ~1oB 2 expwas ) || =
eXp(WaQa)
—E vwm aA ]Ia:at - m =-E Vwa, aA Ha:at —Tmla | St;wW,q .
! t ( Zj:1 eXp(Waj qaj>>] [ 4 t ( ( | t ))}

Taking into account the two distinct situations @ = a; and a # ay, the policy gradient for each rule
ensemble is as follows:



Under review as a conference paper at ICLR 2026

1. When the ensemble model f, corresponds to the action executed in the current step, i.e.,
a = G,
v?ua,q,lLA(waa qa) =E [_vwa,qu(Sta ap)(1 — W(at|5>)] ; (6)

2. When the ensemble model f,, does not correspond to the action selected by the actor at that
time step, i.e., a # ay,

V2, a0 Ia(Wa, @a) = E [V, g, A(st, ar)m(aq]s)))] %

This distinction ensures ensemble updates properly align with the actions taken, enabling targeted
adjustments that enhance the actor’s policy based on observed outcomes and predicted advantages.

Computational Complexity: This algorithm has a time complexity of O(d?nk) per rule, where
d is the observation dimension. It performs at most d iterations to construct a single rule (adding
one dimension per iteration), and in each iteration, it evaluates all d dimensions as candidates. The
bottleneck lies in computing the orthogonal gradient boosting objective obj,, (¢) = g7 q|/(|lgL|[+e€)
for each candidate, which requires O(nk) operations due to the orthogonal projection computation:
g1 = g — BBTg. This represents a k-fold increase in computational cost over standard gradient
boosting (which has complexity O(d?n)). The orthogonalization overhead is essential for the
algorithm’s ability to select more general rules and achieve better risk-complexity trade-offs in
practice. Fully-corrective weight calculation has a complexity of O(k?n) from solving a convex
optimization problem that re-optimizes all weights after adding a new rule. The k2 scaling comes
from computing the Hessian on the & x k& Gram matrix Q7 Q. While more expensive than stage-wise
approaches, this cost is manageable for small ensemble sizes typically in interpretable rule learning.

Algorithm 1 Neural+Symbolic Actor-Critic Algorithm

1: Initialize actor with each action rule ensemble function fa(o) = 0; Initialize critic network V' (s, ¢) with
parameters ¢; Initialize environment and observe initial state s

2: repeat
3 for each step of episode do
4 Choose action a ~ 7(als, 0)
5 Observe reward r and new state s’
6 Calculate § = r +yV (s, ¢) — V (s, (;52
7 Update critic by minimizing L(¢) =
8 for all a; in action space do
9 if a; = a then
10 Calculate policy gradient g;: —Vw,q(1 — log 7(a|s, w'q))d for f,
11: else
12: Calculate policy gradient g;: V q log 7(als, w” q)é for f,
13 end if
14 use Rule Replacement Steps and policy gradient to find a new query for f, (Appendix [B)
15 use OGB to update the weights for fo (See Appendix [B)
16 end for
17: s« s
18:  end for
19:  if end of episode then
20: Reset environment and observe initial state s
21:  endif

22: until convergence or maximum episodes reached.

5 EXPERIMENTS AND RESULTS

In this section, we aim to answer the following questions: (RQ1) How does our algorithm perform
relative to both black-box and interpretable baselines? (RQ2) Does our framework support inter-
pretable decision-making in a quantifiable way?(RQ3) What kinds of qualitative insights about the
policy can be obtained from inspecting the learned rules?

We evaluated the performance of NSAC in five diverse RL environments: MountainCar-v0, Acrobot-
vl, CartPole-v1, Blackjack-v1, and Postman (Sutton, 2018} Dietterich, 2000). We also evaluated
our NSAC algorithm on a challenging, real-world HVAC control benchmark using Sinergym(see
Appendix [J] for details). This environment models a multi-zone office building with coupled thermal
dynamics, where each zone’s temperature, humidity, and carbon dioxide concentration evolve
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according to nonlinear heat-transfer and air-exchange equations.The high dimensionality of the
state—action space, the strong inter-zone couplings, and the requirement to satisfy strict comfort bands
make it a great testbed for our algorithm.

5.1 PERFORMANCE EVALUATION (RQ1)

We conducted a comprehensive performance comparison against established benchmark algorithms,
including Q-Tabular (Sutton, 2018), DQN (Mnih}2013)), PPO (Schulman et al., 2017), and A2C (Mnih
et al.} 2016), all implemented using Stable-Baselines3 (Raffin et al.}[2021). We additionally included
Rainbow (Hessel et al., 2018)), SDSAC (Kong et al., 2021)), and SACBBF (Zhang et al., [2024) as
deep RL baselines. To cover symbolic approaches, we also evaluated three interpretable methods:
SYMPOL (Marton et al., 2024)), 7,g,.-D (Qiu & Zhu, 2022), and D-SDT (Silva et al.}[2020). For a
fair comparison, we use the Gym environments in their original form without any modifications. For
each algorithm, we apply the recommended optimal parameters provided by the RLzoo (Raffin &
contributors} 2020) with Stable Baselines 3 and report performance averaged over 10 random seeds.
As shown in Table[I] NSAC demonstrates strong and reliable performance across a wide spectrum of
tasks, outperforming or matching both classic deep RL methods and symbolic approaches. Compared
with classical methods such as Q-learning, DQN, A2C, PPO, SAC variants, and Rainbow, NSAC
achieves consistently higher returns with lower variance, particularly in settings that demand stability
and scalability. Unlike value-based methods that can be brittle in continuous or high-dimensional
domains, NSAC maintains robustness while still being competitive in simpler benchmarks. Against
symbolic tree based methods such as SYMPOL, 7,,.-D, and D-SDT, NSAC shows even clearer
advantages: while symbolic policies can excel on select tasks due to strong inductive biases, they often
suffer from collapse or sharp degradation when scaled, whereas NSAC delivers stable performance
across all environments. This makes it a practical and effective alternative that closes the gap between
the strengths of classic RL and symbolic reasoning while avoiding their respective weaknesses.
Table 1: Reward Comparison of Various Methods with Our Approach Across RL Environments.

Environment | Q-table  DQN A2C PPO SDSAC SACBBF Rainbow | SYMPOL 7,g,.-D  D-SDT | NSAC

MCar-v0 -147.68  -135.07  -157.51  -150.40 -141.76  -139.23  -137.76 200 -200 -200 -132.25
+952 +£1642 +£37.12 +£405 £1391 +£17.62 £39.47 +0 +0 +16.08
-201.01  -112.68  -98.931  -82.629  -85.124  -88.708  -89.753 -425.47  -212.31 | -87.714

Acrobot-vl | 7933, 1893 £2950 +279 +£78 +7.02 +898 +5681 +419 | +695

M
O
O
N

CartPole-vl | 2! 161.00  453.51 49873  487.61  481.07  498.53 500 109 498.53 | 499.14
+6 +552 4925 +£24 +£271 +1076 +£212 FO0 4768 £212 | £191

-0.06 -0.07 -0.06 -0.07 -0.06 0.06 0 -0.08 -0.08 -0.06

Blackjack-v1 ‘ 200 D00 Doo oo Lo Soo Lo +001  +0.02 ‘ £0.01
Post 3524 3191 2423 34.35 3491 31.12 34.67 15.23 8.91 27.14
ostman +206 £571 £309 +£38 £28 £377 £468 :t 3. 42 +491 :I: 628 | £3.38

HVAC-1Zone| NA  -1445367 -1334562 -1865276 -1387692 -1423573 -1465732 | -1478783 -1895286 -1862537 | -1251321
120183 £ 148658 =+ 135683 =+ 145619 =+ 34825 £ 785732| 65293 £ 42873 £ 29763 85241

HVAC-5Zone| NA -1876253 -1984843 -1676288 -1582742 -1547279 -1602142 | -1586352 -1969635 -1876374 | -1463601
+ 198263 £ 287237 + 462837 4 227221 =+ 241625 + 342612| £ 65792 =+ 45241 433468 | £ 121678

Note. Redindicates the best performance across all benchmarks. Underscore highlights the best performance among symbolic-based approaches.

Ablation Study In our ablation study, we explored how variations in the rule count
and the implementation of a warm start influenced our .,

method. We conducted tests in the CartPole-v1 envi- - ﬁsrxqaf: r:tart

ronment under various rule configurations, specifically
using 5, 10, 12, 20, 30, 40, and 50 rules per action.Each
configuration was tested both with and without a warm
start. 1. Number of Rules: As depicted in Figure[3] the
model configured with 12 rules per action and a warm 10 12 20 30 40 50
start yields the highest reward. This outcome suggests Number of Rules

that having 12 rules per action provides the model with Figure 3: Ablation study on different num-
sufficient flexibility to effectively capture the essential ~bers of rules and warm start

dynamics of the environment without being overly simplistic. Employing fewer than 10 rules, such
as 5, may not offer adequate coverage to manage the environment’s complexity, resulting in inferior
performance. Conversely, a larger number of rules may lead the model to overfit the training data,
picking up on noise or irrelevant patterns and diminishing its generalizability to new contexts. The
findings from this ablation study highlight a critical balance between the number of rules and overall
model performance. They show that merely increasing the number of rules does not invariably
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improve performance, as an excess can lead to complexity and overfitting, whereas too few can
restrict the model’s performance. 2. Warm Start: When the number of rules is small, the model’s
representational capability is limited, so the initial conditions (e.g., the warm start) become more
critical. A warm start can guide the model toward better solutions early on, helping it learn an
effective policy faster and avoid getting stuck in poor local optima. In contrast, with a larger rule set,
the model has greater capacity to explore various configurations. In such cases, relying on an external
initialization can sometimes constrain exploration, preventing the model from fully leveraging its
increased flexibility.

5.2 INTERPRETABILITY EVALUATION

Quantitative Evaluation(RQ2): Common metrics for interpretability include fidelity, comprehensi-
bility, and cognitive load. In our approach, measuring fidelity is unnecessary because it is primarily
relevant in post-hoc explanation settings—where one model attempts to approximate and explain the
behavior of another. In contrast, both tree based approach(other baselines) and our model is inherently
self-explainable, meaning it achieves 100% fidelity by design, as the decisions made by the model
directly reflect its underlying logic. For comprehensibility and cognitive load, our rule-based system
offers a structured and measurable format. The rule ensembles consist only of boolean propositions
formed through simple comparisons (e.g., feature > threshold) and logical conjunctions. In general,
comprehensibility is negatively correlated with model complexity, while cognitive load increases with
complexity. We define model complexity in terms of the total number of rules, conditions, and logical
operations. Models with more parameters and operations tend to be harder to understand and place a
greater cognitive burden. Since the performance of 7,.-D, and D-SDT is not directly comparable,
we instead evaluate them in terms of interpretability. Using model size as a proxy for complexity, we
observe that across all environments our models require, on average, 61.23 symbolic units (number
of parameters) to achieve the reported performance. In contrast, SYMPOL uses 95.6 symbolic
units (approximately one per node). According to Murdoch et al.|(2019), interpretability involves
simulatability, modularity, and low complexity. A model is simulatable if its predictions can be easily
followed and computed by humans; modular if its components are individually understandable; and
low-complexity if it uses few parameters or rules. Our rule-based method satisfies all three. Each
decision is made via explicit if-then rules (simulatability), each rule is independently interpretable
(modularity), and the total number of rules is kept under 30, ensuring the model remains simple
and auditable (low complexity). Although symbolic trees like SYMPOL’s are locally simulatable (a
single path explains a decision), shared internal nodes mean edits are not truly modular, and trees
tend to grow deep and wide on harder tasks, so they quickly lose low complexity and thus do not
fully satisfy all three criteria simultaneously.
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influence the decision-making process. Consider a typical state where p = —0.5 (slightly to the left of
the center) and v = 0.02 (moving rightward). For the action Do Nothing, one rule imposes a penalty
of —13.485 since the velocity v exceeds a small positive threshold 0.001, discouraging inaction that
could result in insufficient momentum to overcome the hill. For the action Push Left, only one rule
applies, which assigns a positive score as the velocity v is above a minimal threshold, encouraging
a slight push left to maintain momentum without overcompensating. Conversely, the action Push
Right activates multiple rules: three contribute +-57.59 because the velocity v surpasses different
threshold values for the corresponding rules, strongly encouraging a push right to build momentum;
another rule provides +11.775 since both the position p > —0.577 and velocity is positive are
satisfied, indicating that a rightward push is beneficial without risking overshooting the valley; There
is also one rule contributing an additional +1.361 because the position p < —0.449, p > —0.874,
and v < 0.023 hold true, subtly encouraging a push right to maintain the car within a stable range.
The cumulative score for Push Right thus amounts to +70.725, clearly favoring this action. This
comprehensive rule-based scoring system demonstrates that, for the given state (p = —0.5, v = 0.02),
pushing right is the optimal choice as it significantly builds the necessary momentum to ascend the
hill, outweighing the moderate incentives to push left and the discouragement from doing nothing.
We have also visualized the rules of MountainCar in Figure 4] with all rules presented in Appendix
One can easily identify the corresponding areas associated with a state and locate the applicable rules.
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In such safety-critical settings,

interpretability is crucial: when RL governs biocontainment HVAC systems, even minor errors can
destroy cultures or compromise containment. As shown in Table[T] our rule-based actor approach
delivers performance nearly equal to—or even surpassing—that of traditional baseline methods.
More than this, our proposed algorithm also delivers interpretability by explaining why and how each
decision is made in human-understandable language, enabling users to assess the correctness of its
rules. Consider the very first rule as an example: if outdoor temperature < —4.5; htg setpoint < 20.0;
air temperature < 21.1503, and HVAC electricity demand rate > 1452.0250(kW), +37.6076
What it means, in plain English: When all four of these conditions hold: 1. Outdoor temperature
is extremely low; 2. The previous heating setpoint remains at a moderate level; 3. The indoor air
temperature is still below the desired comfort threshold; 4. The HVAC system is already drawing
high power, then this rule “fires,” adding +37.6 to the score for choosing (htg = 15°C, clg = 26°C), i.e.,
heat turns on below 15 °C and cooling above 26 °C. A large positive weight like +37.6 signifies that,
in this scenario, raising the heating setpoint to 15°C is especially beneficial. Based on visualized the
rules of HVAC control in Figure[5} when it’s freezing outside, your target heating level is still under
typical comfort, the room hasn’t yet warmed up, and the system is working hard—so raising the heat
setpoint to 15°C markedly improves comfort, which this rule captures (see details in Appendix [K].

6 CONCLUSION

In conclusion, this paper introduces a neural+symbolic approach within the actor-critic framework.
This method leverages both the robust function approximation capabilities of neural networks critic
and the interpretability provided by rule-based actor models. Users can inspect how the model makes
each decision and form a view about its underlying reasoning. The limitations of this work are
discussed in Appendix [A] In the future, we plan to assess the scalability of our method in more
complex environments across different domains, such as robotics, finance, healthcare, or autonomous
driving, and adapt with other actor-critic frameworks, such as Soft Actor-Critic.
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ETHICAL STATEMENT

This work does not involve human subjects, personal data, or identifiable information. All experiments
are conducted entirely in simulated environments, including stylized energy-system tasks designed
to probe safety and performance trade-offs. These simulations do not interface with or control any
real-world infrastructure. Our proposed NSAC framework aims to improve the interpretability and
trustworthiness of reinforcement learning systems by combining symbolic rules with statistical learn-
ing. This direction supports the broader goal of promoting transparency in Al decision-making. While
the symbolic actor promotes explainability, we acknowledge the importance of careful rule design to
avoid unintended consequences in safety-critical domains. However, our current implementation is
strictly research-oriented and intended for controlled, offline evaluation.

REPRODUCIBILITY STATEMENT

To support reproducibility, we include comprehensive details of our training procedures, hyperparam-
eter settings, and evaluation metrics within the main text and appendix. Upon publication, we will
release the full codebase, including: Random seeds and environment specifications, Training scripts
to replicate all experiments, Plotting utilities to reproduce all figures. All results can be reproduced
using a single command-line interface without manual intervention. Pretrained models and logs will
also be provided to facilitate benchmarking and verification.
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A LIMITATION AND FUTURE WORK

A fundamental limitation of our approach lies in the natural trade-off between interpretability and
performance. While our symbolic, rule-based actor offers clear advantages in terms of transparency
and simulatability, this structure inherently constrains policy expressiveness compared to fully neural
counterparts—particularly in complex, high-dimensional environments. Although NSAC achieves
competitive performance across benchmark tasks, there may be scenarios where its symbolic policy
cannot match the nuanced optimisation achievable by deep learning-based policies.

NSAC uses rule ensembles over input features, so the candidate rule space grows with the number of
attributes and thresholds. In practice, we keep policies compact and simulatable by capping the rule
budget and rule depth. This makes NSAC best suited to low—to—medium dimensional feature spaces
or to settings with a good compact feature representation; truly high-dimensional inputs would require
prior feature extraction or a hybrid neural-symbolic architecture. Also, boosting-based rule updates
are currently performed per action, so runtime scales roughly linearly with the number of discrete
actions. Our experiments use small to moderate action spaces, and we control cost by limiting rules
per action and exploiting trivial parallelism across actions. Very large action spaces would likely
require extensions such as shared rule ensembles or multi-class boosting. NSAC is not well suited to
highly partially observable or sparse reward environments(like PONG Delfosse et al.| (2024b))) that
demand rich temporal memory or very high-capacity function approximators.

Moreover, interpretability is not a binary property but exists on a spectrum. Different symbolic
approaches offer varying degrees of clarity, modularity, and simulatability, often depending on the
complexity of the rule structure, the nature of the environment, and the domain-specific knowledge
embedded within the rules. As such, the perceived interpretability of a symbolic method may vary
across users and use cases. Practitioners must therefore carefully consider the type and level of
interpretability required for their application—balancing traceability with scalability—when choosing
or designing a symbolic component. Future work may explore adaptive symbolic structures or hybrid
neuro-symbolic policy representations to better navigate this trade-off across diverse tasks.

B DETAILED RULE UPDATE
Step 1: In time-step t, for f,, we first select a new query ¢; from a candidate set Q by solving
= b . (tfl) 8
¢ = arg max obj(q; o' V), ®)

where we adopt OGB (Yang et al| [2024) for the objective function. Let ¢q =
(q(x1),...,q(x,))T € {0,1}" is the query vector of the query ¢, and g1 =
(8L,\(f(§t71))/8f(gt71)(wl), ce 8L,\(f,§t71))/6f(5t71)(wn))T is the gradient vector of the empir-
ical risk with respect to the predicted values of f(gtfl). g(ffl) and g, are the projection of
g and q onto the orthogonal complement of the range of Q;_1 = (qi,...,q:_1)7, where
g = (¢i(z1),...,qi(xn))T € {0,1}" is the query vector of the query ¢; fori = 1,...,t — 1.
We express the objective function as follows: obj(g; étil)) = 0bjoe,(9) = |qu(f71) [/llgL|l- The
candidate query set Q comprises all possible conjunctions of propositions, where each proposition
corresponds to a condition that splits the attribute space based on attribute values of given data points
(e.g., threshold-based splits). The objective function is maximized using greedy or beam search.

Step 2: After adding the updated new query, we re-calculate the optimal weight vector by solving
w, = arg min L (Qiw), ©
weR?

where Q; = Q:_1 U gq; is the n x ¢t matrix with the outputs of the selected queries.

Step 3: After there are k rules in the system, instead of continuing to add a new rule for each time,
we adopt the post-processing replacement step of boosting algorithm (Shalev-Shwartz et al., [2010).
In each iteration, we remove one rule with minimal absolute weight, leaving & — 1 rules in the
model: k* = argmin;<,< k|w,|, and remove the query function g« together with its coefficient

wy+, thereby reducing the ensemble to f*7) with k — 1 terms. Then, we need to recompute
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the weight vector wy- = (wr)fe[k]y#k* ([k]={1.... k}) of f*7) along with the updated query

functions {g, }r[x],rsh: Wi- = arg mingcge-—1 Ly (Qkf,w), where Q- = {q }re[i],r£kr 18
the n x (k — 1) matrix with the outputs of the selected queries.

Step 4: After this, repeat Step I to add a new rule to the system. In the end, the weights of all the k

rules are recalculated (same as [§|and [9)) in Step 2. If the expected loss does not decrease after the
post-processing procedure, the model before post-processing is restored. The performance of the
post-processing with fully-corrective boosting is guaranteed by the following theorem.

Algorithm 2 Orthogonal Gradient Boosting (OGB)

PR N RN

Input: data (x;,y;), number of rules k and g;
fO =0

cfort=1,...,kdo

q: = argmax, [g1,q|/llqL]l

w® = argming,,  .,)er: L,\(Z;:1 w;q;)
[0 =wa () 4+ a()
end for

Output: f*)

Algorithm 3 Rule Replacement Steps

Input: data (x;,y;), ¢ = 1,...,n, original rule ensemble with % rules f,go), maximum iteration

number 7" and g
fort=1,...,T do

Find the index of the smallest weight absolute value r = argmin;eq,.. |w;t_1)|

WD = argmingegr-1 La (X @ i)

A0 = S o al)

Find the query q,(:) = argmax, ||¢"g.]|/|qL]

w(t) = arg miny, cre ﬁA(Zie[k],{,,} w;q; + quv("t))
Letd = Ly(f®) — ﬁ/\(Zie[k]f{r} wgt)% + wT('t)qSt))
if § (% 0 then ® e

fro' = Yiem—pry Wi @+ wrgr
else

break
end if

end for
Output: f ,gt)
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Figure 6: The NSAC Algorithm.

C THEORETICAL ANALYSIS

We present a comprehensive theoretical convergence analysis of our NSAC algorithm. Under standard
assumptions, our algorithm converges to a local optimum. We assume the following conditions:

Assumption C.1 (Step Sizes). Assume oy q) be the learning rate for actor and let oy, be the learning
rate for the critic. The sequences {a(t)} and {cy(w,q)(t)} are positive and satisfy

A(w,q) (t)

Za¢(t) = o0, Za(w,q)(t) = 0072(0%(15)2 + Q(w,q) (t)2) < 0, tlgglo W =0,
t=0 t=0 t=0

so that the critic update occurs on a faster timescale.

Assumption C.2 (Markovian Sampling & Ergodicity). We assume mild mixing or ergodicity con-
ditions ensuring that each state-action pair is visited infinitely often in the limit, and that standard
stochastic approximation methods apply.

Assumption C.3. We assume a Lipschitz-smooth approximator for Vi (s). We assume the “compat-
ibility”” holds or that any residual bias in the critic’s estimate does not prevent recovering the true
gradient direction in expectation.

Theorem C.4. (Theorem 2.9 in (Shalev-Shwartz et al.l|2010)) Let L( ) be the risk function defined by
a B-smooth loss function, where the expectation is with respect to an arbitrary distribution over X XY
Let \ > 0 be a scalar, f is an additive rule ensemble with k rules, f is a reference rule ensemble with
ko rules, if k +1 > ko(1 + 16 /\?), and assume that L is (k + 1 + ko, \)-sparsely-strongly convex.
Additionally, let T be an integer such that

AME+1—-k L(0) — L(f

( ) (LD w0
20 €

Then if the fully corrective boosting is run for k iterations and its last predictor is provided as input

for the post-processing replacement procedure, which is then run for T iterations, then when the

procedure terminates at time t, we have L(f®)) — L(f) < e.

Theorem C.5. Let ¢ be the fixed parameters of a critic, inducing a fixed value function Vy(s) for

each state s € S. Let f be a parameterized function (e.g., the actor’s approximation to the advantage)

that is updated iteratively according to the update rule, the sequence { fi.} converges to f.

T>
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Proof. We first calculate the risk for rule ensembles for f and f based on the loss functions: L(f) =
—log ms(a¢|s¢) f and L(fx) = —log 7y, (a¢|s¢) fr, respectively. When R(:) is error bounded, there

exists a lower bound with a constant v > 0 satisfying |L(f1) — L(f2)| > 7| f1 — fll, for any
f1 and f5 in the parameter space. Based on Theorem [C.4] when equation [10]is satisfied, we have

e — fll < % |L(fk) — L(f)‘ < =. Hence, bounding the difference in risk |L(fx) — L(f)| by e
forces the parameter distance || f;, — f|| to lie within £ O

Theorem C.6 (Convergence of NSAC). Let {(w, qt), ¢+ } be the sequence of actor and critic param-
eters updated via Egs. equation|6l-equation [7junder the Assumptions Then {(wy, q1), d1 }
converges almost surely fo a set of stationary points of the associated ordinary differential equa-

tion (ODE) system: ¢ = F(¢; (w,q)), (1, q) = G((w,q); ¢) where F represents the temporal-
difference (critic) dynamics, and G represents the policy-gradient (actor) dynamics. In particular,
(w, q) converges to a local optimum of J(w, q), where J is the expected cumulative reward.

Proof. We employ the concepts of Two-timescale theorems (Borkar & Meyn, [2000; |Wu et al.| [2020)
and Theorem [C.5]for the proof. Please refer to Appendix [E]for the detailed proof of convergence. []

D ACTOR’S LOSS WITH L2 REGULARIZATION

Theorem D.1 (Local Strong Convexity of Actor’s Loss with L2 Regularization). Consider the actor’s
loss function in an A2C framework defined as

A
L(0) = —Eonpm arm, [A7 (s, 0) log mo(als)] + 51617,

where \ > 0 is the regularization coefficient for L2 regularization.

We assume:

1. The policy mg(a|s) is twice continuously differentiable with respect to 0;

2. At a local minimum 0%, the Hessian of the unregularized loss Lyne,(0) =
—E[A" (s, a) log Ty (als)] satisfies V2 Lyne (0%) = O (positive semi-definite);

3. The regularization coefficient X is chosen such that A > 0.

Then, there exists a neighborhood U around 0* where the regularized loss L(0) is strongly convex.
Specifically, within U,
V2L(0) = M,

where I is the identity matrix in R,

Proof. We aim to show that the regularized loss function L(#) is strongly convex in a neighborhood
around 6*.

The regularized loss can be expressed as the sum of the unregularized loss and the L2 regularization
term:
L(@) = Lunreg(e) + Lreg(9)7
where
A2

Lueg(6) = S 1611
Compute the gradient and Hessian of L(6):
VL(0) = VLuneg(0) + A,
V2L(6) = V Lueg(6) + AL
At the local minimum 6*, by assumption:

szunreg(o*) i 0.

Therefore,
V2L(0*) = V? Lyneg (0%) + A = Al
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This shows that the Hessian of the regularized loss at 6 is positive definite, as A > 0. Since mg(a|s) is
twice continuously differentiable, VQLumeg(Q) is continuous in #. Hence, there exists a neighborhood
U around 0* where:
V2 Luneg(0) = 0, V0 € U.

Within U,

V2L(0) = V? Lynreg (0) + A = AI.
This inequality holds because VQLunreg(G) = 0 and M is positive definite. Since V2L(0) = I for
all @ € U, the loss function L(0) is **strongly convex** in the neighborhood &/ around 6* with
strong convexity parameter \.

O

Theorem D.2 (Local Error Bound under Local Strong Convexity). Let L : R — R be continuously

differentiable and p-strongly convex in a neighborhood N of some point f € R% In other words,
there exists p > 0 such that for all f € N,

A M A
L(f) = L(f) = SIIf—=fI*
Then, for every f in that neighborhood N,

. 2 N
1751 < 2 - L.
Proof. Since R is p-strongly convex in the neighborhood A around f , we have the inequality
A /J/ ~
L) - Uf) = BIf-fIE vien
Rearrange this to obtain
=17 <

Taking the square root of both sides yields

1741 < 2 (2 - 1),

Thus, in the local region A, a small gap in the objective value L(f) — L(f) forces f to be close to f.
This is precisely the local error-bound property. O

E PROOF FOR CONVERGENCE OF OUR PROPOSED ALGORITHM

Theorem E.1 (Convergence of our Proposed Algorithm). Let {(w, qt), ¢:} be the sequence of actor
and critic parameters updated via equation [6}-equation [/l under the Assumptions Then
{(w¢, qt), ¢+ } converges almost surely to a set of stationary points of the associated ODE system:
{05 = F(¢; (w,q)),
(w,q) = G((w,q); ¢),

where F represents the temporal-difference (critic) dynamics and G represents the policy gradient
(actor) dynamics. In particular, (w, q) converges to a local optimum of J(w, q).

Proof. By Assumption (w.q(t)/ag(t) = 0. Hence, on the “fast” timescale, we may treat 6, as
if it were quasi-static. Then the critic update is a standard temporal-difference learning procedure (or
mean-squared error minimization) for a fixed policy 7w q)-

From classical TD-learning results (or generalized linear function approximation theory), we know
that ¢; converges to the set

{¢"(w,q) : F(¢*(w,q)); (w,q) = 0},

provided that vy (¢) diminishes appropriately and under the usual conditions.
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Formally, one shows that for each fixed (w, q), the ODE
¢ =F(¢; (W,q))

has a globally asymptotically stable equilibrium at ¢*(w, q). By the Two-timescale lemma (Borkar
& Meynl 20005 Wu et al., [2020), the actual sequence ¢, tracks this stable equilibrium as ¢ — co.

On the slower timescale, we consider the actor update:

(W,a)iy1 = (W, q)s + a(w,q)(t) v(w,q) 10g7f(w,<:1)t(at \ St)A\t~

As ¢, converges quickly to ¢*(w, q), the advantage estimate A, converges to A™(w.a) (s, a;). Hence,
up to diminishing approximation errors, the gradient update for our rule based model is driven from
the true policy gradient from the policy gradient theorem. Based on Theorem|[C.3] ignoring the small

the errors, we have
G((W7 q)7 ¢* (W7 q)) = qu‘](w7 q)

Putting the fast and slow processes together, we return to the coupled ODE; By the previous steps:

F(¢; (w,q)) =0 implies ¢ = ¢*, (11)
G((w,q); ¢") = VugJ(W,q). (12)

Hence, an equilibrium (¢*, (w, q)) of the ODE occurs precisely, when

F(¢*;(w,q)) =0 and G((w,q); ¢*) =0,
which in turn implies
VJ(w,q) =0, if the advantage estimation is unbiased.

Therefore, the equilibrium corresponds to a stationary point of J(w, ¢). Under mild conditions (e.g.,
local convexity/concavity arguments or strict monotonicity), one concludes that the limit points are
local maxima of J(w, q).

We now invoke the standard Two-timescale theorems (Borkar & Meyn, 2000; [Wu et al.| [2020). then
the combined updates converge to an internally consistent equilibrium of the ODE. By the structure
of the ODE, the equilibrium is a stationary point and local optimal of J(w, q). [

F HYBRID WARM START FOR ACCELERATING CONVERGENCE

In NSAC, we also adopt a novel hybrid training strategy that incorporates both neural network-based
actor and rule-based actor. This hybrid strategy seeks to merge the quick learning attributes of neural
networks with the clear and straightforward nature of rule-based systems.

Step 1: We employ a traditional neural network-based actor-critic model to train the system. In this
phase, both the actor and the critic are implemented as neural networks, leveraging their ability to
approximate complex functions and capture high-dimensional patterns in the data. The model is
trained for a certain number of episodes but not until complete convergence. This pre-training phase
is designed to establish a preliminary value function estimation that captures essential features of the
optimal strategies in a computationally efficient manner.

Step 2: The neural network-based actor is replaced with the rule ensemble actor. This rule-based
system is designed to provide greater transparency and interpretability in decision-making. With the
rule ensemble actor in place, training continues, utilizing the previously trained neural network critic.
The critic assists the new actor in refining its policy through ongoing feedback and value estimation.

F.1 ABLATION STUDY

In our ablation study, we explored how variations in the rule count and the implementation of a warm
start influenced our method. We conducted tests in the CartPole-v1 environment under various rule
configurations, specifically using 5, 10, 12, 20, 30, 40, and 50 rules per action. Each configuration
was tested both with and without a warm start.
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Figure 7: Ablation study on different numbers of rules and warm start.

1. Number of Rules: As depicted in Figure [/} the model configured with 12 rules per action
and a warm start yields the highest reward. This outcome suggests that having 12 rules per action
provides the model with sufficient flexibility to effectively capture the essential dynamics of the
environment without being overly simplistic. Employing fewer than 10 rules, such as 5, may not
offer adequate coverage to manage the environment’s complexity, resulting in inferior performance.
Conversely, a larger number of rules may lead the model to overfit the training data, picking up
on noise or irrelevant patterns and diminishing its generalizability to new contexts. The findings
from this ablation study highlight a critical balance between the number of rules and overall model
performance. They demonstrate that merely increasing the number of rules does not invariably
improve performance, as an excess can lead to complexity and overfitting, whereas too few can
restrict the model’s performance.

2. Warm Start: When the number of rules is small, the model’s representational capability is limited,
so the initial conditions (e.g., the warm start) become more critical. A warm start can guide the model
toward better solutions early on, helping it learn an effective policy faster and avoid getting stuck
in poor local optima. In contrast, with a larger rule set, the model has greater capacity to explore
various configurations. In such cases, relying on an external initialization can sometimes constrain
exploration, preventing the model from fully leveraging its increased flexibility. As a result, the
model without a warm start may discover a better configuration on its own when there are many rules
to learn from.

G CONTINUOUS ENVIRONMENTS

Continuous environments differ fundamentally from the perspective of the theoretical framework
we propose. In this work, theoretical analysis is restricted to discrete action spaces, as our method
enables us to establish formal convergence guarantees.

In order to guarantee the convergence of our proposed method, we restrict our analysis to discrete
action spaces. The convergence proof relies on several technical assumptions—such as bounded
gradients, Lipschitz continuity, and stable critic updates—that are typically satisfied in discrete
action spaces, but are difficult to guarantee in continuous settings, particularly for actor—critic
methods (Borkar & Meynl, 2000; Wu et al., 2020). Discrete policies (e.g., softmax) yield smooth and
bounded log-policy gradients, which facilitate stable actor updates and tractable Bellman backups
using finite sums. These same conditions are also required for the convergence of the rule-based
function class used in OGB. As a gradient-boosting-based algorithm, OGB requires the loss function
to be Lipschitz continuous, which means that the gradients are bounded. According to Theorem 2.4,
2.8 and 2.9 in [Shalev-Shwartz et al. (2010), Lipschitz continuity is a necessary condition for the
learned models to converge to a theoretically optimal model within a certain number of iterations for
(fully corrective) boosting methods and the rule replacement steps.

In contrast, continuous action spaces present challenges, such as unbounded gradients (e.g., the policy
gradient can become unbounded as the standard deviation in Gaussian policies), integration-based
Bellman targets, and higher variance in gradient estimates. These factors violate the core assumptions
underpinning both the two-timescale stochastic approximation framework and the rule ensemble
model used in our convergence analysis.
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H RELATED WORK

Ref

Work (short) Category Interp. at scale P/Pt/E

Performance

Ernst et _al.
(2005); |Gupta
et al.|(2015a)

Tao et _al.
2018)
Bastani_et_al.
2018)
Roth et al.
2019)
Silva__et al.
2020)
Ding et al.
(2020)
Gupta et al.
(2015b)

Coppens et al.
(2019)
Liu
(2019)
Garcez et
(2018)

et__al.

al.

Lyu et

2019)
Illanes et al.
2020)

Landajuela
et al. (2021)
Hein al.
(2018)

et

Verma et _al.
(2018)

Ours

/SDRL (sym- Symbolic

Tree-based
batch RL

Tree policy Not interp.(large trees) N/N/Y
(native)

Tree RL for Tree policy Not interp.(multi-stage) N/N/Y
DTRs (native)

Policy extrac- Tree policy Often not interp. (size N/Y/N
tion (extracted) balloons)

Conservative Tree policy Not interp.(large trees) N/N/Y
Q- (native)

Improvement

Differentiable Tree policy Not interp.(math nota- N/N/Y
decision trees (diff.) tion)

Cascading De- Tree policy Not interpretable at N/N/Y

cision Trees (native) scale
Policy Tree policy Often not interpretable N/Y/N
Tree(distill.) (distilled) at scale

Soft DT distil- Tree policy Often not interpretable N/Y/N

lation (distilled)  at scale

Linear Model Tree policy Not interp.(math nota- N/Y/N
U-Trees (distilled)  tion) (onl)
SRL with Symbolic Interpretable (symbolic Y/N/Y

commonsense RL (prede- rules)
fined)
Interpretable (modules) Y/N/Y
bolic plan- RL (prede-
ning) fined)
Symbolic Symbolic
plans as instr. RL (prede-
fined)

Discovering  Symbolic

Interpretable (plans) Y/N/Y

Not interp.(math nota- N/Y/N

symb. policies policy tion)
(from NN)
GP-based Symbolic  Not interp.(math nota- N/N/Y
symbolic policy (di- tion)
rules rect)
Programmatic Program  Not interp.(math nota- N/N/Y
RL (PIRL) synthesis  tion)
policy
NSAC Symbolic Interpretable(symbolic N/N/Y
RL rules)

Strong on S/M; degrades on
L/complex

Hard to scale beyond structured
domains

Tracks teacher; small typical
drop

Strong on S/M; degrades on
L/complex

Solid on modest tasks; mixed
scaling

Good early; plateaus with com-
plexity

Tracks teacher; bigger drop for
small trees
Approximates
mild—-moderate drop
Good local fidelity; may trail
overall

Strong when priors fit; brittle if
misspecified

teacher;

Often strong & sample-efficient;
planner-dependent

Good when plans align; limited
otherwise

Near-teacher on seen tasks;
drops under shift

Competitive on simpler control;
search limits scale

Lags in high-dimensional

Often strong & sample-efficient

Table 2: Compact comparison of policy representations and learning setups.

We summarise representative interpretable RL approaches across tree-based, symbolic, and pro-
grammatic policy classes. Interp. at scale highlights whether interpretability persists as problem
size/complexity grows. P/Pt/E abbreviates Predefined knowledge? / Post-hoc from pretrained? /
Learn directly from environment? (Y/N). Performance sketches typical empirical behaviour. Overall,
native tree policies often face scalability—interpretability trade-offs, post-hoc distilled trees track
teachers but lose fidelity when heavily pruned, symbolic methods offer strong transparency and sam-
ple efficiency when priors/plans match the domain, and programmatic policies remain challenging in
high-dimensional settings.
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I BENCHMARK SETTING

We recognize that certain algorithms might perform better with changes to the environment (e.g.,
adjusting the number of parallel environments or modifying rewards). Still, finding a single modifica-
tion that consistently benefits all tested algorithms remains challenging. Therefore, we rely on the
most basic version of each environment to maintain consistency across all methods. Additionally,
it is important to note that the complexity of our model is designed to balance comprehensibility
with the cognitive effort needed to understand all of the rules involved. Therefore, in our paper,
we deliberately selected 12 rules per action model, which helps ensure the interpretability of our
proposed method.

All experiments in this paper are conducted on a computer with processor “3.1GHz 6-Core Intel Core
i5” and a memory of “72GB 2133 MHz DDR4”.

J ENVIRONMENT DESCRIPTIONS

* CartPole-vl (Gym). The state s € R* is continuous and consists of cart position, cart
velocity, pole angle, and pole angular velocity. The action space is discrete with two actions:
push left / push right. The reward is +1 at each timestep until termination (when the pole
angle exceeds the threshold or the cart goes out of bounds).

» MountainCar-v0 (Gym). The state s = (position, velocity) € R? is continuous. The
action space is discrete with three actions: push left / do nothing / push right. The reward is
—1 at each timestep until the car reaches the goal position at the top of the hill.

* Acrobot-vl (Gym). The state s € R* is continuous and encodes the two joint angles and
their angular velocities. The action space is discrete with three torque actions applied at the
actuated joint. The reward is —1 at each timestep until the end-effector reaches the target
height, at which point the episode terminates.

* Blackjack-vl (Gym). The state is a discrete tuple (player sum, dealer showing,
usable ace flag). The action space is discrete with two actions: hit / stick. The reward
is +1 for a win, —1 for a loss, and O for a draw.

* Postman (grid-world). The state is discrete and encodes the agent’s grid location together
with the locations and delivery status of parcels (picked up / delivered). The action space is
discrete: move north / south / east / west and pick-up / drop-off when applicable. The reward
is —1 per timestep and a positive bonus when a parcel is successfully delivered, encouraging
short, efficient delivery routes.

* HVAC (building control). The state is high-dimensional and continuous, including (for
each thermal zone) indoor air temperature, humidity, and CO, concentration, together with
outdoor temperature, time-of-day, and occupancy-related features. Actions are discrete
combinations of heating and cooling setpoints (e.g., heating and cooling setpoints chosen
from a finite grid of admissible values). The reward at each control step penalises both
energy consumption and comfort violations: large negative penalties are applied when zone
temperatures leave the comfort band, and a smaller penalty is proportional to electricity
consumption, so the agent is encouraged to maintain comfort with minimal energy use.
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Figure 8: Comparing the Performance of NSAC with Baseline Methods and Visualize the rules.
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Typical rules for HVAC control with sinergym:
Action htg=16, clg=26:

+50.5500 if — 11.7075 < outdoor_temperature < 15.0 & htg_setpoint < 20.0 & air_temperature < 20.8431
+42.3222 if hour < 6.0 & — 9.5 < outdoor_temperature < 4.3200 & air_temperature < 21.1095
+33.7433 if hour < 6.0 & outdoor_temperature < 3.0 & HVAC _electricity_demand_rate > 3524.0383
+30.0530 if air_temperature < 19.4323 & HVAC _electricity_demand_rate > 3492.0372
+23.8401 if hour < 6.0 & outdoor_temperature < —6.0 & HVAC_electricity_demand_rate > 1836.0156
+19.5165 if outdoor_temperature < —5.0 & air_temperature < 20.8367 & air_humidity > 34.4557
+19.3194 if outdoor_temperature < 4.3200 & clg_setpoint < 26.0 & air_temperature < 20.7468
& air_humidity > 44.9061 & HVAC_electricity_demand_rate < 8328.7136
+17.1997 if outdoor_temperature < —6.0 & air_temperature < 20.6569 & air_humidity > 34.4701
+12.2539 if outdoor_temperature < 1.1000 & air_temperature < 19.8760 & air_humidity > 48.4554 &
HVAC _electricity_demand_rate > 2194.6457
+10.1033 if day_of_month < 16.0 & outdoor_temperature < —9.5 & air_temperature < 21.4822
4+9.9095 if outdoor_temperature < —1.2000 & clg_setpoint < 28.0 & air_temperature < 18.6297 &
20.1259 < air_humidity < 57.8947
+6.5348 if hour < 5.0 & outdoor_temperature < —6.2000 & air_humidity > 46.6687 &
HVAC _electricity_demand_rate < 6047.4648

Action htg=18, clg=26:

+52.4710 if outdoor_temperature < 2.0 & htg_setpoint > 18.0 & air_temperature > 24.6918 &
36.4788 < air_humidity < 59.9498 & 655.1863 < HVAC _electricity_demand_rate < 3286.0521
+31.8345 if — 7.3000 < outdoor_temperature < —2.4800 & clg_setpoint > 28.0 & air_temperature > 22.7824 &
air_humidity < 53.0045 & HVAC_electricity_demand_rate < 2804.0908
+25.6196 if day_of_month < 23.0 & hour > 21.0 & htg_setpoint > 18.0 &
air_temperature < 21.2843 & 22.2264 < air_humidity < 57.4836 &
HVAC _electricity_demand_rate < 4727.3044
+14.6693 if hour < 16.0 & clg_setpoint > 28.0 & 24.3635 < air_temperature < 25.3421 &
air_humidity < 43.6038 & 1974.6005 < HVAC_electricity_demand_rate < 2847.7105
+12.8951 if day_of_month > 17.0 & 1.0 < hour < 5.0 & htg_setpoint < 16.0 &
air_temperature < 19.6280 & HVAC _electricity_demand_rate > 728.1273
+6.6281 if 14.0 < hour < 15.0 & outdoor_temperature < —2.4800 & 24.1909 < air_temperature < 25.1225
& air_humidity < 44.0097 & HVAC _electricity_demand_rate < 2856.4850
+3.6962 if outdoor_temperature < —2.4800 & air_temperature > 25.9993
+2.2511 if hour > 18.0 & — 5.0 < outdoor_temperature < —2.4800 & air_temperature > 22.3801
& air_humidity < 52.5242 & 1164.7935 < HVAC_electricity_demand_rate < 1443.5973
+1.7191 if — 7.3000 < outdoor_temperature < —3.0 & clg_setpoint > 30.0 &
air_humidity < 52.1981 & 1411.8365 < HVAC_electricity_demand_rate < 2783.3056
+1.6791 if 5.0 < day_of_month < 28.0 & — 3.4000 < outdoor_temperature < 6.6000 &
22.4682 < air_temperature < 23.2356 & HVAC_electricity_demand_rate < 1559.4128
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Action htg=18, clg=25:
+76.0682 if month < 2.0 & day_of_month < 29.0 & — 2.4800 < outdoor_temperature < 15.0 &
htg_setpoint < 21.0 & air_temperature < 20.4542
+35.7797 if month < 2.0 & day_of_month < 28.0 & outdoor_temperature < 15.0 &
air_temperature < 20.4547 & HVAC _electricity_demand_rate < 888.4346
+19.5429 if hour < 17.0 & outdoor_temperature < 4.3200 & air_temperature > 21.3982
& air_humidity > 22.1544 & HVAC _electricity_demand_rate > 3353.0663
+11.0059 if outdoor_temperature < —7.3000 & air_temperature > 23.0022
& HVAC _electricity_demand_rate > 3343.0970
+10.4447 if month < 1.0 & outdoor_temperature < 0.0 & air_temperature > 22.3607
& air_humidity > 35.8469 & HVAC_electricity_demand_rate > 3237.7531
+9.2884 if day_of_month < 28.0 & — 2.4800 < outdoor_temperature < 15.0 & clg_setpoint < 25.0
& air_temperature < 20.4644
+8.4585 if hour < 16.0 & air_temperature > 23.5872 & HVAC _electricity_demand_rate > 3378.0424
+7.6878 if 2.0 < day_of_month < 8.0 & hour < 15.0 & outdoor_temperature < —6.7000 &
air_temperature > 22.9565 & HVAC_electricity_demand_rate < 5120.2045
+6.0944 if hour < 16.0 & outdoor_temperature < —9.5 & air_temperature > 22.3765
+6.0912 if — 2.4800 < outdoor_temperature < 1.0 & clg_setpoint < 29.0 & air_temperature < 18.5048
& 28.1472 < air_humidity < 57.5569
+4.1747 if air_temperature > 25.1225 & HVAC_electricity_demand_rate > 4135.6304
+2.7032 if 2.0 < day_of_month < 29.0 & hour > 1.0 & — 11.7075 < outdoor_temperature < —5.6000
& 18.0977 < air_temperature < 24.9366 & 4026.8635 < HVAC _electricity_demand_rate
< 7054.0210

Action htg=18, clg=28:
+47.6207 if outdoor_temperature < 1.1000 & air_temperature < 21.3847
+42.5021 if month < 2.0 & outdoor_temperature < 13.0150 & clg_setpoint < 29.0 &
air_temperature < 20.8932 & HVAC _electricity_demand_rate < 9236.5036
+37.5818 if month < 2.0 & htg_setpoint < 21.0 & 19.0381 < air_temperature < 22.2181
& air_humidity < 61.5915
+37.5560 if month < 2.0 & htg_setpoint < 21.0 & 19.0971 < air_temperature < 24.1215
& air_humidity < 62.4223
+26.1161 if outdoor_temperature < —3.4000 & 17.0 < htg_setpoint < 18.0
& air_temperature < 21.6418 & HVAC_electricity_demand_rate > 1616.5198
+25.3651 if month < 2.0 & hour < 6.0 & outdoor_temperature < 8.8000 & air_temperature < 21.0920 &
air_humidity < 51.7392
+21.4283 if hour < 6.0 & outdoor_temperature < —2.0 & htg_setpoint < 18.0 & air_temperature < 20.0191 &
HVAC _electricity_demand_rate > 1266.1656
+19.3831 if air_temperature < 19.0718
+18.9771 if clg_setpoint > 28.0 & air_temperature < 22.6279
& 3313.9887 < HVAC _electricity_demand_rate < 9094.2658
+15.9370 if outdoor_temperature < 1.0 & htg_setpoint < 20.0 & air_temperature < 21.1680
& air_humidity > 46.0692 & HVAC_electricity_demand_rate > 3766.4288
+11.4827 if outdoor_temperature < 1.1000 & air_temperature < 18.9835
& 2059.7858 < HVAC _electricity_demand_rate < 8526.6964
+11.1224 if 3.0 < day_of_month < 28.0 & hour > 22.0 & outdoor_temperature < —1.0 & htg_setpoint < 18.0
& 20.5696 < air_humidity < 57.0262 & HVAC_electricity_demand_rate > 2007.6986
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L RULES VISUALIZATION FOR BLACKJACK-V1

With Usable Ace

stick rules for stick
12 9
. . 20 « 141 1 =1 1901 if
With Usable ace With Usable ace 9 164 i [ 1.038ifd=<9&p=12
& 1 7.944ifd=2&p=17
<18 1 [ 3910ifp<17&p=13
] ] 0.985if p=21
15 20 3 2698if
hit rules for hit
124
10 144
216
&
218
ENEEEEEEN ] 1 502421080217 8p=18
EENEEENEN 246810 5 46 810
2' 4' 6‘ 8‘ 10' 0 dealer dealer
dealer -5 0 5 10 15 20

Figure 11: Visualization for action, value and rules for Blackjack with Ace.

Without Usable ace

stick rules for stick
1.901if p=11
Without Usable ace Without Usable ace | 1 L08iasokp=12
20.0 1 4.483iface=0&p=14
' 7.944ifd=26&p=17
2 [ 3910 ps17&p=13
17.5 M 0.985ifp=21
1 2.698ifp=9
| 3 -0197ifd<8&p=8&p=8
15.0 -8.631iface=0 & p=13&p=8
1 0.088iface=0&d=10&p=16&p=14
12.5 hit rules for hit
] 4] BH—1 11
> 10.0 6 i — 171 2 o63sifd=9&p=s
f 8 ] LH =1 0assira<sapss
Q [ -0.423ifd=8&p=7&p=6
7.5 . 104 1 ] 1.602ifd>4&d>5&p=8&p=6
512 1 £ -0559ifds9&ps7
5.0 Q14 q [ 0927ifd=6&p=7
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Figure 12: Visualization for action, value and rules for Blackjack with no Ace.

Action O (Stick):

+1.9012 ifp > 11

4+1.0376 ifd <9andp > 12

+4.4833 iface > landp > 14

+7.9438 ifd>2andp > 17

+3.9105 ifp<17andp > 13

4+0.9851 ifp > 21

+2.6981 ifp>9

—0.1967 ifd<8andd<9andp < 8andp > 38
—8.6313 iface <Oandp < 13andp > 8

4+0.0882 iface < Oandd > 10andp < 16andp > 14
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Action 1 (Hit):

40.6347 ifd<9andp <8

—0.4481 ifd<8andp <6

—0.4231 ifd<8andp<Tandp>6

+1.6016 ifd>4andd>5andp < 8andp >6
—0.5585 ifd<9andp <7

4+0.9266 ifd>6andp <7

40.3394 ifd>9andp <10andp > 9
+0.9844 ifd>8andp <7

—0.3849 ifd>3andp <6

—5.0124 ifd>10andp > 17and p > 18

M MOUNTAINCAR RULES

do nothing rules for do nothing

-0. 07-

right

0.07
- !
-0.07

-19.725if p=-0.510 & v=0
-13.485 if v=0.001
24220ifp=-0.485&v=0
-23.371if v=0.003

24.743 if p=-0.402 & v=0.000
-26.515if p=-0.631 &v=0

T T LI 1
rules for right 26.215 if p=<-0.510 & v = 0.007

27.518 if p=-0.402 & v=0.001
21.307 if v=0.001

18.688 if v=-0.001

19.766 if v=0.000

21.341 if p=-0.633

11.775 if p=-0.577 & v=0.001
16.511 if v=0.000

"rules for left
0.07

25.311if v=-0.001

-10.568 if p=<-0.502

51.035 if v=-0.004
-14.514ifp=-0.581 & v=0
-11.616 if p<-0.411 & v=<-0.001
17.688 if v=-0.000

16.429 if -0.628 = p <-0.252
&-0.012=v=0.015
-17.952if -0.616 = p =-0.490
& 0.001 =v=0.008
21.474 if v=0.000

-0.07 = T
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Figure 13: Visual representation of the rules for MountainCar. Higher actor output values in the
heatmap indicate that the corresponding action is more strongly pre- ferred at that state. The squares
indicate the regions of the state space where the corresponding rules apply.

M.1 CASE STUDY: DECISION BOUNDARY AROUND p > —0.48 IN MOUNTAINCAR

To better understand the learned policy, we analyse its behaviour in the MountainCar environment in
the neighbourhood of the valley bottom. The state is two-dimensional, s = (p, v), where p denotes
the horizontal position of the car and v its velocity. The car starts in the valley and must build up
sufficient kinetic energy by rocking back and forth in order to reach the goal on the right hill. Because
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the engine is too weak to drive straight up, the policy must carefully coordinate position and velocity
to accumulate energy.

> goal (p=0.5)

If v> 0: Right
—
-

turning point
v=0

=-0.48

Figure 14: MountainCar Environment Near the Valley Decision Boundary This figure shows
the MountainCar track with the goal flag on the right hill and the car rendered near the bottom of
the valley at P = —0.48. The vertical dashed line marks the region P > (.48, where the policy’s
decision depends on the sign of the velocity: for v > 0 the agent accelerates to the right to build
speed toward the goal, whereas for v < 0 it accelerates left to commit to a full swing back and gain
momentum for the next climb

In our rule-based policy, one of the most salient decision boundaries appears for positions o the right
of the valley minimum, i.e. for p > —0.48, which is close to the bottom of the track (see Fig. [14).
In this region the height of the track changes only slightly, so the gravitational potential is nearly
constant and the immediate direction of motion is determined almost entirely by the sign of the
velocity v.

Consequently, the line v = 0 for p > —0.48 becomes a natural decision boundary in the (p, v)-plane.
States with p > —0.48 and v > 0 correspond to the car already moving to the right; the optimal
action is to keep accelerating right to maximise its speed for the upcoming climb. In contrast, states
with p > —0.48 and v < 0 indicate that the car has started to roll back to the left after an unsuccessful
attempt; the best response is to accelerate left and commit to a full swing back, so that the next
rightward run can reach a higher point on the hill. Exactly at v = 0 the car is at a turning point,
momentarily stationary before choosing whether to move left or right, which is why this line marks
the decision boundary used by our policy.

Figure [I4] visualises this situation directly in the environment: the car is rendered near p ~ —0.48 at
the bottom of the valley, and the vertical dashed line indicates the region p > —0.48 where the policy
switches between “go left” and “go right” depending on the sign of the velocity.
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M.2 THE RULES

Action Left:

+25.3111  if v < —0.0006471572560258208

—10.5678 if p < —0.5023447513580322

+53.8697 if True

+51.0351 if v < —0.004265955928713083

—14.5140 ifp > —0.5813989758491516 and v < 0.006803702469915152
and v > —0.0008947865571826689

—11.6162 if p < —0.41075775027275085 and v < —0.000661600707098839

+17.6882 if v > —1.5593287753289978 x 10~°
+16.4293 if p < —0.25240878462791444 and p > —0.6275408387184143
and v < 0.01510303020477297 and v > —0.01191
—17.9516 if p < —0.4901819765567779 and p > —0.615831172466278
and v < 0.00759 and v > —0.004150 and v > 0.00126822
+21.4738 if v < 0.00040989847620949166
—2.3676 ifp > —0.5437554597854615 and v < 0.0016861518379300846
and v > —0.0034104006830602885
+1.2316 if p < —0.1402401 and p > —0.4494079709053038
and v < 0.023414026945829402 and v > —0.01632060520350933

No Action:

—19.7248 ifp > —0.5101138830184937 and v < 0.006803702469915152
and v > —0.005573090445250273

—13.4848 if v > 0.0007145821116864693

+24.2199 if p > —0.4848527312278747 and v < 0.00018940809495689726
and v > —0.009227151423692702

—23.3706 if v < 0.003292182506993414

—6.6878 if v < —9.685811237431741 x 10~°
+24.7429 if p < —0.4022643387317657
and v < 0.00020952874911017827
—26.5154 ifp > —0.6311534523963929 and v < 0.006872396916151048
and v > —0.006245836243033409
—8.7515 if p > —0.39260063171386717 and v > 0.0019062188919633629
+0.7214 if v < —0.006146392878144977
—0.9839 if True
+6.8736 if p > —0.5437554597854615 and v < 0.0038646903820335875
+1.0000 if v > —0.0010096890269778618
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Action Right:

+26.2150 if p < —0.5101138830184937 and v < 0.006803702469915152
+6.3636 if p > —0.4848527312278747 and v > —0.009227151423692702
+6.1251 if p > —0.4855665504932403 and v > 0.003292182506993414

+24.0837 if True

+27.5176 if p < —0.4022643387317657 and v < 0.0012711382005363714

+21.3072 if v > 0.0007119119516573855

+18.6883 if v < —0.0005520289996638883

4+19.7662 if v > 0.0004626010428182804

+21.3412 if p < —0.6329279899597166

+11.7750 if p > —0.5767600297927856 and v > 0.0012682238826528204

+16.5113 if v > 0.00040989847620949166

+1.3610 if p < —0.4494079709053038 and p > —0.8744302272796631 and v < 0.023414026945829402

N EXPLANATION OF CART-POLE RULES

left rules for left

0.41

[ -6.833if pa=-0.060
[ -6.822if pa=-0.058
1 14.592 if pa < 0.047
3 1 15.726if
[ 3.470if cp=<0.365 & cp=0.031 & pa=-0.015
[ -7.361if cp=0.368 & pa=-0.034
11.598 if cp=0.252 & pa <0.004 & pa=-0.020
1 -7.779 if pa =-0.030
[ -3.026 if cp=-0.422 & pa=-0.020 & pa=0.013
[ 7.091if cp=0.217 & pa=<-0.004 & pa =-0.020

-0.41

rules for right
0.41

[ -3.547 if cp<0.041
19.181 if cp = -0.077

1 -3.774 if cp=-0.121

=1 2.038 if cp = 0.058 & pa =-0.069

[ -9.542 if cp<0.047

[ -3.079 if cp=-0.016 & pa =<-0.036 & pa =-0.056
10.287 if cp = 0.368 & pa < 0.003 & pa =-0.034

=1 2.050 if pa=0.004

[ -5.776 if pa=<-0.003

-0.41 T T [ 5.118if cp = 0.402 & pa =< -0.009

-4.80 -2.40 0.00 2.40 4.80 -4.80 -2.40 0.00 2.40 4.80 -4.809 if cp < 0.217 & cp = 0.009 & pa =<-0.004

p p

I 1]

-30 -20 -10 0 10

Figure 15: Visual representation of the rules for CartPole involving position and velocity.

The CartPole environment consists of a pole mounted on a cart that moves along a track. The
objective is to balance the pole upright by controlling the cart’s movement left or right. The state
space includes the cart’s position(p), velocity(v), pole angle(#), and angular velocity(#), while the
action space includes applying force to move the cart in either direction. Figure|15|is the visualization
of our actor’s rule regarding the position and velocity. Please refer to Appendix[lél for all the resulted
rules.

Here we will use a typical state in the Cart-Pole game, where the optimal action is to move the cart to

the right, characterized by the parameters p = —0.05,v = 0.1, = 0.05 and 0 = 0.3, as an example
to illustrate the decision-making process for our proposed method. In this scenario, pushing right
reduces the pole’s angular velocity, helping stabilize the pole by balancing the torque induced by the
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tilt. In our model, three rules become active when considering a leftward action; each rule incurs a
negative score because the pole’s angle is positive, decisively discouraging a left move. In contrast,
the overall score for moving right is 2.3, notably higher than that for moving left. Although the cart’s
slight leftward position imposes a small penalty, the pole’s rightward angular velocity plays a critical
role: one rule alone contributes +19.8 to the total, effectively countering any negative effects from the
other rules. Consequently, given the pole’s rightward tilt and velocity, the agent’s optimal choice is to
push right, thereby maintaining stability and preventing undesirable outcomes.

O CARTPOLE RULES

Left:
—6.83310 if pa > —0.06048
—6.82240 if pa > —0.05751
+14.59180 if pa < 0.04701 and pav < 0.26781
+15.72630 if pav < —0.52576
+3.47030 if cp < 0.36470 and cp > 0.03103 and cv < 0.20766 and cv > —0.00962
and pa > —0.01513 and pav < 0.28779 and pav > —0.05232
40.88280 if cp > 0.24231 and cv > —0.40319 and pa < —0.03636 and pa > —0.05565
—7.36080 if cp > 0.36775 and cv > —0.00425 and pa > —0.03416 and pav < 0.12249
+11.59770 if cp > 0.25174 and pa < 0.00381 and pa > —0.02022 and pav < 0.11855
and pav > —0.37647
—7.77910 if pa > —0.02969
—0.86900 if cp < 0.16311 and cp < 0.30448 and cp > —0.11618 and cv < —0.01313
and cv < 0.17905 and pa < 0.03930 and pa > —0.02479 and pav < 0.14835
—3.02560 ifcp > —0.42154 and cv < 0.32329 and cv > —0.01879 and pa > —0.02018
and pa > 0.01293 and pav < 0.13896 and pav > —0.01362
+7.09090 ifcp <0.21659 and cv < 0.21317 and cv > —0.00898 and pa < —0.00355
and pa > —0.01990 and pav < —0.29080

Right:
—3.54700 if cp < 0.04146
4+19.18060 if cp > —0.07721 and pav > 0.20059
—3.77380 if cp > —0.12061
+2.03760 if cp > 0.05832 and cv < 0.06116 and pa > —0.06911 and pav < —0.05532
—9.54210 if cp < 0.04726
—3.07880 if cp > —0.01648 and cv < 0.16053 and cv > —0.19434 and pa < —0.03636 and pa > —0.05565
+10.28650 if cp > 0.36775 and cv > —0.00425 and cv > 0.20400 and pa < 0.00317
and pa > —0.03416 and pav < 0.12249 and pav > —0.37842
42.04960 if cv > —0.34930 and pa > 0.00381 and pav < 0.11855
—5.77560 if cv > —0.36800 and pa < —0.00339
+5.11750 if cp > 0.40156 and cv < 0.39100 and pa < —0.00914 and pav < —0.33129
40.00510 if cp > 0.02529 and cv > —0.01879 and pa < 0.03998 and pa > 0.01293
and pav > 0.13896
—4.80880 if cp < 0.21659 and cp > 0.00944 and cv < —0.28634 and pa < —0.00355
and pav < 0.30114 and pav > —0.01324

P ACROBOT RULES

0:
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+8.7846 if wy > —0.09082 and wo < 0.22991
+9.3353 if cos(f2) > 0.89409
+10.4909 if sin(fy) < 0.44980
+8.2458 if sin(f2) < 0.37771 and wy > —0.12610 and w2 < 0.15699
+11.6541 if True
+6.8474 if sin(f;) < 0.24220 and wy < 0.04877
+1.2850 if cos(fy) > 0.99115 and sin(f;) < —0.01332
+1.7239 if sin(f;) < —0.01472 and wy < 0.02869
+3.5813 if cos(f1) > 0.88816 and sin(f;) > —0.28723 and w; < 0.77240
+1.3335 if cos(f;) > 0.48252 and wy < 1.78991 and w; > —1.70488
+1.0000 if cos(f2) < 0.95137 and sin(6;) > 0.01719

—3.0189 if cos(f) < 0.99319

—3.3464 if cos(f1) < 0.99048 and wo < 0.12677

—8.6917 if cos(f;) > 0.81787 and w; < 0.92265

—5.4697 if True

—9.3263 if w; <0.21755 and we > —0.10354

—5.5746 if sin(f2) < 0.37771 and wy < 1.28679 and wo > 0.15699

+5.4709 if sin(61) > —0.26647 and sin(fs) < 0.44500 and wy > —1.07104 and wy < 0.04877

—8.2010 if sin(6;) < 0.04400

+1.5784 if cos(61) > 0.99341

—9.7807 if sin(f;) < 0.15513 and sin(6;) > —0.70608 and sin(fa) > —0.17949
and wy < 1.78991 and w; > —1.70488

—1.2848 if cos(f;) > 0.99674

+1.0000 if cos(f2) < 0.99350 and sin(6;) < —0.21224 and wy > 0.11238
and wo < —0.22888

+3.5980 if cos(f1) > 0.99689
+2.5385 if cos(f1) > 0.99048
+16.7525 if True
—3.7130 if cos(61) < 0.99999 and sin(f2) < —0.01789
~1.9920 if sin(fs) < —0.00190
+12.0937 if w; < —0.02180 and wo > 0.04994
4+9.6534 if wy > 0.04994
+1.1957 if cos(f2) > 0.24062 and wy > —0.32756 and we < 1.64803
—3.6820 if wy; > —0.12540
+15.8530 if cos(f;) > 0.88816 and wo > —0.41702
+10.0707 if cos(f;) < 0.99674 and cos(f3) > 0.92457
+1.6685  if cos(f2) < 0.99350 and sin(f;) < —0.21224 and w; > 0.11238
and wy < —0.22888
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Q INTERPRETABILITY OF TREE-BASED AND RULE-BASED POLICIES

Following the widely cited definition of interpretability by Murdoch et al. (2019), an interpretable
model should satisfy simulatability, modularity, and low complexity. Simulatability means that a
human can easily compute the model’s output from its explicit expression, given an input and the
model parameters. Modularity means that individual components of the model can be understood in
isolation. Complexity can be quantified by, for example, the total number of terms or parameters in
the model.

SYMPOL learns an axis-aligned decision tree policy directly with policy gradients in a standard
on-policy RL setting, yielding an interpretable tree-based policy class. Conceptually, our method
plays a similar role but uses a rule-based policy class instead of trees. While trees and rules are
closely related—each root-to-leaf path can be seen as a rule—they differ in how they are used and in
the kind of interpretability they afford.

From the perspective of interpreting individual decisions, both trees and rule sets provide simulatabil-
ity. For a given state, a tree explains its choice via a single path of the form

if (condition A at node 1)A(condition B at node 2)A- - -A(condition M at node M) = take action LEFT.

A rule-based model explains the same decision by indicating which rules fired and how they were
combined, for example: “Rule I and Rule 7 are activated and jointly give the highest weight, therefore
the policy selects LEFT.”

In terms of complexity, rule-based models tend to be slightly easier to keep compact: we can directly
control the number and length of rules. Tree-based policies, by contrast, often grow deep or wide as
task complexity increases, which can quickly erode practical interpretability even if the representation
remains transparent in principle.

For modularity, the difference is more pronounced. In a tree, one can treat each root-to-leaf path
as a “module” (a rule), but internal nodes are shared across many paths, so modifying a single split
typically affects a large portion of the state space. In a rule set, each rule is a self-contained piece of
logic. This makes the rule-based policy highly modular: individual rules can be inspected, added, or
removed without having to mentally re-parse or globally restructure the entire model.

This modularity also makes certain safety-style queries much easier to answer with rules than
with trees. For example, consider the property: “Is there any situation where the policy chooses
RIGHT while |0| > 0.25 and x > 1.2? If so, list those situations.” In a rule-based policy, we can
simply scan for rules whose antecedent includes || > 0.25 and z > 1.2 and whose consequent is
action = RIGHT. If such a rule exists (say, Rule V1), we can immediately say: “Yes, a violation
occurs whenever Rule V1 fires.” If no such rule exists, we can cleanly state: “The rule set guarantees
the safety property: in no rule does |0| > 0.25 A x > 1.2 appear with action = RIGHT.” For an
equivalent tree policy, answering the same question requires an exhaustive traversal and aggregation
of all relevant paths, which is considerably less direct in practice.

R PoNG ENV

R.1 RULES

Do nothing
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Aspect

SYMPOL (tree-based policy)

Rule-based policy (ours)

Policy class
Simulatability (single
decision)

Global structure

Modularity

Complexity control

Axis-aligned decision tree policy; each
internal node is a threshold on one fea-
ture, and leaves output action logits.

High: for one state, follow a single root-
to-leaf path = clear “if AABA... then
action”.

Clear hierarchy of decisions: top splits
show the most salient features.

Each path can be read as a rule, but in-
ternal nodes are shared: changing a split
affects many paths at once.

Control via depth limits, pruning, and
tree size; trees can still grow large and
become hard to read.

Explicit rule set / rule list; each rule is a
conjunction of conditions = action (op-
tionally with weights or priorities).

High: for one state, see which rule(s)
fired and how they combine (e.g., “Rule
1 + Rule 7 vote for LEFT”).

Global picture is less rigid; rules form a
flat or lightly structured set, and regimes
are inferred by grouping similar rules.

Highly modular: each rule is a self-
contained unit. One can inspect, add, or
remove rules without restructuring the
whole model.

Control via the number of rules and rule
length; it is easier to set an explicit rule
budget and keep individual rules short.

Table 3: Comparison between the SYMPOL tree-based policy and our rule-based policy from an
interpretability perspective (simulatability, modularity, and complexity).

+ 0.9642
-+ 0.0053
-+ 0.9613
—4.2170
— 3.1880
+4.1575
-+ 0.9695
—3.1775
—0.0000
- 3.1775
—4.2170
-+ 0.9693
-+ 0.0005
+3.3783
-+ 0.9695
-+ 0.9695
—0.1303
—0.0000
—0.0000
—4.4359

if Vz,b 2 0.1

if Vz,b < —-0.1A Vyb = —0.1
if z, < 0.6187499761581421
if 1 < 0.6523809432983398 Ny, > 0.5476190447807312

ifvyp > 0.1 Ayp < 0.6523809432983398
if Vy,b S —0.2

itbf > 0.4571428596973419

ifvyp > 01Ny, <0.5476190447807312
if 23 > 0.800000011920929

ifvyp > 0.1 Axp > 0.48750001192092896 Ay, < 0.5476190447807312
if x, < 0.6187499761581421 Ay, < 0.6428571343421936 Ay, > 0.5476190447807312
if zp < 0.7875000238418579

if 2, > 0.7875000238418579

if zp > 0.48750001192092896

if y. <0.6428571343421936

if y. < 0.6523809432983398

if bf < 0.8999999761581421 A vy, > 0.1
if ye > 0.7809523940086365

it bf < 0.30000001192092896 Ay, > 0.9095237851142883 A y, < 0.30000001192092896
if v, > 0.30000001192092896

Up
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—1.0691
+9.5734
+9.7684
— 3.6835
-+ 1.8689
+6.6212
+9.8937
+ 3.2889
+ 2.1446
—2.7148
—10.3563
+2.2118
-+ 1.1660
+9.0361
— 10.8639
+6.7201
+ 1.9128
+ 12.6463
+0.8748
+1.1194

—0.1153
+0.2371
—1.1869
+ 6.6905
—1.6155
- 7.3399
—1.0679
—0.1710
—1.6300
—0.0564
—0.2991
— 6.6643
+6.4798
—0.6501
—0.7654
—0.0399
—0.0802
—1.2114
—0.0482
-+ 1.0000

if true

ifvgp < —0.1

ifvgp < —0.1Avy > —0.1 Ay, <0.738095223903656

ifvgy > —0.1Avy5 > —0.1

if z;, < 0.800000011920929

if z;, > 0.800000011920929 A y. > 0.5476190447807312

ifvgp < —0.1 Ay, <0.7809523940086365

if v, < 0.0 Az > 0.800000011920929 Ay, > 0.5476190447807312

if zp < 0.793749988079071

ifvgp > 0.1 Avyp <0.1AT, <0.6187499761581421 Ay, < 0.776190459728241
ifvyp > 0.1 Ay, > 0.5476190447807312 Ay, > 0.5476190447807312

if xp > 0.6187499761581421 Ay, < 0.776190459728241 Ay, > 0.776190459728241
ifv,p < —0.2Ay, <0.7809523940086365

if z;, < 0.800000011920929 A z;, > 0.48750001192092896 A yp > 0.5476190447807312
ifvyp > 0.1Av,, > 0.1 Ay, <0.7809523940086365

if 2, < 0.800000011920929 A y, > 0.7809523940086365 A y. > 0.776190459728241
if bf > 0.4571428596973419 A x;, > 0.48750001192092896

if y. > 0.9095237851142883

it bf > 0.12857143580913544 A v, < —0.6000000238418579 A yp, > 0.7809523940086365

if v, <0.30000001192092896 A v, < —0.1 A yp < 0.6523809432983398

Down

if true

if Vz,b Z 0.1

ifvyp <0.1Ay. > 0.6428571343421936

if 2 < 0.800000011920929

if v, < 0.20000000298023224 A vyp < 0.1 Avyp > 0.1

if z;, > 0.6187499761581421 A yp > 0.6523809432983398 Ay, > 0.6428571343421936
ifv, <0.0Ax, <0.6187499761581421 Ay, > 0.5476190447807312

if v, < —0.2

if yp > 0.5476190447807312 Ny, < 0.5476190447807312

ifvy, > 0.1 Az, <0.6187499761581421 Ay, > 0.6428571343421936

if ye > 0.9095237851142883

if v, > —0.30000001192092896 Ny, > 0.6428571343421936

if vy p > 0.1 Az <0.800000011920929 A z, > 0.48750001192092896

if v, < 0.10000000149011612 A x, > 0.6187499761581421 A yp, > 0.7809523940086365
if zp, > 0.6187499761581421 Ay, > 0.776190459728241

ifv,, < —-0.2Ay, > 0.776190459728241

if v,y < —0.2Ay, > 0.6428571343421936

if vy, <0.1Ax, > 0.48750001192092896 Ny, > 0.6428571343421936

if z;, > 0.9750000238418579 Ay, < 0.12857143580913544

if 2, < 0.6187499761581421 Ay, < 0.7809523940086365

Feature importance analysis. To diagnose why this particular rule ensemble performs poorly, we
compute a simple global importance score for each feature by summing the absolute values of all rule
coefficients in which it appears. This tells us which variables the actor relies on most when selecting
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actions. For the rules in previous section, we obtain:
ball z-position (z;): 89.18, opponent y-position (y.): 88.85,
ball y-position (ys): 77.05, ball z-velocity (vy): 65.8, ball y-velocity (vyp): 47.9,
paddle velocity (v,): 19.7, block fraction (bf): 3.9, paddle y-position (y,): 0.05.

These numbers show that the policy is dominated by the geometry of the ball and opponent, with the
ball’s horizontal position x; and the opponent’s vertical position y. emerging as the most influential
features. In contrast, important control variables such as the paddle velocity v,, and especially y,,
contribute much less overall. Although focusing on ball-opponent geometry is not unreasonable,
closer inspection shows that many of the largest coefficients involving y. appear in rules that
trigger clearly suboptimal actions. In other words, the ensemble has learned strong but misaligned
dependencies on y., effectively overfitting to spurious thresholds on the opponent’s position. This
explains why the resulting policy is both interpretable and systematically wrong: it selects actions for
transparent, but ultimately bad, reasons.

S ADDITIONAL EXPERIMENTS ON OCATARI

S.1 PERFORMANCE

We also evaluate NSAC on the OCAtari-Breakout environment, a low-dimensional variant of the
classic Atari Breakout game exposed through the OCAtari Delfosse et al.| (2024a). The agent
observes summary features such as the ball position (ball_y, rel_x), ball velocities (vx, vy),
paddle position (paddle_edge), and brick-related indicators (brick_prev, brick_cur), and
must choose between three discrete actions: Fire/Do nothing, Right, and Left. Performance in this
environment is reported as the total game score, averaged over 5 runs with different random seeds for
each method. Among all baselines, PPO achieves the highest overall score on OCAtari-Breakout.
Nonetheless, NSAC also attains strong performance, with an average score above 300 over 5 random
seeds, making it competitive with neural baselines while clearly outperforming all other symbolic
methods. This demonstrates that NSAC can retain much of the raw performance of powerful deep
RL algorithms, while still yielding an interpretable rule ensemble.

Environment | Q-table DOQN A2C PPO SDSAC SACBBF Rainbow | SYMPOL affine-D  D-SDT NSAC
breakout 41.23F 127.23% 344.23% 389.21T £ 342.00F 267.00f 235.76E[227.00F 23.86 £ 34.26 £ [312.76%
14.20 25.78 31.78 14.33 39.62 27.12 31.37 35.76 14.76 7.86 31.60

Table 4: Performance comparison on OCAtari-Breakout.

S.2 REPRESENTATIVE RULES AND THEIR INTERPRETATION.

To illustrate the kind of behaviours captured by the learned rule ensemble, we highlight two represen-
tative rules, the detailed rules are listed in the following section.

Rule 1 (Action 1: Fire / Do nothing). One of the highest-weight rules for the “do nothing” action is
+6.1152 if 0.5000 < ball_y_cur <0.7714, rel_x_cur < —0.5375,
vy_prev < —0.0190, vy_cur > —0.0381.
Here, ball_y_cur in [0.5,0.77] indicates that the ball is still relatively high on the screen, while
rel_x_cur < —0.5375 means it is clearly to the left of the paddle. The vertical velocities
vy_prev < —0.0190 and vy_cur > —0.0381 show that the ball is moving downwards, but not
extremely fast. In this regime, the rule strongly favours not moving the paddle: it is too early and
too uncertain to chase the ball aggressively, and keeping the paddle near a default position preserves

flexibility for a later, more accurate intercept. This encodes an intuitive “do not overreact too early”
timing heuristic.

Rule 2 (Action 3: Left). A strongly negative rule for the “move left” action is

—5.7469 if 0.4143 < ball_y_cur <0.8381, rel_x_prev < —0.0063,
—0.0500 < vx_prev < —0.0375, vy_prev < —0.0190, vy_cur < 0.0286.
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In this situation, the ball is in the middle-to-upper region of the screen, already to the left of the paddle
(rel_x_prev < —0.0063), moving leftwards (vx_prev < 0) and downwards (vy_prev < 0).
The large negative coefficient indicates that moving the paddle further left in this configuration is
strongly discouraged. Intuitively, shifting left would risk moving away from the eventual intercept
point or overshooting it; instead, the policy prefers to stay more central or delay horizontal motion
until the ball is lower and the crossing point is clearer. This rule thus captures a natural “do not move
away from an incoming ball” behaviour.
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S.3 RULES

Action 1: Fire / Do nothing

—2.6037
—4.0445
+2.6453

+5.9613

—1.9160
—2.3335
+3.6887

+2.4687
+3.8568

—2.7193
+1.9062

—0.8540

—2.8242
+2.4663

—1.5553
—1.8001
+6.1152

—3.4766

—1.4946
—0.7953

—1.2368

+2.5430

+0.7993

+1.7013

—1.1456

if paddle_edge_prev > 0.1375
if vy_prev > 0.0190 and vy_cur > —0.0190

ifball_y_prev <0.7714and ball_y_cur <0.7714 and rel_x_cur < —0.2000
and — 0.0500 < vx_prev < 0.0500 and — 0.0286 < vy_cur < 0.0381

if ball_above_prev > 1.0000 and ball_y_cur < 0.8381 and rel_x_prev < —0.0063
and — 0.0500 < vx_cur < 0.0500 and vy_prev > —0.0190 and vy_cur < 0.0048

ifball_y_prev <0.7714 and rel_x_cur > —0.4125 and vy_prev < 0.0381 and vy_cur < —0.0190
if rel_x_cur > —0.1000 and vy_prev < 0.0381

ifball_y_prev <0.7714and ball_y_cur < 0.7048 and rel_x_prev < —0.1000
and vx_prev > —0.0375 and vy_prev > —0.0381 and vy_cur < 0.0190

ifball_y_prev > 0.6381 and vy_prev < —0.0286

ifball_y_prev <0.7714 and rel_x_cur < —0.0063 and vx_prev > —0.0500
and vx_cur > —0.0500 and vy_prev < 0.0048 and vy_cur > —0.0190

ifball_y_cur <0.7048 and brick_cur > 0.0900 and vy_prev < 0.0381 and vy_cur < 0.0048

ifball_y_prev <0.5000 and ball_y_cur < 0.5000 and brick_prev > 0.0900
and brick_cur > 0.0900 and rel_x_prev < —0.0063 and vx_prev > 0.0500 and vx_cur > 0.0500

ifball_y_prev <0.8381 and rel_x_prev < —0.1000 and
0.0375 < vx_prev < 0.0500 and vy_prev < 0.0190

ifball_y_cur <0.4143 and vy_prev < 0.0048

ifball_y_prev < 0.8381 and vx_prev = —0.0500 and vy_prev < —0.0190
and — 0.0381 < vy_cur < 0.0381

ifball_y_prev <0.6381 and vx_prev < —0.0375
ifball_y_cur > 0.6381 and vx_cur > —0.0375 and vy_cur > —0.0286

if 0.5000 < ball_y_ cur <0.7714 and rel_x_cur < —0.5375
and vy_prev < —0.0190 and vy_cur > —0.0381

ifball_y_prev > 0.4143 and 0.5000 < ball_y_cur < 0.7714
and 0.0000 < vx_prev < 0.0500 and vx_cur < 0.0500 and vy_prev < 0.0381 and vy_cur > —0.0381

if rel_x_prev < —0.6688 and rel_x_cur < —0.6688

if 0.4143 < ball_y_cur <0.8381 and brick_cur < 0.1100 and rel_x_prev < —0.1000
and rel_x_cur < —0.1000 and vx_prev > —0.0375 and vy_prev < 0.0381 and vy_cur > —0.0381

if 0.4143 < ball_y_cur <0.7714 and paddle_edge_prev > 0.1375
and rel_x_prev > —0.6688 and vx_prev < 0.0500 and vx_cur < 0.0500

ifball_y_prev > 0.5000 and 0.5000 < ball_y_cur < 0.8381 and rel_x_prev < —0.2000
and vx_prev < 0.0000 and vx_cur > —0.0500 and — 0.0381 < vy_prev < 0.0048

if ball_above_prev > 1.0000 and ball_above_cur > 1.0000 and rel_x_prev > —0.5375
and 0.0000 < vx_prev < 0.0500 and vx_cur > —0.0375 and vy_prev < 0.0286

ifball_above_prev > 1.0000 and ball_y_cur > 0.6381 and rel_x_cur > —0.2000 and
vy_prev < 0.0048

if rel_x_prev > —0.3063 and — 0.3063 < rel_x_cur < —0.0063
and vy_prev < 0.0048 and vy_cur > —0.0381
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Action 2: Right

—3.7358 ifball_y_cur < 0.8381
+3.3079 if rel_x_cur > —0.5375 and vy_prev > 0.0190 and vy_cur > 0.0048
—9.9162 ifball_above_cur > 1.0000 and vx_prev < 0.0500 and vy_cur < 0.0381

+4.6580 ifball_above_prev > 1.0000 and ball_y_cur > 0.7048
and vy_prev > 0.0190 and vy_cur > —0.0190

+2.7250 if paddle_edge_prev > 0.1375 and vx_prev > 0.0000 and vx_cur > —0.0375
and vy_prev > —0.0190 and vy_cur > —0.0381

—1.5765 ifball_y_cur <0.7714 and vy_prev > 0.0190

+4.5538 ifball_y_prev > 0.5714 and rel_x_prev > —0.6688 and vx_prev < 0.0500
and vy_prev > 0.0286 and vy_cur > —0.0381

+3.0658 ifrel_x_cur > —0.3063 and — 0.0375 < vx_prev < 0.0500
and vy_prev > —0.0190 and vy_cur > 0.0048

+2.8135 ifball_above_prev > 1.0000 and rel_x_cur < —0.0063
and vx_prev > —0.0500 and vy_prev > 0.0381 and vy_cur > 0.0190

+2.8650 ifball_above_prev > 1.0000 and ball_y_prev > 0.7714
and rel_x_cur > —0.6688 and vy_prev > 0.0190 and vy_cur > —0.0381

—4.0301 ifball_y_prev <0.8381 and rel_x_cur < —0.4125
—6.5868 ifball_above_cur > 1.0000 and vy_prev < 0.0381 and vy_cur < —0.0190

—2.9138 ifball_y_prev <0.7048 and rel_x_prev < —0.0063 and rel_x_cur < —0.0063
and vx_cur < 0.0375 and vy_prev > 0.0048

—2.0466 ifball_above_cur > 1.0000 and ball_y_prev < 0.8381 and rel_x_cur < —0.2000
and vx_cur < 0.0000 and vy_prev > 0.0048

+3.3836 ifball_y_cur > 0.7714 and rel_x_prev < —0.1000
and vx_cur > —0.0375 and vy_cur > 0.0048

—1.8377 ifball_above_cur > 1.0000

and — 0.0375 < vx_prev < 0.0500 and — 0.0375 < vx_cur < 0.0000 and vy_prev > 0.0048
+3.7873 ifball_y_cur > 0.8381 and 0.0190 < vy_cur < 0.0381
—2.0489 ifball_above_cur > 1.0000 and rel_x_prev < —0.5375 and vx_cur < 0.0375

—2.7407 ifball_y_prev <0.7714and ball_y_cur > 0.4143 and rel_x_prev > —0.6688
and vx_prev < 0.0500 and vy_prev > 0.0190

—2.5147 ifball_y_cur <0.5714 and brick_prev > 0.1000 and rel_x_prev > —0.1000

—1.7701 ifball_above_cur > 1.0000 and brick_cur > 0.0900
and vy_prev < 0.0286 and vy_cur > 0.0190

+1.5424 ifball_y_prev > 0.5000 and ball_y_cur > 0.6381 and brick_prev > 0.0900
and rel_x_prev > —0.2000 and vx_cur < 0.0375 and vy_prev > 0.0190 and vy_cur > —0.0381

+1.4835 ifball_y_cur > 0.4143 and brick_prev > 0.0900 and rel_x_prev > —0.6688
and rel_x_cur < —0.1000 and vx_cur > 0.0000 and vy_prev > 0.0048 and vy_cur > —0.0286

+1.8123 ifball_y_prev > 0.7048 and brick_cur < 0.1300 and vx_cur < 0.0000
and vy_prev > 0.0381 and vy_cur > —0.0381

+1.4038 ifrel_x_prev > —0.3063 and vx_cur > 0.0000
and vy_prev > 0.0048 and vy_cur > —0.0381

39



Under review as a conference paper at ICLR 2026

Action 3: Left
+3.2914 ifball_y_cur < 0.8381 and paddle_edge_prev > 0.1375

—5.9441 ifball_y_cur <0.7714 and rel_x_prev < —0.0063 and rel_x_cur < —0.1000
and — 0.0500 < vx_prev < 0.0500 and vy_prev < 0.0048 and — 0.0286 < vy_cur < 0.0381

—3.0919 ifball_y_cur > 0.7714and rel_x_cur > —0.6688 and vy_cur > 0.0048

+3.1300 ifball_above_cur > 1.0000 and paddle_edge_prev > 0.1375 and vx_prev < 0.0500
and vy_prev < 0.0381 and vy_cur < 0.0381

—2.7873 ifball_above_prev > 1.0000 and ball_y_cur > 0.7048 and rel_x_prev > —0.3063

—2.4206 ifball_above_prev > 1.0000 and rel_x_prev < —0.3063 and rel_x_cur < —0.3063
and vx_cur < 0.0500 and vy_prev > —0.0381 and vy_cur < 0.0048

—1.4360 if rel_x_prev > —0.6688 and vx_prev > —0.0375
and — 0.0375 < vx_cur < 0.0500 and vy_prev > 0.0286

—5.7469 if 0.4143 <ball_y_ cur <0.8381 and rel_x_prev < —0.0063
and — 0.0500 < vx_prev < —0.0375 and vy_prev < —0.0190 and vy_cur < 0.0286

—3.8718 if vx_prev > 0.0000 and vx_cur > 0.0000 and vy_cur > 0.0048
—3.4132 ifball_y_cur > 0.5714 and vx_cur > —0.0375 and vy_prev < —0.0381
—1.9780 if vx_prev < 0.0000 and — 0.0500 < vx_cur < 0.0000 and vy_prev > —0.0286

+3.7481 ifball_above_cur > 1.0000 and ball_y_prev > 0.4143 and ball_y_cur > 0.5000
and vx_prev < 0.0500 and vy_prev > —0.0190 and — 0.0381 < vy_cur < 0.0286

+1.8542 ifball_y_cur <0.7714 and paddle_edge_prev > 0.1375and rel_x_cur > —0.5375
and vx_prev < 0.0500 and vx_cur < 0.0500 and vy_prev < 0.0381

4+0.6150 ifball_above_cur > 1.0000 and rel_x_prev < —0.4125 and rel_x_cur < —0.4125
and vy_prev > —0.0381 and vy_cur > —0.0286

4+2.3428 if rel_x_prev > —0.5375and rel_x_cur > —0.5375
and — 0.0375 < vx_cur < 0.0375 and vy_cur < —0.0190

—1.2518 ifball_above_prev > 1.0000 and rel_x_prev < —0.1000
and — 0.5375 < rel_x_cur < —0.1000 and — 0.0500 < vx_cur < 0.0500
and vy_prev > —0.0286 and vy_cur < 0.0286

—2.2239 ifball_y_prev <0.7714andball_y_cur < 0.7048
and vx_prev > —0.0375 and vy_prev > —0.0190 and vy_cur < 0.0190

—0.8174 ifball_above_prev > 1.0000 and ball_y_cur > 0.6381
and vx_prev < 0.0375 and vy_prev > —0.0381

—0.6264 ifball_above_prev > 1.0000 and rel_x_prev > —0.5375 and rel_x_cur > —0.5375
and vx_prev > 0.0000 and vx_cur > —0.0500

+2.5593 ifball_y_prev <0.7714 and rel_x_cur < —0.3063
and vy_prev > 0.0381 and vy_cur > —0.0190

+0.9760 ifball_above_cur > 1.0000 and ball_y_cur > 0.4143
and — 0.3063 < rel_x_prev < —0.0063 and rel_x_cur < —0.1000
and vy_prev < 0.0381 and — 0.0381 < vy_cur < 0.0381

+1.6089 ifball_y_cur <0.6381 and rel_x_prev > —0.2000 and rel_x_cur > —0.2000
—0.7929 ifrel_x_cur > —0.5375 and vx_prev > —0.0500 and vy_cur > —0.0190

—0.5734 ifball_y_prev > 0.5000 and brick_cur < 0.0900 and vx_prev > —0.0500
and — 0.0500 < vx_cur < 0.0375 and vy_cur > —0.0381

—1.0272 ifball_y_prev > 0.8381 andball_y_cur > 0.7714 and vy_prev < 0.0381
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T STATEMENT ON LLM USAGE

Large language models (LLMs), such as ChatGPT, were used solely for editorial assistance in this
work. Their role was limited to improving grammar, rephrasing sentences, and enhancing clarity and
readability of the authors’ original text. No LLM was used to generate original scientific content,
analysis, or results. The authors take full responsibility for the integrity and validity of the work
presented.
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