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ABSTRACT

The integration of neural networks into actor-critic frameworks has been pivotal in
advancing the field of reinforcement learning, enabling agents to perform complex
tasks with greater efficiency and adaptability. However, neural network-based
actor-critic models remain opaque “black boxes,” concealing their decision-making
processes and hindering their use in critical applications where transparent and
explainable reasoning is essential. This work introduces an innovative adaptation of
the actor-critic framework that unites neural networks with rule ensembles to tackle
key challenges in reinforcement learning. We harness the computational power,
scalability, and adaptability of neural networks to model the critic, while integrating
a rule ensemble system for the actor, ensuring transparency and interpretability
for decision-making. Our study establishes a theoretical foundation for integrating
rule ensembles into the Advantage Actor-Critic (A2C) framework. Experimental
results from seven classic and complex environments demonstrate that our proposed
method matches or exceeds the performance of representative RL models, including
symbolic methods, while offering self-interpretability and transparency.

1 INTRODUCTION

Actor-critic reinforcement learning (RL) methods, such as Advantage Actor-Critic (A2C) and
Proximal Policy Optimization (PPO), have delivered exceptional performance across diverse RL
tasks (Mnih et al., 2016; Schulman et al., 2017), largely due to the use of neural networks to effectively
manage complex, high-dimensional state-action spaces. Yet, as actor-critic RL models expand to
broader real-world domains, such as healthcare, finance, and law, interpretability becomes essential
for ensuring trust, transparency, and regulation compliance in decision-making. By revealing how
actions are chosen or why specific decisions are made, interpretability supports debugging, model
improvement, and the ability to explain automated decisions in line with legal and ethical standards.

Despite the effectiveness of neural network-based actor-critic models, their opaque nature and lack of
transparency can limit their use in sensitive or critical applications where comprehending the rationale
behind each decision is crucial (Benítez et al., 1997; Castelvecchi, 2016). Symbolic models, e.g.,
expert systems, decision trees, and rule-based systems, rely on clear, well-defined rules and logic to
make decisions, allowing for easier tracing of how conclusions are reached (Ernst et al., 2005; Gupta
et al., 2015a; Tao et al., 2018; Bastani et al., 2018; Illanes et al., 2020). These methods use symbols
(which can represent objects, properties, or relationships) and logic to process and reason about data,
making the decision-making process transparent and understandable.

However, substituting neural network-based models with symbolic models in reinforcement learning
tasks can be challenging. (i) While symbolic methods are highly valued for their interpretability
and transparency, current implementations in reinforcement learning typically rely on predefined
knowledge or pre-trained models (Garcez et al., 2018; Lyu et al., 2019). (ii) These symbolic methods
can face challenges in managing the complexity and ambiguity that non-symbolic approaches, such
as neural networks, are often better equipped to handle (Illanes et al., 2020; Landajuela et al., 2021).

To tackle the above challenges, we propose a new “Neural plus Symbolic” framework for Actor-
Critic models, namely NSAC, as shown in Figure 1. NSAC integrates the strengths of both neural
networks and symbolic rule-based systems. Specifically, the neural critic leverages powerful function
approximation capabilities to estimate the value of states and state-action pairs effectively. Meanwhile,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Blackbox
Critic

decide

Blackbox
Actor

Whitebox
Actor

Blackbox
Critic

TD TD

Action

But why is this action chosen? 
The post-hoc analysis claims it’s because

𝑦 < 10, which doesn’t make sense at all!!!

Rules

Action 1 +10: x> 100

Action 2 -10: x<10; y> 1

Action 3 -17: 5<x<20

Action

Blackbox 
Actor Critic

Interpretable 
Neural+Symbolic

Actor Critic

This action is chosen because x > 100;
which is a quite reasonable decision.

...

Figure 1: Comparative illustration of Neural+Symbolic
Actor-Critic (NSAC) and classic Actor-Critic methods.

the actor component is designed using
a rule-based approach, providing intrin-
sic interpretability by following explicit,
predefined rules that govern its decision-
making process. This framework allows
for an analysis of how particular features
or rules influence decisions, offering a
level of explainability absent in black-box
models. Our theoretical analysis proves
that NSAC converges to a local optimum.
Through empirical experiments, our pro-
posed NSAC demonstrates performance
levels that match those of widely-used re-
inforcement learning algorithms, such as
DQN (Mnih, 2013), PPO (Schulman et al.,
2017), Rainbow (Hessel et al., 2018), SD-
SAC (Kong et al., 2021), SACBBF (Zhang et al., 2024), and A2C (Mnih et al., 2016). By integrating
the adaptability and generalization capabilities of neural networks with the transparency of rule-based
decision-making, our model provides a balanced solution that retains high performance while en-
abling interpretable and trustworthy decision-making processes. It is worth noting that, our work
belongs to the broader neural-symbolic family, but differs from compile-logic approaches. NSAC
uniquely couples a data-driven neural critic with a rule-based symbolic actor, enabling both statistical
learning and explicit reasoning within an actor–critic loop. This work makes three main contributions:

• We propose a novel actor–critic architecture that combines a neural critic for accurate value
estimation with a symbolic, rule-based actor that delivers intrinsic interpretability.

• We provide a formal proof of convergence and demonstrate that our rule-based policy
satisfies the established interpretability criteria of simulatability, modularity, and low com-
plexity (Murdoch et al., 2019).

• We empirically demonstrate that NSAC matches state-of-the-art RL methods on classic con-
trol and energy-system tasks, while uniquely preserving transparency and trustworthiness.

2 RELATED WORK

Interpretability has become increasingly important in RL and motivated symbolic approaches that
provide transparent reasoning while retaining RL’s adaptive capabilities. Existing approaches can
be categorized based on their interpretability characteristics, knowledge requirements, and learning
paradigms, each with distinct limitations. Tree-based policies represent a widely studied approach
to interpretable RL. Native tree methods (Ding et al., 2020; Ernst et al., 2005; Gupta et al., 2015a;
Roth et al., 2019; Tao et al., 2018) learn decision trees directly from environmental interactions, often
achieving strong performance on small to medium-scale problems but facing scalability challenges
where large trees become difficult to interpret. Recent gradient boosting approaches (Fuhrer et al.,
2024) and programmatic tree policies (Kohler et al., 2024) extend this line by offering editable
representations and improved handling of structured features, though interpretability-performance
trade-offs remain. Distillation-based tree methods (Bastani et al., 2018; Coppens et al., 2019; Gupta
et al., 2015b; Liu et al., 2019) extract tree policies from pre-trained neural networks, but face
a size versus fidelity trade-off. Their differentiable variants (Silva et al., 2020) and specialized
architectures (Ding et al., 2020; Liu et al., 2019) attempt to address these limitations but may produce
mathematical notations and complex tree structures that remain difficult for humans to interpret.

Symbolic RL with predefined knowledge leverages domain expertise to guide policy learning. These
methods (Garcez et al., 2018; Illanes et al., 2020; Lyu et al., 2019) can maintain interpretability
through symbolic rules, modules, or plans, and may achieve strong performance when domain priors
are well-specified. However, they require substantial predefined knowledge, making them sensitive to
domain assumptions and limiting their applicability to new domains where such expertise may not be
available. To remove this dependency, symbolic policies learn from neural teachers or direct search
to discover symbolic representations, such as neural-guided symbolic policy discovery (Landajuela
et al., 2021), genetic programming for symbolic expressions (Hein et al., 2018), and program
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synthesis approaches (Wu et al., 2020; Qiu & Zhu, 2022). While these methods avoid predefined
knowledge, they often yield complex mathematical expressions involving trigonometric functions,
logarithms, or program syntax that are challenging for humans to simulate and interpret (Murdoch
et al., 2019). Recent approaches (Delfosse et al., 2023; Luo et al., 2024; Shindo et al., 2024) improve
the interpretability through nerve guide, end-to-end or mixed framework, although they still produce
complex models, or external tools are needed to generate rules. Post-hoc approaches additionally
may suffer from approximation errors inherited from neural teachers. The importance of interpretable
RL is underscored by recent findings on fundamental challenges in agent behavior, including goal
misgeneralization (Di Langosco et al., 2022) and systematic failures on task variations (Delfosse et al.,
2025), which have motivated approaches such as concept bottlenecks (Delfosse et al., 2024b) for
detecting misalignments and object-centric environments (Delfosse et al., 2024a) for visual domains,
highlighting the need for transparent and verifiable RL systems.

As discussed, most previous methods either require a certain amount of predefined knowledge, which
influences the search space or establishes the programmatic rules, or they are post-hoc solutions that
learn from a pre-trained model rather than directly from the environment, potentially distorting the
learning objectives, or they generate complex representations or rely on external tools for rule genera-
tion rather than learning directly from environmental interactions( See Appendix H). In contrast, our
method effectively integrates a neural network-based critic with a symbolic, rule-based, interpretable
actor by learning directly through environmental interactions without requiring predefined knowledge
or external rule generation tools. Specifically, we address the tree scalability problem by using
additive rule ensembles rather than hierarchical structures, where each rule contributes equally to the
decision-making process. We employ Orthogonal Gradient Boosting (OGB) (Yang et al., 2024) to
discover rule conditions automatically, requiring only basic feature comparisons rather than domain-
specific knowledge. Our rule-based actor is trained directly via policy gradients on environmental
rewards, ensuring the symbolic representation accurately reflects true decision-making process rather
than approximating a black-box teacher. Our approach achieves interpretability through symbolic
rules while learning directly from the environment, addressing both the knowledge requirements
and post-hoc limitations of existing methods. Post-hoc explainers are only approximations: they
often flag correlates, not causes. SHAP (Lundberg & Lee, 2017), for example, mark a feature as
“important” while the model flips under tiny perturbations. Worse, black-box models can even be
trained to emit persuasive but misleading rationales (Rudin, 2019). Because these explanations are
extrinsic, they guarantee neither consistency, fidelity, nor out-of-distribution robustness.

3 PRELIMINARIES

3.1 ADVANTAGE ACTOR-CRITIC REINFORCEMENT LEARNING

The A2C algorithm represents a synergy of two foundational approaches in reinforcement learning:
the actor-critic method and the advantage function estimation. In the actor-critic framework, the critic
in the A2C framework estimates the value function V (s), which represents the expected return from a
state s. The critic is updated by minimizing its loss function, typically the mean squared error between
the estimated value and the computed target value. The target value is derived from the rewards
obtained and the discounted values of subsequent states: LV (ϕ) = E

[
(Rt + γV (st+1)− Vϕ(st))

2
]
,

where Rt is the reward received after taking action at in state st at t, γ is the discount factor, Vϕ(st+1)
is the value estimate for the next state at t+1, and ϕ are the parameters of the critic network. The actor
updates the policy by adjusting parameters θ in the direction suggested by the critic’s evaluations.
The update is guided by the gradient of the policy’s performance, estimated using the advantage
function: ∇θL(θ) = E [∇θ log πθ(at|st)At] , where At = Rt + γV (st+1)− V (st) is the advantage
at time t, indicating how much better (or worse) the action at is than the policy’s average at state st.
Through these updates, the actor learns to choose actions yielding higher returns than predicted by
the critic, while the critic learns to make more accurate predictions about expected returns, forming a
feedback loop that enhances both policy and value estimation in the A2C framework.

3.2 ADDITIVE RULE ENSEMBLES

Additive rule ensembles are a class of probabilistic models (Friedman & Popescu, 2008) that
estimate the expected value of a target variable Y ∈ R given an input vector X ∈ Rd, which is
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If vel < 4 and pos >8 --> (w = 0.32)
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Action n
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If pos > 7 --> (w = 0.023)

State

Environment 
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Critic
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Action

Actor Update

Reward

TD Error

...

Figure 2: A diagram illustrating the NSAC algorithm with detailed rule update steps.

expressed as E[Y | X = x] = µ(f(x)), where, x is an instance of X, µ : R → R is an inverse
link function mapping f(x) to the target variable Y , and f : Rd → R is a linear combination of k
Boolean query functions:

f(x) =

k∑
i=1

wiqi(x) =

k∑
i=1

wi

ci∏
j=1

pi,j(x). (1)

In equation 1, wi (0 ≤ i ≤ k) is the weight of the i-th Boolean query function qi :
Rd → {0, 1}, and qi is a conjunction or product of ci Boolean propositions, where pi,j ∈{
I
(
sx(j) ≤ sx

(j)
l

)
: j ∈ [d], l ∈ [n], s ∈ {±1}

}
is a threshold function ([x] = {1, . . . , x} is the

index set). Each term wiqi(x) in equation 1 can be represented as an ‘IF. . . THEN . . . ’ rule, where
the query qi defines the condition of the rule, and the weight wi is the rule’s consequent.

Boosting is an iterative approach for learning additive models (Schapire, 1990; Friedman, 2001;
Dembczyński et al., 2010). Given a training set of size n, {(x1, y1), . . . , (xn, yn)}, where xi is the
input and yi is the corresponding target, through approximately minimizing the empirical risk

L̂λ(f) =
1

n

n∑
i=1

l(f(xi), yi) +
λ∥w∥2

n
, (2)

boosting iteratively adds terms into the model and yields a sequence of models f (1), . . . , f (k). The
last term of equation 2 is the regularization term, w = (w1, . . . , wk)

T ∈ Rk is the weight vector, and
λ ≥ 0 is the regularization parameter. Note that l is a loss function derived as shifted negative log
likelihood, measuring the cost of outputting f(xi) while the true value is yi.

4 METHODOLOGY

4.1 FRAMEWORK DESIGN

Actor implemented with Rule-Based Ensembles: As shown in Figure 2, we replace the neural
network-based action function approximation with an actor composed of additive rule ensembles.
Let F(s) = {fa(s) : ∀a ∈ A} represent the collection of ensemble models for action a in the
action space A at state s ∈ S. The size for A is m. The ensemble fa(s) for an action a predicts
the expected advantages directly, simplifying its expression as A(s, a) = fa(s). This prediction is
based on a linear combination of Boolean query functions, weighted by coefficients specific to each
action a ∈ A: fa(s) =

∑k
j=1 wa,jqa,j(s), where wa,j are the coefficients for qa,j . For each action a,

there are k Boolean query functions qa,j , (j = 1 . . . , k) specific to the action a. The actor’s policy,
represented as π, is defined by the probability distribution over action values for a given state, which
is derived from F using the softmax function: π(a|s) = exp(fa(s))∑

fa∈F exp(fa(s))
. The softmax function

ensures that π(a|s) is a proper probability distribution over the action space.

Critic implemented with Neural Network: In our framework, the critic functions similarly to
traditional actor-critic systems, leveraging the computational capabilities of neural networks. It
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serves as a function approximator, implemented using a neural network that estimates the value of
being in a specific state s. This neural network, paramount in computing state-value functions, is
parameterized by weights ϕ, and the value function it approximates is denoted by Vϕ(s). This design
choice ensures that our critic effectively harnesses the processing power of neural networks to deliver
precise value estimations for each state. The pseudocode for the algorithm is shown in Appendix B
and the theoretical analysis in Appendix C .

4.2 POLICY UPDATE

Critic Policy Update: The critic in our framework estimates the value function V (s) using a neural
network, representing the expected return from a state s. The critic is updated by minimizing the
loss function, typically the mean squared error between the estimated value and the target value. The
target value is derived from the rewards obtained and the discounted values of subsequent states:
LV (ϕ) = E

[
(Rt + γV (st+1)− Vϕ(st))

2
]
, where Rt is the reward received after taking action at

in state st, γ is the discount factor, Vϕ(st+1) is the value estimate for the next state, and ϕ are the
parameters of the critic network.

Actor Update: The learning process involves iterative updates to the coefficient vector wa and the
query functions qa based on observed rewards and state transitions, aiming to refine the ensembles
for optimal decision-making. This approach leverages the interpretability of rule-based systems in
the actor’s policy formulation, enhancing transparency in complex or high-dimensional state spaces.
The advantage function, used by the actor for updates, is computed using the critic’s value function
and the immediate reward: At(st, at) = Rt + γV (st+1)− V (st). This expression calculates how
much better the current action at is compared to the average action at state st at time t, considering
the immediate reward and discounted future values. The actor updates the policy by adjusting the
parameters (w,q) in the direction suggested by the critic’s evaluations. The update is guided by
the gradient of the policy’s performance, which is estimated using the advantage function. The loss
function derived from the policy gradient is

∇Lλ(w,q) = −E [∇w,q log π(at|st,w,q)At] + λ∇w,q∥w∥22. (3)

To make the loss function locally convex, we add a regularization term λ∥w∥22 to the original loss,
where λ is the regularization parameter (see Appendix D). The actor is updated by modifying each
rule ensemble model fa in accordance with the calculated policy gradient objective for each action. To
obtain the gradient for each action, we use softmax for action selection, taking the natural logarithm
of the policy yields:

∀a log π(a | st;w,q) = waqa − log

m∑
j=1

exp(wajqaj ). (4)

Substituting equation 4 into equation 3, we have:

∇Lλ(w,q) = −E

∇w,qAt

watqat − log

m∑
j=1

exp(wajqaj )

+ λ∇w,q∥w∥22. (5)

Treating w and q as a combined vector θ = (w;q), the gradient of ∇θL(w,q), i.e., ∇2
θL(w,q) can

be derived as

∇2
θLλ(w,q) =

∂∇l

∂waqa
= −E

∇wa,qa

At∂

∂waqa

wat
qat

− log

m∑
j=1

exp(waj
qaj

)

 =

− E

[
∇wa,qaAt

(
Ia=at

− exp(waqa)∑m
j=1 exp(wajqaj )

)]
= −E [∇wa,qaAt (Ia=at

− π(a | st;w,q))] .

Taking into account the two distinct situations a = at and a ̸= at, the policy gradient for each rule
ensemble is as follows:

5
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1. When the ensemble model fa corresponds to the action executed in the current step, i.e.,
a = at,

∇2
wa,qaLλ(wa, qa) = E [−∇wa,qaA(st, at)(1− π(at|s))] ; (6)

2. When the ensemble model fai
does not correspond to the action selected by the actor at that

time step, i.e., a ̸= at,

∇2
wa,qaLλ(wa, qa) = E [∇wa,qaA(st, at)π(at|s))] . (7)

This distinction ensures ensemble updates properly align with the actions taken, enabling targeted
adjustments that enhance the actor’s policy based on observed outcomes and predicted advantages.

Computational Complexity: This algorithm has a time complexity of O(d2nk) per rule, where
d is the observation dimension. It performs at most d iterations to construct a single rule (adding
one dimension per iteration), and in each iteration, it evaluates all d dimensions as candidates. The
bottleneck lies in computing the orthogonal gradient boosting objective objogb(q) = |gT⊥q|/(||q⊥||+ϵ)

for each candidate, which requires O(nk) operations due to the orthogonal projection computation:
g⊥ = g − BBT g. This represents a k-fold increase in computational cost over standard gradient
boosting (which has complexity O(d2n)). The orthogonalization overhead is essential for the
algorithm’s ability to select more general rules and achieve better risk-complexity trade-offs in
practice. Fully-corrective weight calculation has a complexity of O(k2n) from solving a convex
optimization problem that re-optimizes all weights after adding a new rule. The k2 scaling comes
from computing the Hessian on the k × k Gram matrix QTQ. While more expensive than stage-wise
approaches, this cost is manageable for small ensemble sizes typically in interpretable rule learning.

Algorithm 1 Neural+Symbolic Actor-Critic Algorithm

1: Initialize actor with each action rule ensemble function f
(0)
a = 0; Initialize critic network V (s, ϕ) with

parameters ϕ; Initialize environment and observe initial state s
2: repeat
3: for each step of episode do
4: Choose action a ∼ π(a|s, θ)
5: Observe reward r and new state s′

6: Calculate δ = r + γV (s′, ϕ)− V (s, ϕ)
7: Update critic by minimizing L(ϕ) = δ2

8: for all ai in action space do
9: if ai = a then

10: Calculate policy gradient gt: −∇w,q(1− log π(a|s,wTq))δ for fa
11: else
12: Calculate policy gradient gt: ∇w,q log π(a|s,wTq)δ for fa
13: end if
14: use Rule Replacement Steps and policy gradient to find a new query for fa (Appendix B)
15: use OGB to update the weights for fa (See Appendix B)
16: end for
17: s← s′

18: end for
19: if end of episode then
20: Reset environment and observe initial state s
21: end if
22: until convergence or maximum episodes reached.

5 EXPERIMENTS AND RESULTS

In this section, we aim to answer the following questions: (RQ1) How does our algorithm perform
relative to both black-box and interpretable baselines? (RQ2) Does our framework support inter-
pretable decision-making in a quantifiable way?(RQ3) What kinds of qualitative insights about the
policy can be obtained from inspecting the learned rules?

We evaluated the performance of NSAC in five diverse RL environments: MountainCar-v0, Acrobot-
v1, CartPole-v1, Blackjack-v1, and Postman (Sutton, 2018; Dietterich, 2000). We also evaluated
our NSAC algorithm on a challenging, real-world HVAC control benchmark using Sinergym(see
Appendix J for details). This environment models a multi-zone office building with coupled thermal
dynamics, where each zone’s temperature, humidity, and carbon dioxide concentration evolve

6
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according to nonlinear heat-transfer and air-exchange equations.The high dimensionality of the
state–action space, the strong inter-zone couplings, and the requirement to satisfy strict comfort bands
make it a great testbed for our algorithm.

5.1 PERFORMANCE EVALUATION (RQ1)

We conducted a comprehensive performance comparison against established benchmark algorithms,
including Q-Tabular (Sutton, 2018), DQN (Mnih, 2013), PPO (Schulman et al., 2017), and A2C (Mnih
et al., 2016), all implemented using Stable-Baselines3 (Raffin et al., 2021). We additionally included
Rainbow (Hessel et al., 2018), SDSAC (Kong et al., 2021), and SACBBF (Zhang et al., 2024) as
deep RL baselines. To cover symbolic approaches, we also evaluated three interpretable methods:
SYMPOL (Marton et al., 2024), πaffine-D (Qiu & Zhu, 2022), and D-SDT (Silva et al., 2020). For a
fair comparison, we use the Gym environments in their original form without any modifications. For
each algorithm, we apply the recommended optimal parameters provided by the RLzoo (Raffin &
contributors, 2020) with Stable Baselines 3 and report performance averaged over 10 random seeds.
As shown in Table 1, NSAC demonstrates strong and reliable performance across a wide spectrum of
tasks, outperforming or matching both classic deep RL methods and symbolic approaches. Compared
with classical methods such as Q-learning, DQN, A2C, PPO, SAC variants, and Rainbow, NSAC
achieves consistently higher returns with lower variance, particularly in settings that demand stability
and scalability. Unlike value-based methods that can be brittle in continuous or high-dimensional
domains, NSAC maintains robustness while still being competitive in simpler benchmarks. Against
symbolic tree based methods such as SYMPOL, πaffine-D, and D-SDT, NSAC shows even clearer
advantages: while symbolic policies can excel on select tasks due to strong inductive biases, they often
suffer from collapse or sharp degradation when scaled, whereas NSAC delivers stable performance
across all environments. This makes it a practical and effective alternative that closes the gap between
the strengths of classic RL and symbolic reasoning while avoiding their respective weaknesses.

Table 1: Reward Comparison of Various Methods with Our Approach Across RL Environments.

Environment Q-table DQN A2C PPO SDSAC SACBBF Rainbow SYMPOL πaffine-D D-SDT NSAC

MCar-v0 -147.68
± 9.52

-135.07
± 16.42

-157.51
± 37.12

-150.40
± 4.05

-141.76
± 13.91

-139.23
± 17.62

-137.76
± 39.47

-200
± 0

-200
± 0

-200
± 0

-132.25
± 16.08

Acrobot-v1 -201.01
± 13.32

-112.68
± 8.93

-98.931
± 29.52

-82.629
± 2.79

-85.124
± 7.82

-88.708
± 7.12

-89.753
± 8.98

-80.02
± 4.28

-425.47
± 56.81

-212.31
± 4.19

-87.714
± 6.95

CartPole-v1 219.51
± 69.2

161.00
± 55.2

453.51
± 92.5

498.73
± 2.4

487.61
± 2.71

481.07
± 10.76

498.53
± 2.12

500
± 0

109
± 76.82

498.53
± 2.12

499.14
± 1.91

Blackjack-v1 -0.06
± 0.02

-0.06
± 0.02

-0.07
± 0.01

-0.06
± 0.01

-0.07
± 0.02

-0.06
± 0.01

-0.06
± 0.02

-0.06
± 0.01

-0.08
± 0.01

-0.08
± 0.02

-0.06
± 0.01

Postman 35.24
± 2.06

31.91
± 5.71

24.23
± 3.09

34.35
± 3.82

34.91
± 2.86

31.12
± 3.77

34.67
± 4.68

25.34
± 3.42

15.23
± 4.91

18.91
± 6.28

27.14
± 3.38

HVAC-1Zone NA -1445367
± 20183

-1334562
± 148658

-1865276
± 135683

-1387692
± 145619

-1423573
± 34825

-1465732
± 785732

-1478783
± 65293

-1895286
± 42873

-1862537
± 29763

-1251321
± 85241

HVAC-5Zone NA -1876253
± 198263

-1984843
± 287237

-1676288
± 462837

-1582742
± 227221

-1547279
± 241625

-1602142
± 342612

-1586352
± 65792

-1969635
± 45241

-1876374
± 33468

-1463601
± 121678

Note. Redindicates the best performance across all benchmarks. Underscore highlights the best performance among symbolic-based approaches.

Ablation Study In our ablation study, we explored how variations in the rule count

5 10 12 20 30 40 50
Number of Rules

0

100

200

300

400

500

Re
wa

rd
s

warm start
No warm start

Figure 3: Ablation study on different num-
bers of rules and warm start

and the implementation of a warm start influenced our
method. We conducted tests in the CartPole-v1 envi-
ronment under various rule configurations, specifically
using 5, 10, 12, 20, 30, 40, and 50 rules per action.Each
configuration was tested both with and without a warm
start. 1. Number of Rules: As depicted in Figure 3, the
model configured with 12 rules per action and a warm
start yields the highest reward. This outcome suggests
that having 12 rules per action provides the model with
sufficient flexibility to effectively capture the essential
dynamics of the environment without being overly simplistic. Employing fewer than 10 rules, such
as 5, may not offer adequate coverage to manage the environment’s complexity, resulting in inferior
performance. Conversely, a larger number of rules may lead the model to overfit the training data,
picking up on noise or irrelevant patterns and diminishing its generalizability to new contexts. The
findings from this ablation study highlight a critical balance between the number of rules and overall
model performance. They show that merely increasing the number of rules does not invariably
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improve performance, as an excess can lead to complexity and overfitting, whereas too few can
restrict the model’s performance. 2. Warm Start: When the number of rules is small, the model’s
representational capability is limited, so the initial conditions (e.g., the warm start) become more
critical. A warm start can guide the model toward better solutions early on, helping it learn an
effective policy faster and avoid getting stuck in poor local optima. In contrast, with a larger rule set,
the model has greater capacity to explore various configurations. In such cases, relying on an external
initialization can sometimes constrain exploration, preventing the model from fully leveraging its
increased flexibility.

5.2 INTERPRETABILITY EVALUATION

Quantitative Evaluation(RQ2): Common metrics for interpretability include fidelity, comprehensi-
bility, and cognitive load. In our approach, measuring fidelity is unnecessary because it is primarily
relevant in post-hoc explanation settings—where one model attempts to approximate and explain the
behavior of another. In contrast, both tree based approach(other baselines) and our model is inherently
self-explainable, meaning it achieves 100% fidelity by design, as the decisions made by the model
directly reflect its underlying logic. For comprehensibility and cognitive load, our rule-based system
offers a structured and measurable format. The rule ensembles consist only of boolean propositions
formed through simple comparisons (e.g., feature > threshold) and logical conjunctions. In general,
comprehensibility is negatively correlated with model complexity, while cognitive load increases with
complexity. We define model complexity in terms of the total number of rules, conditions, and logical
operations. Models with more parameters and operations tend to be harder to understand and place a
greater cognitive burden. Since the performance of πaffine-D, and D-SDT is not directly comparable,
we instead evaluate them in terms of interpretability. Using model size as a proxy for complexity, we
observe that across all environments our models require, on average, 61.23 symbolic units (number
of parameters) to achieve the reported performance. In contrast, SYMPOL uses 95.6 symbolic
units (approximately one per node). According to Murdoch et al. (2019), interpretability involves
simulatability, modularity, and low complexity. A model is simulatable if its predictions can be easily
followed and computed by humans; modular if its components are individually understandable; and
low-complexity if it uses few parameters or rules. Our rule-based method satisfies all three. Each
decision is made via explicit if-then rules (simulatability), each rule is independently interpretable
(modularity), and the total number of rules is kept under 30, ensuring the model remains simple
and auditable (low complexity). Although symbolic trees like SYMPOL’s are locally simulatable (a
single path explains a decision), shared internal nodes mean edits are not truly modular, and trees
tend to grow deep and wide on harder tasks, so they quickly lose low complexity and thus do not
fully satisfy all three criteria simultaneously.

0.07

0.0

-0.07

v

do nothing rules for do nothing
-19.725 if p -0.510 & v = 0
-13.485 if v 0.001
24.220 if p -0.485 & v = 0
-23.371 if v 0.003
24.743 if p -0.402 & v 0.000
-26.515 if p -0.631 & v = 0

0.07

0.0

-0.07

v

right rules for right 26.215 if p -0.510 & v 0.007
27.518 if p -0.402 & v 0.001
21.307 if v 0.001
18.688 if v -0.001
19.766 if v 0.000
21.341 if p -0.633
11.775 if p -0.577 & v 0.001
16.511 if v 0.000

-1.20 -0.84 -0.48 -0.12 0.24 0.60
p

0.07

0.0

-0.07

v

left

-1.20 -0.84 -0.48 -0.12 0.24 0.60
p

rules for left
25.311 if v -0.001
-10.568 if p -0.502
51.035 if v -0.004
-14.514 if p -0.581 & v = 0
-11.616 if p -0.411 & v -0.001
17.688 if v -0.000
16.429 if -0.628 p -0.252
      & -0.012 v 0.015
-17.952 if -0.616 p -0.490
      & 0.001 v 0.008
21.474 if v 0.000

50 0 50 100 150

actor
output

Figure 4: Visual representation of the rules for
MountainCar. Higher actor output values in the heatmap
indicate that the corresponding action is more strongly pre-
ferred at that state. The squares indicate the regions of the
state space where the corresponding rules apply.

Qualitative Interpretability Case
Studies - MountainCar(RQ3): In
this section, we use the MountainCar-
v0 environments from OpenAI Gym
as examples to illustrate the inter-
pretability of our proposed reinforce-
ment learning algorithm. The Moun-
tain Car environment involves a car
situated between two hills, tasked
with reaching the flag at the top of
the right hill. Due to insufficient en-
gine power, the car must build mo-
mentum by oscillating back and forth.
The system state is characterized by
two continuous variables: the car’s
position (p) and its velocity (v). The
agent performs one of three discrete
actions: push left, do nothing, or push
right. For each action, a set of rules
evaluate the current state by applying
specific conditions based on p and v,
assigning corresponding scores that
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influence the decision-making process. Consider a typical state where p = −0.5 (slightly to the left of
the center) and v = 0.02 (moving rightward). For the action Do Nothing, one rule imposes a penalty
of −13.485 since the velocity v exceeds a small positive threshold 0.001, discouraging inaction that
could result in insufficient momentum to overcome the hill. For the action Push Left, only one rule
applies, which assigns a positive score as the velocity v is above a minimal threshold, encouraging
a slight push left to maintain momentum without overcompensating. Conversely, the action Push
Right activates multiple rules: three contribute +57.59 because the velocity v surpasses different
threshold values for the corresponding rules, strongly encouraging a push right to build momentum;
another rule provides +11.775 since both the position p ≥ −0.577 and velocity is positive are
satisfied, indicating that a rightward push is beneficial without risking overshooting the valley; There
is also one rule contributing an additional +1.361 because the position p ≤ −0.449, p ≥ −0.874,
and v ≤ 0.023 hold true, subtly encouraging a push right to maintain the car within a stable range.
The cumulative score for Push Right thus amounts to +70.725, clearly favoring this action. This
comprehensive rule-based scoring system demonstrates that, for the given state (p = −0.5, v = 0.02),
pushing right is the optimal choice as it significantly builds the necessary momentum to ascend the
hill, outweighing the moderate incentives to push left and the discouragement from doing nothing.
We have also visualized the rules of MountainCar in Figure 4 with all rules presented in Appendix M.
One can easily identify the corresponding areas associated with a state and locate the applicable rules.
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Figure 5: Visualization of the HVAC Rules. Higher actor output
value mean the corresponding action is preferred at that state.

Qualitative Interpretability
Analysis - Real Time HVAC
control(RQ3): Alongside
standard Gym benchmarks, we
evaluated our algorithm on a
challenging, real-world HVAC
control problem in a biological
laboratory, where maintaining
temperature within a narrow
band by setting effective
heating (htg) and cooling (clg)
set points is vital to preserving
the viability of cultured viruses.
In such safety-critical settings,

interpretability is crucial: when RL governs biocontainment HVAC systems, even minor errors can
destroy cultures or compromise containment. As shown in Table 1, our rule-based actor approach
delivers performance nearly equal to—or even surpassing—that of traditional baseline methods.
More than this, our proposed algorithm also delivers interpretability by explaining why and how each
decision is made in human-understandable language, enabling users to assess the correctness of its
rules. Consider the very first rule as an example: if outdoor temperature ≤ −4.5; htg setpoint ≤ 20.0;
air temperature ≤ 21.1503, and HVAC electricity demand rate ≥ 1452.0250(kW ), +37.6076
What it means, in plain English: When all four of these conditions hold: 1. Outdoor temperature
is extremely low; 2. The previous heating setpoint remains at a moderate level; 3. The indoor air
temperature is still below the desired comfort threshold; 4. The HVAC system is already drawing
high power, then this rule “fires,” adding +37.6 to the score for choosing (htg = 15°C, clg = 26°C), i.e.,
heat turns on below 15 °C and cooling above 26 °C. A large positive weight like +37.6 signifies that,
in this scenario, raising the heating setpoint to 15°C is especially beneficial. Based on visualized the
rules of HVAC control in Figure 5, when it’s freezing outside, your target heating level is still under
typical comfort, the room hasn’t yet warmed up, and the system is working hard—so raising the heat
setpoint to 15°C markedly improves comfort, which this rule captures (see details in Appendix K).

6 CONCLUSION

In conclusion, this paper introduces a neural+symbolic approach within the actor-critic framework.
This method leverages both the robust function approximation capabilities of neural networks critic
and the interpretability provided by rule-based actor models. Users can inspect how the model makes
each decision and form a view about its underlying reasoning. The limitations of this work are
discussed in Appendix A. In the future, we plan to assess the scalability of our method in more
complex environments across different domains, such as robotics, finance, healthcare, or autonomous
driving, and adapt with other actor-critic frameworks, such as Soft Actor-Critic.
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ETHICAL STATEMENT

This work does not involve human subjects, personal data, or identifiable information. All experiments
are conducted entirely in simulated environments, including stylized energy-system tasks designed
to probe safety and performance trade-offs. These simulations do not interface with or control any
real-world infrastructure. Our proposed NSAC framework aims to improve the interpretability and
trustworthiness of reinforcement learning systems by combining symbolic rules with statistical learn-
ing. This direction supports the broader goal of promoting transparency in AI decision-making. While
the symbolic actor promotes explainability, we acknowledge the importance of careful rule design to
avoid unintended consequences in safety-critical domains. However, our current implementation is
strictly research-oriented and intended for controlled, offline evaluation.

REPRODUCIBILITY STATEMENT

To support reproducibility, we include comprehensive details of our training procedures, hyperparam-
eter settings, and evaluation metrics within the main text and appendix. Upon publication, we will
release the full codebase, including: Random seeds and environment specifications, Training scripts
to replicate all experiments, Plotting utilities to reproduce all figures. All results can be reproduced
using a single command-line interface without manual intervention. Pretrained models and logs will
also be provided to facilitate benchmarking and verification.
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A LIMITATION AND FUTURE WORK

A fundamental limitation of our approach lies in the natural trade-off between interpretability and
performance. While our symbolic, rule-based actor offers clear advantages in terms of transparency
and simulatability, this structure inherently constrains policy expressiveness compared to fully neural
counterparts—particularly in complex, high-dimensional environments. Although NSAC achieves
competitive performance across benchmark tasks, there may be scenarios where its symbolic policy
cannot match the nuanced optimisation achievable by deep learning-based policies.

NSAC uses rule ensembles over input features, so the candidate rule space grows with the number of
attributes and thresholds. In practice, we keep policies compact and simulatable by capping the rule
budget and rule depth. This makes NSAC best suited to low–to–medium dimensional feature spaces
or to settings with a good compact feature representation; truly high-dimensional inputs would require
prior feature extraction or a hybrid neural–symbolic architecture. Also, boosting-based rule updates
are currently performed per action, so runtime scales roughly linearly with the number of discrete
actions. Our experiments use small to moderate action spaces, and we control cost by limiting rules
per action and exploiting trivial parallelism across actions. Very large action spaces would likely
require extensions such as shared rule ensembles or multi-class boosting. NSAC is not well suited to
highly partially observable or sparse reward environments(like PONG Delfosse et al. (2024b)) that
demand rich temporal memory or very high-capacity function approximators.

Moreover, interpretability is not a binary property but exists on a spectrum. Different symbolic
approaches offer varying degrees of clarity, modularity, and simulatability, often depending on the
complexity of the rule structure, the nature of the environment, and the domain-specific knowledge
embedded within the rules. As such, the perceived interpretability of a symbolic method may vary
across users and use cases. Practitioners must therefore carefully consider the type and level of
interpretability required for their application—balancing traceability with scalability—when choosing
or designing a symbolic component. Future work may explore adaptive symbolic structures or hybrid
neuro-symbolic policy representations to better navigate this trade-off across diverse tasks.

B DETAILED RULE UPDATE

Step 1: In time-step t, for fa, we first select a new query qt from a candidate set Q by solving

qt = argmax
q∈Q

obj
(
q; f (t−1)

a

)
, (8)

where we adopt OGB (Yang et al., 2024) for the objective function. Let q =
(q(x1), . . . , q(xn))

T ∈ {0, 1}n is the query vector of the query q, and g(t−1) =

(∂Lλ(f
(t−1)
a )/∂f

(t−1)
a (x1), . . . , ∂Lλ(f

(t−1)
a )/∂f

(t−1)
a (xn))

T is the gradient vector of the empir-
ical risk with respect to the predicted values of f

(t−1)
a . g

(t−1)
⊥ and q⊥ are the projection of

g and q onto the orthogonal complement of the range of Qt−1 = (q1, . . . , qt−1)
T , where

qi = (qi(x1), . . . , qi(xn))
T ∈ {0, 1}n is the query vector of the query qi for i = 1, . . . , t − 1.

We express the objective function as follows: obj(q; f (t−1)
a ) = objogb(q) = |qT

⊥g
(t−1)
⊥ |/∥q⊥∥. The

candidate query set Q comprises all possible conjunctions of propositions, where each proposition
corresponds to a condition that splits the attribute space based on attribute values of given data points
(e.g., threshold-based splits). The objective function is maximized using greedy or beam search.

Step 2: After adding the updated new query, we re-calculate the optimal weight vector by solving

wt = arg min
w∈Rt

L̂λ

(
Qt,w

)
, (9)

where Qt = Qt−1 ∪ qt is the n× t matrix with the outputs of the selected queries.

Step 3: After there are k rules in the system, instead of continuing to add a new rule for each time,
we adopt the post-processing replacement step of boosting algorithm (Shalev-Shwartz et al., 2010).
In each iteration, we remove one rule with minimal absolute weight, leaving k − 1 rules in the
model: k⋆ = argmin1≤r≤k|wr|, and remove the query function qk⋆ together with its coefficient
wk⋆ , thereby reducing the ensemble to f (k−) with k − 1 terms. Then, we need to recompute
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the weight vector wk− = (wr)
T
r∈[k],r ̸=k⋆ ([k]={1,. . . ,k}) of f (k−) along with the updated query

functions {qr}r∈[k],r ̸=k⋆ : wk− = argminw∈Rk−1 L̂λ

(
Qk− ,w

)
, where Qk− = {qr}r∈[k],r ̸=k⋆ is

the n× (k − 1) matrix with the outputs of the selected queries.

Step 4: After this, repeat Step 1 to add a new rule to the system. In the end, the weights of all the k
rules are recalculated (same as 8 and 9) in Step 2. If the expected loss does not decrease after the
post-processing procedure, the model before post-processing is restored. The performance of the
post-processing with fully-corrective boosting is guaranteed by the following theorem.

Algorithm 2 Orthogonal Gradient Boosting (OGB)

1: Input: data (xi, yi), number of rules k and gt
2: f (0) = 0
3: for t = 1, . . . , k do
4: qt = argmaxq |gT

⊥tq|/∥q⊥∥
5: w(t) = argmin(w1,...,wt)∈Rt L̂λ(

∑t
j=1 wjqj)

6: f (t)(·) = w
(t)
1 q1(·) + · · ·+ w

(t)
t qt(·)

7: end for
8: Output: f (k)

Algorithm 3 Rule Replacement Steps

Input: data (xi, yi), i = 1, . . . , n, original rule ensemble with k rules f (0)
k , maximum iteration

number T and g
for t = 1, . . . , T do

Find the index of the smallest weight absolute value r = argminj∈1,...,k |w(t−1)
j |

w̃(t−1) = argminw∈Rk−1 L̂λ(
∑

i∈[k]−{r} w̃
(t−1)
i qi)

f̃
(t−1)
k−1 (·) =

∑
i∈[k]−{r} w

(t−1)
i qi(·)

Find the query q
(t)
k = argmaxq ∥qTg⊥∥/|q⊥|

w(t) = argminw∈Rk L̂λ(
∑

i∈[k]−{r} wiqi + wrq
(t)
r )

Let δ = L̂λ(f
(t))− L̂λ(

∑
i∈[k]−{r} w

(t)
i qi + w

(t)
r q

(t)
r )

if δ > 0 then
f
(t)
k =

∑
i∈[k]−{r} w

(t)
i qi + w

(t)
r q

(t)
r

else
break

end if
end for
Output: f (t)

k
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Figure 6: The NSAC Algorithm.

C THEORETICAL ANALYSIS

We present a comprehensive theoretical convergence analysis of our NSAC algorithm. Under standard
assumptions, our algorithm converges to a local optimum. We assume the following conditions:
Assumption C.1 (Step Sizes). Assume α(w,q) be the learning rate for actor and let αϕ be the learning
rate for the critic. The sequences {αϕ(t)} and {α(w,q)(t)} are positive and satisfy
∞∑
t=0

αϕ(t) = ∞,

∞∑
t=0

α(w,q)(t) = ∞,

∞∑
t=0

(
αϕ(t)

2 + α(w,q)(t)
2
)
< ∞, lim

t→∞

α(w,q)(t)

αϕ(t)
= 0,

so that the critic update occurs on a faster timescale.
Assumption C.2 (Markovian Sampling & Ergodicity). We assume mild mixing or ergodicity con-
ditions ensuring that each state-action pair is visited infinitely often in the limit, and that standard
stochastic approximation methods apply.
Assumption C.3. We assume a Lipschitz-smooth approximator for Vϕ(s). We assume the “compat-
ibility” holds or that any residual bias in the critic’s estimate does not prevent recovering the true
gradient direction in expectation.
Theorem C.4. (Theorem 2.9 in (Shalev-Shwartz et al., 2010)) Let L(f) be the risk function defined by
a β-smooth loss function, where the expectation is with respect to an arbitrary distribution over X×Y .
Let λ > 0 be a scalar, f is an additive rule ensemble with k rules, f̄ is a reference rule ensemble with
k0 rules, if k + 1 ≥ k0(1 + 16/λ2), and assume that L is (k + 1 + k0, λ)-sparsely-strongly convex.
Additionally, let τ be an integer such that

τ ≥ λ(k + 1− k0)

2β
log

(
L(0)− L(f̄)

ϵ

)
. (10)

Then if the fully corrective boosting is run for k iterations and its last predictor is provided as input
for the post-processing replacement procedure, which is then run for τ iterations, then when the
procedure terminates at time t, we have L(f (t))− L(f̄) ≤ ϵ.

Theorem C.5. Let ϕ be the fixed parameters of a critic, inducing a fixed value function Vϕ(s) for
each state s ∈ S . Let f be a parameterized function (e.g., the actor’s approximation to the advantage)
that is updated iteratively according to the update rule, the sequence { fk} converges to f̄ .
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Proof. We first calculate the risk for rule ensembles for f̄ and fk based on the loss functions: L(f̄) =
− log πf̄ (at|st)f̄ and L(fk) = − log πfk(at|st)fk, respectively. When R(·) is error bounded, there
exists a lower bound with a constant γ > 0 satisfying

∣∣L(f1) − L(f2)
∣∣ ≥ γ ∥f1 − f2∥, for any

f1 and f2 in the parameter space. Based on Theorem C.4, when equation 10 is satisfied, we have
∥fk − f̄∥ ≤ 1

γ

∣∣L(fk)− L(f̄)
∣∣ ≤ ε

γ . Hence, bounding the difference in risk |L(fk)− L(f̄)| by ε

forces the parameter distance ∥fk − f̄∥ to lie within ε
γ .

Theorem C.6 (Convergence of NSAC). Let {(wt, qt), ϕt} be the sequence of actor and critic param-
eters updated via Eqs. equation 6–equation 7 under the Assumptions C.1–C.3. Then {(wt, qt), ϕt}
converges almost surely to a set of stationary points of the associated ordinary differential equa-
tion (ODE) system: ϕ̇ = F (ϕ; (w,q)), (ẇ, q̇) = G((w,q); ϕ) where F represents the temporal-
difference (critic) dynamics, and G represents the policy-gradient (actor) dynamics. In particular,
(w, q) converges to a local optimum of J(w, q), where J is the expected cumulative reward.

Proof. We employ the concepts of Two-timescale theorems (Borkar & Meyn, 2000; Wu et al., 2020)
and Theorem C.5 for the proof. Please refer to Appendix E for the detailed proof of convergence.

D ACTOR’S LOSS WITH L2 REGULARIZATION

Theorem D.1 (Local Strong Convexity of Actor’s Loss with L2 Regularization). Consider the actor’s
loss function in an A2C framework defined as

L(θ) = −Es∼ρπ,a∼πθ
[Aπ(s, a) log πθ(a|s)] +

λ

2
∥θ∥2,

where λ > 0 is the regularization coefficient for L2 regularization.

We assume:

1. The policy πθ(a|s) is twice continuously differentiable with respect to θ;

2. At a local minimum θ∗, the Hessian of the unregularized loss Lunreg(θ) =
−E[Aπ(s, a) log πθ(a|s)] satisfies ∇2Lunreg(θ

∗) ⪰ 0 (positive semi-definite);

3. The regularization coefficient λ is chosen such that λ > 0.

Then, there exists a neighborhood U around θ∗ where the regularized loss L(θ) is strongly convex.
Specifically, within U ,

∇2L(θ) ⪰ λI,

where I is the identity matrix in Rd×d.

Proof. We aim to show that the regularized loss function L(θ) is strongly convex in a neighborhood
around θ∗.

The regularized loss can be expressed as the sum of the unregularized loss and the L2 regularization
term:

L(θ) = Lunreg(θ) + Lreg(θ),

where
Lreg(θ) =

λ

2
∥θ∥2.

Compute the gradient and Hessian of L(θ):

∇L(θ) = ∇Lunreg(θ) + λθ,

∇2L(θ) = ∇2Lunreg(θ) + λI.

At the local minimum θ∗, by assumption:

∇2Lunreg(θ
∗) ⪰ 0.

Therefore,
∇2L(θ∗) = ∇2Lunreg(θ

∗) + λI ⪰ λI.
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This shows that the Hessian of the regularized loss at θ∗ is positive definite, as λ > 0. Since πθ(a|s) is
twice continuously differentiable, ∇2Lunreg(θ) is continuous in θ. Hence, there exists a neighborhood
U around θ∗ where:

∇2Lunreg(θ) ⪰ 0, ∀θ ∈ U .
Within U ,

∇2L(θ) = ∇2Lunreg(θ) + λI ⪰ λI.

This inequality holds because ∇2Lunreg(θ) ⪰ 0 and λI is positive definite. Since ∇2L(θ) ⪰ λI for
all θ ∈ U , the loss function L(θ) is **strongly convex** in the neighborhood U around θ∗ with
strong convexity parameter λ.

Theorem D.2 (Local Error Bound under Local Strong Convexity). Let L : Rd → R be continuously
differentiable and µ-strongly convex in a neighborhood N of some point f̂ ∈ Rd. In other words,
there exists µ > 0 such that for all f ∈ N ,

L(f)− L(f̂) ≥ µ

2
∥ f − f̂∥2.

Then, for every f in that neighborhood N ,

∥ f − f̂∥ ≤
√

2

µ

(
L(f)− L(f̂)

)
.

Proof. Since R is µ-strongly convex in the neighborhood N around f̂ , we have the inequality

L(f) − L(f̂) ≥ µ

2
∥ f − f̂∥2, ∀f ∈ N .

Rearrange this to obtain

∥ f − f̂∥2 ≤ 2

µ

(
L(f)− L(f̂)

)
.

Taking the square root of both sides yields

∥ f − f̂∥ ≤
√

2

µ

(
L(f)− L(f̂)

)
.

Thus, in the local region N , a small gap in the objective value L(f)− L(f̂) forces f to be close to f̂ .
This is precisely the local error-bound property.

E PROOF FOR CONVERGENCE OF OUR PROPOSED ALGORITHM

Theorem E.1 (Convergence of our Proposed Algorithm). Let {(wt, qt), ϕt} be the sequence of actor
and critic parameters updated via equation 6–equation 7 under the Assumptions C.1–C.3. Then
{(wt, qt), ϕt} converges almost surely to a set of stationary points of the associated ODE system:{

ϕ̇ = F (ϕ; (w,q)),

(ẇ, q̇) = G((w,q); ϕ),

where F represents the temporal-difference (critic) dynamics and G represents the policy gradient
(actor) dynamics. In particular, (w, q) converges to a local optimum of J(w, q).

Proof. By Assumption C.1, α(w,q(t)/αϕ(t) → 0. Hence, on the “fast” timescale, we may treat θt as
if it were quasi-static. Then the critic update is a standard temporal-difference learning procedure (or
mean-squared error minimization) for a fixed policy π(w,q).

From classical TD-learning results (or generalized linear function approximation theory), we know
that ϕt converges to the set

{ϕ∗(w,q) : F (ϕ∗(w,q)); (w,q) = 0},

provided that αϕ(t) diminishes appropriately and under the usual conditions.
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Formally, one shows that for each fixed (w,q), the ODE

ϕ̇ = F (ϕ; (w,q))

has a globally asymptotically stable equilibrium at ϕ∗(w,q). By the Two-timescale lemma (Borkar
& Meyn, 2000; Wu et al., 2020), the actual sequence ϕt tracks this stable equilibrium as t → ∞.

On the slower timescale, we consider the actor update:

(w,q)t+1 = (w,q)t + α(w,q)(t)∇(w,q) log π(w,q)t
(at | st) Ât.

As ϕt converges quickly to ϕ∗(w,q), the advantage estimate Ât converges to Aπ(w,q)(st, at). Hence,
up to diminishing approximation errors, the gradient update for our rule based model is driven from
the true policy gradient from the policy gradient theorem. Based on Theorem C.5, ignoring the small
the errors, we have

G((w,q); ϕ∗(w,q)) = ∇wqJ(w,q).

Putting the fast and slow processes together, we return to the coupled ODE; By the previous steps:

F (ϕ; (w,q)) = 0 implies ϕ = ϕ∗, (11)
G((w,q); ϕ∗) ≈ ∇wqJ(w,q). (12)

Hence, an equilibrium
(
ϕ∗, (w,q)

)
of the ODE occurs precisely, when

F (ϕ∗; (w,q)) = 0 and G((w,q); ϕ∗) = 0,

which in turn implies

∇J(w,q) = 0, if the advantage estimation is unbiased.

Therefore, the equilibrium corresponds to a stationary point of J(w, q). Under mild conditions (e.g.,
local convexity/concavity arguments or strict monotonicity), one concludes that the limit points are
local maxima of J(w, q).

We now invoke the standard Two-timescale theorems (Borkar & Meyn, 2000; Wu et al., 2020). then
the combined updates converge to an internally consistent equilibrium of the ODE. By the structure
of the ODE, the equilibrium is a stationary point and local optimal of J(w, q).

F HYBRID WARM START FOR ACCELERATING CONVERGENCE

In NSAC, we also adopt a novel hybrid training strategy that incorporates both neural network-based
actor and rule-based actor. This hybrid strategy seeks to merge the quick learning attributes of neural
networks with the clear and straightforward nature of rule-based systems.

Step 1: We employ a traditional neural network-based actor-critic model to train the system. In this
phase, both the actor and the critic are implemented as neural networks, leveraging their ability to
approximate complex functions and capture high-dimensional patterns in the data. The model is
trained for a certain number of episodes but not until complete convergence. This pre-training phase
is designed to establish a preliminary value function estimation that captures essential features of the
optimal strategies in a computationally efficient manner.

Step 2: The neural network-based actor is replaced with the rule ensemble actor. This rule-based
system is designed to provide greater transparency and interpretability in decision-making. With the
rule ensemble actor in place, training continues, utilizing the previously trained neural network critic.
The critic assists the new actor in refining its policy through ongoing feedback and value estimation.

F.1 ABLATION STUDY

In our ablation study, we explored how variations in the rule count and the implementation of a warm
start influenced our method. We conducted tests in the CartPole-v1 environment under various rule
configurations, specifically using 5, 10, 12, 20, 30, 40, and 50 rules per action. Each configuration
was tested both with and without a warm start.
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Figure 7: Ablation study on different numbers of rules and warm start.

1. Number of Rules: As depicted in Figure 7, the model configured with 12 rules per action
and a warm start yields the highest reward. This outcome suggests that having 12 rules per action
provides the model with sufficient flexibility to effectively capture the essential dynamics of the
environment without being overly simplistic. Employing fewer than 10 rules, such as 5, may not
offer adequate coverage to manage the environment’s complexity, resulting in inferior performance.
Conversely, a larger number of rules may lead the model to overfit the training data, picking up
on noise or irrelevant patterns and diminishing its generalizability to new contexts. The findings
from this ablation study highlight a critical balance between the number of rules and overall model
performance. They demonstrate that merely increasing the number of rules does not invariably
improve performance, as an excess can lead to complexity and overfitting, whereas too few can
restrict the model’s performance.

2. Warm Start: When the number of rules is small, the model’s representational capability is limited,
so the initial conditions (e.g., the warm start) become more critical. A warm start can guide the model
toward better solutions early on, helping it learn an effective policy faster and avoid getting stuck
in poor local optima. In contrast, with a larger rule set, the model has greater capacity to explore
various configurations. In such cases, relying on an external initialization can sometimes constrain
exploration, preventing the model from fully leveraging its increased flexibility. As a result, the
model without a warm start may discover a better configuration on its own when there are many rules
to learn from.

G CONTINUOUS ENVIRONMENTS

Continuous environments differ fundamentally from the perspective of the theoretical framework
we propose. In this work, theoretical analysis is restricted to discrete action spaces, as our method
enables us to establish formal convergence guarantees.

In order to guarantee the convergence of our proposed method, we restrict our analysis to discrete
action spaces. The convergence proof relies on several technical assumptions—such as bounded
gradients, Lipschitz continuity, and stable critic updates—that are typically satisfied in discrete
action spaces, but are difficult to guarantee in continuous settings, particularly for actor–critic
methods (Borkar & Meyn, 2000; Wu et al., 2020). Discrete policies (e.g., softmax) yield smooth and
bounded log-policy gradients, which facilitate stable actor updates and tractable Bellman backups
using finite sums. These same conditions are also required for the convergence of the rule-based
function class used in OGB. As a gradient-boosting-based algorithm, OGB requires the loss function
to be Lipschitz continuous, which means that the gradients are bounded. According to Theorem 2.4,
2.8 and 2.9 in Shalev-Shwartz et al. (2010), Lipschitz continuity is a necessary condition for the
learned models to converge to a theoretically optimal model within a certain number of iterations for
(fully corrective) boosting methods and the rule replacement steps.

In contrast, continuous action spaces present challenges, such as unbounded gradients (e.g., the policy
gradient can become unbounded as the standard deviation in Gaussian policies), integration-based
Bellman targets, and higher variance in gradient estimates. These factors violate the core assumptions
underpinning both the two-timescale stochastic approximation framework and the rule ensemble
model used in our convergence analysis.
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H RELATED WORK

Ref Work (short) Category Interp. at scale P/Pt/E Performance

Ernst et al.
(2005); Gupta
et al. (2015a)

Tree-based
batch RL

Tree policy
(native)

Not interp.(large trees) N/N/Y Strong on S/M; degrades on
L/complex

Tao et al.
(2018)

Tree RL for
DTRs

Tree policy
(native)

Not interp.(multi-stage) N/N/Y Hard to scale beyond structured
domains

Bastani et al.
(2018)

Policy extrac-
tion

Tree policy
(extracted)

Often not interp. (size
balloons)

N/Y/N Tracks teacher; small typical
drop

Roth et al.
(2019)

Conservative
Q-
Improvement

Tree policy
(native)

Not interp.(large trees) N/N/Y Strong on S/M; degrades on
L/complex

Silva et al.
(2020)

Differentiable
decision trees

Tree policy
(diff.)

Not interp.(math nota-
tion)

N/N/Y Solid on modest tasks; mixed
scaling

Ding et al.
(2020)

Cascading De-
cision Trees

Tree policy
(native)

Not interpretable at
scale

N/N/Y Good early; plateaus with com-
plexity

Gupta et al.
(2015b)

Policy
Tree(distill.)

Tree policy
(distilled)

Often not interpretable
at scale

N/Y/N Tracks teacher; bigger drop for
small trees

Coppens et al.
(2019)

Soft DT distil-
lation

Tree policy
(distilled)

Often not interpretable
at scale

N/Y/N Approximates teacher;
mild–moderate drop

Liu et al.
(2019)

Linear Model
U-Trees

Tree policy
(distilled)

Not interp.(math nota-
tion)

N/Y/N
(onl)

Good local fidelity; may trail
overall

Garcez et al.
(2018)

SRL with
commonsense

Symbolic
RL (prede-
fined)

Interpretable (symbolic
rules)

Y/N/Y Strong when priors fit; brittle if
misspecified

Lyu et al.
(2019)

SDRL (sym-
bolic plan-
ning)

Symbolic
RL (prede-
fined)

Interpretable (modules) Y/N/Y Often strong & sample-efficient;
planner-dependent

Illanes et al.
(2020)

Symbolic
plans as instr.

Symbolic
RL (prede-
fined)

Interpretable (plans) Y/N/Y Good when plans align; limited
otherwise

Landajuela
et al. (2021)

Discovering
symb. policies

Symbolic
policy
(from NN)

Not interp.(math nota-
tion)

N/Y/N Near-teacher on seen tasks;
drops under shift

Hein et al.
(2018)

GP-based
symbolic
rules

Symbolic
policy (di-
rect)

Not interp.(math nota-
tion)

N/N/Y Competitive on simpler control;
search limits scale

Verma et al.
(2018)

Programmatic
RL (PIRL)

Program
synthesis
policy

Not interp.(math nota-
tion)

N/N/Y Lags in high-dimensional

Ours NSAC Symbolic
RL

Interpretable(symbolic
rules)

N/N/Y Often strong & sample-efficient

Table 2: Compact comparison of policy representations and learning setups.

We summarise representative interpretable RL approaches across tree-based, symbolic, and pro-
grammatic policy classes. Interp. at scale highlights whether interpretability persists as problem
size/complexity grows. P/Pt/E abbreviates Predefined knowledge? / Post-hoc from pretrained? /
Learn directly from environment? (Y/N). Performance sketches typical empirical behaviour. Overall,
native tree policies often face scalability–interpretability trade-offs, post-hoc distilled trees track
teachers but lose fidelity when heavily pruned, symbolic methods offer strong transparency and sam-
ple efficiency when priors/plans match the domain, and programmatic policies remain challenging in
high-dimensional settings.
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I BENCHMARK SETTING

We recognize that certain algorithms might perform better with changes to the environment (e.g.,
adjusting the number of parallel environments or modifying rewards). Still, finding a single modifica-
tion that consistently benefits all tested algorithms remains challenging. Therefore, we rely on the
most basic version of each environment to maintain consistency across all methods. Additionally,
it is important to note that the complexity of our model is designed to balance comprehensibility
with the cognitive effort needed to understand all of the rules involved. Therefore, in our paper,
we deliberately selected 12 rules per action model, which helps ensure the interpretability of our
proposed method.

All experiments in this paper are conducted on a computer with processor “3.1GHz 6-Core Intel Core
i5” and a memory of “72GB 2133 MHz DDR4”.

J ENVIRONMENT DESCRIPTIONS

• CartPole-v1 (Gym). The state s ∈ R4 is continuous and consists of cart position, cart
velocity, pole angle, and pole angular velocity. The action space is discrete with two actions:
push left / push right. The reward is +1 at each timestep until termination (when the pole
angle exceeds the threshold or the cart goes out of bounds).

• MountainCar-v0 (Gym). The state s = (position, velocity) ∈ R2 is continuous. The
action space is discrete with three actions: push left / do nothing / push right. The reward is
−1 at each timestep until the car reaches the goal position at the top of the hill.

• Acrobot-v1 (Gym). The state s ∈ R4 is continuous and encodes the two joint angles and
their angular velocities. The action space is discrete with three torque actions applied at the
actuated joint. The reward is −1 at each timestep until the end-effector reaches the target
height, at which point the episode terminates.

• Blackjack-v1 (Gym). The state is a discrete tuple (player sum, dealer showing,
usable ace flag). The action space is discrete with two actions: hit / stick. The reward
is +1 for a win, −1 for a loss, and 0 for a draw.

• Postman (grid-world). The state is discrete and encodes the agent’s grid location together
with the locations and delivery status of parcels (picked up / delivered). The action space is
discrete: move north / south / east / west and pick-up / drop-off when applicable. The reward
is −1 per timestep and a positive bonus when a parcel is successfully delivered, encouraging
short, efficient delivery routes.

• HVAC (building control). The state is high-dimensional and continuous, including (for
each thermal zone) indoor air temperature, humidity, and CO2 concentration, together with
outdoor temperature, time-of-day, and occupancy-related features. Actions are discrete
combinations of heating and cooling setpoints (e.g., heating and cooling setpoints chosen
from a finite grid of admissible values). The reward at each control step penalises both
energy consumption and comfort violations: large negative penalties are applied when zone
temperatures leave the comfort band, and a smaller penalty is proportional to electricity
consumption, so the agent is encouraged to maintain comfort with minimal energy use.
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(b) Visualization of the Rules

Figure 8: Comparing the Performance of NSAC with Baseline Methods and Visualize the rules.

K RULES VISUALIZATION FOR HVAC CONTROL WITH SINERGYM
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Figure 9: Visualization of action selection for NSAC.
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Figure 10: Average performance of our proposed algorithm.
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Typical rules for HVAC control with sinergym:

Action htg=16, clg=26:

+50.5500 if − 11.7075 ≤ outdoor_temperature ≤ 15.0 & htg_setpoint ≤ 20.0 & air_temperature ≤ 20.8431

+42.3222 if hour ≤ 6.0 & − 9.5 ≤ outdoor_temperature ≤ 4.3200 & air_temperature ≤ 21.1095

+33.7433 if hour ≤ 6.0 & outdoor_temperature ≤ 3.0 & HVAC_electricity_demand_rate ≥ 3524.0383

+30.0530 if air_temperature ≤ 19.4323 & HVAC_electricity_demand_rate ≥ 3492.0372

+23.8401 if hour ≤ 6.0 & outdoor_temperature ≤ −6.0 & HVAC_electricity_demand_rate ≥ 1836.0156

+19.5165 if outdoor_temperature ≤ −5.0 & air_temperature ≤ 20.8367 & air_humidity ≥ 34.4557

+19.3194 if outdoor_temperature ≤ 4.3200 & clg_setpoint ≤ 26.0 & air_temperature ≤ 20.7468

& air_humidity ≥ 44.9061 & HVAC_electricity_demand_rate ≤ 8328.7136

+17.1997 if outdoor_temperature ≤ −6.0 & air_temperature ≤ 20.6569 & air_humidity ≥ 34.4701

+12.2539 if outdoor_temperature ≤ 1.1000 & air_temperature ≤ 19.8760 & air_humidity ≥ 48.4554 &
HVAC_electricity_demand_rate ≥ 2194.6457

+10.1033 if day_of_month ≤ 16.0 & outdoor_temperature ≤ −9.5 & air_temperature ≤ 21.4822

+9.9095 if outdoor_temperature ≤ −1.2000 & clg_setpoint ≤ 28.0 & air_temperature ≤ 18.6297 &
20.1259 ≤ air_humidity ≤ 57.8947

+6.5348 if hour ≤ 5.0 & outdoor_temperature ≤ −6.2000 & air_humidity ≥ 46.6687 &
HVAC_electricity_demand_rate ≤ 6047.4648

Action htg=18, clg=26:

+52.4710 if outdoor_temperature ≤ 2.0 & htg_setpoint ≥ 18.0 & air_temperature ≥ 24.6918 &
36.4788 ≤ air_humidity ≤ 59.9498 & 655.1863 ≤ HVAC_electricity_demand_rate ≤ 3286.0521

+31.8345 if − 7.3000 ≤ outdoor_temperature ≤ −2.4800 & clg_setpoint ≥ 28.0 & air_temperature ≥ 22.7824 &
air_humidity ≤ 53.0045 & HVAC_electricity_demand_rate ≤ 2804.0908

+25.6196 if day_of_month ≤ 23.0 & hour ≥ 21.0 & htg_setpoint ≥ 18.0 &
air_temperature ≤ 21.2843 & 22.2264 ≤ air_humidity ≤ 57.4836 &
HVAC_electricity_demand_rate ≤ 4727.3044

+14.6693 if hour ≤ 16.0 & clg_setpoint ≥ 28.0 & 24.3635 ≤ air_temperature ≤ 25.3421 &
air_humidity ≤ 43.6038 & 1974.6005 ≤ HVAC_electricity_demand_rate ≤ 2847.7105

+12.8951 if day_of_month ≥ 17.0 & 1.0 ≤ hour ≤ 5.0 & htg_setpoint ≤ 16.0 &
air_temperature ≤ 19.6280 & HVAC_electricity_demand_rate ≥ 728.1273

+6.6281 if 14.0 ≤ hour ≤ 15.0 & outdoor_temperature ≤ −2.4800 & 24.1909 ≤ air_temperature ≤ 25.1225

& air_humidity ≤ 44.0097 & HVAC_electricity_demand_rate ≤ 2856.4850

+3.6962 if outdoor_temperature ≤ −2.4800 & air_temperature ≥ 25.9993

+2.2511 if hour ≥ 18.0 & − 5.0 ≤ outdoor_temperature ≤ −2.4800 & air_temperature ≥ 22.3801

& air_humidity ≤ 52.5242 & 1164.7935 ≤ HVAC_electricity_demand_rate ≤ 1443.5973

+1.7191 if − 7.3000 ≤ outdoor_temperature ≤ −3.0 & clg_setpoint ≥ 30.0 &
air_humidity ≤ 52.1981 & 1411.8365 ≤ HVAC_electricity_demand_rate ≤ 2783.3056

+1.6791 if 5.0 ≤ day_of_month ≤ 28.0 & − 3.4000 ≤ outdoor_temperature ≤ 6.6000 &
22.4682 ≤ air_temperature ≤ 23.2356 & HVAC_electricity_demand_rate ≤ 1559.4128
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Action htg=18, clg=25:
+76.0682 if month ≤ 2.0 & day_of_month ≤ 29.0 & − 2.4800 ≤ outdoor_temperature ≤ 15.0 &

htg_setpoint ≤ 21.0 & air_temperature ≤ 20.4542

+35.7797 if month ≤ 2.0 & day_of_month ≤ 28.0 & outdoor_temperature ≤ 15.0 &
air_temperature ≤ 20.4547 & HVAC_electricity_demand_rate ≤ 888.4346

+19.5429 if hour ≤ 17.0 & outdoor_temperature ≤ 4.3200 & air_temperature ≥ 21.3982

& air_humidity ≥ 22.1544 & HVAC_electricity_demand_rate ≥ 3353.0663

+11.0059 if outdoor_temperature ≤ −7.3000 & air_temperature ≥ 23.0022

& HVAC_electricity_demand_rate ≥ 3343.0970

+10.4447 if month ≤ 1.0 & outdoor_temperature ≤ 0.0 & air_temperature ≥ 22.3607

& air_humidity ≥ 35.8469 & HVAC_electricity_demand_rate ≥ 3237.7531

+9.2884 if day_of_month ≤ 28.0 & − 2.4800 ≤ outdoor_temperature ≤ 15.0 & clg_setpoint ≤ 25.0

& air_temperature ≤ 20.4644

+8.4585 if hour ≤ 16.0 & air_temperature ≥ 23.5872 & HVAC_electricity_demand_rate ≥ 3378.0424

+7.6878 if 2.0 ≤ day_of_month ≤ 8.0 & hour ≤ 15.0 & outdoor_temperature ≤ −6.7000 &
air_temperature ≥ 22.9565 & HVAC_electricity_demand_rate ≤ 5120.2045

+6.0944 if hour ≤ 16.0 & outdoor_temperature ≤ −9.5 & air_temperature ≥ 22.3765

+6.0912 if − 2.4800 ≤ outdoor_temperature ≤ 1.0 & clg_setpoint ≤ 29.0 & air_temperature ≤ 18.5048

& 28.1472 ≤ air_humidity ≤ 57.5569

+4.1747 if air_temperature ≥ 25.1225 & HVAC_electricity_demand_rate ≥ 4135.6304

+2.7032 if 2.0 ≤ day_of_month ≤ 29.0 & hour ≥ 1.0 & − 11.7075 ≤ outdoor_temperature ≤ −5.6000

& 18.0977 ≤ air_temperature ≤ 24.9366 & 4026.8635 ≤ HVAC_electricity_demand_rate
≤ 7054.0210

Action htg=18, clg=28:
+47.6207 if outdoor_temperature ≤ 1.1000 & air_temperature ≤ 21.3847

+42.5021 if month ≤ 2.0 & outdoor_temperature ≤ 13.0150 & clg_setpoint ≤ 29.0 &
air_temperature ≤ 20.8932 & HVAC_electricity_demand_rate ≤ 9236.5036

+37.5818 if month ≤ 2.0 & htg_setpoint ≤ 21.0 & 19.0381 ≤ air_temperature ≤ 22.2181

& air_humidity ≤ 61.5915

+37.5560 if month ≤ 2.0 & htg_setpoint ≤ 21.0 & 19.0971 ≤ air_temperature ≤ 24.1215

& air_humidity ≤ 62.4223

+26.1161 if outdoor_temperature ≤ −3.4000 & 17.0 ≤ htg_setpoint ≤ 18.0

& air_temperature ≤ 21.6418 & HVAC_electricity_demand_rate ≥ 1616.5198

+25.3651 if month ≤ 2.0 & hour ≤ 6.0 & outdoor_temperature ≤ 8.8000 & air_temperature ≤ 21.0920 &
air_humidity ≤ 51.7392

+21.4283 if hour ≤ 6.0 & outdoor_temperature ≤ −2.0 & htg_setpoint ≤ 18.0 & air_temperature ≤ 20.0191 &
HVAC_electricity_demand_rate ≥ 1266.1656

+19.3831 if air_temperature ≤ 19.0718

+18.9771 if clg_setpoint ≥ 28.0 & air_temperature ≤ 22.6279

& 3313.9887 ≤ HVAC_electricity_demand_rate ≤ 9094.2658

+15.9370 if outdoor_temperature ≤ 1.0 & htg_setpoint ≤ 20.0 & air_temperature ≤ 21.1680

& air_humidity ≥ 46.0692 & HVAC_electricity_demand_rate ≥ 3766.4288

+11.4827 if outdoor_temperature ≤ 1.1000 & air_temperature ≤ 18.9835

& 2059.7858 ≤ HVAC_electricity_demand_rate ≤ 8526.6964

+11.1224 if 3.0 ≤ day_of_month ≤ 28.0 & hour ≥ 22.0 & outdoor_temperature ≤ −1.0 & htg_setpoint ≤ 18.0

& 20.5696 ≤ air_humidity ≤ 57.0262 & HVAC_electricity_demand_rate ≥ 2007.6986
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L RULES VISUALIZATION FOR BLACKJACK-V1
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Figure 11: Visualization for action, value and rules for Blackjack with Ace.
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Figure 12: Visualization for action, value and rules for Blackjack with no Ace.

Action 0 (Stick):

+1.9012 if p ≥ 11

+1.0376 if d ≤ 9 and p ≥ 12

+4.4833 if ace ≥ 1 and p ≥ 14

+7.9438 if d ≥ 2 and p ≥ 17

+3.9105 if p ≤ 17 and p ≥ 13

+0.9851 if p ≥ 21

+2.6981 if p ≥ 9

−0.1967 if d ≤ 8 and d ≤ 9 and p ≤ 8 and p ≥ 8

−8.6313 if ace ≤ 0 and p ≤ 13 and p ≥ 8

+0.0882 if ace ≤ 0 and d ≥ 10 and p ≤ 16 and p ≥ 14
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Action 1 (Hit):

+0.6347 if d ≤ 9 and p ≤ 8

−0.4481 if d ≤ 8 and p ≤ 6

−0.4231 if d ≤ 8 and p ≤ 7 and p ≥ 6

+1.6016 if d ≥ 4 and d ≥ 5 and p ≤ 8 and p ≥ 6

−0.5585 if d ≤ 9 and p ≤ 7

+0.9266 if d ≥ 6 and p ≤ 7

+0.3394 if d ≥ 9 and p ≤ 10 and p ≥ 9

+0.9844 if d ≥ 8 and p ≤ 7

−0.3849 if d ≥ 3 and p ≤ 6

−5.0124 if d ≥ 10 and p ≥ 17 and p ≥ 18

M MOUNTAINCAR RULES
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Figure 13: Visual representation of the rules for MountainCar. Higher actor output values in the
heatmap indicate that the corresponding action is more strongly pre- ferred at that state. The squares
indicate the regions of the state space where the corresponding rules apply.

M.1 CASE STUDY: DECISION BOUNDARY AROUND p > −0.48 IN MOUNTAINCAR

To better understand the learned policy, we analyse its behaviour in the MountainCar environment in
the neighbourhood of the valley bottom. The state is two-dimensional, s = (p, v), where p denotes
the horizontal position of the car and v its velocity. The car starts in the valley and must build up
sufficient kinetic energy by rocking back and forth in order to reach the goal on the right hill. Because
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the engine is too weak to drive straight up, the policy must carefully coordinate position and velocity
to accumulate energy.

When P > 0.48

P = -0.48

If v > 0: Right

If v < 0: left

Figure 14: MountainCar Environment Near the Valley Decision Boundary This figure shows
the MountainCar track with the goal flag on the right hill and the car rendered near the bottom of
the valley at P = −0.48. The vertical dashed line marks the region P > 0.48, where the policy’s
decision depends on the sign of the velocity: for v > 0 the agent accelerates to the right to build
speed toward the goal, whereas for v < 0 it accelerates left to commit to a full swing back and gain
momentum for the next climb

In our rule-based policy, one of the most salient decision boundaries appears for positions to the right
of the valley minimum, i.e. for p > −0.48, which is close to the bottom of the track (see Fig. 14).
In this region the height of the track changes only slightly, so the gravitational potential is nearly
constant and the immediate direction of motion is determined almost entirely by the sign of the
velocity v.

Consequently, the line v = 0 for p > −0.48 becomes a natural decision boundary in the (p, v)-plane.
States with p > −0.48 and v > 0 correspond to the car already moving to the right; the optimal
action is to keep accelerating right to maximise its speed for the upcoming climb. In contrast, states
with p > −0.48 and v < 0 indicate that the car has started to roll back to the left after an unsuccessful
attempt; the best response is to accelerate left and commit to a full swing back, so that the next
rightward run can reach a higher point on the hill. Exactly at v = 0 the car is at a turning point,
momentarily stationary before choosing whether to move left or right, which is why this line marks
the decision boundary used by our policy.

Figure 14 visualises this situation directly in the environment: the car is rendered near p ≈ −0.48 at
the bottom of the valley, and the vertical dashed line indicates the region p > −0.48 where the policy
switches between “go left” and “go right” depending on the sign of the velocity.
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M.2 THE RULES

Action Left:

+25.3111 if v ≤ −0.0006471572560258208

−10.5678 if p ≤ −0.5023447513580322

+53.8697 if True
+51.0351 if v ≤ −0.004265955928713083

−14.5140 if p ≥ −0.5813989758491516 and v ≤ 0.006803702469915152

and v ≥ −0.0008947865571826689

−11.6162 if p ≤ −0.41075775027275085 and v ≤ −0.000661600707098839

+17.6882 if v ≥ −1.5593287753289978× 10−5

+16.4293 if p ≤ −0.25240878462791444 and p ≥ −0.6275408387184143

and v ≤ 0.01510303020477297 and v ≥ −0.01191

−17.9516 if p ≤ −0.4901819765567779 and p ≥ −0.615831172466278

and v ≤ 0.00759 and v ≥ −0.004150 and v ≥ 0.00126822

+21.4738 if v ≤ 0.00040989847620949166

−2.3676 if p ≥ −0.5437554597854615 and v ≤ 0.0016861518379300846

and v ≥ −0.0034104006830602885

+1.2316 if p ≤ −0.1402401 and p ≥ −0.4494079709053038

and v ≤ 0.023414026945829402 and v ≥ −0.01632060520350933

No Action:

−19.7248 if p ≥ −0.5101138830184937 and v ≤ 0.006803702469915152

and v ≥ −0.005573090445250273

−13.4848 if v ≥ 0.0007145821116864693

+24.2199 if p ≥ −0.4848527312278747 and v ≤ 0.00018940809495689726

and v ≥ −0.009227151423692702

−23.3706 if v ≤ 0.003292182506993414

−6.6878 if v ≤ −9.685811237431741× 10−5

+24.7429 if p ≤ −0.4022643387317657

and v ≤ 0.00020952874911017827

−26.5154 if p ≥ −0.6311534523963929 and v ≤ 0.006872396916151048

and v ≥ −0.006245836243033409

−8.7515 if p ≥ −0.39260063171386717 and v ≥ 0.0019062188919633629

+0.7214 if v ≤ −0.006146392878144977

−0.9839 if True
+6.8736 if p ≥ −0.5437554597854615 and v ≤ 0.0038646903820335875

+1.0000 if v ≥ −0.0010096890269778618
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Action Right:

+26.2150 if p ≤ −0.5101138830184937 and v ≤ 0.006803702469915152

+6.3636 if p ≥ −0.4848527312278747 and v ≥ −0.009227151423692702

+6.1251 if p ≥ −0.4855665504932403 and v ≥ 0.003292182506993414

+24.0837 if True
+27.5176 if p ≤ −0.4022643387317657 and v ≤ 0.0012711382005363714

+21.3072 if v ≥ 0.0007119119516573855

+18.6883 if v ≤ −0.0005520289996638883

+19.7662 if v ≥ 0.0004626010428182804

+21.3412 if p ≤ −0.6329279899597166

+11.7750 if p ≥ −0.5767600297927856 and v ≥ 0.0012682238826528204

+16.5113 if v ≥ 0.00040989847620949166

+1.3610 if p ≤ −0.4494079709053038 and p ≥ −0.8744302272796631 and v ≤ 0.023414026945829402

N EXPLANATION OF CART-POLE RULES

0.41

0.0

-0.41

v

left rules for left

-6.833 if pa -0.060
-6.822 if pa -0.058
14.592 if pa 0.047
15.726 if 
3.470 if cp 0.365 & cp 0.031 & pa -0.015
-7.361 if cp 0.368 & pa -0.034
11.598 if cp 0.252 & pa 0.004 & pa -0.020
-7.779 if pa -0.030
-3.026 if cp -0.422 & pa -0.020 & pa 0.013
7.091 if cp 0.217 & pa -0.004 & pa -0.020

-4.80 -2.40 0.00 2.40 4.80
p

0.41

0.0

-0.41

v

right

-4.80 -2.40 0.00 2.40 4.80
p

rules for right

-3.547 if cp 0.041
19.181 if cp -0.077
-3.774 if cp -0.121
2.038 if cp 0.058 & pa -0.069
-9.542 if cp 0.047
-3.079 if cp -0.016 & pa -0.036 & pa -0.056
10.287 if cp 0.368 & pa 0.003 & pa -0.034
2.050 if pa 0.004
-5.776 if pa -0.003
5.118 if cp 0.402 & pa -0.009
-4.809 if cp 0.217 & cp 0.009 & pa -0.004

30 20 10 0 10

Figure 15: Visual representation of the rules for CartPole involving position and velocity.

The CartPole environment consists of a pole mounted on a cart that moves along a track. The
objective is to balance the pole upright by controlling the cart’s movement left or right. The state
space includes the cart’s position(p), velocity(v), pole angle(θ), and angular velocity(θ̇), while the
action space includes applying force to move the cart in either direction. Figure 15 is the visualization
of our actor’s rule regarding the position and velocity. Please refer to Appendix O for all the resulted
rules.

Here we will use a typical state in the Cart-Pole game, where the optimal action is to move the cart to
the right, characterized by the parameters p = −0.05, v = 0.1, θ = 0.05 and θ̇ = 0.3, as an example
to illustrate the decision-making process for our proposed method. In this scenario, pushing right
reduces the pole’s angular velocity, helping stabilize the pole by balancing the torque induced by the
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tilt. In our model, three rules become active when considering a leftward action; each rule incurs a
negative score because the pole’s angle is positive, decisively discouraging a left move. In contrast,
the overall score for moving right is 2.3, notably higher than that for moving left. Although the cart’s
slight leftward position imposes a small penalty, the pole’s rightward angular velocity plays a critical
role: one rule alone contributes +19.8 to the total, effectively countering any negative effects from the
other rules. Consequently, given the pole’s rightward tilt and velocity, the agent’s optimal choice is to
push right, thereby maintaining stability and preventing undesirable outcomes.

O CARTPOLE RULES

Left:
−6.83310 if pa ≥ −0.06048

−6.82240 if pa ≥ −0.05751

+14.59180 if pa ≤ 0.04701 and pav ≤ 0.26781

+15.72630 if pav ≤ −0.52576

+3.47030 if cp ≤ 0.36470 and cp ≥ 0.03103 and cv ≤ 0.20766 and cv ≥ −0.00962

and pa ≥ −0.01513 and pav ≤ 0.28779 and pav ≥ −0.05232

+0.88280 if cp ≥ 0.24231 and cv ≥ −0.40319 and pa ≤ −0.03636 and pa ≥ −0.05565

−7.36080 if cp ≥ 0.36775 and cv ≥ −0.00425 and pa ≥ −0.03416 and pav ≤ 0.12249

+11.59770 if cp ≥ 0.25174 and pa ≤ 0.00381 and pa ≥ −0.02022 and pav ≤ 0.11855

and pav ≥ −0.37647

−7.77910 if pa ≥ −0.02969

−0.86900 if cp ≤ 0.16311 and cp ≤ 0.30448 and cp ≥ −0.11618 and cv ≤ −0.01313

and cv ≤ 0.17905 and pa ≤ 0.03930 and pa ≥ −0.02479 and pav ≤ 0.14835

−3.02560 if cp ≥ −0.42154 and cv ≤ 0.32329 and cv ≥ −0.01879 and pa ≥ −0.02018

and pa ≥ 0.01293 and pav ≤ 0.13896 and pav ≥ −0.01362

+7.09090 if cp ≤ 0.21659 and cv ≤ 0.21317 and cv ≥ −0.00898 and pa ≤ −0.00355

and pa ≥ −0.01990 and pav ≤ −0.29080

Right:
−3.54700 if cp ≤ 0.04146

+19.18060 if cp ≥ −0.07721 and pav ≥ 0.20059

−3.77380 if cp ≥ −0.12061

+2.03760 if cp ≥ 0.05832 and cv ≤ 0.06116 and pa ≥ −0.06911 and pav ≤ −0.05532

−9.54210 if cp ≤ 0.04726

−3.07880 if cp ≥ −0.01648 and cv ≤ 0.16053 and cv ≥ −0.19434 and pa ≤ −0.03636 and pa ≥ −0.05565

+10.28650 if cp ≥ 0.36775 and cv ≥ −0.00425 and cv ≥ 0.20400 and pa ≤ 0.00317

and pa ≥ −0.03416 and pav ≤ 0.12249 and pav ≥ −0.37842

+2.04960 if cv ≥ −0.34930 and pa ≥ 0.00381 and pav ≤ 0.11855

−5.77560 if cv ≥ −0.36800 and pa ≤ −0.00339

+5.11750 if cp ≥ 0.40156 and cv ≤ 0.39100 and pa ≤ −0.00914 and pav ≤ −0.33129

+0.00510 if cp ≥ 0.02529 and cv ≥ −0.01879 and pa ≤ 0.03998 and pa ≥ 0.01293

and pav ≥ 0.13896

−4.80880 if cp ≤ 0.21659 and cp ≥ 0.00944 and cv ≤ −0.28634 and pa ≤ −0.00355

and pav ≤ 0.30114 and pav ≥ −0.01324

P ACROBOT RULES

0:
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+8.7846 if w1 ≥ −0.09082 and w2 ≤ 0.22991

+9.3353 if cos(θ2) ≥ 0.89409

+10.4909 if sin(θ2) ≤ 0.44980

+8.2458 if sin(θ2) ≤ 0.37771 and w1 ≥ −0.12610 and w2 ≤ 0.15699

+11.6541 if True
+6.8474 if sin(θ1) ≤ 0.24220 and w2 ≤ 0.04877

+1.2850 if cos(θ2) ≥ 0.99115 and sin(θ1) ≤ −0.01332

+1.7239 if sin(θ1) ≤ −0.01472 and w2 ≤ 0.02869

+3.5813 if cos(θ1) ≥ 0.88816 and sin(θ1) ≥ −0.28723 and w1 ≤ 0.77240

+1.3335 if cos(θ1) ≥ 0.48252 and w1 ≤ 1.78991 and w1 ≥ −1.70488

+1.0000 if cos(θ2) ≤ 0.95137 and sin(θ1) ≥ 0.01719

1:

−3.0189 if cos(θ2) ≤ 0.99319

−3.3464 if cos(θ1) ≤ 0.99048 and w2 ≤ 0.12677

−8.6917 if cos(θ1) ≥ 0.81787 and w1 ≤ 0.92265

−5.4697 if True
−9.3263 if w1 ≤ 0.21755 and w2 ≥ −0.10354

−5.5746 if sin(θ2) ≤ 0.37771 and w1 ≤ 1.28679 and w2 ≥ 0.15699

+5.4709 if sin(θ1) ≥ −0.26647 and sin(θ2) ≤ 0.44500 and w1 ≥ −1.07104 and w2 ≤ 0.04877

−8.2010 if sin(θ1) ≤ 0.04400

+1.5784 if cos(θ1) ≥ 0.99341

−9.7897 if sin(θ1) ≤ 0.15513 and sin(θ1) ≥ −0.70608 and sin(θ2) ≥ −0.17949

and w1 ≤ 1.78991 and w1 ≥ −1.70488

−1.2848 if cos(θ1) ≥ 0.99674

+1.0000 if cos(θ2) ≤ 0.99350 and sin(θ1) ≤ −0.21224 and w1 ≥ 0.11238

and w2 ≤ −0.22888

2:

+3.5980 if cos(θ1) ≥ 0.99689

+2.5385 if cos(θ1) ≥ 0.99048

+16.7525 if True
−3.7130 if cos(θ1) ≤ 0.99999 and sin(θ2) ≤ −0.01789

−1.9920 if sin(θ2) ≤ −0.00190

+12.0937 if w1 ≤ −0.02180 and w2 ≥ 0.04994

+9.6534 if w2 ≥ 0.04994

+1.1957 if cos(θ2) ≥ 0.24062 and w1 ≥ −0.32756 and w2 ≤ 1.64803

−3.6820 if w1 ≥ −0.12540

+15.8530 if cos(θ1) ≥ 0.88816 and w2 ≥ −0.41702

+10.0707 if cos(θ1) ≤ 0.99674 and cos(θ2) ≥ 0.92457

+1.6685 if cos(θ2) ≤ 0.99350 and sin(θ1) ≤ −0.21224 and w1 ≥ 0.11238

and w2 ≤ −0.22888
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Q INTERPRETABILITY OF TREE-BASED AND RULE-BASED POLICIES

Following the widely cited definition of interpretability by Murdoch et al. (2019), an interpretable
model should satisfy simulatability, modularity, and low complexity. Simulatability means that a
human can easily compute the model’s output from its explicit expression, given an input and the
model parameters. Modularity means that individual components of the model can be understood in
isolation. Complexity can be quantified by, for example, the total number of terms or parameters in
the model.

SYMPOL learns an axis-aligned decision tree policy directly with policy gradients in a standard
on-policy RL setting, yielding an interpretable tree-based policy class. Conceptually, our method
plays a similar role but uses a rule-based policy class instead of trees. While trees and rules are
closely related—each root-to-leaf path can be seen as a rule—they differ in how they are used and in
the kind of interpretability they afford.

From the perspective of interpreting individual decisions, both trees and rule sets provide simulatabil-
ity. For a given state, a tree explains its choice via a single path of the form

if (condition A at node 1)∧(condition B at node 2)∧· · ·∧(condition M at node M) ⇒ take action LEFT.

A rule-based model explains the same decision by indicating which rules fired and how they were
combined, for example: “Rule 1 and Rule 7 are activated and jointly give the highest weight; therefore
the policy selects LEFT.”

In terms of complexity, rule-based models tend to be slightly easier to keep compact: we can directly
control the number and length of rules. Tree-based policies, by contrast, often grow deep or wide as
task complexity increases, which can quickly erode practical interpretability even if the representation
remains transparent in principle.

For modularity, the difference is more pronounced. In a tree, one can treat each root-to-leaf path
as a “module” (a rule), but internal nodes are shared across many paths, so modifying a single split
typically affects a large portion of the state space. In a rule set, each rule is a self-contained piece of
logic. This makes the rule-based policy highly modular: individual rules can be inspected, added, or
removed without having to mentally re-parse or globally restructure the entire model.

This modularity also makes certain safety-style queries much easier to answer with rules than
with trees. For example, consider the property: “Is there any situation where the policy chooses
RIGHT while |θ| > 0.25 and x > 1.2? If so, list those situations.” In a rule-based policy, we can
simply scan for rules whose antecedent includes |θ| > 0.25 and x > 1.2 and whose consequent is
action = RIGHT. If such a rule exists (say, Rule V1), we can immediately say: “Yes, a violation
occurs whenever Rule V1 fires.” If no such rule exists, we can cleanly state: “The rule set guarantees
the safety property: in no rule does |θ| > 0.25 ∧ x > 1.2 appear with action = RIGHT.” For an
equivalent tree policy, answering the same question requires an exhaustive traversal and aggregation
of all relevant paths, which is considerably less direct in practice.

R PONG ENV

R.1 RULES

Do nothing
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Aspect SYMPOL (tree-based policy) Rule-based policy (ours)

Policy class Axis-aligned decision tree policy; each
internal node is a threshold on one fea-
ture, and leaves output action logits.

Explicit rule set / rule list; each rule is a
conjunction of conditions⇒ action (op-
tionally with weights or priorities).

Simulatability (single
decision)

High: for one state, follow a single root-
to-leaf path⇒ clear “if A∧B∧ . . . then
action”.

High: for one state, see which rule(s)
fired and how they combine (e.g., “Rule
1 + Rule 7 vote for LEFT”).

Global structure Clear hierarchy of decisions: top splits
show the most salient features.

Global picture is less rigid; rules form a
flat or lightly structured set, and regimes
are inferred by grouping similar rules.

Modularity Each path can be read as a rule, but in-
ternal nodes are shared: changing a split
affects many paths at once.

Highly modular: each rule is a self-
contained unit. One can inspect, add, or
remove rules without restructuring the
whole model.

Complexity control Control via depth limits, pruning, and
tree size; trees can still grow large and
become hard to read.

Control via the number of rules and rule
length; it is easier to set an explicit rule
budget and keep individual rules short.

Table 3: Comparison between the SYMPOL tree-based policy and our rule-based policy from an
interpretability perspective (simulatability, modularity, and complexity).

+ 0.9642 if vx,b ≥ 0.1

+ 0.0053 if vx,b ≤ −0.1 ∧ vy,b ≥ −0.1

+ 0.9613 if xb ≤ 0.6187499761581421

− 4.2170 if yb ≤ 0.6523809432983398 ∧ ye ≥ 0.5476190447807312

− 3.1880 if vy,b ≥ 0.1 ∧ yb ≤ 0.6523809432983398

+ 4.1575 if vy,b ≤ −0.2

+ 0.9695 if bf ≥ 0.4571428596973419

− 3.1775 if vy,b ≥ 0.1 ∧ ye ≤ 0.5476190447807312

− 0.0000 if xb ≥ 0.800000011920929

− 3.1775 if vy,b ≥ 0.1 ∧ xb ≥ 0.48750001192092896 ∧ ye ≤ 0.5476190447807312

− 4.2170 if xb ≤ 0.6187499761581421 ∧ ye ≤ 0.6428571343421936 ∧ ye ≥ 0.5476190447807312

+ 0.9693 if xb ≤ 0.7875000238418579

+ 0.0005 if xb ≥ 0.7875000238418579

+ 3.3783 if xb ≥ 0.48750001192092896

+ 0.9695 if ye ≤ 0.6428571343421936

+ 0.9695 if ye ≤ 0.6523809432983398

− 0.1303 if bf ≤ 0.8999999761581421 ∧ vx,b ≥ 0.1

− 0.0000 if ye ≥ 0.7809523940086365

− 0.0000 if bf ≤ 0.30000001192092896 ∧ ye ≥ 0.9095237851142883 ∧ yp ≤ 0.30000001192092896

− 4.4359 if vp ≥ 0.30000001192092896

Up
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− 1.0691 if true
+ 9.5734 if vx,b ≤ −0.1

+ 9.7684 if vx,b ≤ −0.1 ∧ vy,b ≥ −0.1 ∧ yb ≤ 0.738095223903656

− 3.6835 if vx,b ≥ −0.1 ∧ vy,b ≥ −0.1

+ 1.8689 if xb ≤ 0.800000011920929

+ 6.6212 if xb ≥ 0.800000011920929 ∧ ye ≥ 0.5476190447807312

+ 9.8937 if vx,b ≤ −0.1 ∧ yb ≤ 0.7809523940086365

+ 3.2889 if vp ≤ 0.0 ∧ xb ≥ 0.800000011920929 ∧ ye ≥ 0.5476190447807312

+ 2.1446 if xb ≤ 0.793749988079071

− 2.7148 if vx,b ≥ 0.1 ∧ vy,b ≤ 0.1 ∧ xb ≤ 0.6187499761581421 ∧ ye ≤ 0.776190459728241

− 10.3563 if vx,b ≥ 0.1 ∧ yb ≥ 0.5476190447807312 ∧ ye ≥ 0.5476190447807312

+ 2.2118 if xb ≥ 0.6187499761581421 ∧ ye ≤ 0.776190459728241 ∧ ye ≥ 0.776190459728241

+ 1.1660 if vy,b ≤ −0.2 ∧ yb ≤ 0.7809523940086365

+ 9.0361 if xb ≤ 0.800000011920929 ∧ xb ≥ 0.48750001192092896 ∧ yb ≥ 0.5476190447807312

− 10.8639 if vx,b ≥ 0.1 ∧ vy,b ≥ 0.1 ∧ yb ≤ 0.7809523940086365

+ 6.7201 if xb ≤ 0.800000011920929 ∧ yb ≥ 0.7809523940086365 ∧ ye ≥ 0.776190459728241

+ 1.9128 if bf ≥ 0.4571428596973419 ∧ xb ≥ 0.48750001192092896

+ 12.6463 if ye ≥ 0.9095237851142883

+ 0.8748 if bf ≥ 0.12857143580913544 ∧ vp ≤ −0.6000000238418579 ∧ yb ≥ 0.7809523940086365

+ 1.1194 if vp ≤ 0.30000001192092896 ∧ vx,b ≤ −0.1 ∧ yb ≤ 0.6523809432983398

Down

− 0.1153 if true
+ 0.2371 if vx,b ≥ 0.1

− 1.1869 if vy,b ≤ 0.1 ∧ ye ≥ 0.6428571343421936

+ 6.6905 if xb ≤ 0.800000011920929

− 1.6155 if vp ≤ 0.20000000298023224 ∧ vy,b ≤ 0.1 ∧ vy,b ≥ 0.1

− 7.3399 if xb ≥ 0.6187499761581421 ∧ yb ≥ 0.6523809432983398 ∧ ye ≥ 0.6428571343421936

− 1.0679 if vp ≤ 0.0 ∧ xb ≤ 0.6187499761581421 ∧ ye ≥ 0.5476190447807312

− 0.1710 if vy,b ≤ −0.2

− 1.6300 if yb ≥ 0.5476190447807312 ∧ ye ≤ 0.5476190447807312

− 0.0564 if vy,b ≥ 0.1 ∧ xb ≤ 0.6187499761581421 ∧ ye ≥ 0.6428571343421936

− 0.2991 if ye ≥ 0.9095237851142883

− 6.6643 if vp ≥ −0.30000001192092896 ∧ ye ≥ 0.6428571343421936

+ 6.4798 if vx,b ≥ 0.1 ∧ xb ≤ 0.800000011920929 ∧ xb ≥ 0.48750001192092896

− 0.6501 if vp ≤ 0.10000000149011612 ∧ xb ≥ 0.6187499761581421 ∧ yb ≥ 0.7809523940086365

− 0.7654 if xb ≥ 0.6187499761581421 ∧ ye ≥ 0.776190459728241

− 0.0399 if vy,b ≤ −0.2 ∧ ye ≥ 0.776190459728241

− 0.0802 if vy,b ≤ −0.2 ∧ ye ≥ 0.6428571343421936

− 1.2114 if vy,b ≤ 0.1 ∧ xb ≥ 0.48750001192092896 ∧ ye ≥ 0.6428571343421936

− 0.0482 if xb ≥ 0.9750000238418579 ∧ yp ≤ 0.12857143580913544

+ 1.0000 if xb ≤ 0.6187499761581421 ∧ yb ≤ 0.7809523940086365

Feature importance analysis. To diagnose why this particular rule ensemble performs poorly, we
compute a simple global importance score for each feature by summing the absolute values of all rule
coefficients in which it appears. This tells us which variables the actor relies on most when selecting
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actions. For the rules in previous section, we obtain:

ball x-position (xb) : 89.18, opponent y-position (ye) : 88.85,

ball y-position (yb) : 77.05, ball x-velocity (vx,b) : 65.8, ball y-velocity (vy,b) : 47.9,

paddle velocity (vp) : 19.7, block fraction (bf) : 3.9, paddle y-position (yp) : 0.05.

These numbers show that the policy is dominated by the geometry of the ball and opponent, with the
ball’s horizontal position xb and the opponent’s vertical position ye emerging as the most influential
features. In contrast, important control variables such as the paddle velocity vp and especially yp
contribute much less overall. Although focusing on ball–opponent geometry is not unreasonable,
closer inspection shows that many of the largest coefficients involving ye appear in rules that
trigger clearly suboptimal actions. In other words, the ensemble has learned strong but misaligned
dependencies on ye, effectively overfitting to spurious thresholds on the opponent’s position. This
explains why the resulting policy is both interpretable and systematically wrong: it selects actions for
transparent, but ultimately bad, reasons.

S ADDITIONAL EXPERIMENTS ON OCATARI

S.1 PERFORMANCE

We also evaluate NSAC on the OCAtari-Breakout environment, a low-dimensional variant of the
classic Atari Breakout game exposed through the OCAtari Delfosse et al. (2024a). The agent
observes summary features such as the ball position (ball_y, rel_x), ball velocities (vx, vy),
paddle position (paddle_edge), and brick-related indicators (brick_prev, brick_cur), and
must choose between three discrete actions: Fire/Do nothing, Right, and Left. Performance in this
environment is reported as the total game score, averaged over 5 runs with different random seeds for
each method. Among all baselines, PPO achieves the highest overall score on OCAtari-Breakout.
Nonetheless, NSAC also attains strong performance, with an average score above 300 over 5 random
seeds, making it competitive with neural baselines while clearly outperforming all other symbolic
methods. This demonstrates that NSAC can retain much of the raw performance of powerful deep
RL algorithms, while still yielding an interpretable rule ensemble.

Environment Q-table DQN A2C PPO SDSAC SACBBF Rainbow SYMPOL πaffine-D D-SDT NSAC
breakout 41.23±

14.20
127.23±
25.78

344.23±
31.78

389.21 ±
14.33

342.00±
39.62

267.00±
27.12

235.76±
31.37

227.00±
35.76

23.86 ±
14.76

34.26 ±
7.86

312.76±
31.60

Table 4: Performance comparison on OCAtari-Breakout.

S.2 REPRESENTATIVE RULES AND THEIR INTERPRETATION.

To illustrate the kind of behaviours captured by the learned rule ensemble, we highlight two represen-
tative rules, the detailed rules are listed in the following section.

Rule 1 (Action 1: Fire / Do nothing). One of the highest-weight rules for the “do nothing” action is

+6.1152 if 0.5000 ≤ ball_y_cur ≤ 0.7714, rel_x_cur ≤ −0.5375,

vy_prev ≤ −0.0190, vy_cur ≥ −0.0381.

Here, ball_y_cur in [0.5, 0.77] indicates that the ball is still relatively high on the screen, while
rel_x_cur ≤ −0.5375 means it is clearly to the left of the paddle. The vertical velocities
vy_prev ≤ −0.0190 and vy_cur ≥ −0.0381 show that the ball is moving downwards, but not
extremely fast. In this regime, the rule strongly favours not moving the paddle: it is too early and
too uncertain to chase the ball aggressively, and keeping the paddle near a default position preserves
flexibility for a later, more accurate intercept. This encodes an intuitive “do not overreact too early”
timing heuristic.

Rule 2 (Action 3: Left). A strongly negative rule for the “move left” action is

−5.7469 if 0.4143 ≤ ball_y_cur ≤ 0.8381, rel_x_prev ≤ −0.0063,

− 0.0500 ≤ vx_prev ≤ −0.0375, vy_prev ≤ −0.0190, vy_cur ≤ 0.0286.
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In this situation, the ball is in the middle-to-upper region of the screen, already to the left of the paddle
(rel_x_prev ≤ −0.0063), moving leftwards (vx_prev < 0) and downwards (vy_prev < 0).
The large negative coefficient indicates that moving the paddle further left in this configuration is
strongly discouraged. Intuitively, shifting left would risk moving away from the eventual intercept
point or overshooting it; instead, the policy prefers to stay more central or delay horizontal motion
until the ball is lower and the crossing point is clearer. This rule thus captures a natural “do not move
away from an incoming ball” behaviour.
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S.3 RULES

Action 1: Fire / Do nothing

−2.6037 if paddle_edge_prev ≥ 0.1375

−4.0445 if vy_prev ≥ 0.0190 and vy_cur ≥ −0.0190

+2.6453 if ball_y_prev ≤ 0.7714 and ball_y_cur ≤ 0.7714 and rel_x_cur ≤ −0.2000

and − 0.0500 ≤ vx_prev ≤ 0.0500 and − 0.0286 ≤ vy_cur ≤ 0.0381

+5.9613 if ball_above_prev ≥ 1.0000 and ball_y_cur ≤ 0.8381 and rel_x_prev ≤ −0.0063

and − 0.0500 ≤ vx_cur ≤ 0.0500 and vy_prev ≥ −0.0190 and vy_cur ≤ 0.0048

−1.9160 if ball_y_prev ≤ 0.7714 and rel_x_cur ≥ −0.4125 and vy_prev ≤ 0.0381 and vy_cur ≤ −0.0190

−2.3335 if rel_x_cur ≥ −0.1000 and vy_prev ≤ 0.0381

+3.6887 if ball_y_prev ≤ 0.7714 and ball_y_cur ≤ 0.7048 and rel_x_prev ≤ −0.1000

and vx_prev ≥ −0.0375 and vy_prev ≥ −0.0381 and vy_cur ≤ 0.0190

+2.4687 if ball_y_prev ≥ 0.6381 and vy_prev ≤ −0.0286

+3.8568 if ball_y_prev ≤ 0.7714 and rel_x_cur ≤ −0.0063 and vx_prev ≥ −0.0500

and vx_cur ≥ −0.0500 and vy_prev ≤ 0.0048 and vy_cur ≥ −0.0190

−2.7193 if ball_y_cur ≤ 0.7048 and brick_cur ≥ 0.0900 and vy_prev ≤ 0.0381 and vy_cur ≤ 0.0048

+1.9062 if ball_y_prev ≤ 0.5000 and ball_y_cur ≤ 0.5000 and brick_prev ≥ 0.0900

and brick_cur ≥ 0.0900 and rel_x_prev ≤ −0.0063 and vx_prev ≥ 0.0500 and vx_cur ≥ 0.0500

−0.8540 if ball_y_prev ≤ 0.8381 and rel_x_prev ≤ −0.1000 and
0.0375 ≤ vx_prev ≤ 0.0500 and vy_prev ≤ 0.0190

−2.8242 if ball_y_cur ≤ 0.4143 and vy_prev ≤ 0.0048

+2.4663 if ball_y_prev ≤ 0.8381 and vx_prev = −0.0500 and vy_prev ≤ −0.0190

and − 0.0381 ≤ vy_cur ≤ 0.0381

−1.5553 if ball_y_prev ≤ 0.6381 and vx_prev ≤ −0.0375

−1.8001 if ball_y_cur ≥ 0.6381 and vx_cur ≥ −0.0375 and vy_cur ≥ −0.0286

+6.1152 if 0.5000 ≤ ball_y_cur ≤ 0.7714 and rel_x_cur ≤ −0.5375

and vy_prev ≤ −0.0190 and vy_cur ≥ −0.0381

−3.4766 if ball_y_prev ≥ 0.4143 and 0.5000 ≤ ball_y_cur ≤ 0.7714

and 0.0000 ≤ vx_prev ≤ 0.0500 and vx_cur ≤ 0.0500 and vy_prev ≤ 0.0381 and vy_cur ≥ −0.0381

−1.4946 if rel_x_prev ≤ −0.6688 and rel_x_cur ≤ −0.6688

−0.7953 if 0.4143 ≤ ball_y_cur ≤ 0.8381 and brick_cur ≤ 0.1100 and rel_x_prev ≤ −0.1000

and rel_x_cur ≤ −0.1000 and vx_prev ≥ −0.0375 and vy_prev ≤ 0.0381 and vy_cur ≥ −0.0381

−1.2368 if 0.4143 ≤ ball_y_cur ≤ 0.7714 and paddle_edge_prev ≥ 0.1375

and rel_x_prev ≥ −0.6688 and vx_prev ≤ 0.0500 and vx_cur ≤ 0.0500

+2.5430 if ball_y_prev ≥ 0.5000 and 0.5000 ≤ ball_y_cur ≤ 0.8381 and rel_x_prev ≤ −0.2000

and vx_prev ≤ 0.0000 and vx_cur ≥ −0.0500 and − 0.0381 ≤ vy_prev ≤ 0.0048

+0.7993 if ball_above_prev ≥ 1.0000 and ball_above_cur ≥ 1.0000 and rel_x_prev ≥ −0.5375

and 0.0000 ≤ vx_prev ≤ 0.0500 and vx_cur ≥ −0.0375 and vy_prev ≤ 0.0286

+1.7013 if ball_above_prev ≥ 1.0000 and ball_y_cur ≥ 0.6381 and rel_x_cur ≥ −0.2000 and
vy_prev ≤ 0.0048

−1.1456 if rel_x_prev ≥ −0.3063 and − 0.3063 ≤ rel_x_cur ≤ −0.0063

and vy_prev ≤ 0.0048 and vy_cur ≥ −0.0381
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Action 2: Right

−3.7358 if ball_y_cur ≤ 0.8381

+3.3079 if rel_x_cur ≥ −0.5375 and vy_prev ≥ 0.0190 and vy_cur ≥ 0.0048

−9.9162 if ball_above_cur ≥ 1.0000 and vx_prev ≤ 0.0500 and vy_cur ≤ 0.0381

+4.6580 if ball_above_prev ≥ 1.0000 and ball_y_cur ≥ 0.7048

and vy_prev ≥ 0.0190 and vy_cur ≥ −0.0190

+2.7250 if paddle_edge_prev ≥ 0.1375 and vx_prev ≥ 0.0000 and vx_cur ≥ −0.0375

and vy_prev ≥ −0.0190 and vy_cur ≥ −0.0381

−1.5765 if ball_y_cur ≤ 0.7714 and vy_prev ≥ 0.0190

+4.5538 if ball_y_prev ≥ 0.5714 and rel_x_prev ≥ −0.6688 and vx_prev ≤ 0.0500

and vy_prev ≥ 0.0286 and vy_cur ≥ −0.0381

+3.0658 if rel_x_cur ≥ −0.3063 and − 0.0375 ≤ vx_prev ≤ 0.0500

and vy_prev ≥ −0.0190 and vy_cur ≥ 0.0048

+2.8135 if ball_above_prev ≥ 1.0000 and rel_x_cur ≤ −0.0063

and vx_prev ≥ −0.0500 and vy_prev ≥ 0.0381 and vy_cur ≥ 0.0190

+2.8650 if ball_above_prev ≥ 1.0000 and ball_y_prev ≥ 0.7714

and rel_x_cur ≥ −0.6688 and vy_prev ≥ 0.0190 and vy_cur ≥ −0.0381

−4.0301 if ball_y_prev ≤ 0.8381 and rel_x_cur ≤ −0.4125

−6.5868 if ball_above_cur ≥ 1.0000 and vy_prev ≤ 0.0381 and vy_cur ≤ −0.0190

−2.9138 if ball_y_prev ≤ 0.7048 and rel_x_prev ≤ −0.0063 and rel_x_cur ≤ −0.0063

and vx_cur ≤ 0.0375 and vy_prev ≥ 0.0048

−2.0466 if ball_above_cur ≥ 1.0000 and ball_y_prev ≤ 0.8381 and rel_x_cur ≤ −0.2000

and vx_cur ≤ 0.0000 and vy_prev ≥ 0.0048

+3.3836 if ball_y_cur ≥ 0.7714 and rel_x_prev ≤ −0.1000

and vx_cur ≥ −0.0375 and vy_cur ≥ 0.0048

−1.8377 if ball_above_cur ≥ 1.0000

and − 0.0375 ≤ vx_prev ≤ 0.0500 and − 0.0375 ≤ vx_cur ≤ 0.0000 and vy_prev ≥ 0.0048

+3.7873 if ball_y_cur ≥ 0.8381 and 0.0190 ≤ vy_cur ≤ 0.0381

−2.0489 if ball_above_cur ≥ 1.0000 and rel_x_prev ≤ −0.5375 and vx_cur ≤ 0.0375

−2.7407 if ball_y_prev ≤ 0.7714 and ball_y_cur ≥ 0.4143 and rel_x_prev ≥ −0.6688

and vx_prev ≤ 0.0500 and vy_prev ≥ 0.0190

−2.5147 if ball_y_cur ≤ 0.5714 and brick_prev ≥ 0.1000 and rel_x_prev ≥ −0.1000

−1.7701 if ball_above_cur ≥ 1.0000 and brick_cur ≥ 0.0900

and vy_prev ≤ 0.0286 and vy_cur ≥ 0.0190

+1.5424 if ball_y_prev ≥ 0.5000 and ball_y_cur ≥ 0.6381 and brick_prev ≥ 0.0900

and rel_x_prev ≥ −0.2000 and vx_cur ≤ 0.0375 and vy_prev ≥ 0.0190 and vy_cur ≥ −0.0381

+1.4835 if ball_y_cur ≥ 0.4143 and brick_prev ≥ 0.0900 and rel_x_prev ≥ −0.6688

and rel_x_cur ≤ −0.1000 and vx_cur ≥ 0.0000 and vy_prev ≥ 0.0048 and vy_cur ≥ −0.0286

+1.8123 if ball_y_prev ≥ 0.7048 and brick_cur ≤ 0.1300 and vx_cur ≤ 0.0000

and vy_prev ≥ 0.0381 and vy_cur ≥ −0.0381

+1.4038 if rel_x_prev ≥ −0.3063 and vx_cur ≥ 0.0000

and vy_prev ≥ 0.0048 and vy_cur ≥ −0.0381
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Action 3: Left
+3.2914 if ball_y_cur ≤ 0.8381 and paddle_edge_prev ≥ 0.1375

−5.9441 if ball_y_cur ≤ 0.7714 and rel_x_prev ≤ −0.0063 and rel_x_cur ≤ −0.1000

and − 0.0500 ≤ vx_prev ≤ 0.0500 and vy_prev ≤ 0.0048 and − 0.0286 ≤ vy_cur ≤ 0.0381

−3.0919 if ball_y_cur ≥ 0.7714 and rel_x_cur ≥ −0.6688 and vy_cur ≥ 0.0048

+3.1300 if ball_above_cur ≥ 1.0000 and paddle_edge_prev ≥ 0.1375 and vx_prev ≤ 0.0500

and vy_prev ≤ 0.0381 and vy_cur ≤ 0.0381

−2.7873 if ball_above_prev ≥ 1.0000 and ball_y_cur ≥ 0.7048 and rel_x_prev ≥ −0.3063

−2.4206 if ball_above_prev ≥ 1.0000 and rel_x_prev ≤ −0.3063 and rel_x_cur ≤ −0.3063

and vx_cur ≤ 0.0500 and vy_prev ≥ −0.0381 and vy_cur ≤ 0.0048

−1.4360 if rel_x_prev ≥ −0.6688 and vx_prev ≥ −0.0375

and − 0.0375 ≤ vx_cur ≤ 0.0500 and vy_prev ≥ 0.0286

−5.7469 if 0.4143 ≤ ball_y_cur ≤ 0.8381 and rel_x_prev ≤ −0.0063

and − 0.0500 ≤ vx_prev ≤ −0.0375 and vy_prev ≤ −0.0190 and vy_cur ≤ 0.0286

−3.8718 if vx_prev ≥ 0.0000 and vx_cur ≥ 0.0000 and vy_cur ≥ 0.0048

−3.4132 if ball_y_cur ≥ 0.5714 and vx_cur ≥ −0.0375 and vy_prev ≤ −0.0381

−1.9780 if vx_prev ≤ 0.0000 and − 0.0500 ≤ vx_cur ≤ 0.0000 and vy_prev ≥ −0.0286

+3.7481 if ball_above_cur ≥ 1.0000 and ball_y_prev ≥ 0.4143 and ball_y_cur ≥ 0.5000

and vx_prev ≤ 0.0500 and vy_prev ≥ −0.0190 and − 0.0381 ≤ vy_cur ≤ 0.0286

+1.8542 if ball_y_cur ≤ 0.7714 and paddle_edge_prev ≥ 0.1375 and rel_x_cur ≥ −0.5375

and vx_prev ≤ 0.0500 and vx_cur ≤ 0.0500 and vy_prev ≤ 0.0381

+0.6150 if ball_above_cur ≥ 1.0000 and rel_x_prev ≤ −0.4125 and rel_x_cur ≤ −0.4125

and vy_prev ≥ −0.0381 and vy_cur ≥ −0.0286

+2.3428 if rel_x_prev ≥ −0.5375 and rel_x_cur ≥ −0.5375

and − 0.0375 ≤ vx_cur ≤ 0.0375 and vy_cur ≤ −0.0190

−1.2518 if ball_above_prev ≥ 1.0000 and rel_x_prev ≤ −0.1000

and − 0.5375 ≤ rel_x_cur ≤ −0.1000 and − 0.0500 ≤ vx_cur ≤ 0.0500

and vy_prev ≥ −0.0286 and vy_cur ≤ 0.0286

−2.2239 if ball_y_prev ≤ 0.7714 and ball_y_cur ≤ 0.7048

and vx_prev ≥ −0.0375 and vy_prev ≥ −0.0190 and vy_cur ≤ 0.0190

−0.8174 if ball_above_prev ≥ 1.0000 and ball_y_cur ≥ 0.6381

and vx_prev ≤ 0.0375 and vy_prev ≥ −0.0381

−0.6264 if ball_above_prev ≥ 1.0000 and rel_x_prev ≥ −0.5375 and rel_x_cur ≥ −0.5375

and vx_prev ≥ 0.0000 and vx_cur ≥ −0.0500

+2.5593 if ball_y_prev ≤ 0.7714 and rel_x_cur ≤ −0.3063

and vy_prev ≥ 0.0381 and vy_cur ≥ −0.0190

+0.9760 if ball_above_cur ≥ 1.0000 and ball_y_cur ≥ 0.4143

and − 0.3063 ≤ rel_x_prev ≤ −0.0063 and rel_x_cur ≤ −0.1000

and vy_prev ≤ 0.0381 and − 0.0381 ≤ vy_cur ≤ 0.0381

+1.6089 if ball_y_cur ≤ 0.6381 and rel_x_prev ≥ −0.2000 and rel_x_cur ≥ −0.2000

−0.7929 if rel_x_cur ≥ −0.5375 and vx_prev ≥ −0.0500 and vy_cur ≥ −0.0190

−0.5734 if ball_y_prev ≥ 0.5000 and brick_cur ≤ 0.0900 and vx_prev ≥ −0.0500

and − 0.0500 ≤ vx_cur ≤ 0.0375 and vy_cur ≥ −0.0381

−1.0272 if ball_y_prev ≥ 0.8381 and ball_y_cur ≥ 0.7714 and vy_prev ≤ 0.0381
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T STATEMENT ON LLM USAGE

Large language models (LLMs), such as ChatGPT, were used solely for editorial assistance in this
work. Their role was limited to improving grammar, rephrasing sentences, and enhancing clarity and
readability of the authors’ original text. No LLM was used to generate original scientific content,
analysis, or results. The authors take full responsibility for the integrity and validity of the work
presented.
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