

000 001 002 003 004 005 NEURAL+SYMBOLIC ACTOR-CRITIC FRAMEWORK FOR 006 INTERPRETABLE REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

The integration of neural networks into actor-critic frameworks has been pivotal in advancing the field of reinforcement learning, enabling agents to perform complex tasks with greater efficiency and adaptability. However, neural network-based actor-critic models remain opaque “black boxes,” concealing their decision-making processes and hindering their use in critical applications where transparent and explainable reasoning is essential. This work introduces an innovative adaptation of the actor-critic framework that unites neural networks with rule ensembles to tackle key challenges in reinforcement learning. We harness the computational power, scalability, and adaptability of neural networks to model the critic, while integrating a rule ensemble system for the actor, ensuring transparency and interpretability for decision-making. Our study establishes a theoretical foundation for integrating rule ensembles into the Advantage Actor-Critic (A2C) framework. Experimental results from seven classic and complex environments demonstrate that our proposed method matches or exceeds the performance of representative RL models, including symbolic methods, while offering self-interpretability and transparency.

1 INTRODUCTION

Actor-critic reinforcement learning (RL) methods, such as Advantage Actor-Critic (A2C) and Proximal Policy Optimization (PPO), have delivered exceptional performance across diverse RL tasks (Mnih et al., 2016; Schulman et al., 2017), largely due to the use of neural networks to effectively manage complex, high-dimensional state-action spaces. Yet, as actor-critic RL models expand to broader real-world domains, such as healthcare, finance, and law, interpretability becomes essential for ensuring trust, transparency, and regulation compliance in decision-making. By revealing how actions are chosen or why specific decisions are made, interpretability supports debugging, model improvement, and the ability to explain automated decisions in line with legal and ethical standards.

Despite the effectiveness of neural network-based actor-critic models, their opaque nature and lack of transparency can limit their use in sensitive or critical applications where comprehending the rationale behind each decision is crucial (Benítez et al., 1997; Castelvecchi, 2016). Symbolic models, e.g., expert systems, decision trees, and rule-based systems, rely on clear, well-defined rules and logic to make decisions, allowing for easier tracing of how conclusions are reached (Ernst et al., 2005; Gupta et al., 2015a; Tao et al., 2018; Bastani et al., 2018; Illanes et al., 2020). These methods use symbols (which can represent objects, properties, or relationships) and logic to process and reason about data, making the decision-making process transparent and understandable.

However, substituting neural network-based models with symbolic models in reinforcement learning tasks can be challenging. (i) While symbolic methods are highly valued for their interpretability and transparency, current implementations in reinforcement learning typically rely on predefined knowledge or pre-trained models (Garcez et al., 2018; Lyu et al., 2019). (ii) These symbolic methods can face challenges in managing the complexity and ambiguity that non-symbolic approaches, such as neural networks, are often better equipped to handle (Illanes et al., 2020; Landajuela et al., 2021).

To tackle the above challenges, we propose a new “Neural plus Symbolic” framework for Actor-Critic models, namely **NSAC**, as shown in Figure 1. NSAC integrates the strengths of both neural networks and symbolic rule-based systems. Specifically, the neural critic leverages powerful function approximation capabilities to estimate the value of states and state-action pairs effectively. Meanwhile,

the actor component is designed using a rule-based approach, providing intrinsic interpretability by following explicit, predefined rules that govern its decision-making process. This framework allows for an analysis of how particular features or rules influence decisions, offering a level of explainability absent in black-box models. Our theoretical analysis proves that NSAC converges to a local optimum. Through empirical experiments, our proposed NSAC demonstrates performance levels that match those of widely-used reinforcement learning algorithms, such as DQN (Mnih, 2013), PPO (Schulman et al., 2017), Rainbow (Hessel et al., 2018), SD-SAC (Kong et al., 2021), SACBBF (Zhang et al., 2024), and A2C (Mnih et al., 2016). By integrating the adaptability and generalization capabilities of neural networks with the transparency of rule-based decision-making, our model provides a balanced solution that retains high performance while enabling interpretable and trustworthy decision-making processes. It is worth noting that, our work belongs to the broader neural-symbolic family, but differs from compile-logic approaches. NSAC uniquely couples a data-driven neural critic with a rule-based symbolic actor, enabling both statistical learning and explicit reasoning within an actor-critic loop. This work makes three main contributions:

- We propose a novel actor-critic architecture that combines a neural critic for accurate value estimation with a symbolic, rule-based actor that delivers intrinsic interpretability.
- We provide a formal proof of convergence and demonstrate that our rule-based policy satisfies the established interpretability criteria of simulability, modularity, and low complexity (Murdoch et al., 2019).
- We empirically demonstrate that NSAC matches state-of-the-art RL methods on classic control and energy-system tasks, while uniquely preserving transparency and trustworthiness.

2 RELATED WORK

Interpretability has become increasingly important in RL and motivated symbolic approaches that provide transparent reasoning while retaining RL’s adaptive capabilities. Existing approaches can be categorized based on their interpretability characteristics, knowledge requirements, and learning paradigms, each with distinct limitations. Tree-based policies represent a widely studied approach to interpretable RL. Native tree methods (Ding et al., 2020; Ernst et al., 2005; Gupta et al., 2015a; Roth et al., 2019; Tao et al., 2018) learn decision trees directly from environmental interactions, often achieving strong performance on small to medium-scale problems but facing scalability challenges where large trees become difficult to interpret. Recent gradient boosting approaches (Fuhrer et al., 2024) and programmatic tree policies (Kohler et al., 2024) extend this line by offering editable representations and improved handling of structured features, though interpretability-performance trade-offs remain. Distillation-based tree methods (Bastani et al., 2018; Coppens et al., 2019; Gupta et al., 2015b; Liu et al., 2019) extract tree policies from pre-trained neural networks, but face a size versus fidelity trade-off. Their differentiable variants (Silva et al., 2020) and specialized architectures (Ding et al., 2020; Liu et al., 2019) attempt to address these limitations but may produce mathematical notations and complex tree structures that remain difficult for humans to interpret.

Symbolic RL with predefined knowledge leverages domain expertise to guide policy learning. These methods (Garcez et al., 2018; Illanes et al., 2020; Lyu et al., 2019) can maintain interpretability through symbolic rules, modules, or plans, and may achieve strong performance when domain priors are well-specified. However, they require substantial predefined knowledge, making them sensitive to domain assumptions and limiting their applicability to new domains where such expertise may not be available. To remove this dependency, symbolic policies learn from neural teachers or direct search to discover symbolic representations, such as neural-guided symbolic policy discovery (Landajuela et al., 2021), genetic programming for symbolic expressions (Hein et al., 2018), and program

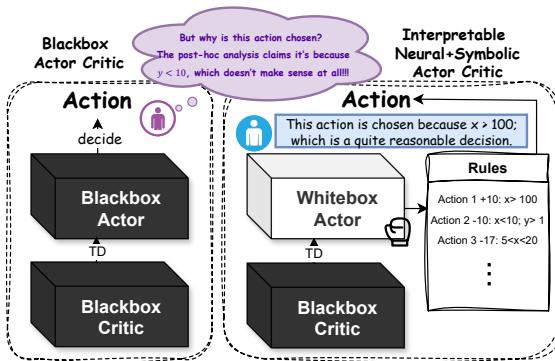


Figure 1: Comparative illustration of Neural+Symbolic Actor-Critic (NSAC) and classic Actor-Critic methods.

108 synthesis approaches (Wu et al., 2020; Qiu & Zhu, 2022). While these methods avoid predefined
 109 knowledge, they often yield complex mathematical expressions involving trigonometric functions,
 110 logarithms, or program syntax that are challenging for humans to simulate and interpret (Murdoch
 111 et al., 2019). Recent approaches (Delfosse et al., 2023; Luo et al., 2024; Shindo et al., 2024) improve
 112 the interpretability through nerve guide, end-to-end or mixed framework, although they still produce
 113 complex models, or external tools are needed to generate rules. Post-hoc approaches additionally
 114 may suffer from approximation errors inherited from neural teachers. The importance of interpretable
 115 RL is underscored by recent findings on fundamental challenges in agent behavior, including goal
 116 misgeneralization (Di Langosco et al., 2022) and systematic failures on task variations (Delfosse et al.,
 117 2025), which have motivated approaches such as concept bottlenecks (Delfosse et al., 2024b) for
 118 detecting misalignments and object-centric environments (Delfosse et al., 2024a) for visual domains,
 119 highlighting the need for transparent and verifiable RL systems.
 120

121 As discussed, most previous methods either require a certain amount of predefined knowledge, which
 122 influences the search space or establishes the programmatic rules, or they are post-hoc solutions that
 123 learn from a pre-trained model rather than directly from the environment, potentially distorting the
 124 learning objectives, or they generate complex representations or rely on external tools for rule genera-
 125 tion rather than learning directly from environmental interactions(See Appendix H). In contrast, our
 126 method effectively integrates a neural network-based critic with a symbolic, rule-based, interpretable
 127 actor by learning directly through environmental interactions without requiring predefined knowledge
 128 or external rule generation tools. Specifically, we address the tree scalability problem by using
 129 additive rule ensembles rather than hierarchical structures, where each rule contributes equally to the
 130 decision-making process. We employ Orthogonal Gradient Boosting (OGB) (Yang et al., 2024) to
 131 discover rule conditions automatically, requiring only basic feature comparisons rather than domain-
 132 specific knowledge. Our rule-based actor is trained directly via policy gradients on environmental
 133 rewards, ensuring the symbolic representation accurately reflects true decision-making process rather
 134 than approximating a black-box teacher. Our approach achieves interpretability through symbolic
 135 rules while learning directly from the environment, addressing both the knowledge requirements
 136 and post-hoc limitations of existing methods. Post-hoc explainers are only approximations: they
 137 often flag correlates, not causes. SHAP (Lundberg & Lee, 2017), for example, mark a feature as
 138 “important” while the model flips under tiny perturbations. Worse, black-box models can even be
 139 trained to emit persuasive but misleading rationales (Rudin, 2019). Because these explanations are
 140 extrinsic, they guarantee neither consistency, fidelity, nor out-of-distribution robustness.
 141

3 PRELIMINARIES

3.1 ADVANTAGE ACTOR-CRITIC REINFORCEMENT LEARNING

143 The A2C algorithm represents a synergy of two foundational approaches in reinforcement learning:
 144 the actor-critic method and the advantage function estimation. In the actor-critic framework, the critic
 145 in the A2C framework estimates the value function $V(s)$, which represents the expected return from a
 146 state s . The critic is updated by minimizing its loss function, typically the mean squared error between
 147 the estimated value and the computed target value. The target value is derived from the rewards
 148 obtained and the discounted values of subsequent states: $L_V(\phi) = \mathbb{E} \left[(R_t + \gamma V(s_{t+1}) - V_\phi(s_t))^2 \right]$,
 149 where R_t is the reward received after taking action a_t in state s_t at t , γ is the discount factor, $V_\phi(s_{t+1})$
 150 is the value estimate for the next state at $t+1$, and ϕ are the parameters of the critic network. The actor
 151 updates the policy by adjusting parameters θ in the direction suggested by the critic’s evaluations.
 152 The update is guided by the gradient of the policy’s performance, estimated using the advantage
 153 function: $\nabla_\theta L(\theta) = \mathbb{E} [\nabla_\theta \log \pi_\theta(a_t|s_t) \mathcal{A}_t]$, where $\mathcal{A}_t = R_t + \gamma V(s_{t+1}) - V(s_t)$ is the advantage
 154 at time t , indicating how much better (or worse) the action a_t is than the policy’s average at state s_t .
 155 Through these updates, the actor learns to choose actions yielding higher returns than predicted by
 156 the critic, while the critic learns to make more accurate predictions about expected returns, forming a
 157 feedback loop that enhances both policy and value estimation in the A2C framework.
 158

3.2 ADDITIVE RULE ENSEMBLES

159 **Additive rule ensembles** are a class of probabilistic models (Friedman & Popescu, 2008) that
 160 estimate the expected value of a target variable $Y \in \mathbb{R}$ given an input vector $\mathbf{X} \in \mathbb{R}^d$, which is

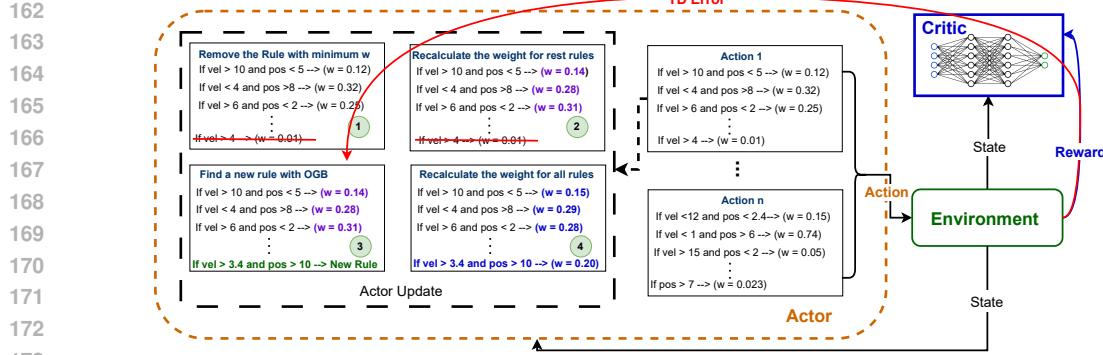


Figure 2: A diagram illustrating the NSAC algorithm with detailed rule update steps.

expressed as $\mathbb{E}[Y | \mathbf{X} = \mathbf{x}] = \mu(f(\mathbf{x}))$, where, \mathbf{x} is an instance of \mathbf{X} , $\mu : \mathbb{R} \rightarrow \mathbb{R}$ is an inverse link function mapping $f(\mathbf{x})$ to the target variable Y , and $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is a linear combination of k Boolean query functions:

$$f(\mathbf{x}) = \sum_{i=1}^k w_i q_i(\mathbf{x}) = \sum_{i=1}^k w_i \prod_{j=1}^{c_i} p_{i,j}(\mathbf{x}). \quad (1)$$

In equation 1, w_i ($0 \leq i \leq k$) is the weight of the i -th Boolean query function $q_i : \mathbb{R}^d \rightarrow \{0, 1\}$, and q_i is a conjunction or product of c_i Boolean propositions, where $p_{i,j} \in \{\mathbb{I}(sx^{(j)} \leq sx_i^{(j)}) : j \in [d], l \in [n], s \in \{\pm 1\}\}$ is a threshold function ($[x] = \{1, \dots, x\}$ is the index set). Each term $w_i q_i(\mathbf{x})$ in equation 1 can be represented as an ‘IF... THEN ...’ rule, where the query q_i defines the condition of the rule, and the weight w_i is the rule’s consequent.

Boosting is an iterative approach for learning additive models (Schapire, 1990; Friedman, 2001; Dembczyński et al., 2010). Given a training set of size n , $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, where \mathbf{x}_i is the input and y_i is the corresponding target, through approximately minimizing the *empirical risk*

$$\hat{L}_\lambda(f) = \frac{1}{n} \sum_{i=1}^n l(f(\mathbf{x}_i), y_i) + \frac{\lambda \|\mathbf{w}\|^2}{n}, \quad (2)$$

boosting iteratively adds terms into the model and yields a sequence of models $f^{(1)}, \dots, f^{(k)}$. The last term of equation 2 is the regularization term, $\mathbf{w} = (w_1, \dots, w_k)^T \in \mathbb{R}^k$ is the weight vector, and $\lambda \geq 0$ is the regularization parameter. Note that l is a loss function derived as shifted negative log likelihood, measuring the cost of outputting $f(\mathbf{x}_i)$ while the true value is y_i .

4 METHODOLOGY

4.1 FRAMEWORK DESIGN

Actor implemented with Rule-Based Ensembles: As shown in Figure 2, we replace the neural network-based action function approximation with an actor composed of additive rule ensembles. Let $\mathcal{F}(s) = \{f_a(s) : \forall a \in A\}$ represent the collection of ensemble models for action a in the action space A at state $s \in S$. The size for A is m . The ensemble $f_a(s)$ for an action a predicts the expected advantages directly, simplifying its expression as $\mathcal{A}(s, a) = f_a(s)$. This prediction is based on a linear combination of Boolean query functions, weighted by coefficients specific to each action $a \in A$: $f_a(s) = \sum_{j=1}^k w_{a,j} q_{a,j}(s)$, where $w_{a,j}$ are the coefficients for $q_{a,j}$. For each action a , there are k Boolean query functions $q_{a,j}$, ($j = 1, \dots, k$) specific to the action a . The actor’s policy, represented as π , is defined by the probability distribution over action values for a given state, which is derived from \mathcal{F} using the softmax function: $\pi(a|s) = \frac{\exp(f_a(s))}{\sum_{f_a \in \mathcal{F}} \exp(f_a(s))}$. The softmax function ensures that $\pi(a|s)$ is a proper probability distribution over the action space.

Critic implemented with Neural Network: In our framework, the critic functions similarly to traditional actor-critic systems, leveraging the computational capabilities of neural networks. It

216 serves as a function approximator, implemented using a neural network that estimates the value of
 217 being in a specific state s . This neural network, paramount in computing state-value functions, is
 218 parameterized by weights ϕ , and the value function it approximates is denoted by $V_\phi(s)$. This design
 219 choice ensures that our critic effectively harnesses the processing power of neural networks to deliver
 220 precise value estimations for each state. The pseudocode for the algorithm is shown in Appendix B
 221 and the theoretical analysis in Appendix C .
 222

223 4.2 POLICY UPDATE

225 **Critic Policy Update:** The critic in our framework estimates the value function $V(s)$ using a neural
 226 network, representing the expected return from a state s . The critic is updated by minimizing the
 227 loss function, typically the mean squared error between the estimated value and the target value. The
 228 target value is derived from the rewards obtained and the discounted values of subsequent states:
 229 $L_V(\phi) = \mathbb{E} \left[(R_t + \gamma V(s_{t+1}) - V_\phi(s_t))^2 \right]$, where R_t is the reward received after taking action a_t
 230 in state s_t , γ is the discount factor, $V_\phi(s_{t+1})$ is the value estimate for the next state, and ϕ are the
 231 parameters of the critic network.

232 **Actor Update:** The learning process involves iterative updates to the coefficient vector \mathbf{w}_a and the
 233 query functions q_a based on observed rewards and state transitions, aiming to refine the ensembles
 234 for optimal decision-making. This approach leverages the interpretability of rule-based systems in
 235 the actor's policy formulation, enhancing transparency in complex or high-dimensional state spaces.
 236 The advantage function, used by the actor for updates, is computed using the critic's value function
 237 and the immediate reward: $A_t(s_t, a_t) = R_t + \gamma V(s_{t+1}) - V(s_t)$. This expression calculates how
 238 much better the current action a_t is compared to the average action at state s_t at time t , considering
 239 the immediate reward and discounted future values. The actor updates the policy by adjusting the
 240 parameters (\mathbf{w}, \mathbf{q}) in the direction suggested by the critic's evaluations. The update is guided by
 241 the gradient of the policy's performance, which is estimated using the advantage function. The loss
 242 function derived from the policy gradient is

$$243 \nabla L_\lambda(\mathbf{w}, \mathbf{q}) = -\mathbb{E} [\nabla_{\mathbf{w}, \mathbf{q}} \log \pi(a_t | s_t, \mathbf{w}, \mathbf{q}) A_t] + \lambda \nabla_{\mathbf{w}, \mathbf{q}} \|\mathbf{w}\|_2^2. \quad (3)$$

245 To make the loss function locally convex, we add a regularization term $\lambda \|\mathbf{w}\|_2^2$ to the original loss,
 246 where λ is the regularization parameter (see Appendix D). The actor is updated by modifying each
 247 rule ensemble model f_a in accordance with the calculated policy gradient objective for each action. To
 248 obtain the gradient for each action, we use softmax for action selection, taking the natural logarithm
 249 of the policy yields:

$$250 \forall a \quad \log \pi(a | s_t; \mathbf{w}, \mathbf{q}) = \mathbf{w}_a \mathbf{q}_a - \log \sum_{j=1}^m \exp(\mathbf{w}_{a_j} \mathbf{q}_{a_j}). \quad (4)$$

253 Substituting equation 4 into equation 3, we have:

$$255 \nabla L_\lambda(\mathbf{w}, \mathbf{q}) = -\mathbb{E} \left[\nabla_{\mathbf{w}, \mathbf{q}} A_t \left(\mathbf{w}_{a_t} \mathbf{q}_{a_t} - \log \sum_{j=1}^m \exp(\mathbf{w}_{a_j} \mathbf{q}_{a_j}) \right) \right] + \lambda \nabla_{\mathbf{w}, \mathbf{q}} \|\mathbf{w}\|_2^2. \quad (5)$$

259 Treating \mathbf{w} and \mathbf{q} as a combined vector $\theta = (\mathbf{w}; \mathbf{q})$, the gradient of $\nabla_\theta L(\mathbf{w}, \mathbf{q})$, i.e., $\nabla_\theta^2 L(\mathbf{w}, \mathbf{q})$ can
 260 be derived as

$$262 \nabla_\theta^2 L_\lambda(\mathbf{w}, \mathbf{q}) = \frac{\partial \nabla l}{\partial \mathbf{w}_a \mathbf{q}_a} = -\mathbb{E} \left[\nabla_{w_a, q_a} \frac{\mathcal{A}_t \partial}{\partial \mathbf{w}_a \mathbf{q}_a} \left(\mathbf{w}_{a_t} \mathbf{q}_{a_t} - \log \sum_{j=1}^m \exp(\mathbf{w}_{a_j} \mathbf{q}_{a_j}) \right) \right] =$$

$$265 -\mathbb{E} \left[\nabla_{w_a, q_a} \mathcal{A}_t \left(\mathbb{I}_{a=a_t} - \frac{\exp(\mathbf{w}_a \mathbf{q}_a)}{\sum_{j=1}^m \exp(\mathbf{w}_{a_j} \mathbf{q}_{a_j})} \right) \right] = -\mathbb{E} [\nabla_{w_a, q_a} \mathcal{A}_t (\mathbb{I}_{a=a_t} - \pi(a | s_t; \mathbf{w}, \mathbf{q}))].$$

268 Taking into account the two distinct situations $a = a_t$ and $a \neq a_t$, the policy gradient for each rule
 269 ensemble is as follows:

270 1. When the ensemble model f_a corresponds to the action executed in the current step, i.e.,
 271 $a = a_t$,
 272
$$\nabla_{w_a, q_a}^2 L_\lambda(w_a, q_a) = \mathbb{E}[-\nabla_{w_a, q_a} \mathcal{A}(s_t, a_t)(1 - \pi(a_t|s))]; \quad (6)$$

 273 2. When the ensemble model f_{a_i} does not correspond to the action selected by the actor at that
 274 time step, i.e., $a \neq a_t$,
 275
$$\nabla_{w_a, q_a}^2 L_\lambda(w_a, q_a) = \mathbb{E}[\nabla_{w_a, q_a} \mathcal{A}(s_t, a_t)\pi(a_t|s)]. \quad (7)$$

277 This distinction ensures ensemble updates properly align with the actions taken, enabling targeted
 278 adjustments that enhance the actor’s policy based on observed outcomes and predicted advantages.
 279

280 **Computational Complexity:** This algorithm has a time complexity of $O(d^2nk)$ per rule, where
 281 d is the observation dimension. It performs at most d iterations to construct a single rule (adding
 282 one dimension per iteration), and in each iteration, it evaluates all d dimensions as candidates. The
 283 bottleneck lies in computing the orthogonal gradient boosting objective $\text{obj}_{\text{rgb}}(q) = |g_\perp^T q|/(||q_\perp|| + \epsilon)$
 284 for each candidate, which requires $O(nk)$ operations due to the orthogonal projection computation:
 285 $g_\perp = g - BB^T g$. This represents a k -fold increase in computational cost over standard gradient
 286 boosting (which has complexity $O(d^2n)$). The orthogonalization overhead is essential for the
 287 algorithm’s ability to select more general rules and achieve better risk-complexity trade-offs in
 288 practice. Fully-corrective weight calculation has a complexity of $O(k^2n)$ from solving a convex
 289 optimization problem that re-optimizes all weights after adding a new rule. The k^2 scaling comes
 290 from computing the Hessian on the $k \times k$ Gram matrix $Q^T Q$. While more expensive than stage-wise
 291 approaches, this cost is manageable for small ensemble sizes typically in interpretable rule learning.
 292

Algorithm 1 Neural+Symbolic Actor-Critic Algorithm

293 1: Initialize actor with each action rule ensemble function $f_a^{(0)} = 0$; Initialize critic network $V(s, \phi)$ with
 294 parameters ϕ ; Initialize environment and observe initial state s
 295 2: **repeat**
 296 3: **for** each step of episode **do**
 297 4: Choose action $a \sim \pi(a|s, \theta)$
 298 5: Observe reward r and new state s'
 299 6: Calculate $\delta = r + \gamma V(s', \phi) - V(s, \phi)$
 300 7: Update critic by minimizing $L(\phi) = \delta^2$
 301 8: **for** all a_i in action space **do**
 302 9: **if** $a_i = a$ **then**
 303 10: Calculate policy gradient $g_t: -\nabla_{w, q}(1 - \log \pi(a|s, w^T q))\delta$ for f_a
 304 11: **else**
 305 12: Calculate policy gradient $g_t: \nabla_{w, q} \log \pi(a|s, w^T q)\delta$ for f_a
 306 13: **end if**
 307 14: use Rule Replacement Steps and policy gradient to find a new query for f_a (Appendix B)
 308 15: use OGB to update the **weights** for f_a (See Appendix B)
 309 16: **end for**
 310 17: $s \leftarrow s'$
 311 18: **end for**
 312 19: **if** end of episode **then**
 313 20: Reset environment and observe initial state s
 314 21: **end if**
 315 22: **until** convergence or maximum episodes reached.

5 EXPERIMENTS AND RESULTS

316 In this section, we aim to answer the following questions: (RQ1) How does our algorithm perform
 317 relative to both black-box and interpretable baselines? (RQ2) Does our framework support inter-
 318 pretable decision-making in a quantifiable way? (RQ3) What kinds of qualitative insights about the
 319 policy can be obtained from inspecting the learned rules?

320 We evaluated the performance of NSAC in five diverse RL environments: MountainCar-v0, Acrobot-
 321 v1, CartPole-v1, Blackjack-v1, and Postman (Sutton, 2018; Dietterich, 2000). We also evaluated
 322 our NSAC algorithm on a challenging, real-world HVAC control benchmark using Sinergym (see
 323 Appendix J for details). This environment models a multi-zone office building with coupled thermal
 dynamics, where each zone’s temperature, humidity, and carbon dioxide concentration evolve

according to nonlinear heat-transfer and air-exchange equations. The high dimensionality of the state-action space, the strong inter-zone couplings, and the requirement to satisfy strict comfort bands make it a great testbed for our algorithm.

5.1 PERFORMANCE EVALUATION (RQ1)

We conducted a comprehensive performance comparison against established benchmark algorithms, including Q-Tabular (Sutton, 2018), DQN (Mnih, 2013), PPO (Schulman et al., 2017), and A2C (Mnih et al., 2016), all implemented using Stable-Baselines3 (Raffin et al., 2021). We additionally included Rainbow (Hessel et al., 2018), SDSAC (Kong et al., 2021), and SACBBF (Zhang et al., 2024) as deep RL baselines. To cover symbolic approaches, we also evaluated three interpretable methods: SYMPOL (Marton et al., 2024), $\pi_{\text{affine}}\text{-D}$ (Qiu & Zhu, 2022), and D-SDT (Silva et al., 2020). For a fair comparison, we use the Gym environments in their original form without any modifications. For each algorithm, we apply the recommended optimal parameters provided by the RLzoo (Raffin & contributors, 2020) with Stable Baselines 3 and report performance averaged over 10 random seeds. As shown in Table 1, NSAC demonstrates strong and reliable performance across a wide spectrum of tasks, outperforming or matching both classic deep RL methods and symbolic approaches. Compared with classical methods such as Q-learning, DQN, A2C, PPO, SAC variants, and Rainbow, NSAC achieves consistently higher returns with lower variance, particularly in settings that demand stability and scalability. Unlike value-based methods that can be brittle in continuous or high-dimensional domains, NSAC maintains robustness while still being competitive in simpler benchmarks. Against symbolic **tree based** methods such as SYMPOL, $\pi_{\text{affine}}\text{-D}$, and D-SDT, NSAC shows even clearer advantages: while symbolic policies can excel on select tasks due to strong inductive biases, they often suffer from collapse or sharp degradation when scaled, whereas NSAC delivers stable performance across all environments. This makes it a practical and effective alternative that closes the gap between the strengths of classic RL and symbolic reasoning while avoiding their respective weaknesses.

Table 1: Reward Comparison of Various Methods with Our Approach Across RL Environments.

Environment	Q-table	DQN	A2C	PPO	SDSAC	SACBBF	Rainbow	SYMPOL	$\pi_{\text{affine}}\text{-D}$	D-SDT	NSAC
MCar-v0	-147.68 ± 9.52	-135.07 ± 16.42	-157.51 ± 37.12	-150.40 ± 4.05	-141.76 ± 13.91	-139.23 ± 17.62	-137.76 ± 39.47	-200 ± 0	-200 ± 0	-200 ± 0	-132.25 ± 16.08
Acrobot-v1	-201.01 ± 13.32	-112.68 ± 8.93	-98.931 ± 29.52	-82.629 ± 2.79	-85.124 ± 7.82	-88.708 ± 7.12	-89.753 ± 8.98	-80.02 ± 4.28	-425.47 ± 56.81	-212.31 ± 4.19	-87.714 ± 6.95
CartPole-v1	219.51 ± 69.2	161.00 ± 55.2	453.51 ± 92.5	498.73 ± 2.4	487.61 ± 2.71	481.07 ± 10.76	498.53 ± 2.12	500 ± 0	109 ± 76.82	498.53 ± 2.12	499.14 ± 1.91
Blackjack-v1	-0.06 ± 0.02	-0.06 ± 0.02	-0.07 ± 0.01	-0.06 ± 0.01	-0.07 ± 0.02	-0.06 ± 0.01	-0.06 ± 0.02	-0.06 ± 0.01	-0.08 ± 0.01	-0.08 ± 0.02	-0.06 ± 0.01
Postman	35.24 ± 2.06	31.91 ± 5.71	24.23 ± 3.09	34.35 ± 3.82	34.91 ± 2.86	31.12 ± 3.77	34.67 ± 4.68	25.34 ± 3.42	15.23 ± 4.91	18.91 ± 6.28	27.14 ± 3.38
HVAC-1Zone	NA ± 20183	-1445367 ± 148658	-1334562 ± 135683	-1865276 ± 145619	-1387692 ± 34825	-1423573 ± 785732	-1465732 ± 65293	-1478783 ± 42873	-1895286 ± 29763	-1862537 ± 85241	-1251321
HVAC-5Zone	NA ± 198263	-1876253 ± 287237	-1984843 ± 462837	-1676288 ± 227221	-1582742 ± 241625	-1547279 ± 342612	-1602142 ± 65792	-1586352 ± 45241	-1969635 ± 33468	-1876374 ± 121678	-1463601

Note. Red indicates the best performance across all benchmarks. Underscore highlights the best performance among symbolic-based approaches.

Ablation Study In our ablation study, we explored how variations in the rule count and the implementation of a warm start influenced our method. We conducted tests in the CartPole-v1 environment under various rule configurations, specifically using 5, 10, 12, 20, 30, 40, and 50 rules per action. Each configuration was tested both with and without a warm start. *1. Number of Rules:* As depicted in Figure 3, the model configured with 12 rules per action and a warm start yields the highest reward. This outcome suggests that having 12 rules per action provides the model with sufficient flexibility to effectively capture the essential dynamics of the environment without being overly simplistic. As 5, may not offer adequate coverage to manage the environment’s complexity, resulting in inferior performance. Conversely, a larger number of rules may lead the model to overfit the training data, picking up on noise or irrelevant patterns and diminishing its generalizability to new contexts. The findings from this ablation study highlight a critical balance between the number of rules and overall model performance. They show that merely increasing the number of rules does not invariably

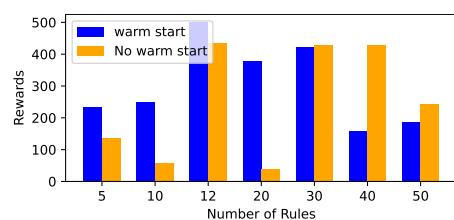


Figure 3: Ablation study on different numbers of rules and warm start

378 improve performance, as an excess can lead to complexity and overfitting, whereas too few can
 379 restrict the model’s performance. 2. *Warm Start*: When the number of rules is small, the model’s
 380 representational capability is limited, so the initial conditions (e.g., the warm start) become more
 381 critical. A warm start can guide the model toward better solutions early on, helping it learn an
 382 effective policy faster and avoid getting stuck in poor local optima. In contrast, with a larger rule set,
 383 the model has greater capacity to explore various configurations. In such cases, relying on an external
 384 initialization can sometimes constrain exploration, preventing the model from fully leveraging its
 385 increased flexibility.

386 **5.2 INTERPRETABILITY EVALUATION**

388 **Quantitative Evaluation(RQ2):** Common metrics for [interpretability](#) include fidelity, comprehensibility, and cognitive load. In our approach, measuring fidelity is unnecessary because it is primarily
 389 relevant in post-hoc explanation settings—where one model attempts to approximate and explain the
 390 behavior of another. In contrast, [both tree based approach\(other baselines\) and our model is inherently self-explainable, meaning it achieves 100% fidelity by design](#), as the decisions made by the model
 391 directly reflect its underlying logic. For comprehensibility and cognitive load, our rule-based system
 392 offers a structured and measurable format. The rule ensembles consist only of boolean propositions
 393 formed through simple comparisons (e.g., feature $>$ threshold) and logical conjunctions. In general,
 394 comprehensibility is negatively correlated with model complexity, while cognitive load increases with
 395 complexity. We define model complexity in terms of the total number of rules, conditions, and logical
 396 operations. Models with more parameters and operations tend to be harder to understand and place a
 397 greater cognitive burden. Since the performance of π_{affine} -D, and D-SDT is not directly comparable,
 398 we instead evaluate them in terms of interpretability. Using model size as a proxy for complexity, we
 399 observe that across all environments our models require, on average, 61.23 [symbolic units \(number of parameters\)](#) to achieve the reported performance. In contrast, SYMPOL uses 95.6 [symbolic units](#) (approximately one per node). According to Murdoch et al. (2019), interpretability involves
 400 simulatability, modularity, and low complexity. A model is simulatable if its predictions can be easily
 401 followed and computed by humans; modular if its components are individually understandable; and
 402 low-complexity if it uses few parameters or rules. Our rule-based method satisfies all three. Each
 403 decision is made via explicit if-then rules (simulatability), each rule is independently interpretable
 404 (modularity), and the total number of rules is kept under 30, ensuring the model remains simple
 405 and auditable (low complexity). [Although symbolic trees like SYMPOL’s are locally simulatable \(a single path explains a decision\), shared internal nodes mean edits are not truly modular, and trees](#)
 406 [tend to grow deep and wide on harder tasks, so they quickly lose low complexity and thus do not](#)
 407 [fully satisfy all three criteria simultaneously.](#)

412 **Qualitative Interpretability Case**
 413 **Studies - MountainCar(RQ3):** In
 414 this section, we use the MountainCar-
 415 v0 environments from OpenAI Gym
 416 as examples to illustrate the inter-
 417 pretability of our proposed rein-
 418 force-
 419 ment learning algorithm. The Moun-
 420 tain Car environment involves a car
 421 situated between two hills, tasked
 422 with reaching the flag at the top of
 423 the right hill. Due to insufficient en-
 424 gine power, the car must build mo-
 425 mentum by oscillating back and forth.
 426 The system state is characterized by
 427 two continuous variables: the car’s
 428 position (p) and its velocity (v). The
 429 agent performs one of three discrete
 430 actions: push left, do nothing, or push
 431 right. For each action, a set of rules
 432 evaluate the current state by applying
 433 specific conditions based on p and v ,
 434 assigning corresponding scores that

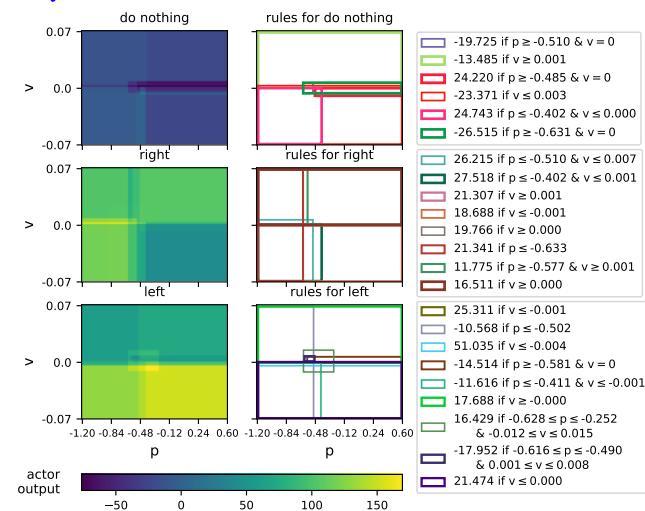


Figure 4: Visual representation of the rules for MountainCar. Higher actor output values in the heatmap indicate that the corresponding action is more strongly preferred at that state. The squares indicate the regions of the state space where the corresponding rules apply.

influence the decision-making process. Consider a typical state where $p = -0.5$ (slightly to the left of the center) and $v = 0.02$ (moving rightward). For the action *Do Nothing*, one rule imposes a penalty of -13.485 since the velocity v exceeds a small positive threshold 0.001 , discouraging inaction that could result in insufficient momentum to overcome the hill. For the action *Push Left*, only one rule applies, which assigns a positive score as the velocity v is above a minimal threshold, encouraging a slight push left to maintain momentum without overcompensating. Conversely, the action *Push Right* activates multiple rules: three contribute $+57.59$ because the velocity v surpasses different threshold values for the corresponding rules, strongly encouraging a push right to build momentum; another rule provides $+11.775$ since both the position $p \geq -0.577$ and velocity is positive are satisfied, indicating that a rightward push is beneficial without risking overshooting the valley; There is also one rule contributing an additional $+1.361$ because the position $p \leq -0.449$, $p \geq -0.874$, and $v \leq 0.023$ hold true, subtly encouraging a push right to maintain the car within a stable range. The cumulative score for *Push Right* thus amounts to $+70.725$, clearly favoring this action. This comprehensive rule-based scoring system demonstrates that, for the given state ($p = -0.5$, $v = 0.02$), pushing right is the optimal choice as it significantly builds the necessary momentum to ascend the hill, outweighing the moderate incentives to push left and the discouragement from doing nothing. We have also visualized the rules of MountainCar in Figure 4 with all rules presented in Appendix M. One can easily identify the corresponding areas associated with a state and locate the applicable rules.

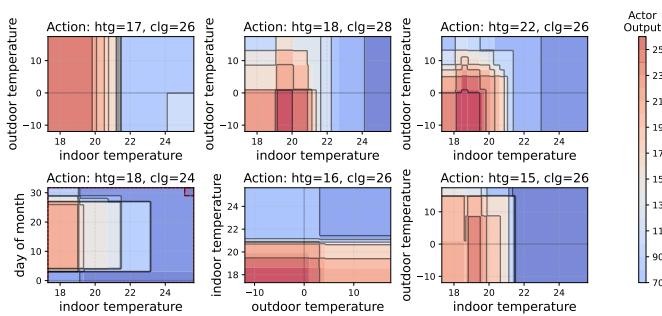


Figure 5: Visualization of the HVAC Rules. **Higher actor output value mean the corresponding action is preferred at that state.**

interpretability is crucial: when RL governs biocontainment HVAC systems, even minor errors can destroy cultures or compromise containment. As shown in Table 1, our rule-based actor approach delivers performance nearly equal to—or even surpassing—that of traditional baseline methods. More than this, our proposed algorithm also delivers interpretability by explaining why and how each decision is made in human-understandable language, enabling users to assess the correctness of its rules. Consider the very first rule as an example: *if outdoor temperature ≤ -4.5 ; htg setpoint ≤ 20.0 ; air temperature ≤ 21.1503 , and HVAC electricity demand rate $\geq 1452.0250(kW)$, +37.6076* What it means, in plain English: When all four of these conditions hold: 1. Outdoor temperature is extremely low; 2. The previous heating setpoint remains at a moderate level; 3. The indoor air temperature is still below the desired comfort threshold; 4. The HVAC system is already drawing high power, then this rule “fires,” adding +37.6 to the score for choosing (htg = 15°C, clg = 26°C), i.e., heat turns on below 15 °C and cooling above 26 °C. A large positive weight like +37.6 signifies that, in this scenario, raising the heating setpoint to 15°C is especially beneficial. Based on visualized the rules of HVAC control in Figure 5, when it’s freezing outside, your target heating level is still under typical comfort, the room hasn’t yet warmed up, and the system is working hard—so raising the heat setpoint to 15°C markedly improves comfort, which this rule captures (see details in Appendix K).

6 CONCLUSION

In conclusion, this paper introduces a neural+symbolic approach within the actor-critic framework. This method leverages both the robust function approximation capabilities of neural networks critic and the interpretability provided by rule-based actor models. **Users can inspect how the model makes each decision and form a view about its underlying reasoning. The limitations of this work are discussed in Appendix A.** In the future, we plan to assess the scalability of our method in more complex environments across different domains, such as robotics, finance, healthcare, or autonomous driving, and adapt with other actor-critic frameworks, such as Soft Actor-Critic.

Qualitative Interpretability Analysis - Real Time HVAC control(RQ3): Alongside standard Gym benchmarks, we evaluated our algorithm on a challenging, real-world HVAC control problem in a biological laboratory, where maintaining temperature within a narrow band by setting effective heating (htg) and cooling (clg) set points is vital to preserving the viability of cultured viruses.

In such safety-critical settings,

486 ETHICAL STATEMENT
487

488 This work does not involve human subjects, personal data, or identifiable information. All experiments
489 are conducted entirely in simulated environments, including stylized energy-system tasks designed
490 to probe safety and performance trade-offs. These simulations do not interface with or control any
491 real-world infrastructure. Our proposed NSAC framework aims to improve the interpretability and
492 trustworthiness of reinforcement learning systems by combining symbolic rules with statistical learning.
493 This direction supports the broader goal of promoting transparency in AI decision-making. While
494 the symbolic actor promotes explainability, we acknowledge the importance of careful rule design to
495 avoid unintended consequences in safety-critical domains. However, our current implementation is
496 strictly research-oriented and intended for controlled, offline evaluation.

497
498 REPRODUCIBILITY STATEMENT
499

500 To support reproducibility, we include comprehensive details of our training procedures, hyperparameter
501 settings, and evaluation metrics within the main text and appendix. Upon publication, we will
502 release the full codebase, including: Random seeds and environment specifications, Training scripts
503 to replicate all experiments, Plotting utilities to reproduce all figures. All results can be reproduced
504 using a single command-line interface without manual intervention. Pretrained models and logs will
505 also be provided to facilitate benchmarking and verification.

506 REFERENCES
507

509 Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
510 extraction. In *NeurIPS*, 2018.

511 José Manuel Benítez, Juan Luis Castro, and Ignacio Requena. Are artificial neural networks black
512 boxes? *IEEE Transactions on neural networks*, 8(5):1156–1164, 1997.

513 Vivek S Borkar and Sean P Meyn. The ode method for convergence of stochastic approximation and
514 reinforcement learning. *SIAM Journal on Control and Optimization*, 38(2):447–469, 2000.

516 Davide Castelvecchi. Can we open the black box of ai? *Nature News*, 538(7623):20, 2016.

518 Yannick Coppens, Konstantinos Efthymiadis, Tom Lenaerts, and Ann Nowé. Distilling deep rein-
519 forcement learning policies in soft decision trees. In *IJCAI Workshop on Explainable Artificial
520 Intelligence (XAI)*, 2019.

521 Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and explain-
522 able logical policies via neurally guided symbolic abstraction. *Advances in Neural Information
523 Processing Systems*, 36:50838–50858, 2023.

525 Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting. Ocatari:
526 Object-centric atari 2600 reinforcement learning environments. *arXiv preprint arXiv:2306.08649*,
527 2024a.

528 Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kersting.
529 Interpretable concept bottlenecks to align reinforcement learning agents. *Advances in Neural
530 Information Processing Systems*, 37:66826–66855, 2024b.

532 Quentin Delfosse, Jannis Blüml, Fabian Tatai, Théo Vincent, Bjarne Gregori, Elisabeth Dillies, Jan
533 Peters, Constantin Rothkopf, and Kristian Kersting. Deep reinforcement learning agents are not
534 even close to human intelligence. *arXiv preprint arXiv:2505.21731*, 2025.

535 Krzysztof Dembczyński, Wojciech Kotłowski, and Roman Słowiński. Ender: a statistical framework
536 for boosting decision rules. *Data Mining and Knowledge Discovery*, 21(1):52–90, 2010.

538 Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
539 misgeneralization in deep reinforcement learning. In *International Conference on Machine
Learning*, pp. 12004–12019. PMLR, 2022.

540 Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
 541 tion. *Journal of artificial intelligence research*, 13:227–303, 2000.

542

543 Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li, and Ruitong Huang. Cdt:
 544 Cascading decision trees for explainable reinforcement learning. *arXiv preprint arXiv:2011.07553*,
 545 2020.

546 Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
 547 *Journal of Machine Learning Research*, 6(Apr):503–556, 2005.

548

549 Jerome H Friedman. Greedy function approximation: a gradient boosting machine. *Annals of*
 550 *statistics*, pp. 1189–1232, 2001.

551

552 Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. *The annals of*
 553 *applied statistics*, 2(3):916–954, 2008.

554 Benjamin Fuhrer, Chen Tessler, and Gal Dalal. Gradient boosting reinforcement learning. *arXiv*
 555 *preprint arXiv:2407.08250*, 2024.

556

557 Artur d’Avila Garcez, Aimore Resende Riquetti Dutra, and Eduardo Alonso. Towards symbolic
 558 reinforcement learning with common sense. *arXiv preprint arXiv:1804.08597*, 2018.

559

560 Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
 561 deep reinforcement learning. In *Proceedings of the International Conference on Autonomous*
 562 *Agents and Multiagent Systems (AAMAS)*, 2015a.

563

564 Ujjwal Das Gupta, Erik Talvitie, and Michael Bowling. Policy tree: Adaptive representation for
 565 policy gradient. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 29,
 566 2015b.

567

568 Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement learning
 569 by genetic programming. *Engineering Applications of Artificial Intelligence*, 76:158–169, 2018.

570

571 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
 572 Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
 573 deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 574 volume 32, 2018.

575

576 León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith. Symbolic plans as high-level in-
 577 structions for reinforcement learning. In *Proceedings of the international conference on automated*
 578 *planning and scheduling*, volume 30, pp. 540–550, 2020.

579

580 Hector Kohler, Quentin Delfosse, Riad Akrou, Kristian Kersting, and Philippe Preux. Inter-
 581 pretable and editable programmatic tree policies for reinforcement learning. *arXiv preprint*
 582 *arXiv:2405.14956*, 2024.

583

584 Yiting Kong, Yang Guan, Jingliang Duan, Shengbo Eben Li, Qi Sun, and Bingbing Nie. Decision-
 585 making under on-ramp merge scenarios by distributional soft actor-critic algorithm. *arXiv preprint*
 586 *arXiv:2103.04535*, 2021.

587

588 Mikel Landajuela, Brenden K Petersen, Sookyoung Kim, Claudio P Santiago, Ruben Glatt, Nathan
 589 Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep rein-
 590 forcement learning. In *International Conference on Machine Learning*, pp. 5979–5989. PMLR,
 591 2021.

592

593 Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
 594 learning with linear model u-trees. In *Machine Learning and Knowledge Discovery in Databases:
 595 European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings,
 596 Part II 18*, pp. 414–429. Springer, 2019.

597

598 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances in*
 599 *neural information processing systems*, 30, 2017.

594 Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. End-to-end neuro-
 595 symbolic reinforcement learning with textual explanations. *arXiv preprint arXiv:2403.12451*,
 596 2024.

597 Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: interpretable and data-efficient
 598 deep reinforcement learning leveraging symbolic planning. In *Proceedings of the AAAI Conference
 599 on Artificial Intelligence*, volume 33, pp. 2970–2977, 2019.

600 Sascha Marton, Tim Grams, Florian Vogt, Stefan Lüdtke, Christian Bartelt, and Heiner Stucken-
 601 schmidt. Mitigating information loss in tree-based reinforcement learning via direct optimization.
 602 *arXiv preprint arXiv:2408.08761*, 2024.

603 Volodymyr Mnih. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*,
 604 2013.

605 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 606 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 607 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.

608 W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions,
 609 methods, and applications in interpretable machine learning. *Proceedings of the National Academy
 610 of Sciences*, 116(44):22071–22080, 2019.

611 Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In *The Tenth
 612 International Conference on Learning Representations*, 2022.

613 Antonin Raffin and contributors. RL Baselines3 Zoo. [https://github.com/DLR-RM/
 614 rl-baselines3-zoo](https://github.com/DLR-RM/rl-baselines3-zoo), 2020. Accessed: YYYY-MM-DD.

615 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
 616 Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of
 617 Machine Learning Research*, 22(268):1–8, 2021. URL [http://jmlr.org/papers/v22/
 618 20-1364.html](http://jmlr.org/papers/v22/20-1364.html).

619 Aaron M Roth, Nicholay Topin, Pooyan Jamshidi, and Manuela Veloso. Conservative q-improvement:
 620 Reinforcement learning for an interpretable decision-tree policy. *arXiv preprint arXiv:1907.01180*,
 621 2019.

622 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
 623 interpretable models instead. *Nature Machine Intelligence*, 1(5):206–215, 2019.

624 Robert E Schapire. The strength of weak learnability. *Machine learning*, 5(2):197–227, 1990.

625 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 626 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

627 Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in optimization
 628 problems with sparsity constraints. *SIAM Journal on Optimization*, 20(6):2807–2832, 2010.

629 Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. Blendrl: A
 630 framework for merging symbolic and neural policy learning. *arXiv preprint arXiv:2410.11689*,
 631 2024.

632 Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Optimization
 633 methods for interpretable differentiable decision trees applied to reinforcement learning. In
 634 *International conference on artificial intelligence and statistics*, pp. 1855–1865. PMLR, 2020.

635 Richard S Sutton. Reinforcement learning: An introduction. *A Bradford Book*, 2018.

636 Yebin Tao, Lu Wang, and Daniel Almirall. Tree-based reinforcement learning for estimating optimal
 637 dynamic treatment regimes. *The annals of applied statistics*, 12(3):1914, 2018.

638 Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
 639 Programmatically interpretable reinforcement learning. In *International Conference on Machine
 640 Learning*, pp. 5045–5054. PMLR, 2018.

648 Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
649 actor-critic methods. *Advances in Neural Information Processing Systems*, 33:17617–17628, 2020.
650

651 Fan Yang, Pierre Le Bodic, Michael Kamp, and Mario Boley. Orthogonal gradient boosting for simpler
652 additive rule ensembles. In *International Conference on Artificial Intelligence and Statistics*, pp.
653 1117–1125. PMLR, 2024.

654 Le Zhang, Yong Gu, Xin Zhao, Yanshuo Zhang, Shu Zhao, Yifei Jin, and Xinxin Wu. Generalizing
655 soft actor-critic algorithms to discrete action spaces. In *Chinese Conference on Pattern Recognition*
656 and *Computer Vision (PRCV)*, pp. 34–49. Springer, 2024.

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A LIMITATION AND FUTURE WORK**

704 A fundamental limitation of our approach lies in the natural trade-off between interpretability and
 705 performance. While our symbolic, rule-based actor offers clear advantages in terms of transparency
 706 and simulatability, this structure inherently constrains policy expressiveness compared to fully neural
 707 counterparts—particularly in complex, high-dimensional environments. Although NSAC achieves
 708 competitive performance across benchmark tasks, there may be scenarios where its symbolic policy
 709 cannot match the nuanced optimisation achievable by deep learning-based policies.

710 NSAC uses rule ensembles over input features, so the candidate rule space grows with the number of
 711 attributes and thresholds. In practice, we keep policies compact and simulatable by capping the rule
 712 budget and rule depth. This makes NSAC best suited to low-to-medium dimensional feature spaces
 713 or to settings with a good compact feature representation; truly high-dimensional inputs would require
 714 prior feature extraction or a hybrid neural-symbolic architecture. Also, boosting-based rule updates
 715 are currently performed per action, so runtime scales roughly linearly with the number of discrete
 716 actions. Our experiments use small to moderate action spaces, and we control cost by limiting rules
 717 per action and exploiting trivial parallelism across actions. Very large action spaces would likely
 718 require extensions such as shared rule ensembles or multi-class boosting. NSAC is not well suited to
 719 highly partially observable or sparse reward environments (like PONG Delfosse et al. (2024b)) that
 720 demand rich temporal memory or very high-capacity function approximators.

721 Moreover, interpretability is not a binary property but exists on a spectrum. Different symbolic
 722 approaches offer varying degrees of clarity, modularity, and simulatability, often depending on the
 723 complexity of the rule structure, the nature of the environment, and the domain-specific knowledge
 724 embedded within the rules. As such, the perceived interpretability of a symbolic method may vary
 725 across users and use cases. Practitioners must therefore carefully consider the type and level of
 726 interpretability required for their application—balancing traceability with scalability—when choosing
 727 or designing a symbolic component. Future work may explore adaptive symbolic structures or hybrid
 728 neuro-symbolic policy representations to better navigate this trade-off across diverse tasks.

729 **B DETAILED RULE UPDATE**

730 *Step 1:* In time-step t , for f_a , we first **select a new query** q_t from a candidate set \mathcal{Q} by solving

$$734 \quad q_t = \arg \max_{q \in \mathcal{Q}} \text{obj}(q; f_a^{(t-1)}), \quad (8)$$

735 where we adopt OGB (Yang et al., 2024) for the objective function. Let $q = (q(\mathbf{x}_1), \dots, q(\mathbf{x}_n))^T \in \{0, 1\}^n$ is the query vector of the query q , and $\mathbf{g}^{(t-1)} = (736 \partial L_\lambda(f_a^{(t-1)}) / \partial f_a^{(t-1)}(\mathbf{x}_1), \dots, \partial L_\lambda(f_a^{(t-1)}) / \partial f_a^{(t-1)}(\mathbf{x}_n))^T$ is the gradient vector of the empirical
 737 risk with respect to the predicted values of $f_a^{(t-1)}$. $\mathbf{g}_\perp^{(t-1)}$ and q_\perp are the projection of
 738 \mathbf{g} and q onto the orthogonal complement of the range of $\mathbf{Q}_{t-1} = (q_1, \dots, q_{t-1})^T$, where
 739 $q_i = (q_i(\mathbf{x}_1), \dots, q_i(\mathbf{x}_n))^T \in \{0, 1\}^n$ is the query vector of the query q_i for $i = 1, \dots, t-1$.
 740 We express the objective function as follows: $\text{obj}(q; f_a^{(t-1)}) = \text{obj}_{\text{obj}}(q) = |\mathbf{q}_\perp^T \mathbf{g}_\perp^{(t-1)}| / \|\mathbf{q}_\perp\|$. The
 741 candidate query set \mathcal{Q} comprises all possible conjunctions of propositions, where each proposition
 742 corresponds to a condition that splits the attribute space based on attribute values of given data points
 743 (e.g., threshold-based splits). The objective function is maximized using greedy or beam search.

744 *Step 2:* After adding the updated new query, we re-calculate the optimal weight vector by solving

$$748 \quad \mathbf{w}_t = \arg \min_{\mathbf{w} \in \mathbb{R}^t} \hat{L}_\lambda(\mathbf{Q}_t, \mathbf{w}), \quad (9)$$

750 where $\mathbf{Q}_t = \mathbf{Q}_{t-1} \cup q_t$ is the $n \times t$ matrix with the outputs of the selected queries.

751 *Step 3:* After there are k rules in the system, instead of continuing to add a new rule for each time,
 752 we adopt the **post-processing replacement** step of boosting algorithm (Shalev-Shwartz et al., 2010).
 753 In each iteration, we remove one rule with minimal absolute weight, leaving $k-1$ rules in the
 754 model: $k^* = \arg \min_{1 \leq r \leq k} |w_r|$, and remove the query function q_{k^*} together with its coefficient
 755 w_{k^*} , thereby reducing the ensemble to $f^{(k^-)}$ with $k-1$ terms. Then, we need to recompute

756 the weight vector $\mathbf{w}_{k-} = (w_r)_{r \in [k], r \neq k^*}^T$ ($[k] = \{1, \dots, k\}$) of $f^{(k-)}$ along with the updated query
 757 functions $\{q_r\}_{r \in [k], r \neq k^*}$: $\mathbf{w}_{k-} = \arg \min_{\mathbf{w} \in \mathbb{R}^{k-1}} \hat{L}_\lambda(\mathbf{Q}_{k-}, \mathbf{w})$, where $\mathbf{Q}_{k-} = \{q_r\}_{r \in [k], r \neq k^*}$ is
 758 the $n \times (k-1)$ matrix with the outputs of the selected queries.
 759

760 Step 4: After this, repeat Step 1 to add a new rule to the system. In the end, the weights of all the k
 761 rules are recalculated (same as 8 and 9) in Step 2. If the expected loss does not decrease after the
 762 post-processing procedure, the model before post-processing is restored. The performance of the
 763 post-processing with fully-corrective boosting is guaranteed by the following theorem.
 764

765 **Algorithm 2** Orthogonal Gradient Boosting (OGB)

766 1: **Input:** data (\mathbf{x}_i, y_i) , number of rules k and \mathbf{g}_t
 767 2: $f^{(0)} = 0$
 768 3: **for** $t = 1, \dots, k$ **do**
 769 4: $\mathbf{q}_t = \arg \max_q |\mathbf{g}_{\perp t}^T \mathbf{q}| / \|\mathbf{q}_{\perp}\|$
 770 5: $\mathbf{w}^{(t)} = \arg \min_{(w_1, \dots, w_t) \in \mathbb{R}^t} \hat{L}_\lambda(\sum_{j=1}^t w_j q_j)$
 771 6: $f^{(t)}(\cdot) = w_1^{(t)} q_1(\cdot) + \dots + w_t^{(t)} q_t(\cdot)$
 772 7: **end for**
 773 8: **Output:** $f^{(k)}$

775
 776 **Algorithm 3** Rule Replacement Steps

777 1: **Input:** data (\mathbf{x}_i, y_i) , $i = 1, \dots, n$, original rule ensemble with k rules $f_k^{(0)}$, maximum iteration
 778 number T and \mathbf{g}
 779 2: **for** $t = 1, \dots, T$ **do**
 780 Find the index of the smallest weight absolute value $r = \arg \min_{j \in 1, \dots, k} |w_j^{(t-1)}|$
 781 $\tilde{\mathbf{w}}^{(t-1)} = \arg \min_{\mathbf{w} \in \mathbb{R}^{k-1}} \hat{L}_\lambda(\sum_{i \in [k] - \{r\}} \tilde{w}_i^{(t-1)} q_i)$
 782 $\tilde{f}_{k-1}^{(t-1)}(\cdot) = \sum_{i \in [k] - \{r\}} w_i^{(t-1)} q_i(\cdot)$
 783 Find the query $q_k^{(t)} = \arg \max_q \|\mathbf{q}^T \mathbf{g}_{\perp}\| / |\mathbf{q}_{\perp}|$
 784 $\mathbf{w}^{(t)} = \arg \min_{\mathbf{w} \in \mathbb{R}^k} \hat{L}_\lambda(\sum_{i \in [k] - \{r\}} w_i q_i + w_r q_r^{(t)})$
 785 Let $\delta = \hat{L}_\lambda(f^{(t)}) - \hat{L}_\lambda(\sum_{i \in [k] - \{r\}} w_i^{(t)} q_i + w_r^{(t)} q_r^{(t)})$
 786 **if** $\delta > 0$ **then**
 787 $f_k^{(t)} = \sum_{i \in [k] - \{r\}} w_i^{(t)} q_i + w_r^{(t)} q_r^{(t)}$
 788 **else**
 789 break
 790 **end if**
 791 **end for**
 792 3: **Output:** $f_k^{(t)}$

793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809



Figure 6: The NSAC Algorithm.

C THEORETICAL ANALYSIS

We present a comprehensive theoretical convergence analysis of our NSAC algorithm. Under standard assumptions, our algorithm converges to a local optimum. We assume the following conditions:

Assumption C.1 (Step Sizes). Assume $\alpha_{(w,q)}$ be the learning rate for actor and let α_ϕ be the learning rate for the critic. The sequences $\{\alpha_\phi(t)\}$ and $\{\alpha_{(w,q)}(t)\}$ are positive and satisfy

$$\sum_{t=0}^{\infty} \alpha_\phi(t) = \infty, \quad \sum_{t=0}^{\infty} \alpha_{(w,q)}(t) = \infty, \quad \sum_{t=0}^{\infty} (\alpha_\phi(t)^2 + \alpha_{(w,q)}(t)^2) < \infty, \quad \lim_{t \rightarrow \infty} \frac{\alpha_{(w,q)}(t)}{\alpha_\phi(t)} = 0,$$

so that the critic update occurs on a faster timescale.

Assumption C.2 (Markovian Sampling & Ergodicity). We assume mild mixing or ergodicity conditions ensuring that each state-action pair is visited infinitely often in the limit, and that standard stochastic approximation methods apply.

Assumption C.3. We assume a Lipschitz-smooth approximator for $V_\phi(s)$. We assume the ‘‘compatibility’’ holds or that any residual bias in the critic’s estimate does not prevent recovering the true gradient direction in expectation.

Theorem C.4. (Theorem 2.9 in (Shalev-Shwartz et al., 2010)) Let $L(f)$ be the risk function defined by a β -smooth loss function, where the expectation is with respect to an arbitrary distribution over $X \times Y$. Let $\lambda > 0$ be a scalar, f is an additive rule ensemble with k rules, \bar{f} is a reference rule ensemble with k_0 rules, if $k + 1 \geq k_0(1 + 16/\lambda^2)$, and assume that L is $(k + 1 + k_0, \lambda)$ -sparsely-strongly convex. Additionally, let τ be an integer such that

$$\tau \geq \frac{\lambda(k + 1 - k_0)}{2\beta} \log \left(\frac{L(0) - L(\bar{f})}{\epsilon} \right). \quad (10)$$

Then if the fully corrective boosting is run for k iterations and its last predictor is provided as input for the post-processing replacement procedure, which is then run for τ iterations, then when the procedure terminates at time t , we have $L(f^{(t)}) - L(f) \leq \epsilon$.

Theorem C.5. Let ϕ be the fixed parameters of a critic, inducing a fixed value function $V_\phi(s)$ for each state $s \in \mathcal{S}$. Let f be a parameterized function (e.g., the actor’s approximation to the advantage) that is updated iteratively according to the update rule, the sequence $\{f_k\}$ converges to \bar{f} .

Proof. We first calculate the risk for rule ensembles for \bar{f} and f_k based on the loss functions: $L(\bar{f}) = -\log \pi_{\bar{f}}(a_t|s_t)\bar{f}$ and $L(f_k) = -\log \pi_{f_k}(a_t|s_t)f_k$, respectively. When $R(\cdot)$ is error bounded, there exists a lower bound with a constant $\gamma > 0$ satisfying $|L(f_1) - L(f_2)| \geq \gamma \|f_1 - f_2\|$, for any f_1 and f_2 in the parameter space. Based on Theorem C.4, when equation 10 is satisfied, we have $\|f_k - \bar{f}\| \leq \frac{1}{\gamma} |L(f_k) - L(\bar{f})| \leq \frac{\varepsilon}{\gamma}$. Hence, bounding the difference in risk $|L(f_k) - L(\bar{f})|$ by ε forces the parameter distance $\|f_k - \bar{f}\|$ to lie within $\frac{\varepsilon}{\gamma}$. \square

Theorem C.6 (Convergence of NSAC). *Let $\{(w_t, q_t), \phi_t\}$ be the sequence of actor and critic parameters updated via Eqs. equation 6–equation 7 under the Assumptions C.1–C.3. Then $\{(w_t, q_t), \phi_t\}$ converges almost surely to a set of stationary points of the associated ordinary differential equation (ODE) system: $\dot{\phi} = F(\phi; (\mathbf{w}, \mathbf{q}))$, $(\dot{w}, \dot{q}) = G((\mathbf{w}, \mathbf{q}); \phi)$ where F represents the temporal-difference (critic) dynamics, and G represents the policy-gradient (actor) dynamics. In particular, (w, q) converges to a local optimum of $J(w, q)$, where J is the expected cumulative reward.*

Proof. We employ the concepts of *Two-timescale* theorems (Borkar & Meyn, 2000; Wu et al., 2020) and Theorem C.5 for the proof. Please refer to Appendix E for the detailed proof of convergence. \square

D ACTOR'S LOSS WITH L2 REGULARIZATION

Theorem D.1 (Local Strong Convexity of Actor's Loss with L2 Regularization). *Consider the actor's loss function in an A2C framework defined as*

$$L(\theta) = -\mathbb{E}_{s \sim \rho^\pi, a \sim \pi_\theta} [A^\pi(s, a) \log \pi_\theta(a|s)] + \frac{\lambda}{2} \|\theta\|^2,$$

where $\lambda > 0$ is the regularization coefficient for L2 regularization.

We assume:

1. The policy $\pi_\theta(a|s)$ is twice continuously differentiable with respect to θ ;
2. At a local minimum θ^* , the Hessian of the unregularized loss $L_{\text{unreg}}(\theta) = -\mathbb{E}[A^\pi(s, a) \log \pi_\theta(a|s)]$ satisfies $\nabla^2 L_{\text{unreg}}(\theta^*) \succeq 0$ (positive semi-definite);
3. The regularization coefficient λ is chosen such that $\lambda > 0$.

Then, there exists a neighborhood \mathcal{U} around θ^* where the regularized loss $L(\theta)$ is strongly convex. Specifically, within \mathcal{U} ,

$$\nabla^2 L(\theta) \succ \lambda I,$$

where I is the identity matrix in $\mathbb{R}^{d \times d}$.

Proof. We aim to show that the regularized loss function $L(\theta)$ is strongly convex in a neighborhood around θ^* .

The regularized loss can be expressed as the sum of the unregularized loss and the L2 regularization term:

$$L(\theta) = L_{\text{unreg}}(\theta) + L_{\text{reg}}(\theta).$$

where

$$L_{\text{reg}}(\theta) = \frac{\lambda}{2} \|\theta\|^2.$$

Compute the gradient and Hessian of $L(\theta)$:

$$\nabla L(\theta) \equiv \nabla L_{\text{unreg}}(\theta) + \lambda\theta,$$

$$\nabla^2 L(\theta) \equiv \nabla^2 L_{\text{unreg}}(\theta) + \lambda I.$$

At the local minimum θ^* , by assumption:

$$\nabla^2 L_{\text{upreg}}(\theta^*) \succ 0,$$

Therefore

$$\nabla^2 L(\theta^*) \equiv \nabla^2 L_{\text{unreg}}(\theta^*) + \lambda I \succeq \lambda I.$$

918 This shows that the Hessian of the regularized loss at θ^* is positive definite, as $\lambda > 0$. Since $\pi_\theta(a|s)$ is
 919 twice continuously differentiable, $\nabla^2 L_{\text{unreg}}(\theta)$ is continuous in θ . Hence, there exists a neighborhood
 920 \mathcal{U} around θ^* where:

$$921 \quad \nabla^2 L_{\text{unreg}}(\theta) \succeq 0, \quad \forall \theta \in \mathcal{U}.$$

922 Within \mathcal{U} ,

$$923 \quad \nabla^2 L(\theta) = \nabla^2 L_{\text{unreg}}(\theta) + \lambda I \succeq \lambda I.$$

924 This inequality holds because $\nabla^2 L_{\text{unreg}}(\theta) \succeq 0$ and λI is positive definite. Since $\nabla^2 L(\theta) \succeq \lambda I$ for
 925 all $\theta \in \mathcal{U}$, the loss function $L(\theta)$ is **strongly convex** in the neighborhood \mathcal{U} around θ^* with
 926 strong convexity parameter λ .
 927

□

928 **Theorem D.2** (Local Error Bound under Local Strong Convexity). *Let $L : \mathbb{R}^d \rightarrow \mathbb{R}$ be continuously
 929 differentiable and μ -strongly convex in a neighborhood \mathcal{N} of some point $\hat{f} \in \mathbb{R}^d$. In other words,
 930 there exists $\mu > 0$ such that for all $f \in \mathcal{N}$,*

$$933 \quad L(f) - L(\hat{f}) \geq \frac{\mu}{2} \|f - \hat{f}\|^2.$$

934 Then, for every f in that neighborhood \mathcal{N} ,

$$936 \quad \|f - \hat{f}\| \leq \sqrt{\frac{2}{\mu} (L(f) - L(\hat{f}))}.$$

939 *Proof.* Since L is μ -strongly convex in the neighborhood \mathcal{N} around \hat{f} , we have the inequality
 940

$$941 \quad L(f) - L(\hat{f}) \geq \frac{\mu}{2} \|f - \hat{f}\|^2, \quad \forall f \in \mathcal{N}.$$

943 Rearrange this to obtain

$$944 \quad \|f - \hat{f}\|^2 \leq \frac{2}{\mu} (L(f) - L(\hat{f})).$$

946 Taking the square root of both sides yields

$$948 \quad \|f - \hat{f}\| \leq \sqrt{\frac{2}{\mu} (L(f) - L(\hat{f}))}.$$

950 Thus, in the local region \mathcal{N} , a small gap in the objective value $L(f) - L(\hat{f})$ forces f to be close to \hat{f} .
 951 This is precisely the local *error-bound* property. □
 952

953 E PROOF FOR CONVERGENCE OF OUR PROPOSED ALGORITHM

955 **Theorem E.1** (Convergence of our Proposed Algorithm). *Let $\{(w_t, q_t), \phi_t\}$ be the sequence of actor
 956 and critic parameters updated via equation 6–equation 7 under the Assumptions C.1–C.3. Then
 957 $\{(w_t, q_t), \phi_t\}$ converges almost surely to a set of stationary points of the associated ODE system:*

$$959 \quad \begin{cases} \dot{\phi} = F(\phi; (\mathbf{w}, \mathbf{q})), \\ 960 \quad (\dot{w}, \dot{q}) = G((\mathbf{w}, \mathbf{q}); \phi), \end{cases}$$

962 where F represents the temporal-difference (critic) dynamics and G represents the policy gradient
 963 (actor) dynamics. In particular, (w, q) converges to a local optimum of $J(w, q)$.
 964

965 *Proof.* By Assumption C.1, $\alpha_{(\mathbf{w}, \mathbf{q})}(t)/\alpha_\phi(t) \rightarrow 0$. Hence, on the “fast” timescale, we may treat θ_t as
 966 if it were *quasi-static*. Then the critic update is a standard temporal-difference learning procedure (or
 967 mean-squared error minimization) for a fixed policy $\pi_{(\mathbf{w}, \mathbf{q})}$.
 968

969 From classical TD-learning results (or generalized linear function approximation theory), we know
 970 that ϕ_t converges to the set

$$970 \quad \{ \phi^*(\mathbf{w}, \mathbf{q}) : F(\phi^*(\mathbf{w}, \mathbf{q})); (\mathbf{w}, \mathbf{q}) = 0 \},$$

971 provided that $\alpha_\phi(t)$ diminishes appropriately and under the usual conditions.

972 Formally, one shows that for each fixed (\mathbf{w}, \mathbf{q}) , the ODE
 973

$$\dot{\phi} = F(\phi; (\mathbf{w}, \mathbf{q}))$$

975 has a globally asymptotically stable equilibrium at $\phi^*(\mathbf{w}, \mathbf{q})$. By the Two-timescale lemma (Borkar
 976 & Meyn, 2000; Wu et al., 2020), the actual sequence ϕ_t tracks this stable equilibrium as $t \rightarrow \infty$.
 977

978 On the slower timescale, we consider the actor update:
 979

$$(\mathbf{w}, \mathbf{q})_{t+1} = (\mathbf{w}, \mathbf{q})_t + \alpha_{(\mathbf{w}, \mathbf{q})}(t) \nabla_{(\mathbf{w}, \mathbf{q})} \log \pi_{(\mathbf{w}, \mathbf{q})_t}(a_t | s_t) \hat{A}_t.$$

981 As ϕ_t converges quickly to $\phi^*(\mathbf{w}, \mathbf{q})$, the advantage estimate \hat{A}_t converges to $A^{\pi_{(\mathbf{w}, \mathbf{q})}}(s_t, a_t)$. Hence,
 982 up to diminishing approximation errors, the gradient update for our rule based model is driven from
 983 the true policy gradient from the policy gradient theorem. Based on Theorem C.5, ignoring the small
 984 the errors, we have
 985

$$G((\mathbf{w}, \mathbf{q}); \phi^*(\mathbf{w}, \mathbf{q})) = \nabla_{wq} J(\mathbf{w}, \mathbf{q}).$$

986 Putting the fast and slow processes together, we return to the coupled ODE; By the previous steps:
 987

$$F(\phi; (\mathbf{w}, \mathbf{q})) = 0 \text{ implies } \phi = \phi^*, \quad (11)$$

$$G((\mathbf{w}, \mathbf{q}); \phi^*) \approx \nabla_{wq} J(\mathbf{w}, \mathbf{q}). \quad (12)$$

991 Hence, an equilibrium $(\phi^*, (\mathbf{w}, \mathbf{q}))$ of the ODE occurs precisely, when
 992

$$F(\phi^*; (\mathbf{w}, \mathbf{q})) = 0 \text{ and } G((\mathbf{w}, \mathbf{q}); \phi^*) = 0,$$

993 which in turn implies
 994

$$\nabla J(\mathbf{w}, \mathbf{q}) = 0, \text{ if the advantage estimation is unbiased.}$$

995 Therefore, the equilibrium corresponds to a stationary point of $J(\mathbf{w}, \mathbf{q})$. Under mild conditions (e.g.,
 996 local convexity/concavity arguments or strict monotonicity), one concludes that the limit points are
 997 *local maxima* of $J(\mathbf{w}, \mathbf{q})$.
 1000

1001 We now invoke the standard *Two-timescale* theorems (Borkar & Meyn, 2000; Wu et al., 2020). then
 1002 the combined updates converge to an *internally consistent* equilibrium of the ODE. By the structure
 1003 of the ODE, the equilibrium is a stationary point and *local* optimal of $J(\mathbf{w}, \mathbf{q})$. \square
 1004

1005 F HYBRID WARM START FOR ACCELERATING CONVERGENCE

1006 In NSAC, we also adopt a novel hybrid training strategy that incorporates both neural network-based
 1007 actor and rule-based actor. This hybrid strategy seeks to merge the quick learning attributes of neural
 1008 networks with the clear and straightforward nature of rule-based systems.
 1009

1010 **Step 1:** We employ a traditional neural network-based actor-critic model to train the system. In this
 1011 phase, both the actor and the critic are implemented as neural networks, leveraging their ability to
 1012 approximate complex functions and capture high-dimensional patterns in the data. The model is
 1013 trained for a certain number of episodes but not until complete convergence. This pre-training phase
 1014 is designed to establish a preliminary value function estimation that captures essential features of the
 1015 optimal strategies in a computationally efficient manner.
 1016

1017 **Step 2:** The neural network-based actor is replaced with the rule ensemble actor. This rule-based
 1018 system is designed to provide greater transparency and interpretability in decision-making. With the
 1019 rule ensemble actor in place, training continues, utilizing the previously trained neural network critic.
 1020 The critic assists the new actor in refining its policy through ongoing feedback and value estimation.
 1021

1022 F.1 ABLATION STUDY

1023 In our ablation study, we explored how variations in the rule count and the implementation of a warm
 1024 start influenced our method. We conducted tests in the CartPole-v1 environment under various rule
 1025 configurations, specifically using 5, 10, 12, 20, 30, 40, and 50 rules per action. Each configuration
 1026 was tested both with and without a warm start.
 1027

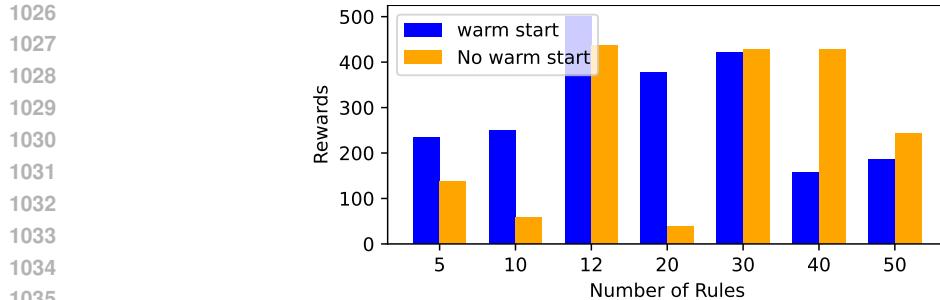


Figure 7: Ablation study on different numbers of rules and warm start.

1. Number of Rules: As depicted in Figure 7, the model configured with 12 rules per action and a warm start yields the highest reward. This outcome suggests that having 12 rules per action provides the model with sufficient flexibility to effectively capture the essential dynamics of the environment without being overly simplistic. Employing fewer than 10 rules, such as 5, may not offer adequate coverage to manage the environment’s complexity, resulting in inferior performance. Conversely, a larger number of rules may lead the model to overfit the training data, picking up on noise or irrelevant patterns and diminishing its generalizability to new contexts. The findings from this ablation study highlight a critical balance between the number of rules and overall model performance. They demonstrate that merely increasing the number of rules does not invariably improve performance, as an excess can lead to complexity and overfitting, whereas too few can restrict the model’s performance.

2. Warm Start: When the number of rules is small, the model’s representational capability is limited, so the initial conditions (e.g., the warm start) become more critical. A warm start can guide the model toward better solutions early on, helping it learn an effective policy faster and avoid getting stuck in poor local optima. In contrast, with a larger rule set, the model has greater capacity to explore various configurations. In such cases, relying on an external initialization can sometimes constrain exploration, preventing the model from fully leveraging its increased flexibility. As a result, the model without a warm start may discover a better configuration on its own when there are many rules to learn from.

G CONTINUOUS ENVIRONMENTS

Continuous environments differ fundamentally from the perspective of the theoretical framework we propose. In this work, theoretical analysis is restricted to discrete action spaces, as our method enables us to establish formal convergence guarantees.

In order to guarantee the convergence of our proposed method, we restrict our analysis to discrete action spaces. The convergence proof relies on several technical assumptions—such as bounded gradients, Lipschitz continuity, and stable critic updates—that are typically satisfied in discrete action spaces, but are difficult to guarantee in continuous settings, particularly for actor-critic methods (Borkar & Meyn, 2000; Wu et al., 2020). Discrete policies (e.g., softmax) yield smooth and bounded log-policy gradients, which facilitate stable actor updates and tractable Bellman backups using finite sums. These same conditions are also required for the convergence of the rule-based function class used in OGB. As a gradient-boosting-based algorithm, OGB requires the loss function to be Lipschitz continuous, which means that the gradients are bounded. According to Theorem 2.4, 2.8 and 2.9 in Shalev-Shwartz et al. (2010), Lipschitz continuity is a necessary condition for the learned models to converge to a theoretically optimal model within a certain number of iterations for (fully corrective) boosting methods and the rule replacement steps.

In contrast, continuous action spaces present challenges, such as unbounded gradients (e.g., the policy gradient can become unbounded as the standard deviation in Gaussian policies), integration-based Bellman targets, and higher variance in gradient estimates. These factors violate the core assumptions underpinning both the two-timescale stochastic approximation framework and the rule ensemble model used in our convergence analysis.

1080 **H RELATED WORK**
1081
1082

Ref	Work (short)	Category	Interp. at scale	P/Pt/E	Performance
Ernst et al. (2005); Gupta et al. (2015a)	Tree-based RL	Tree policy (native)	Not interp. (large trees)	N/N/Y	Strong on S/M; degrades on L/complex
Tao et al. (2018)	Tree RL for DTRs	Tree policy (native)	Not interp. (multi-stage)	N/N/Y	Hard to scale beyond structured domains
Bastani et al. (2018)	Policy extraction	Tree policy (extracted)	Often not interp. (size balloons)	N/Y/N	Tracks teacher; small typical drop
Roth et al. (2019)	Conservative Q-Improvement	Tree policy (native)	Not interp. (large trees)	N/N/Y	Strong on S/M; degrades on L/complex
Silva et al. (2020)	Differentiable decision trees	Tree policy (diff.)	Not interp. (math notation)	N/N/Y	Solid on modest tasks; mixed scaling
Ding et al. (2020)	Cascading Decision Trees	Tree policy (native)	Not interpretable at scale	N/N/Y	Good early; plateaus with complexity
Gupta et al. (2015b)	Policy Tree (distill.)	Tree policy (distilled)	Often not interpretable at scale	N/Y/N	Tracks teacher; bigger drop for small trees
Coppens et al. (2019)	Soft DT distillation	Tree policy (distilled)	Often not interpretable at scale	N/Y/N	Approximates teacher; mild-moderate drop
Liu et al. (2019)	Linear Model U-Trees	Tree policy (distilled)	Not interp. (math notation)	N/Y/N	Good local fidelity; may trail overall
Garecz et al. (2018)	SRL with commonsense	Symbolic RL (predefined)	Interpretable (symbolic rules)	Y/N/Y	Strong when priors fit; brittle if misspecified
Lyu et al. (2019)	SDRL (symbolic planning)	Symbolic RL (predefined)	Interpretable (modules)	Y/N/Y	Often strong & sample-efficient; planner-dependent
Illanes et al. (2020)	Symbolic plans as instr.	Symbolic RL (predefined)	Interpretable (plans)	Y/N/Y	Good when plans align; limited otherwise
Landajuela et al. (2021)	Discovering symb. policies	Symbolic policy (from NN)	Not interp. (math notation)	N/Y/N	Near-teacher on seen tasks; drops under shift
Hein et al. (2018)	GP-based symbolic rules	Symbolic policy (direct)	Not interp. (math notation)	N/N/Y	Competitive on simpler control; search limits scale
Verma et al. (2018)	Programmatic RL (PIRL)	Program synthesis policy	Not interp. (math notation)	N/N/Y	Lags in high-dimensional
Ours	NSAC	Symbolic RL	Interpretable (symbolic rules)	N/N/Y	Often strong & sample-efficient

1119 Table 2: Compact comparison of policy representations and learning setups.
1120

1121 We summarise representative interpretable RL approaches across tree-based, symbolic, and pro-
1122 grammatic policy classes. *Interp. at scale* highlights whether interpretability persists as problem
1123 size/complexity grows. *P/Pt/E* abbreviates *Predefined knowledge? / Post-hoc from pretrained? /*
1124 *Learn directly from environment?* (Y/N). *Performance* sketches typical empirical behaviour. Overall,
1125 native tree policies often face scalability–interpretability trade-offs, post-hoc distilled trees track
1126 teachers but lose fidelity when heavily pruned, symbolic methods offer strong transparency and sam-
1127 ple efficiency when priors/plans match the domain, and programmatic policies remain challenging in
1128 high-dimensional settings.

1134 I BENCHMARK SETTING
1135
1136
1137

1138 We recognize that certain algorithms might perform better with changes to the environment (e.g.,
1139 adjusting the number of parallel environments or modifying rewards). Still, finding a single modification
1140 that consistently benefits all tested algorithms remains challenging. Therefore, we rely on the
1141 most basic version of each environment to maintain consistency across all methods. Additionally,
1142 it is important to note that the complexity of our model is designed to balance comprehensibility
1143 with the cognitive effort needed to understand all of the rules involved. Therefore, in our paper,
1144 we deliberately selected 12 rules per action model, which helps ensure the interpretability of our
1145 proposed method.

1146 All experiments in this paper are conducted on a computer with processor “3.1GHz 6-Core Intel Core
1147 i5” and a memory of “72GB 2133 MHz DDR4”.

1150 J ENVIRONMENT DESCRIPTIONS
1151
1152
1153

- 1154 • **CartPole-v1 (Gym).** The state $s \in \mathbb{R}^4$ is continuous and consists of cart position, cart
1155 velocity, pole angle, and pole angular velocity. The action space is discrete with two actions:
1156 push left / push right. The reward is +1 at each timestep until termination (when the pole
1157 angle exceeds the threshold or the cart goes out of bounds).
- 1158
1159 • **MountainCar-v0 (Gym).** The state $s = (\text{position}, \text{velocity}) \in \mathbb{R}^2$ is continuous. The
1160 action space is discrete with three actions: push left / do nothing / push right. The reward is
1161 -1 at each timestep until the car reaches the goal position at the top of the hill.
- 1162
1163 • **Acrobot-v1 (Gym).** The state $s \in \mathbb{R}^4$ is continuous and encodes the two joint angles and
1164 their angular velocities. The action space is discrete with three torque actions applied at the
1165 actuated joint. The reward is -1 at each timestep until the end-effector reaches the target
1166 height, at which point the episode terminates.
- 1167
1168 • **Blackjack-v1 (Gym).** The state is a discrete tuple (player sum, dealer showing,
1169 usable ace flag). The action space is discrete with two actions: hit / stick. The reward
1170 is +1 for a win, -1 for a loss, and 0 for a draw.
- 1171
1172 • **Postman (grid-world).** The state is discrete and encodes the agent’s grid location together
1173 with the locations and delivery status of parcels (picked up / delivered). The action space is
1174 discrete: move north / south / east / west and pick-up / drop-off when applicable. The reward
1175 is -1 per timestep and a positive bonus when a parcel is successfully delivered, encouraging
1176 short, efficient delivery routes.
- 1177
1178 • **HVAC (building control).** The state is high-dimensional and continuous, including (for
1179 each thermal zone) indoor air temperature, humidity, and CO₂ concentration, together with
1180 outdoor temperature, time-of-day, and occupancy-related features. Actions are discrete
1181 combinations of heating and cooling setpoints (e.g., heating and cooling setpoints chosen
1182 from a finite grid of admissible values). The reward at each control step penalises both
1183 energy consumption and comfort violations: large negative penalties are applied when zone
1184 temperatures leave the comfort band, and a smaller penalty is proportional to electricity
1185 consumption, so the agent is encouraged to maintain comfort with minimal energy use.

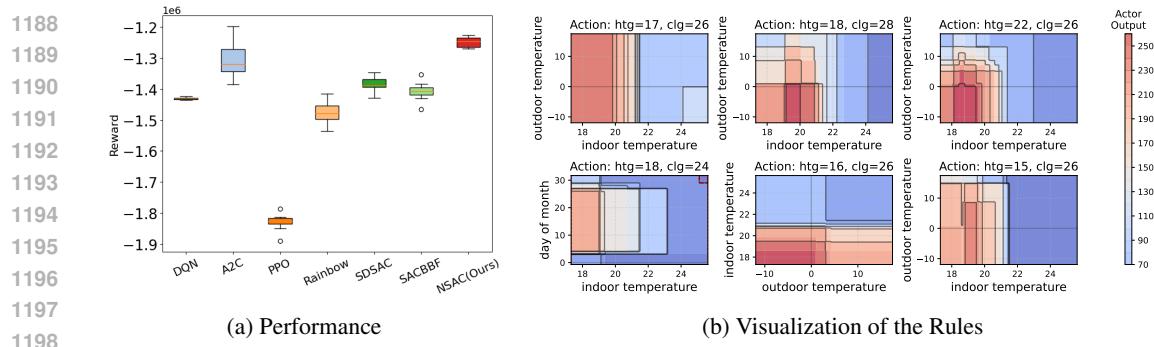


Figure 8: Comparing the Performance of NSAC with Baseline Methods and Visualize the rules.

K RULES VISUALIZATION FOR HVAC CONTROL WITH SINERGYM

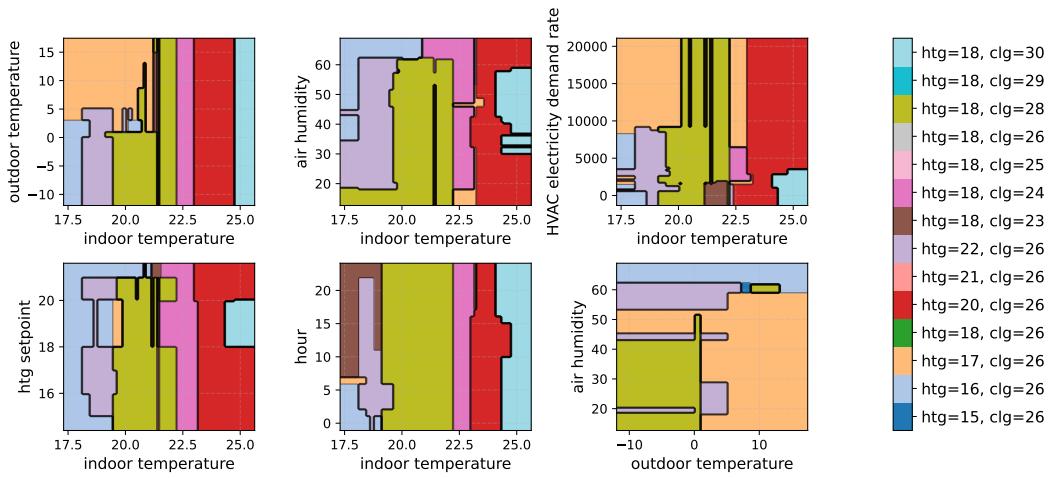


Figure 9: Visualization of action selection for NSAC.

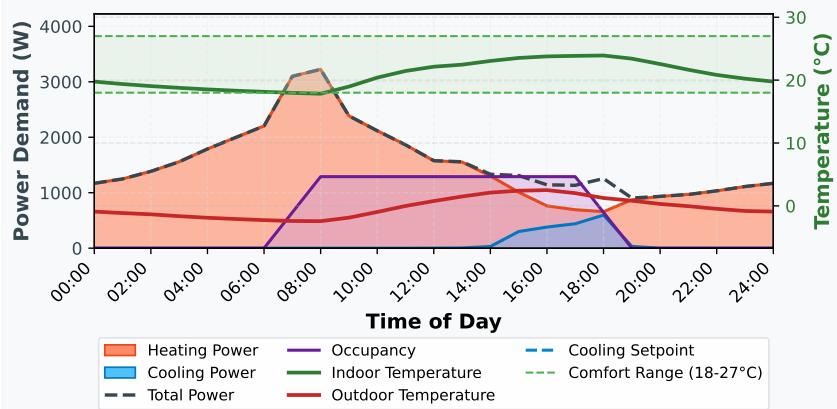
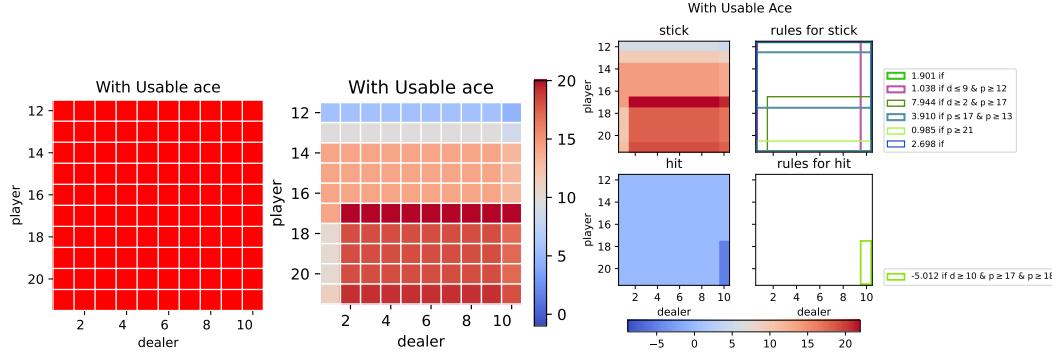
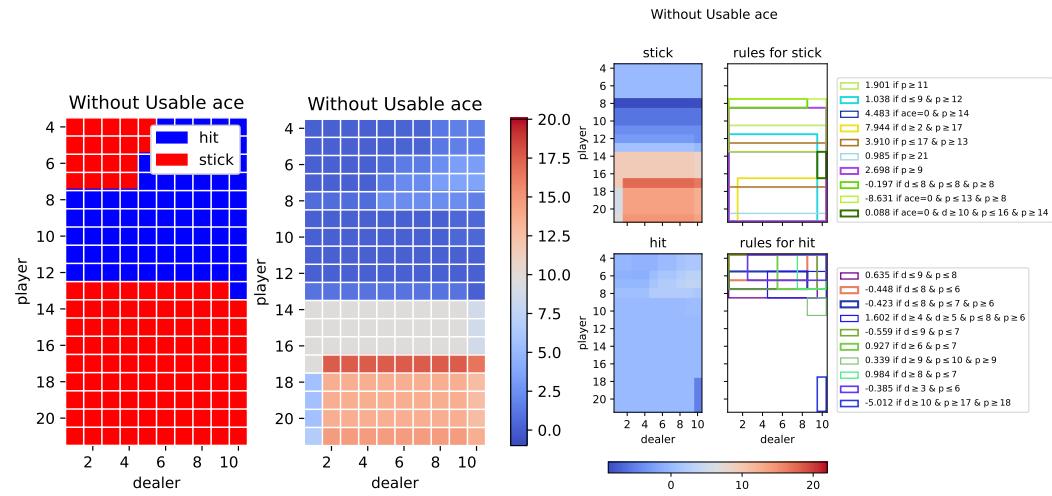


Figure 10: Average performance of our proposed algorithm.

1242 Typical rules for HVAC control with sinergym:
 1243
 1244 Action htg=16, clg=26:
 1245
 1246
 1247
 1248 $+50.5500 \text{ if } -11.7075 \leq \text{outdoor_temperature} \leq 15.0 \text{ \& } \text{htg_setpoint} \leq 20.0 \text{ \& } \text{air_temperature} \leq 20.8431$
 1249 $+42.3222 \text{ if } \text{hour} \leq 6.0 \text{ \& } -9.5 \leq \text{outdoor_temperature} \leq 4.3200 \text{ \& } \text{air_temperature} \leq 21.1095$
 1250 $+33.7433 \text{ if } \text{hour} \leq 6.0 \text{ \& } \text{outdoor_temperature} \leq 3.0 \text{ \& } \text{HVAC_electricity_demand_rate} \geq 3524.0383$
 1251 $+30.0530 \text{ if } \text{air_temperature} \leq 19.4323 \text{ \& } \text{HVAC_electricity_demand_rate} \geq 3492.0372$
 1252 $+23.8401 \text{ if } \text{hour} \leq 6.0 \text{ \& } \text{outdoor_temperature} \leq -6.0 \text{ \& } \text{HVAC_electricity_demand_rate} \geq 1836.0156$
 1253 $+19.5165 \text{ if } \text{outdoor_temperature} \leq -5.0 \text{ \& } \text{air_temperature} \leq 20.8367 \text{ \& } \text{air_humidity} \geq 34.4557$
 1254 $+19.3194 \text{ if } \text{outdoor_temperature} \leq 4.3200 \text{ \& } \text{clg_setpoint} \leq 26.0 \text{ \& } \text{air_temperature} \leq 20.7468$
 1255 $\text{ \& } \text{air_humidity} \geq 44.9061 \text{ \& } \text{HVAC_electricity_demand_rate} \leq 8328.7136$
 1256 $+17.1997 \text{ if } \text{outdoor_temperature} \leq -6.0 \text{ \& } \text{air_temperature} \leq 20.6569 \text{ \& } \text{air_humidity} \geq 34.4701$
 1257 $+12.2539 \text{ if } \text{outdoor_temperature} \leq 1.1000 \text{ \& } \text{air_temperature} \leq 19.8760 \text{ \& } \text{air_humidity} \geq 48.4554 \text{ \& }$
 1258 $\text{HVAC_electricity_demand_rate} \geq 2194.6457$
 1259 $+10.1033 \text{ if } \text{day_of_month} \leq 16.0 \text{ \& } \text{outdoor_temperature} \leq -9.5 \text{ \& } \text{air_temperature} \leq 21.4822$
 1260 $+9.9095 \text{ if } \text{outdoor_temperature} \leq -1.2000 \text{ \& } \text{clg_setpoint} \leq 28.0 \text{ \& } \text{air_temperature} \leq 18.6297 \text{ \& }$
 1261 $20.1259 \leq \text{air_humidity} \leq 57.8947$
 1262 $+6.5348 \text{ if } \text{hour} \leq 5.0 \text{ \& } \text{outdoor_temperature} \leq -6.2000 \text{ \& } \text{air_humidity} \geq 46.6687 \text{ \& }$
 1263 $\text{HVAC_electricity_demand_rate} \leq 6047.4648$
 1264
 1265
 1266
 1267
 1268
 1269
 1270 Action htg=18, clg=26:
 1271
 1272
 1273
 1274 $+52.4710 \text{ if } \text{outdoor_temperature} \leq 2.0 \text{ \& } \text{htg_setpoint} \geq 18.0 \text{ \& } \text{air_temperature} \geq 24.6918 \text{ \& }$
 1275 $36.4788 \leq \text{air_humidity} \leq 59.9498 \text{ \& } 655.1863 \leq \text{HVAC_electricity_demand_rate} \leq 3286.0521$
 1276 $+31.8345 \text{ if } -7.3000 \leq \text{outdoor_temperature} \leq -2.4800 \text{ \& } \text{clg_setpoint} \geq 28.0 \text{ \& } \text{air_temperature} \geq 22.7824 \text{ \& }$
 1277 $\text{air_humidity} \leq 53.0045 \text{ \& } \text{HVAC_electricity_demand_rate} \leq 2804.0908$
 1278 $+25.6196 \text{ if } \text{day_of_month} \leq 23.0 \text{ \& } \text{hour} \geq 21.0 \text{ \& } \text{htg_setpoint} \geq 18.0 \text{ \& }$
 1279 $\text{air_temperature} \leq 21.2843 \text{ \& } 22.2264 \leq \text{air_humidity} \leq 57.4836 \text{ \& }$
 1280 $\text{HVAC_electricity_demand_rate} \leq 4727.3044$
 1281 $+14.6693 \text{ if } \text{hour} \leq 16.0 \text{ \& } \text{clg_setpoint} \geq 28.0 \text{ \& } 24.3635 \leq \text{air_temperature} \leq 25.3421 \text{ \& }$
 1282 $\text{air_humidity} \leq 43.6038 \text{ \& } 1974.6005 \leq \text{HVAC_electricity_demand_rate} \leq 2847.7105$
 1283 $+12.8951 \text{ if } \text{day_of_month} \geq 17.0 \text{ \& } 1.0 \leq \text{hour} \leq 5.0 \text{ \& } \text{htg_setpoint} \leq 16.0 \text{ \& }$
 1284 $\text{air_temperature} \leq 19.6280 \text{ \& } \text{HVAC_electricity_demand_rate} \geq 728.1273$
 1285 $+6.6281 \text{ if } 14.0 \leq \text{hour} \leq 15.0 \text{ \& } \text{outdoor_temperature} \leq -2.4800 \text{ \& } 24.1909 \leq \text{air_temperature} \leq 25.1225$
 1286 $\text{ \& } \text{air_humidity} \leq 44.0097 \text{ \& } \text{HVAC_electricity_demand_rate} \leq 2856.4850$
 1287 $+3.6962 \text{ if } \text{outdoor_temperature} \leq -2.4800 \text{ \& } \text{air_temperature} \geq 25.9993$
 1288 $+2.2511 \text{ if } \text{hour} \geq 18.0 \text{ \& } -5.0 \leq \text{outdoor_temperature} \leq -2.4800 \text{ \& } \text{air_temperature} \geq 22.3801$
 1289 $\text{ \& } \text{air_humidity} \leq 52.5242 \text{ \& } 1164.7935 \leq \text{HVAC_electricity_demand_rate} \leq 1443.5973$
 1290 $+1.7191 \text{ if } -7.3000 \leq \text{outdoor_temperature} \leq -3.0 \text{ \& } \text{clg_setpoint} \geq 30.0 \text{ \& }$
 1291 $\text{air_humidity} \leq 52.1981 \text{ \& } 1411.8365 \leq \text{HVAC_electricity_demand_rate} \leq 2783.3056$
 1292 $+1.6791 \text{ if } 5.0 \leq \text{day_of_month} \leq 28.0 \text{ \& } -3.4000 \leq \text{outdoor_temperature} \leq 6.6000 \text{ \& }$
 1293 $22.4682 \leq \text{air_temperature} \leq 23.2356 \text{ \& } \text{HVAC_electricity_demand_rate} \leq 1559.4128$
 1294
 1295

1296 Action htg=18, clg=25:
 1297 +76.0682 if month ≤ 2.0 & day_of_month ≤ 29.0 & $-2.4800 \leq \text{outdoor_temperature} \leq 15.0$ &
 1298 htg_setpoint ≤ 21.0 & air_temperature ≤ 20.4542
 1299 +35.7797 if month ≤ 2.0 & day_of_month ≤ 28.0 & outdoor_temperature ≤ 15.0 &
 1300 air_temperature ≤ 20.4547 & HVAC_electricity_demand_rate ≤ 888.4346
 1301 +19.5429 if hour ≤ 17.0 & outdoor_temperature ≤ 4.3200 & air_temperature ≥ 21.3982
 1302 & air_humidity ≥ 22.1544 & HVAC_electricity_demand_rate ≥ 3353.0663
 1303 +11.0059 if outdoor_temperature ≤ -7.3000 & air_temperature ≥ 23.0022
 1304 & HVAC_electricity_demand_rate ≥ 3343.0970
 1305 +10.4447 if month ≤ 1.0 & outdoor_temperature ≤ 0.0 & air_temperature ≥ 22.3607
 1306 & air_humidity ≥ 35.8469 & HVAC_electricity_demand_rate ≥ 3237.7531
 1307 +9.2884 if day_of_month ≤ 28.0 & $-2.4800 \leq \text{outdoor_temperature} \leq 15.0$ & clg_setpoint ≤ 25.0
 1308 & air_temperature ≤ 20.4644
 1309 +8.4585 if hour ≤ 16.0 & air_temperature ≥ 23.5872 & HVAC_electricity_demand_rate ≥ 3378.0424
 1310 +7.6878 if $2.0 \leq \text{day_of_month} \leq 8.0$ & hour ≤ 15.0 & outdoor_temperature ≤ -6.7000 &
 1311 air_temperature ≥ 22.9565 & HVAC_electricity_demand_rate ≤ 5120.2045
 1312 +6.0944 if hour ≤ 16.0 & outdoor_temperature ≤ -9.5 & air_temperature ≥ 22.3765
 1313 +6.0912 if $-2.4800 \leq \text{outdoor_temperature} \leq 1.0$ & clg_setpoint ≤ 29.0 & air_temperature ≤ 18.5048
 1314 & 28.1472 $\leq \text{air_humidity} \leq 57.5569$
 1315 +4.1747 if air_temperature ≥ 25.1225 & HVAC_electricity_demand_rate ≥ 4135.6304
 1316 +2.7032 if $2.0 \leq \text{day_of_month} \leq 29.0$ & hour ≥ 1.0 & $-11.7075 \leq \text{outdoor_temperature} \leq -5.6000$
 1317 & 18.0977 $\leq \text{air_temperature} \leq 24.9366$ & 4026.8635 $\leq \text{HVAC_electricity_demand_rate} \leq 7054.0210$
 1318
 1319 Action htg=18, clg=28:
 1320 +47.6207 if outdoor_temperature ≤ 1.1000 & air_temperature ≤ 21.3847
 1321 +42.5021 if month ≤ 2.0 & outdoor_temperature ≤ 13.0150 & clg_setpoint ≤ 29.0 &
 1322 air_temperature ≤ 20.8932 & HVAC_electricity_demand_rate ≤ 9236.5036
 1323 +37.5818 if month ≤ 2.0 & htg_setpoint ≤ 21.0 & 19.0381 $\leq \text{air_temperature} \leq 22.2181$
 1324 & air_humidity ≤ 61.5915
 1325 +37.5560 if month ≤ 2.0 & htg_setpoint ≤ 21.0 & 19.0971 $\leq \text{air_temperature} \leq 24.1215$
 1326 & air_humidity ≤ 62.4223
 1327 +26.1161 if outdoor_temperature ≤ -3.4000 & 17.0 $\leq \text{htg_setpoint} \leq 18.0$
 1328 & air_temperature ≤ 21.6418 & HVAC_electricity_demand_rate ≥ 1616.5198
 1329 +25.3651 if month ≤ 2.0 & hour ≤ 6.0 & outdoor_temperature ≤ 8.8000 & air_temperature ≤ 21.0920 &
 1330 air_humidity ≤ 51.7392
 1331 +21.4283 if hour ≤ 6.0 & outdoor_temperature ≤ -2.0 & htg_setpoint ≤ 18.0 & air_temperature ≤ 20.0191 &
 1332 HVAC_electricity_demand_rate ≥ 1266.1656
 1333 +19.3831 if air_temperature ≤ 19.0718
 1334 +18.9771 if clg_setpoint ≥ 28.0 & air_temperature ≤ 22.6279
 1335 & 3313.9887 $\leq \text{HVAC_electricity_demand_rate} \leq 9094.2658$
 1336 +15.9370 if outdoor_temperature ≤ 1.0 & htg_setpoint ≤ 20.0 & air_temperature ≤ 21.1680
 1337 & air_humidity ≥ 46.0692 & HVAC_electricity_demand_rate ≥ 3766.4288
 1338 +11.4827 if outdoor_temperature ≤ 1.1000 & air_temperature ≤ 18.9835
 1339 & 2059.7858 $\leq \text{HVAC_electricity_demand_rate} \leq 8526.6964$
 1340 +11.1224 if $3.0 \leq \text{day_of_month} \leq 28.0$ & hour ≥ 22.0 & outdoor_temperature ≤ -1.0 & htg_setpoint ≤ 18.0
 1341 & 20.5696 $\leq \text{air_humidity} \leq 57.0262$ & HVAC_electricity_demand_rate ≥ 2007.6986

1350 L RULES VISUALIZATION FOR BLACKJACK-V1
1351
1352
1353
1354
13551366 Figure 11: Visualization for action, value and rules for Blackjack with Ace.
1367
1368
1369
1370
1371
13721387 Figure 12: Visualization for action, value and rules for Blackjack with no Ace.
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Action 0 (Stick):

$$\begin{aligned}
 & +1.9012 \quad \text{if } p \geq 11 \\
 & +1.0376 \quad \text{if } d \leq 9 \text{ and } p \geq 12 \\
 & +4.4833 \quad \text{if } \text{ace} \geq 1 \text{ and } p \geq 14 \\
 & +7.9438 \quad \text{if } d \geq 2 \text{ and } p \geq 17 \\
 & +3.9105 \quad \text{if } p \leq 17 \text{ and } p \geq 13 \\
 & +0.9851 \quad \text{if } p \geq 21 \\
 & +2.6981 \quad \text{if } p \geq 9 \\
 & -0.1967 \quad \text{if } d \leq 8 \text{ and } d \leq 9 \text{ and } p \leq 8 \text{ and } p \geq 8 \\
 & -8.6313 \quad \text{if } \text{ace} \leq 0 \text{ and } p \leq 13 \text{ and } p \geq 8 \\
 & +0.0882 \quad \text{if } \text{ace} \leq 0 \text{ and } d \geq 10 \text{ and } p \leq 16 \text{ and } p \geq 14
 \end{aligned}$$

1404 Action 1 (Hit):
1405
1406 $+0.6347$ if $d \leq 9$ and $p \leq 8$
1407 -0.4481 if $d \leq 8$ and $p \leq 6$
1408 -0.4231 if $d \leq 8$ and $p \leq 7$ and $p \geq 6$
1409 $+1.6016$ if $d \geq 4$ and $d \geq 5$ and $p \leq 8$ and $p \geq 6$
1410 -0.5585 if $d \leq 9$ and $p \leq 7$
1411 $+0.9266$ if $d \geq 6$ and $p \leq 7$
1412 $+0.3394$ if $d \geq 9$ and $p \leq 10$ and $p \geq 9$
1413 $+0.9844$ if $d \geq 8$ and $p \leq 7$
1414 -0.3849 if $d \geq 3$ and $p \leq 6$
1415 -5.0124 if $d \geq 10$ and $p \geq 17$ and $p \geq 18$
1416
1417
1418

M MOUNTAINCAR RULES

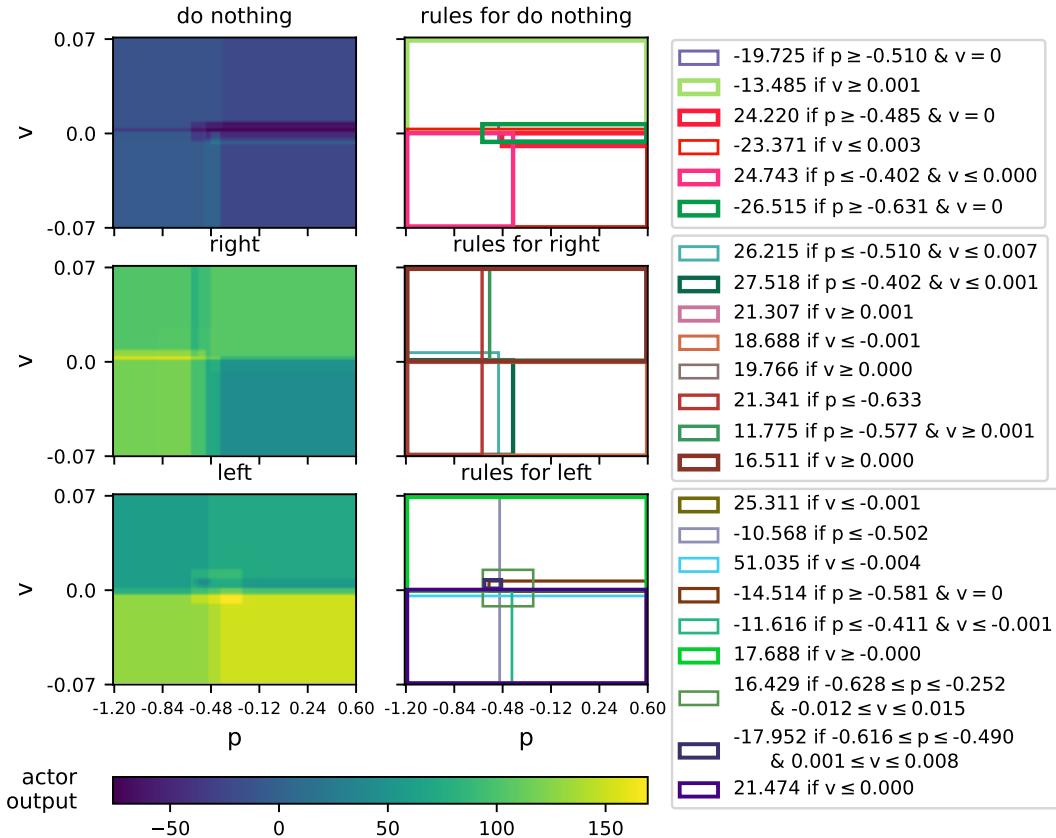


Figure 13: **Visual representation of the rules for MountainCar.** Higher actor output values in the heatmap indicate that the corresponding action is more strongly preferred at that state. The squares indicate the regions of the state space where the corresponding rules apply.

M.1 CASE STUDY: DECISION BOUNDARY AROUND $p > -0.48$ IN MOUNTAINCAR

To better understand the learned policy, we analyse its behaviour in the MountainCar environment in the neighbourhood of the valley bottom. The state is two-dimensional, $s = (p, v)$, where p denotes the horizontal position of the car and v its velocity. The car starts in the valley and must build up sufficient kinetic energy by rocking back and forth in order to reach the goal on the right hill. Because

1458 the engine is too weak to drive straight up, the policy must carefully coordinate position and velocity
 1459 to accumulate energy.
 1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483 **Figure 14: MountainCar Environment Near the Valley Decision Boundary** This figure shows
 1484 the MountainCar track with the goal flag on the right hill and the car rendered near the bottom of
 1485 the valley at $P = -0.48$. The vertical dashed line marks the region $P > 0.48$, where the policy’s
 1486 decision depends on the sign of the velocity: for $v > 0$ the agent accelerates to the right to build
 1487 speed toward the goal, whereas for $v < 0$ it accelerates left to commit to a full swing back and gain
 1488 momentum for the next climb

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498 In our rule-based policy, one of the most salient decision boundaries appears for positions *to the right*
 1499 of the valley minimum, i.e. for $p > -0.48$, which is close to the bottom of the track (see Fig. 14).
 1500 In this region the height of the track changes only slightly, so the gravitational potential is nearly
 1501 constant and the immediate direction of motion is determined almost entirely by the sign of the
 1502 velocity v .

1503

1504

1505

1506

1507

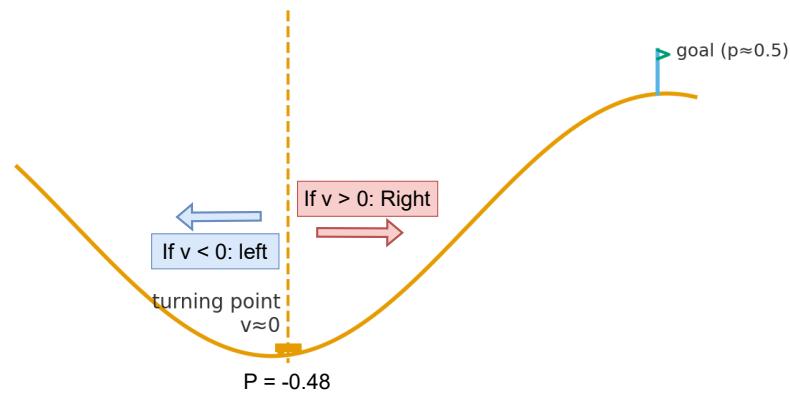
1508

1509

1510

1511

1502 Consequently, the line $v = 0$ for $p > -0.48$ becomes a natural decision boundary in the (p, v) -plane.
 1503 States with $p > -0.48$ and $v > 0$ correspond to the car already moving to the right; the optimal
 1504 action is to keep accelerating right to maximise its speed for the upcoming climb. In contrast, states
 1505 with $p > -0.48$ and $v < 0$ indicate that the car has started to roll back to the left after an unsuccessful
 1506 attempt; the best response is to accelerate left and commit to a full swing back, so that the next
 1507 rightward run can reach a higher point on the hill. Exactly at $v = 0$ the car is at a turning point,
 1508 momentarily stationary before choosing whether to move left or right, which is why this line marks
 1509 the decision boundary used by our policy.



1512 Figure 14 visualises this situation directly in the environment: the car is rendered near $p \approx -0.48$ at
 1513 the bottom of the valley, and the vertical dashed line indicates the region $p > -0.48$ where the policy
 1514 switches between “go left” and “go right” depending on the sign of the velocity.

1512 M.2 THE RULES
1513

1514

1515 Action Left:
1516

1517

1518

1519

1520 +25.3111 if $v \leq -0.0006471572560258208$
 1521 -10.5678 if $p \leq -0.5023447513580322$
 1522 +53.8697 if True
 1523 +51.0351 if $v \leq -0.004265955928713083$
 1524 -14.5140 if $p \geq -0.5813989758491516$ and $v \leq 0.006803702469915152$
 1525 and $v \geq -0.0008947865571826689$
 1526 -11.6162 if $p \leq -0.41075775027275085$ and $v \leq -0.000661600707098839$
 1527 +17.6882 if $v \geq -1.5593287753289978 \times 10^{-5}$
 1528 +16.4293 if $p \leq -0.25240878462791444$ and $p \geq -0.6275408387184143$
 1529 and $v \leq 0.01510303020477297$ and $v \geq -0.01191$
 1530 -17.9516 if $p \leq -0.4901819765567779$ and $p \geq -0.615831172466278$
 1531 and $v \leq 0.00759$ and $v \geq -0.004150$ and $v \geq 0.00126822$
 1532 +21.4738 if $v \leq 0.00040989847620949166$
 1533 -2.3676 if $p \geq -0.5437554597854615$ and $v \leq 0.0016861518379300846$
 1534 and $v \geq -0.0034104006830602885$
 1535 +1.2316 if $p \leq -0.1402401$ and $p \geq -0.4494079709053038$
 1536 and $v \leq 0.023414026945829402$ and $v \geq -0.01632060520350933$

1540

1541

1542

1543 No Action:
1544

1545

1546

1547

1548 -19.7248 if $p \geq -0.5101138830184937$ and $v \leq 0.006803702469915152$
 1549 and $v \geq -0.005573090445250273$
 1550 -13.4848 if $v \geq 0.0007145821116864693$
 1551 +24.2199 if $p \geq -0.4848527312278747$ and $v \leq 0.00018940809495689726$
 1552 and $v \geq -0.009227151423692702$
 1553 -23.3706 if $v \leq 0.003292182506993414$
 1554 -6.6878 if $v \leq -9.685811237431741 \times 10^{-5}$
 1555 +24.7429 if $p \leq -0.4022643387317657$
 1556 and $v \leq 0.00020952874911017827$
 1557 -26.5154 if $p \geq -0.6311534523963929$ and $v \leq 0.006872396916151048$
 1558 and $v \geq -0.006245836243033409$
 1559 -8.7515 if $p \geq -0.39260063171386717$ and $v \geq 0.0019062188919633629$
 1560 +0.7214 if $v \leq -0.006146392878144977$
 1561 -0.9839 if True
 1562 +6.8736 if $p \geq -0.5437554597854615$ and $v \leq 0.0038646903820335875$
 1563 +1.0000 if $v \geq -0.0010096890269778618$

1566 Action Right:
1567
1568 $+26.2150 \text{ if } p \leq -0.5101138830184937 \text{ and } v \leq 0.006803702469915152$
1569 $+6.3636 \text{ if } p \geq -0.4848527312278747 \text{ and } v \geq -0.009227151423692702$
1570 $+6.1251 \text{ if } p \geq -0.4855665504932403 \text{ and } v \geq 0.003292182506993414$
1571 $+24.0837 \text{ if True}$
1572 $+27.5176 \text{ if } p \leq -0.4022643387317657 \text{ and } v \leq 0.0012711382005363714$
1573 $+21.3072 \text{ if } v \geq 0.0007119119516573855$
1574 $+18.6883 \text{ if } v \leq -0.0005520289996638883$
1575 $+19.7662 \text{ if } v \geq 0.0004626010428182804$
1576 $+21.3412 \text{ if } p \leq -0.6329279899597166$
1577 $+11.7750 \text{ if } p \geq -0.5767600297927856 \text{ and } v \geq 0.0012682238826528204$
1579 $+16.5113 \text{ if } v \geq 0.00040989847620949166$
1580 $+1.3610 \text{ if } p \leq -0.4494079709053038 \text{ and } p \geq -0.8744302272796631 \text{ and } v \leq 0.023414026945829402$
1582
1583 N EXPLANATION OF CART-POLE RULES
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

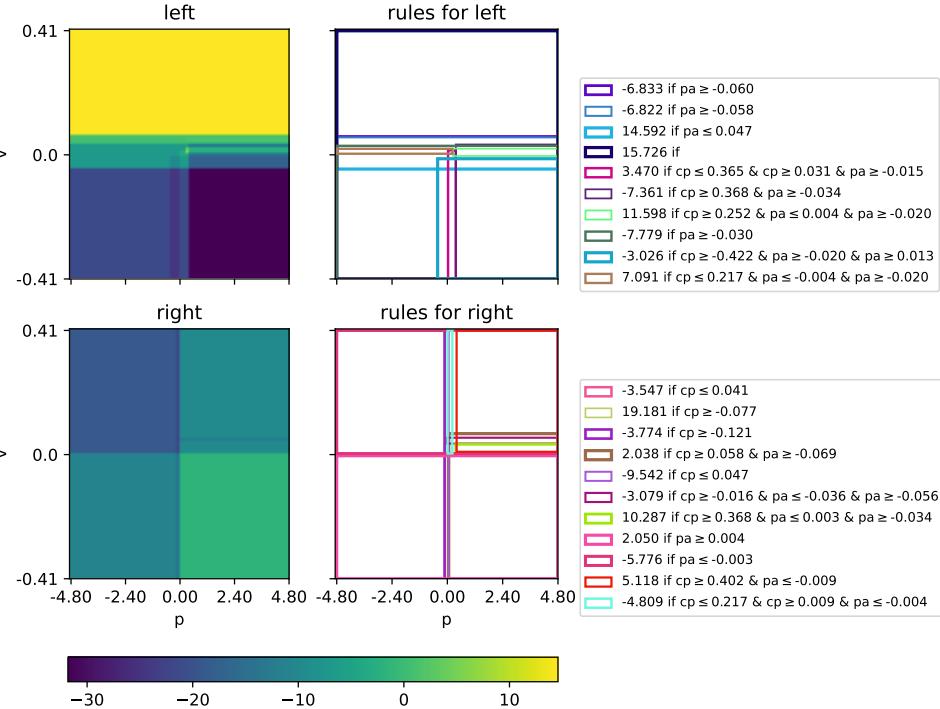


Figure 15: Visual representation of the rules for CartPole involving position and velocity.

The CartPole environment consists of a pole mounted on a cart that moves along a track. The objective is to balance the pole upright by controlling the cart’s movement left or right. The state space includes the cart’s position(p), velocity(v), pole angle(θ), and angular velocity($\dot{\theta}$), while the action space includes applying force to move the cart in either direction. Figure 15 is the visualization of our actor’s rule regarding the position and velocity. Please refer to Appendix O for all the resulted rules.

Here we will use a typical state in the Cart-Pole game, where the optimal action is to move the cart to the right, characterized by the parameters $p = -0.05$, $v = 0.1$, $\theta = 0.05$ and $\dot{\theta} = 0.3$, as an example to illustrate the decision-making process for our proposed method. In this scenario, pushing right reduces the pole’s angular velocity, helping stabilize the pole by balancing the torque induced by the

1620 tilt. In our model, three rules become active when considering a leftward action; each rule incurs a
 1621 negative score because the pole’s angle is positive, decisively discouraging a left move. In contrast,
 1622 the overall score for moving right is 2.3, notably higher than that for moving left. Although the cart’s
 1623 slight leftward position imposes a small penalty, the pole’s rightward angular velocity plays a critical
 1624 role: one rule alone contributes +19.8 to the total, effectively counteracting any negative effects from the
 1625 other rules. Consequently, given the pole’s rightward tilt and velocity, the agent’s optimal choice is to
 1626 push right, thereby maintaining stability and preventing undesirable outcomes.

O CARTPOLE RULES

1627 Left:

1628 -6.83310 if $pa \geq -0.06048$
 1629 -6.82240 if $pa \geq -0.05751$
 1630 +14.59180 if $pa \leq 0.04701$ and $pav \leq 0.26781$
 1631 +15.72630 if $pav \leq -0.52576$
 1632 +3.47030 if $cp \leq 0.36470$ and $cp \geq 0.03103$ and $cv \leq 0.20766$ and $cv \geq -0.00962$
 1633 and $pa \geq -0.01513$ and $pav \leq 0.28779$ and $pav \geq -0.05232$
 1634 +0.88280 if $cp \geq 0.24231$ and $cv \geq -0.40319$ and $pa \leq -0.03636$ and $pa \geq -0.05565$
 1635 -7.36080 if $cp \geq 0.36775$ and $cv \geq -0.00425$ and $pa \geq -0.03416$ and $pav \leq 0.12249$
 1636 +11.59770 if $cp \geq 0.25174$ and $pa \leq 0.00381$ and $pa \geq -0.02022$ and $pav \leq 0.11855$
 1637 and $pav \geq -0.37647$
 1638 -7.77910 if $pa \geq -0.02969$
 1639 -0.86900 if $cp \leq 0.16311$ and $cp \leq 0.30448$ and $cp \geq -0.11618$ and $cv \leq -0.01313$
 1640 and $cv \leq 0.17905$ and $pa \leq 0.03930$ and $pa \geq -0.02479$ and $pav \leq 0.14835$
 1641 -3.02560 if $cp \geq -0.42154$ and $cv \leq 0.32329$ and $cv \geq -0.01879$ and $pa \geq -0.02018$
 1642 and $pa \geq 0.01293$ and $pav \leq 0.13896$ and $pav \geq -0.01362$
 1643 +7.09090 if $cp \leq 0.21659$ and $cv \leq 0.21317$ and $cv \geq -0.00898$ and $pa \leq -0.00355$
 1644 and $pa \geq -0.01990$ and $pav \leq -0.29080$

1645 Right:

1646 -3.54700 if $cp \leq 0.04146$
 1647 +19.18060 if $cp \geq -0.07721$ and $pav \geq 0.20059$
 1648 -3.77380 if $cp \geq -0.12061$
 1649 +2.03760 if $cp \geq 0.05832$ and $cv \leq 0.06116$ and $pa \geq -0.06911$ and $pav \leq -0.05532$
 1650 -9.54210 if $cp \leq 0.04726$
 1651 -3.07880 if $cp \geq -0.01648$ and $cv \leq 0.16053$ and $cv \geq -0.19434$ and $pa \leq -0.03636$ and $pa \geq -0.05565$
 1652 +10.28650 if $cp \geq 0.36775$ and $cv \geq -0.00425$ and $cv \geq 0.20400$ and $pa \leq 0.00317$
 1653 and $pa \geq -0.03416$ and $pav \leq 0.12249$ and $pav \geq -0.37842$
 1654 +2.04960 if $cv \geq -0.34930$ and $pa \geq 0.00381$ and $pav \leq 0.11855$
 1655 -5.77560 if $cv \geq -0.36800$ and $pa \leq -0.00339$
 1656 +5.11750 if $cp \geq 0.40156$ and $cv \leq 0.39100$ and $pa \leq -0.00914$ and $pav \leq -0.33129$
 1657 +0.00510 if $cp \geq 0.02529$ and $cv \geq -0.01879$ and $pa \leq 0.03998$ and $pa \geq 0.01293$
 1658 and $pav \geq 0.13896$
 1659 -4.80880 if $cp \leq 0.21659$ and $cp \geq 0.00944$ and $cv \leq -0.28634$ and $pa \leq -0.00355$
 1660 and $pav \leq 0.30114$ and $pav \geq -0.01324$

P ACROBOT RULES

1661 0:

```

1674
1675
1676      +8.7846  if  $w_1 \geq -0.09082$  and  $w_2 \leq 0.22991$ 
1677      +9.3353  if  $\cos(\theta_2) \geq 0.89409$ 
1678      +10.4909 if  $\sin(\theta_2) \leq 0.44980$ 
1679      +8.2458  if  $\sin(\theta_2) \leq 0.37771$  and  $w_1 \geq -0.12610$  and  $w_2 \leq 0.15699$ 
1680      +11.6541 if True
1681      +6.8474  if  $\sin(\theta_1) \leq 0.24220$  and  $w_2 \leq 0.04877$ 
1682      +1.2850  if  $\cos(\theta_2) \geq 0.99115$  and  $\sin(\theta_1) \leq -0.01332$ 
1683      +1.7239  if  $\sin(\theta_1) \leq -0.01472$  and  $w_2 \leq 0.02869$ 
1684      +3.5813  if  $\cos(\theta_1) \geq 0.88816$  and  $\sin(\theta_1) \geq -0.28723$  and  $w_1 \leq 0.77240$ 
1685      +1.3335  if  $\cos(\theta_1) \geq 0.48252$  and  $w_1 \leq 1.78991$  and  $w_1 \geq -1.70488$ 
1686      +1.0000  if  $\cos(\theta_2) \leq 0.95137$  and  $\sin(\theta_1) \geq 0.01719$ 
1687
1688
1689
1690 1:
1691
1692
1693      -3.0189 if  $\cos(\theta_2) \leq 0.99319$ 
1694      -3.3464 if  $\cos(\theta_1) \leq 0.99048$  and  $w_2 \leq 0.12677$ 
1695      -8.6917 if  $\cos(\theta_1) \geq 0.81787$  and  $w_1 \leq 0.92265$ 
1696      -5.4697 if True
1697      -9.3263 if  $w_1 \leq 0.21755$  and  $w_2 \geq -0.10354$ 
1698      -5.5746 if  $\sin(\theta_2) \leq 0.37771$  and  $w_1 \leq 1.28679$  and  $w_2 \geq 0.15699$ 
1699      +5.4709 if  $\sin(\theta_1) \geq -0.26647$  and  $\sin(\theta_2) \leq 0.44500$  and  $w_1 \geq -1.07104$  and  $w_2 \leq 0.04877$ 
1700      -8.2010 if  $\sin(\theta_1) \leq 0.04400$ 
1701      +1.5784 if  $\cos(\theta_1) \geq 0.99341$ 
1702      -9.7897 if  $\sin(\theta_1) \leq 0.15513$  and  $\sin(\theta_1) \geq -0.70608$  and  $\sin(\theta_2) \geq -0.17949$ 
1703      and  $w_1 \leq 1.78991$  and  $w_1 \geq -1.70488$ 
1704      -1.2848 if  $\cos(\theta_1) \geq 0.99674$ 
1705      +1.0000 if  $\cos(\theta_2) \leq 0.99350$  and  $\sin(\theta_1) \leq -0.21224$  and  $w_1 \geq 0.11238$ 
1706      and  $w_2 \leq -0.22888$ 
1707
1708
1709
1710 2:
1711
1712
1713
1714      +3.5980 if  $\cos(\theta_1) \geq 0.99689$ 
1715      +2.5385 if  $\cos(\theta_1) \geq 0.99048$ 
1716      +16.7525 if True
1717      -3.7130 if  $\cos(\theta_1) \leq 0.99999$  and  $\sin(\theta_2) \leq -0.01789$ 
1718      -1.9920 if  $\sin(\theta_2) \leq -0.00190$ 
1719      +12.0937 if  $w_1 \leq -0.02180$  and  $w_2 \geq 0.04994$ 
1720      +9.6534 if  $w_2 \geq 0.04994$ 
1721      +1.1957 if  $\cos(\theta_2) \geq 0.24062$  and  $w_1 \geq -0.32756$  and  $w_2 \leq 1.64803$ 
1722      -3.6820 if  $w_1 \geq -0.12540$ 
1723      +15.8530 if  $\cos(\theta_1) \geq 0.88816$  and  $w_2 \geq -0.41702$ 
1724      +10.0707 if  $\cos(\theta_1) \leq 0.99674$  and  $\cos(\theta_2) \geq 0.92457$ 
1725      +1.6685 if  $\cos(\theta_2) \leq 0.99350$  and  $\sin(\theta_1) \leq -0.21224$  and  $w_1 \geq 0.11238$ 
1726      and  $w_2 \leq -0.22888$ 
1727

```

1728 **Q INTERPRETABILITY OF TREE-BASED AND RULE-BASED POLICIES**
1729
17301731 Following the widely cited definition of interpretability by Murdoch et al. (2019), an interpretable
1732 model should satisfy *simulability*, *modularity*, and *low complexity*. Simulability means that a
1733 human can easily compute the model’s output from its explicit expression, given an input and the
1734 model parameters. Modularity means that individual components of the model can be understood in
1735 isolation. Complexity can be quantified by, for example, the total number of terms or parameters in
1736 the model.1737 SYMPOL learns an axis-aligned decision tree policy directly with policy gradients in a standard
1738 on-policy RL setting, yielding an interpretable tree-based policy class. Conceptually, our method
1739 plays a similar role but uses a rule-based policy class instead of trees. While trees and rules are
1740 closely related—each root-to-leaf path can be seen as a rule—they differ in how they are used and in
1741 the kind of interpretability they afford.1742 From the perspective of interpreting individual decisions, both trees and rule sets provide simulabil-
1743 ity. For a given state, a tree explains its choice via a single path of the form
17441745
1746 if (condition A at node 1) \wedge (condition B at node 2) $\wedge \dots \wedge$ (condition M at node M) \Rightarrow take action LEFT.
17471748
1749 A rule-based model explains the same decision by indicating which rules fired and how they were
1750 combined, for example: “*Rule 1 and Rule 7 are activated and jointly give the highest weight; therefore*
1751 *the policy selects LEFT.*”
17521753 In terms of complexity, rule-based models tend to be slightly easier to keep compact: we can directly
1754 control the number and length of rules. Tree-based policies, by contrast, often grow deep or wide as
1755 task complexity increases, which can quickly erode practical interpretability even if the representation
1756 remains transparent in principle.1757 For modularity, the difference is more pronounced. In a tree, one can treat each root-to-leaf path
1758 as a “module” (a rule), but internal nodes are shared across many paths, so modifying a single split
1759 typically affects a large portion of the state space. In a rule set, each rule is a self-contained piece of
1760 logic. This makes the rule-based policy highly modular: individual rules can be inspected, added, or
1761 removed without having to mentally re-parse or globally restructure the entire model.1762 For modularity, the difference is more pronounced. In a tree, one can treat each root-to-leaf path
1763 as a “module” (a rule), but internal nodes are shared across many paths, so modifying a single split
1764 typically affects a large portion of the state space. In a rule set, each rule is a self-contained piece of
1765 logic. This makes the rule-based policy highly modular: individual rules can be inspected, added, or
1766 removed without having to mentally re-parse or globally restructure the entire model.
1767
1768 This modularity also makes certain safety-style queries much easier to answer with rules than
1769 with trees. For example, consider the property: “*Is there any situation where the policy chooses*
1770 *RIGHT while $|\theta| > 0.25$ and $x > 1.2$? If so, list those situations.*” In a rule-based policy, we can
1771 simply scan for rules whose antecedent includes $|\theta| > 0.25$ and $x > 1.2$ and whose consequent is
1772 action = RIGHT. If such a rule exists (say, Rule V1), we can immediately say: “*Yes, a violation*
1773 *occurs whenever Rule V1 fires.*” If no such rule exists, we can cleanly state: “*The rule set guarantees*
1774 *the safety property: in no rule does $|\theta| > 0.25 \wedge x > 1.2$ appear with action = RIGHT.*” For an
1775 equivalent tree policy, answering the same question requires an exhaustive traversal and aggregation
1776 of all relevant paths, which is considerably less direct in practice.
17771778 **R PONG ENV**
17791780 **R.1 RULES**
1781**Do nothing**

Aspect	SYMPOL (tree-based policy)	Rule-based policy (ours)
Policy class	Axis-aligned decision tree policy; each internal node is a threshold on one feature, and leaves output action logits.	Explicit rule set / rule list; each rule is a conjunction of conditions \Rightarrow action (optionally with weights or priorities).
Simulatability (single decision)	High: for one state, follow a single root-to-leaf path \Rightarrow clear “if $A \wedge B \wedge \dots$ then action”.	High: for one state, see which rule(s) fired and how they combine (e.g., “Rule 1 + Rule 7 vote for LEFT”).
Global structure	Clear hierarchy of decisions: top splits show the most salient features.	Global picture is less rigid; rules form a flat or lightly structured set, and regimes are inferred by grouping similar rules.
Modularity	Each path can be read as a rule, but internal nodes are shared: changing a split affects many paths at once.	Highly modular: each rule is a self-contained unit. One can inspect, add, or remove rules without restructuring the whole model.
Complexity control	Control via depth limits, pruning, and tree size; trees can still grow large and become hard to read.	Control via the number of rules and rule length; it is easier to set an explicit rule budget and keep individual rules short.

Table 3: Comparison between the SYMPOL tree-based policy and our rule-based policy from an interpretability perspective (simulatability, modularity, and complexity).

1805 + 0.9642 if $v_{x,b} \geq 0.1$
 1806 + 0.0053 if $v_{x,b} \leq -0.1 \wedge v_{y,b} \geq -0.1$
 1807 + 0.9613 if $x_b \leq 0.6187499761581421$
 1808 - 4.2170 if $y_b \leq 0.6523809432983398 \wedge y_e \geq 0.5476190447807312$
 1809 - 3.1880 if $v_{y,b} \geq 0.1 \wedge y_b \leq 0.6523809432983398$
 1810 + 4.1575 if $v_{y,b} \leq -0.2$
 1811 + 0.9695 if $bf \geq 0.4571428596973419$
 1812 - 3.1775 if $v_{y,b} \geq 0.1 \wedge y_e \leq 0.5476190447807312$
 1813 - 0.0000 if $x_b \geq 0.800000011920929$
 1814 - 3.1775 if $v_{y,b} \geq 0.1 \wedge x_b \geq 0.48750001192092896 \wedge y_e \leq 0.5476190447807312$
 1815 - 4.2170 if $x_b \leq 0.6187499761581421 \wedge y_e \leq 0.6428571343421936 \wedge y_e \geq 0.5476190447807312$
 1816 + 0.9693 if $x_b \leq 0.7875000238418579$
 1817 + 0.0005 if $x_b \geq 0.7875000238418579$
 1818 + 3.3783 if $x_b \geq 0.48750001192092896$
 1819 + 0.9695 if $y_e \leq 0.6428571343421936$
 1820 + 0.9695 if $y_e \leq 0.6523809432983398$
 1821 - 0.1303 if $bf \leq 0.8999999761581421 \wedge v_{x,b} \geq 0.1$
 1822 - 0.0000 if $y_e \geq 0.7809523940086365$
 1823 - 0.0000 if $bf \leq 0.30000001192092896 \wedge y_e \geq 0.9095237851142883 \wedge y_p \leq 0.30000001192092896$
 1824 - 4.4359 if $v_p \geq 0.30000001192092896$

```

1836   - 1.0691  if true
1837   + 9.5734  if  $v_{x,b} \leq -0.1$ 
1838   + 9.7684  if  $v_{x,b} \leq -0.1 \wedge v_{y,b} \geq -0.1 \wedge y_b \leq 0.738095223903656$ 
1839   - 3.6835  if  $v_{x,b} \geq -0.1 \wedge v_{y,b} \geq -0.1$ 
1840   + 1.8689  if  $x_b \leq 0.800000011920929$ 
1841   + 6.6212  if  $x_b \geq 0.800000011920929 \wedge y_e \geq 0.5476190447807312$ 
1842   + 9.8937  if  $v_{x,b} \leq -0.1 \wedge y_b \leq 0.7809523940086365$ 
1843   + 3.2889  if  $v_p \leq 0.0 \wedge x_b \geq 0.800000011920929 \wedge y_e \geq 0.5476190447807312$ 
1844   + 2.1446  if  $x_b \leq 0.793749988079071$ 
1845   - 2.7148  if  $v_{x,b} \geq 0.1 \wedge v_{y,b} \leq 0.1 \wedge x_b \leq 0.6187499761581421 \wedge y_e \leq 0.776190459728241$ 
1846   - 10.3563 if  $v_{x,b} \geq 0.1 \wedge y_b \geq 0.5476190447807312 \wedge y_e \geq 0.5476190447807312$ 
1847   + 2.2118  if  $x_b \geq 0.6187499761581421 \wedge y_e \leq 0.776190459728241 \wedge y_e \geq 0.776190459728241$ 
1848   + 1.1660  if  $v_{y,b} \leq -0.2 \wedge y_b \leq 0.7809523940086365$ 
1849   + 9.0361  if  $x_b \leq 0.800000011920929 \wedge x_b \geq 0.48750001192092896 \wedge y_b \geq 0.5476190447807312$ 
1850   - 10.8639 if  $v_{x,b} \geq 0.1 \wedge v_{y,b} \geq 0.1 \wedge y_b \leq 0.7809523940086365$ 
1851   + 6.7201  if  $x_b \leq 0.800000011920929 \wedge y_b \geq 0.7809523940086365 \wedge y_e \geq 0.776190459728241$ 
1852   + 1.9128  if  $bf \geq 0.4571428596973419 \wedge x_b \geq 0.48750001192092896$ 
1853   + 12.6463 if  $y_e \geq 0.9095237851142883$ 
1854   + 0.8748  if  $bf \geq 0.12857143580913544 \wedge v_p \leq -0.6000000238418579 \wedge y_b \geq 0.7809523940086365$ 
1855   + 1.1194  if  $v_p \leq 0.30000001192092896 \wedge v_{x,b} \leq -0.1 \wedge y_b \leq 0.6523809432983398$ 
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

```

Down

```

- 0.1153  if true
+ 0.2371  if  $v_{x,b} \geq 0.1$ 
- 1.1869  if  $v_{y,b} \leq 0.1 \wedge y_e \geq 0.6428571343421936$ 
+ 6.6905  if  $x_b \leq 0.800000011920929$ 
- 1.6155  if  $v_p \leq 0.20000000298023224 \wedge v_{y,b} \leq 0.1 \wedge v_{y,b} \geq 0.1$ 
- 7.3399  if  $x_b \geq 0.6187499761581421 \wedge y_b \geq 0.6523809432983398 \wedge y_e \geq 0.6428571343421936$ 
- 1.0679  if  $v_p \leq 0.0 \wedge x_b \leq 0.6187499761581421 \wedge y_e \geq 0.5476190447807312$ 
- 0.1710  if  $v_{y,b} \leq -0.2$ 
- 1.6300  if  $y_b \geq 0.5476190447807312 \wedge y_e \leq 0.5476190447807312$ 
- 0.0564  if  $v_{y,b} \geq 0.1 \wedge x_b \leq 0.6187499761581421 \wedge y_e \geq 0.6428571343421936$ 
- 0.2991  if  $y_e \geq 0.9095237851142883$ 
- 6.6643  if  $v_p \geq -0.30000001192092896 \wedge y_e \geq 0.6428571343421936$ 
+ 6.4798  if  $v_{x,b} \geq 0.1 \wedge x_b \leq 0.800000011920929 \wedge x_b \geq 0.48750001192092896$ 
- 0.6501  if  $v_p \leq 0.10000000149011612 \wedge x_b \geq 0.6187499761581421 \wedge y_b \geq 0.7809523940086365$ 
- 0.7654  if  $x_b \geq 0.6187499761581421 \wedge y_e \geq 0.776190459728241$ 
- 0.0399  if  $v_{y,b} \leq -0.2 \wedge y_e \geq 0.776190459728241$ 
- 0.0802  if  $v_{y,b} \leq -0.2 \wedge y_e \geq 0.6428571343421936$ 
- 1.2114  if  $v_{y,b} \leq 0.1 \wedge x_b \geq 0.48750001192092896 \wedge y_e \geq 0.6428571343421936$ 
- 0.0482  if  $x_b \geq 0.9750000238418579 \wedge y_p \leq 0.12857143580913544$ 
+ 1.0000  if  $x_b \leq 0.6187499761581421 \wedge y_b \leq 0.7809523940086365$ 

```

Feature importance analysis. To diagnose why this particular rule ensemble performs poorly, we compute a simple global importance score for each feature by summing the absolute values of all rule coefficients in which it appears. This tells us which variables the actor relies on most when selecting

1890 actions. For the rules in previous section, we obtain:

1891 ball x -position (x_b): 89.18, **opponent** y -position (y_e): 88.85,
 1892 ball y -position (y_b): 77.05, ball x -velocity ($v_{x,b}$): 65.8, ball y -velocity ($v_{y,b}$): 47.9,
 1893 paddle velocity (v_p): 19.7, block fraction (bf): 3.9, paddle y -position (y_p): 0.05.
 1894

1895 These numbers show that the policy is dominated by the geometry of the ball and opponent, with the
 1896 ball’s horizontal position x_b and the opponent’s vertical position y_e emerging as the most influential
 1897 features. In contrast, important control variables such as the paddle velocity v_p and especially y_p
 1898 contribute much less overall. Although focusing on ball–opponent geometry is not unreasonable,
 1899 closer inspection shows that many of the largest coefficients involving y_e appear in rules that
 1900 trigger clearly suboptimal actions. In other words, the ensemble has learned *strong but misaligned*
 1901 dependencies on y_e , effectively overfitting to spurious thresholds on the opponent’s position. This
 1902 explains why the resulting policy is both interpretable and systematically wrong: it selects actions for
 1903 transparent, but ultimately bad, reasons.

1905 S ADDITIONAL EXPERIMENTS ON OCATARI

1906 S.1 PERFORMANCE

1907 We also evaluate NSAC on the OCAtari-Breakout environment, a low-dimensional variant of the
 1908 classic Atari *Breakout* game exposed through the OCAtari Delfosse et al. (2024a). The agent
 1909 observes summary features such as the ball position (`ball_y`, `rel_x`), ball velocities (`vx`, `vy`),
 1910 paddle position (`paddle_edge`), and brick-related indicators (`brick_prev`, `brick_cur`), and
 1911 must choose between three discrete actions: *Fire/Do nothing*, *Right*, and *Left*. Performance in this
 1912 environment is reported as the total game score, averaged over 5 runs with different random seeds for
 1913 each method. Among all baselines, PPO achieves the highest overall score on OCAtari-Breakout.
 1914 Nonetheless, NSAC also attains strong performance, with an average score above 300 over 5 random
 1915 seeds, making it competitive with neural baselines while clearly outperforming all other symbolic
 1916 methods. This demonstrates that NSAC can retain much of the raw performance of powerful deep
 1917 RL algorithms, while still yielding an interpretable rule ensemble.

Environment	Q-table	DQN	A2C	PPO	SDSAC	SACBBF	Rainbow	SYMPOL	π affine-D	D-SDT	NSAC
breakout	41.23 \pm 127.23 \pm 344.23 \pm 389.21 \pm 342.00 \pm 267.00 \pm 235.76 \pm 227.00 \pm 23.86 \pm 34.26 \pm 312.76 \pm	14.20	25.78	31.78	14.33	39.62	27.12	31.37	35.76	14.76	7.86
											31.60

1922 Table 4: Performance comparison on OCAtari-Breakout.

1925 S.2 REPRESENTATIVE RULES AND THEIR INTERPRETATION.

1926 To illustrate the kind of behaviours captured by the learned rule ensemble, we highlight two representative
 1927 rules, the detailed rules are listed in the following section.

1928 **Rule 1 (Action 1: Fire / Do nothing).** One of the highest-weight rules for the “do nothing” action is

$$1929 +6.1152 \text{ if } 0.5000 \leq \text{ball_y_cur} \leq 0.7714, \text{rel_x_cur} \leq -0.5375, \\ 1930 \text{vy_prev} \leq -0.0190, \text{vy_cur} \geq -0.0381.$$

1931 Here, `ball_y_cur` in $[0.5, 0.77]$ indicates that the ball is still relatively high on the screen, while
 1932 `rel_x_cur` ≤ -0.5375 means it is clearly to the left of the paddle. The vertical velocities
 1933 `vy_prev` ≤ -0.0190 and `vy_cur` ≥ -0.0381 show that the ball is moving downwards, but not
 1934 extremely fast. In this regime, the rule strongly favours *not* moving the paddle: it is too early and
 1935 too uncertain to chase the ball aggressively, and keeping the paddle near a default position preserves
 1936 flexibility for a later, more accurate intercept. This encodes an intuitive “do not overreact too early”
 1937 timing heuristic.

1938 **Rule 2 (Action 3: Left).** A strongly negative rule for the “move left” action is

$$1939 -5.7469 \text{ if } 0.4143 \leq \text{ball_y_cur} \leq 0.8381, \text{rel_x_prev} \leq -0.0063, \\ 1940 -0.0500 \leq \text{vx_prev} \leq -0.0375, \text{vy_prev} \leq -0.0190, \text{vy_cur} \leq 0.0286.$$

1944 In this situation, the ball is in the middle-to-upper region of the screen, already to the left of the paddle
1945 ($\text{rel_x_prev} \leq -0.0063$), moving leftwards ($\text{vx_prev} < 0$) and downwards ($\text{vy_prev} < 0$).
1946 The large negative coefficient indicates that moving the paddle further left in this configuration is
1947 strongly discouraged. Intuitively, shifting left would risk moving away from the eventual intercept
1948 point or overshooting it; instead, the policy prefers to stay more central or delay horizontal motion
1949 until the ball is lower and the crossing point is clearer. This rule thus captures a natural “do not move
1950 away from an incoming ball” behaviour.

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998 S.3 RULES
 1999

2000 **Action 1: Fire / Do nothing**

2001
 2002 $-2.6037 \text{ if } \text{paddle_edge_prev} \geq 0.1375$
 2003 $-4.0445 \text{ if } \text{vy_prev} \geq 0.0190 \text{ and } \text{vy_cur} \geq -0.0190$
 2004 $+2.6453 \text{ if } \text{ball_y_prev} \leq 0.7714 \text{ and } \text{ball_y_cur} \leq 0.7714 \text{ and } \text{rel_x_cur} \leq -0.2000$
 $\text{and } -0.0500 \leq \text{vx_prev} \leq 0.0500 \text{ and } -0.0286 \leq \text{vy_cur} \leq 0.0381$
 2005 $+5.9613 \text{ if } \text{ball_above_prev} \geq 1.0000 \text{ and } \text{ball_y_cur} \leq 0.8381 \text{ and } \text{rel_x_prev} \leq -0.0063$
 $\text{and } -0.0500 \leq \text{vx_cur} \leq 0.0500 \text{ and } \text{vy_prev} \geq -0.0190 \text{ and } \text{vy_cur} \leq 0.0048$
 2006 $-1.9160 \text{ if } \text{ball_y_prev} \leq 0.7714 \text{ and } \text{rel_x_cur} \geq -0.4125 \text{ and } \text{vy_prev} \leq 0.0381 \text{ and } \text{vy_cur} \leq -0.0190$
 2007 $-2.3335 \text{ if } \text{rel_x_cur} \geq -0.1000 \text{ and } \text{vy_prev} \leq 0.0381$
 2008 $+3.6887 \text{ if } \text{ball_y_prev} \leq 0.7714 \text{ and } \text{ball_y_cur} \leq 0.7048 \text{ and } \text{rel_x_prev} \leq -0.1000$
 $\text{and } \text{vx_prev} \geq -0.0375 \text{ and } \text{vy_prev} \geq -0.0381 \text{ and } \text{vy_cur} \leq 0.0190$
 2009 $+2.4687 \text{ if } \text{ball_y_prev} \geq 0.6381 \text{ and } \text{vy_prev} \leq -0.0286$
 2010 $+3.8568 \text{ if } \text{ball_y_prev} \leq 0.7714 \text{ and } \text{rel_x_cur} \leq -0.0063 \text{ and } \text{vx_prev} \geq -0.0500$
 $\text{and } \text{vx_cur} \geq -0.0500 \text{ and } \text{vy_prev} \leq 0.0048 \text{ and } \text{vy_cur} \geq -0.0190$
 2011 $-2.7193 \text{ if } \text{ball_y_cur} \leq 0.7048 \text{ and } \text{brick_cur} \geq 0.0900 \text{ and } \text{vy_prev} \leq 0.0381 \text{ and } \text{vy_cur} \leq 0.0048$
 2012 $+1.9062 \text{ if } \text{ball_y_prev} \leq 0.5000 \text{ and } \text{ball_y_cur} \leq 0.5000 \text{ and } \text{brick_prev} \geq 0.0900$
 $\text{and } \text{brick_cur} \geq 0.0900 \text{ and } \text{rel_x_prev} \leq -0.0063 \text{ and } \text{vx_prev} \geq 0.0500 \text{ and } \text{vx_cur} \geq 0.0500$
 2013 $-0.8540 \text{ if } \text{ball_y_prev} \leq 0.8381 \text{ and } \text{rel_x_prev} \leq -0.1000 \text{ and }$
 $0.0375 \leq \text{vx_prev} \leq 0.0500 \text{ and } \text{vy_prev} \leq 0.0190$
 2014 $-2.8242 \text{ if } \text{ball_y_cur} \leq 0.4143 \text{ and } \text{vy_prev} \leq 0.0048$
 2015 $+2.4663 \text{ if } \text{ball_y_prev} \leq 0.8381 \text{ and } \text{vx_prev} = -0.0500 \text{ and } \text{vy_prev} \leq -0.0190$
 $\text{and } -0.0381 \leq \text{vy_cur} \leq 0.0381$
 2016 $-1.5553 \text{ if } \text{ball_y_prev} \leq 0.6381 \text{ and } \text{vx_prev} \leq -0.0375$
 2017 $-1.8001 \text{ if } \text{ball_y_cur} \geq 0.6381 \text{ and } \text{vx_cur} \geq -0.0375 \text{ and } \text{vy_cur} \geq -0.0286$
 2018 $+6.1152 \text{ if } 0.5000 \leq \text{ball_y_cur} \leq 0.7714 \text{ and } \text{rel_x_cur} \leq -0.5375$
 $\text{and } \text{vy_prev} \leq -0.0190 \text{ and } \text{vy_cur} \geq -0.0381$
 2019 $-3.4766 \text{ if } \text{ball_y_prev} \geq 0.4143 \text{ and } 0.5000 \leq \text{ball_y_cur} \leq 0.7714$
 $\text{and } 0.0000 \leq \text{vx_prev} \leq 0.0500 \text{ and } \text{vx_cur} \leq 0.0500 \text{ and } \text{vy_prev} \leq 0.0381 \text{ and } \text{vy_cur} \geq -0.0381$
 2020 $-1.4946 \text{ if } \text{rel_x_prev} \leq -0.6688 \text{ and } \text{rel_x_cur} \leq -0.6688$
 2021 $-0.7953 \text{ if } 0.4143 \leq \text{ball_y_cur} \leq 0.8381 \text{ and } \text{brick_cur} \leq 0.1100 \text{ and } \text{rel_x_prev} \leq -0.1000$
 $\text{and } \text{rel_x_cur} \leq -0.1000 \text{ and } \text{vx_prev} \geq -0.0375 \text{ and } \text{vy_prev} \leq 0.0381 \text{ and } \text{vy_cur} \geq -0.0381$
 2022 $-1.2368 \text{ if } 0.4143 \leq \text{ball_y_cur} \leq 0.7714 \text{ and } \text{paddle_edge_prev} \geq 0.1375$
 $\text{and } \text{rel_x_prev} \geq -0.6688 \text{ and } \text{vx_prev} \leq 0.0500 \text{ and } \text{vx_cur} \leq 0.0500$
 2023 $+2.5430 \text{ if } \text{ball_y_prev} \geq 0.5000 \text{ and } 0.5000 \leq \text{ball_y_cur} \leq 0.8381 \text{ and } \text{rel_x_prev} \leq -0.2000$
 $\text{and } \text{vx_prev} \leq 0.0000 \text{ and } \text{vx_cur} \geq -0.0500 \text{ and } -0.0381 \leq \text{vy_prev} \leq 0.0048$
 2024 $+0.7993 \text{ if } \text{ball_above_prev} \geq 1.0000 \text{ and } \text{ball_above_cur} \geq 1.0000 \text{ and } \text{rel_x_prev} \geq -0.5375$
 $\text{and } 0.0000 \leq \text{vx_prev} \leq 0.0500 \text{ and } \text{vx_cur} \geq -0.0375 \text{ and } \text{vy_prev} \leq 0.0286$
 2025 $+1.7013 \text{ if } \text{ball_above_prev} \geq 1.0000 \text{ and } \text{ball_y_cur} \geq 0.6381 \text{ and } \text{rel_x_cur} \geq -0.2000 \text{ and }$
 $\text{vy_prev} \leq 0.0048$
 2026 $-1.1456 \text{ if } \text{rel_x_prev} \geq -0.3063 \text{ and } -0.3063 \leq \text{rel_x_cur} \leq -0.0063$
 $\text{and } \text{vy_prev} \leq 0.0048 \text{ and } \text{vy_cur} \geq -0.0381$

2052 **Action 2: Right**

2053

2054

2055 -3.7358 if ball_y_cur \leq 0.8381

2056 +3.3079 if rel_x_cur \geq -0.5375 and vy_prev \geq 0.0190 and vy_cur \geq 0.0048

2057 -9.9162 if ball_above_cur \geq 1.0000 and vx_prev \leq 0.0500 and vy_cur \leq 0.0381

2058 +4.6580 if ball_above_prev \geq 1.0000 and ball_y_cur \geq 0.7048
 and vy_prev \geq 0.0190 and vy_cur \geq -0.0190

2059

2060 +2.7250 if paddle_edge_prev \geq 0.1375 and vx_prev \geq 0.0000 and vx_cur \geq -0.0375
 and vy_prev \geq -0.0190 and vy_cur \geq -0.0381

2061 -1.5765 if ball_y_cur \leq 0.7714 and vy_prev \geq 0.0190

2062

2063 +4.5538 if ball_y_prev \geq 0.5714 and rel_x_prev \geq -0.6688 and vx_prev \leq 0.0500
 and vy_prev \geq 0.0286 and vy_cur \geq -0.0381

2064

2065 +3.0658 if rel_x_cur \geq -0.3063 and -0.0375 \leq vx_prev \leq 0.0500
 and vy_prev \geq -0.0190 and vy_cur \geq 0.0048

2066

2067 +2.8135 if ball_above_prev \geq 1.0000 and rel_x_cur \leq -0.0063
 and vx_prev \geq -0.0500 and vy_prev \geq 0.0381 and vy_cur \geq 0.0190

2068

2069 +2.8650 if ball_above_prev \geq 1.0000 and ball_y_prev \geq 0.7714
 and rel_x_cur \geq -0.6688 and vy_prev \geq 0.0190 and vy_cur \geq -0.0381

2070

2071 -4.0301 if ball_y_prev \leq 0.8381 and rel_x_cur \leq -0.4125

2072

2073 -6.5868 if ball_above_cur \geq 1.0000 and vy_prev \leq 0.0381 and vy_cur \leq -0.0190

2074

2075 -2.9138 if ball_y_prev \leq 0.7048 and rel_x_prev \leq -0.0063 and rel_x_cur \leq -0.0063
 and vx_cur \leq 0.0375 and vy_prev \geq 0.0048

2076

2077 -2.0466 if ball_above_cur \geq 1.0000 and ball_y_prev \leq 0.8381 and rel_x_cur \leq -0.2000
 and vx_cur \leq 0.0000 and vy_prev \geq 0.0048

2078

2079 +3.3836 if ball_y_cur \geq 0.7714 and rel_x_prev \leq -0.1000
 and vx_cur \geq -0.0375 and vy_cur \geq 0.0048

2080

2081 -1.8377 if ball_above_cur \geq 1.0000
 and -0.0375 \leq vx_prev \leq 0.0500 and -0.0375 \leq vx_cur \leq 0.0000 and vy_prev \geq 0.0048

2082

2083 +3.7873 if ball_y_cur \geq 0.8381 and 0.0190 \leq vy_cur \leq 0.0381

2084

2085 -2.0489 if ball_above_cur \geq 1.0000 and rel_x_prev \leq -0.5375 and vx_cur \leq 0.0375

2086

2087 -2.7407 if ball_y_prev \leq 0.7714 and ball_y_cur \geq 0.4143 and rel_x_prev \geq -0.6688
 and vx_prev \leq 0.0500 and vy_prev \geq 0.0190

2088

2089 -2.5147 if ball_y_cur \leq 0.5714 and brick_prev \geq 0.1000 and rel_x_prev \geq -0.1000

2090

2091 -1.7701 if ball_above_cur \geq 1.0000 and brick_cur \geq 0.0900
 and vy_prev \leq 0.0286 and vy_cur \geq 0.0190

2092

2093 +1.5424 if ball_y_prev \geq 0.5000 and ball_y_cur \geq 0.6381 and brick_prev \geq 0.0900
 and rel_x_prev \geq -0.2000 and vx_cur \leq 0.0375 and vy_prev \geq 0.0190 and vy_cur \geq -0.0381

2094

2095 +1.4835 if ball_y_cur \geq 0.4143 and brick_prev \geq 0.0900 and rel_x_prev \geq -0.6688
 and rel_x_cur \leq -0.1000 and vx_cur \geq 0.0000 and vy_prev \geq 0.0048 and vy_cur \geq -0.0286

2096

2097 +1.8123 if ball_y_prev \geq 0.7048 and brick_cur \leq 0.1300 and vx_cur \leq 0.0000
 and vy_prev \geq 0.0381 and vy_cur \geq -0.0381

2098

2099 +1.4038 if rel_x_prev \geq -0.3063 and vx_cur \geq 0.0000
 and vy_prev \geq 0.0048 and vy_cur \geq -0.0381

2100

2101

2102

2103

2104

2105

2106 **Action 3: Left**

2107 +3.2914 if ball_y_cur ≤ 0.8381 and paddle_edge_prev ≥ 0.1375
 2108 -5.9441 if ball_y_cur ≤ 0.7714 and rel_x_prev ≤ -0.0063 and rel_x_cur ≤ -0.1000
 2109 and $-0.0500 \leq vx_{-}prev \leq 0.0500$ and vy_prev ≤ 0.0048 and $-0.0286 \leq vy_{-}cur \leq 0.0381$
 2110 -3.0919 if ball_y_cur ≥ 0.7714 and rel_x_cur ≥ -0.6688 and vy_cur ≥ 0.0048
 2111 +3.1300 if ball_above_cur ≥ 1.0000 and paddle_edge_prev ≥ 0.1375 and vx_prev ≤ 0.0500
 2112 and vy_prev ≤ 0.0381 and vy_cur ≤ 0.0381
 2113 -2.7873 if ball_above_prev ≥ 1.0000 and ball_y_cur ≥ 0.7048 and rel_x_prev ≥ -0.3063
 2114 -2.4206 if ball_above_prev ≥ 1.0000 and rel_x_prev ≤ -0.3063 and rel_x_cur ≤ -0.3063
 2115 and vx_cur ≤ 0.0500 and vy_prev ≥ -0.0381 and vy_cur ≤ 0.0048
 2116 -1.4360 if rel_x_prev ≥ -0.6688 and vx_prev ≥ -0.0375
 2117 and $-0.0375 \leq vx_{-}cur \leq 0.0500$ and vy_prev ≥ 0.0286
 2118 -5.7469 if $0.4143 \leq ball_{-}y_{-}cur \leq 0.8381$ and rel_x_prev ≤ -0.0063
 2119 and $-0.0500 \leq vx_{-}prev \leq -0.0375$ and vy_prev ≤ -0.0190 and vy_cur ≤ 0.0286
 2120 -3.8718 if vx_prev ≥ 0.0000 and vx_cur ≥ 0.0000 and vy_cur ≥ 0.0048
 2121 -3.4132 if ball_y_cur ≥ 0.5714 and vx_cur ≥ -0.0375 and vy_prev ≤ -0.0381
 2122 -1.9780 if vx_prev ≤ 0.0000 and $-0.0500 \leq vx_{-}cur \leq 0.0000$ and vy_prev ≥ -0.0286
 2123 +3.7481 if ball_above_cur ≥ 1.0000 and ball_y_prev ≥ 0.4143 and ball_y_cur ≥ 0.5000
 2124 and vx_prev ≤ 0.0500 and vy_prev ≥ -0.0190 and $-0.0381 \leq vy_{-}cur \leq 0.0286$
 2125 +1.8542 if ball_y_cur ≤ 0.7714 and paddle_edge_prev ≥ 0.1375 and rel_x_cur ≥ -0.5375
 2126 and vx_prev ≤ 0.0500 and vx_cur ≤ 0.0500 and vy_prev ≤ 0.0381
 2127 +0.6150 if ball_above_cur ≥ 1.0000 and rel_x_prev ≤ -0.4125 and rel_x_cur ≤ -0.4125
 2128 and vy_prev ≥ -0.0381 and vy_cur ≥ -0.0286
 2129 +2.3428 if rel_x_prev ≥ -0.5375 and rel_x_cur ≥ -0.5375
 2130 and $-0.0375 \leq vx_{-}cur \leq 0.0375$ and vy_cur ≤ -0.0190
 2131 -1.2518 if ball_above_prev ≥ 1.0000 and rel_x_prev ≤ -0.1000
 2132 and $-0.5375 \leq rel_{-}x_{-}cur \leq -0.1000$ and $-0.0500 \leq vx_{-}cur \leq 0.0500$
 2133 and vy_prev ≥ -0.0286 and vy_cur ≤ 0.0286
 2134 -2.2239 if ball_y_prev ≤ 0.7714 and ball_y_cur ≤ 0.7048
 2135 and vx_prev ≥ -0.0375 and vy_prev ≥ -0.0190 and vy_cur ≤ 0.0190
 2136 -0.8174 if ball_above_prev ≥ 1.0000 and ball_y_cur ≥ 0.6381
 2137 and vx_prev ≤ 0.0375 and vy_prev ≥ -0.0381
 2138 -0.6264 if ball_above_prev ≥ 1.0000 and rel_x_prev ≥ -0.5375 and rel_x_cur ≥ -0.5375
 2139 and vx_prev ≥ 0.0000 and vx_cur ≥ -0.0500
 2140 +2.5593 if ball_y_prev ≤ 0.7714 and rel_x_cur ≤ -0.3063
 2141 and vy_prev ≥ 0.0381 and vy_cur ≥ -0.0190
 2142 +0.9760 if ball_above_cur ≥ 1.0000 and ball_y_cur ≥ 0.4143
 2143 and $-0.3063 \leq rel_{-}x_{-}prev \leq -0.0063$ and rel_x_cur ≤ -0.1000
 2144 and vy_prev ≤ 0.0381 and $-0.0381 \leq vy_{-}cur \leq 0.0381$
 2145 +1.6089 if ball_y_cur ≤ 0.6381 and rel_x_prev ≥ -0.2000 and rel_x_cur ≥ -0.2000
 2146 -0.7929 if rel_x_cur ≥ -0.5375 and vx_prev ≥ -0.0500 and vy_cur ≥ -0.0190
 2147 -0.5734 if ball_y_prev ≥ 0.5000 and brick_cur ≤ 0.0900 and vx_prev ≥ -0.0500
 2148 and $-0.0500 \leq vx_{-}cur \leq 0.0375$ and vy_cur ≥ -0.0381
 2149 -1.0272 if ball_y_prev ≥ 0.8381 and ball_y_cur ≥ 0.7714 and vy_prev ≤ 0.0381

2160 T STATEMENT ON LLM USAGE
21612162 Large language models (LLMs), such as ChatGPT, were used solely for editorial assistance in this
2163 work. Their role was limited to improving grammar, rephrasing sentences, and enhancing clarity and
2164 readability of the authors' original text. No LLM was used to generate original scientific content,
2165 analysis, or results. The authors take full responsibility for the integrity and validity of the work
2166 presented.

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213