Under review as a conference paper at ICLR 2026

NEURAL+SYMBOLIC ACTOR-CRITIC FRAMEWORK FOR
INTERPRETABLE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The integration of neural networks into actor-critic frameworks has been pivotal in
advancing the field of reinforcement learning, enabling agents to perform complex
tasks with greater efficiency and adaptability. However, neural network-based
actor-critic models remain opaque “black boxes,” concealing their decision-making
processes and hindering their use in critical applications where transparent and
explainable reasoning is essential. This work introduces an innovative adaptation of
the actor-critic framework that unites neural networks with rule ensembles to tackle
key challenges in reinforcement learning. We harness the computational power,
scalability, and adaptability of neural networks to model the critic, while integrating
a rule ensemble system for the actor, ensuring transparency and interpretability
for decision-making. Our study establishes a theoretical foundation for integrating
rule ensembles into the Advantage Actor-Critic (A2C) framework. Experimental
results from seven classic and complex environments demonstrate that our proposed
method matches or exceeds the performance of representative RL models, including
symbolic methods, while offering self-interpretability and transparency.

1 INTRODUCTION

Actor-critic reinforcement learning (RL) methods, such as Advantage Actor-Critic (A2C) and
Proximal Policy Optimization (PPO), have delivered exceptional performance across diverse RL
tasks (Mnih et al.,[2016; [Schulman et al.,2017)), largely due to the use of neural networks to effectively
manage complex, high-dimensional state-action spaces. Yet, as actor-critic RL models expand to
broader real-world domains, such as healthcare, finance, and law, interpretability becomes essential
for ensuring trust, transparency, and regulation compliance in decision-making. By revealing how
actions are chosen or why specific decisions are made, interpretability supports debugging, model
improvement, and the ability to explain automated decisions in line with legal and ethical standards.

Despite the effectiveness of neural network-based actor-critic models, their opaque nature and lack of
transparency can limit their use in sensitive or critical applications where comprehending the rationale
behind each decision is crucial (Benitez et al.| [1997} (Castelvecchil [2016). Symbolic models, e.g.,
expert systems, decision trees, and rule-based systems, rely on clear, well-defined rules and logic to
make decisions, allowing for easier tracing of how conclusions are reached (Ernst et al.| | 2005; Gupta
et al.,[2015a; Tao et al., 2018} Bastani et al., 2018 [llanes et al., [2020). These methods use symbols
(which can represent objects, properties, or relationships) and logic to process and reason about data,
making the decision-making process transparent and understandable.

However, substituting neural network-based models with symbolic models in reinforcement learning
tasks can be challenging. (i) While symbolic methods are highly valued for their interpretability
and transparency, current implementations in reinforcement learning typically rely on predefined
knowledge or pre-trained models (Garcez et al., 2018} |Lyu et al.,[2019). (ii) These symbolic methods
can face challenges in managing the complexity and ambiguity that non-symbolic approaches, such
as neural networks, are often better equipped to handle (Illanes et al.,2020; |[Landajuela et al., [2021)).

To tackle the above challenges, we propose a new “Neural plus Symbolic” framework for Actor-
Critic models, namely NSAC, as shown in Figure[T] NSAC integrates the strengths of both neural
networks and symbolic rule-based systems. Specifically, the neural critic leverages powerful function
approximation capabilities to estimate the value of states and state-action pairs effectively. Meanwhile,

Under review as a conference paper at ICLR 2026

the actor component is designed using deifci:;czlc Actor o iy e JLnTerpretable Neural+Symbolic

a rule-based approach, providing intrin- .-—.....cMe C e), . AtorCome s,
Action <——decide—— %

! Interpret the action: This action is
picked becouse x» 100 and...

sic interpretability by following explicit, |
predefined rules that govern its decision-
making process. This framework allows
for an analysis of how particular features
or rules influence decisions, offering a
level of explainability absent in black-box
models. Our theoretical analysis proves i
that NSAC converges to a local optimum. |

Through empirical experiments, our pro- :"'et

posed NSAC demonstrates performance ™~

levels that match those of widely-used re- Fjgyre 1: Comparative illustration of Neural+Symbolic

inforcement learning algorithms, such as A ctor-Critic (NSAC) and classic Actor-Critic methods.
DQN (Mnih, [2013)), PPO (Schulman et al.}

2017), Rainbow (Hessel et al.,|2018), SDSAC (Kong et al.l2021), SACBBF (Zhang et al., [2024]),
and A2C (Mnih et al.l 2016). By integrating the adaptability and generalization capabilities of
neural networks with the transparency of rule-based decision-making, our model provides a balanced
solution that retains high performance while enabling interpretable and trustworthy decision-making
processes. It is worth noting that, our work belongs to the broader neural-symbolic family, but differs
from compile-logic approaches. NSAC uniquely couples a data-driven neural critic with a rule-based
symbolic actor, enabling both statistical learning and explicit reasoning within an actor—critic loop.
This work makes three main contributions:

Whitebox
Actor

Action] «10: x> 100
ActionZ -10: 102220 ®
Actiond -13: %220 ye3

Blackbox
Critic !

* We propose a novel actor—critic architecture that combines a neural critic for accurate value
estimation with a symbolic, rule-based actor that delivers intrinsic interpretability.

* We provide a formal proof of convergence and demonstrate that our rule-based policy
satisfies the established interpretability criteria of simulatability, modularity, and low com-
plexity (Murdoch et al.,[2019).

* We empirically demonstrate that NSAC matches state-of-the-art RL methods on classic con-
trol and energy-system tasks, while uniquely preserving transparency and trustworthiness.

2 RELATED WORK

Interpretability has become increasingly important in RL and motivated symbolic approaches that
provide transparent reasoning while retaining RL’s adaptive capabilities. Existing approaches can
be categorized based on their interpretability characteristics, knowledge requirements, and learning
paradigms, each with distinct limitations. Tree-based policies represent a widely studied approach
to interpretable RL. Native tree methods (Ding et al., |2020; Ernst et al., 2005; |Gupta et al., 2015aj;
Roth et al.|[2019; [Tao et al., 2018)) learn decision trees directly from environmental interactions, often
achieving strong performance on small to medium-scale problems but facing scalability challenges
where large trees become difficult to interpret. Distillation-based tree methods (Bastani et al., 2018},
Coppens et al., 2019; Gupta et al., 2015b; |Liu et al.,2019) extract tree policies from pre-trained neural
networks, but face a size versus fidelity trade-off. Their differentiable variants (Silva et al., 2020) and
specialized architectures (Ding et al.||2020; [Liu et al., 2019)) attempt to address these limitations but
may produce mathematical notations and complex tree structures that remain difficult for humans
to interpret. Symbolic RL with predefined knowledge leverages domain expertise to guide policy
learning. These methods (Garcez et al., 2018 Illanes et al., |2020; |[Lyu et al., 2019) can maintain
interpretability through symbolic rules, modules, or plans, and may achieve strong performance
when domain priors are well-specified. However, they require substantial predefined knowledge,
making them sensitive to domain assumptions and limiting their applicability to new domains where
such expertise may not be available. To remove this dependency, symbolic policies learn from
neural teachers or direct search to discover symbolic representations, such as neural-guided symbolic
policy discovery (Landajuela et al., 2021}, genetic programming for symbolic expressions (Hein
et al.} 2018)), and program synthesis approaches (Wu et al., 2020; \Q1u & Zhu, [2022). While these
methods avoid predefined knowledge, they often yield complex mathematical expressions involving
trigonometric functions, logarithms, or program syntax that are challenging for humans to simulate
and interpret (Murdoch et al.,|2019). Recent work like SYMPOL (Marton et al., 2024)) optimizes

Under review as a conference paper at ICLR 2026

tree policies directly but suffers performance degradation in complex domain. Post-hoc approaches
additionally may suffer from approximation errors inherited from neural teachers.

As discussed, most previous methods either require a certain amount of predefined knowledge, which
influences the search space or establishes the programmatic rules, or they are post-hoc solutions that
learn from a pre-trained model rather than directly from the environment, potentially distorting the
learning objectives. In contrast, our method effectively integrates a neural network-based critic with
a symbolic, rule-based, interpretable actor by learning directly through environmental interactions
without requiring predefined knowledge. Specifically, we address the tree scalability problem by using
additive rule ensembles rather than hierarchical structures, where each rule contributes equally to the
decision-making process. We employ Orthogonal Gradient Boosting (OGB) (Yang et al.| 2024) to
discover rule conditions automatically, requiring only basic feature comparisons rather than domain-
specific knowledge. Our rule-based actor is trained directly via policy gradients on environmental
rewards, ensuring the symbolic representation accurately reflects true decision-making process rather
than approximating a black-box teacher. Our approach achieves interpretability through symbolic
rules while learning directly from the environment, addressing both the knowledge requirements
and post-hoc limitations of existing methods. Post-hoc explainers are only approximations: they
often flag correlates, not causes. SHAP (Lundberg & Lee, 2017)), for example, mark a feature as
“important” while the model flips under tiny perturbations. Worse, black-box models can even be
trained to emit persuasive but misleading rationales (Rudin, [2019). Because these explanations are
extrinsic, they guarantee neither consistency, fidelity, nor out-of-distribution robustness.

3 PRELIMINARIES

3.1 ADVANTAGE ACTOR-CRITIC REINFORCEMENT LEARNING

The A2C algorithm represents a synergy of two foundational approaches in reinforcement learning:
the actor-critic method and the advantage function estimation. In the actor-critic framework, the critic
in the A2C framework estimates the value function V'(s), which represents the expected return from a
state s. The critic is updated by minimizing its loss function, typically the mean squared error between
the estimated value and the computed target value. The target value is derived from the rewards

obtained and the discounted values of subsequent states: Ly (¢) = E [(Rt + 9V (St41) — V¢(st))2] ,

where R, is the reward received after taking action a in state s, at ¢, «y is the discount factor, V; (st41)
is the value estimate for the next state at £+ 1, and ¢ are the parameters of the critic network. The actor
updates the policy by adjusting parameters 6 in the direction suggested by the critic’s evaluations.
The update is guided by the gradient of the policy’s performance, estimated using the advantage
function: VyL(0) = E [V log mg(at|s:)As] , where Ay = Ry + vV (s¢11) — V(s¢) is the advantage
at time ¢, indicating how much better (or worse) the action a; is than the policy’s average at state s;.
Through these updates, the actor learns to choose actions yielding higher returns than predicted by
the critic, while the critic learns to make more accurate predictions about expected returns, forming a
feedback loop that enhances both policy and value estimation in the A2C framework.

3.2 ADDITIVE RULE ENSEMBLES

Additive rule ensembles are a class of probabilistic models (Friedman & Popescu, [2008) that
estimate the expected value of a target variable Y € R given an input vector X € R%, which is
expressed as E[Y | X = x| = u(f(x)), where, x is an instance of X, u : R — R is an inverse
link function mapping f(x) to the target variable Y, and f : R¢ — R is a linear combination of k
Boolean query functions:

k k ci
fz) = Zwi%‘(w) = sz‘ sz',j(ﬁc)~ ey
i=1 i=1 j=1

In equation w; (0 < ¢ < k) is the weight of the i-th Boolean query function g;
R? — {0,1}, and ¢; is a conjunction or product of ¢; Boolean propositions, where Dij €

{]I (sx(j) < sxl(j)> cjeld,len],se {il}} is a threshold function ([z] = {1,...,z} is the

index set). Each term w;q;(x) in equation E]can be represented as an ‘IF... THEN ...’ rule, where
the query ¢; defines the condition of the rule, and the weight w; is the rule’s consequent.

Under review as a conference paper at ICLR 2026

Boosting is an iterative approach for learning additive models (Schapirel |1990; Friedman) 2001}

Dembczynski et al.,2010). Given a training set of size n, {(x1,41), ..., (€n, yn)}, where x; is the
input and y; is the corresponding target, through approximately minimizing the empirical risk

N 1< Allw||?

b = 5 St + 20 @
boosting iteratively adds terms into the model and yields a sequence of models f(*), ..., f(*) The
last term of equationis the regularization term, w = (wy, ..., w;)T € R is the weight vector, and

A > 0 is the regularization parameter. Note that [is a loss function derived as shifted negative log
likelihood, measuring the cost of outputting f(x;) while the true value is y;.

4 METHODOLOGY

4.1 FRAMEWORK DESIGN

Actor implemented with Rule-Based Ensembles: We replace the neural network-based action
function approximation with an actor composed of additive rule ensembles. Let F(s) = {f,(s) :
Va € A} represent the collection of ensemble models for action a in the action space A at state s € S.
The size for A is m. The ensemble f,(s) for an action a predicts the expected advantages directly,
simplifying its expression as A(s,a) = f,(s). This prediction is based on a linear combination
of Boolean query functions, weighted by coefficients specific to each action a € A: f,(s) =
ijl Wa,jqa,;($), where w, ; are the coefficients for g, ;. For each action a, there are & Boolean

query functions ¢, j, (j =1...,k) specific to the action a. The actor’s policy, represented as 7, is
defined by the probability distribution over action values for a given state, which is derived from F

using the softmax function: 7(als) = %. The softmax function ensures that 7w(als) is

a proper probability distribution over the action space.

Critic implemented with Neural Network: In our framework, the critic functions similarly to
traditional actor-critic systems, leveraging the computational capabilities of neural networks. It serves
as a function approximator, implemented using a neural network that estimates the value of being in a
specific state s. This neural network, paramount in computing state-value functions, is parameterized
by weights ¢, and the value function it approximates is denoted by V;;(s). This design choice ensures
that our critic effectively harnesses the processing power of neural networks to deliver precise value
estimations for each state. The pseudocode for the algorithm is shown in Appendix [B]

4.2 PoLicy UPDATE

Critic Policy Update: The critic in our framework estimates the value function V'(s) using a neural
network, representing the expected return from a state s. The critic is updated by minimizing the
loss function, typically the mean squared error between the estimated value and the target value. The
target value is derived from the rewards obtained and the discounted values of subsequent states:

Ly(¢) =E [(Rt + YV (st41) — V¢(st))2} , where R, is the reward received after taking action a;

in state sy, -y is the discount factor, Vj,(s,+1) is the value estimate for the next state, and ¢ are the
parameters of the critic network.

Actor Update: The learning process involves iterative updates to the coefficient vector w, and the
query functions ¢, based on observed rewards and state transitions, aiming to refine the ensembles
for optimal decision-making. This approach leverages the interpretability of rule-based systems in
the actor’s policy formulation, enhancing transparency in complex or high-dimensional state spaces.
The advantage function, used by the actor for updates, is computed using the critic’s value function
and the immediate reward: A¢(s¢, a;) = Ry + vV (st4+1) — V(s¢). This expression calculates how
much better the current action a; is compared to the average action at state s; at time ¢, considering
the immediate reward and discounted future values. The actor updates the policy by adjusting the
parameters (w, q) in the direction suggested by the critic’s evaluations. The update is guided by
the gradient of the policy’s performance, which is estimated using the advantage function. The loss
function derived from the policy gradient is

VLx(w,q) = —E [V qlog m(ai|s:, w,q)A] + /\Vw,q||w||§. 3)

Under review as a conference paper at ICLR 2026

To make the loss function locally convex, we add a regularization term \||w||3 to the original loss,
where \ is the regularization parameter (see Appendix [C). The actor is updated by modifying each
rule ensemble model f, in accordance with the calculated policy gradient objective for each action. To
obtain the gradient for each action, we use softmax for action selection, taking the natural logarithm
of the policy yields:

Va logm(a|s;w,q) =waq, — log ZeXp(wa_,-qaj)' 4
j=1

Substituting equation [d]into equation 3} we have:

VL (w,q) = —E |VwqA: | Wa,qa, — logZexp(Wajqaj) + AV qllW]3. 5)
j=1

Treating w and q as a combined vector @ = (w; q), the gradient of Vo L(w, q), i.e., V2 L(w, q) can
be derived as

oVl A0 —
Vala(w,q) = OWads =-E LT Wa,qa, — log ;:1 exp(Wa, ;) =
exp(WaQa)
B A (H“Z‘“ TS qa,,.>>] = B [Vu g, A (laa = (a | 515w,).

Taking into account the two distinct situations @ = a; and a # ay, the policy gradient for each rule
ensemble is as follows:

1. When the ensemble model f, corresponds to the action executed in the current step, i.e.,
a = a¢,
v?ua,qaL/\(wU«’ Ga) = E[=Vu, g, A(st,a¢) (1 — m(as]s))] ; (6)
2. When the ensemble model f,, does not correspond to the action selected by the actor at that
time step, i.e., a # ag,

V2 La(wq,qa) =E [Vwe,qa Alst, ar)m(ar]s))] - @)

Wa,,qa

This distinction ensures ensemble updates properly align with the actions taken, enabling targeted
adjustments that enhance the actor’s policy based on observed outcomes and predicted advantages.

Detailed Rule Update:

Step I: In time-step ¢, for f,, we first select a new query ¢; from a candidate set Q by solving
= b . (tfl) 8
¢ = arg max obj(q; o' V), (®)

where we adopt OGB (Yang et al| [2024) for the objective function. Let ¢q =
(q(x1),...,q(x,))" € {0,1}" is the query vector of the query ¢, and g1 =
(8L,\(f(5t71))/8f(5t71)(wl), ce 8L,\(f(5t71))/8f(5t71)(wn))T is the gradient vector of the empir-
ical risk with respect to the predicted values of fétil). g(ffl) and g, are the projection of
g and q onto the orthogonal complement of the range of Q;_1 = (qi,...,q;_1)7, where
g = (¢i(z1),...,qi(xn))T € {0,1}" is the query vector of the query ¢; fori = 1,...,t — 1.
We express the objective function as follows: obj(g; fétil)) = 0bjoe,(9) = |qu(f71) [/llgL|l- The
candidate query set Q comprises all possible conjunctions of propositions, where each proposition
corresponds to a condition that splits the attribute space based on attribute values of given data points
(e.g., threshold-based splits). The objective function is maximized using greedy or beam search.

Step 2: After adding the updated new query, we re-calculate the optimal weight vector by solving

w; = arg min IAO\ (Qt,w), 9)
weR?

Under review as a conference paper at ICLR 2026

where Q; = Q-1 U q; is the n x ¢ matrix with the outputs of the selected queries.

Step 3: After there are k rules in the system, instead of continuing to add a new rule for each time,
we adopt the post-processing replacement step of boosting algorithm (Shalev-Shwartz et al., [2010).
In each iteration, we remove one rule with minimal absolute weight, leaving & — 1 rules in the
model: k* = argmin<,<g|w,|, and remove the query function g together with its coefficient

4+, thereby reducing the ensemble to f(*°) with k — 1 terms. Then, we need to recompute
the weight vector w;,- = (wr)fE (k] ([k]={1.... k}) of f*7) along with the updated query

functions {q, }rcik],rshs: Wi- = arg mingcge—1 Ly (Qkf,w), where Q- = {q }refk],rkr 18
the n x (k — 1) matrix with the outputs of the selected queries.

Step 4. After this, repeat Step I to add a new rule to the system. In the end, the weights of all the k
rules are recalculated (same as[8|and [J)) in Step 2. If the expected loss does not decrease after the
post-processing procedure, the model before post-processing is restored. The performance of the
post-processing with fully-corrective boosting is guaranteed by the following theorem.

4.3 THEORETICAL ANALYSIS

We present a comprehensive theoretical convergence analysis of our NSAC algorithm. Under standard
assumptions, our algorithm converges to a local optimum. We assume the following conditions:

Assumption 4.1 (Step Sizes). Assume (o) be the learning rate for actor and let oy be the learning
rate for the critic. The sequences {ay (%)} and {c(w,q)(t)} are positive and satisfy

ZO%(= 00, Za(w q) oo,z —|—awq)(t)2) < oo, lim M =0,
t=0

i—o t—o0 Qg (t)

so that the critic update occurs on a faster timescale.

Assumption 4.2 (Markovian Sampling & Ergodicity). We assume mild mixing or ergodicity con-
ditions ensuring that each state-action pair is visited infinitely often in the limit, and that standard
stochastic approximation methods apply.

Assumption 4.3. We assume a Lipschitz-smooth approximator for V,(s). We assume the “compat-
ibility” holds or that any residual bias in the critic’s estimate does not prevent recovering the true
gradient direction in expectation.

Theorem 4.4. (Theorem 2.9 in (Shalev-Shwartz et al.l|2010)) Let L(f) be the risk function defined by
a B-smooth loss function, where the expectation is with respect to an arbitrary distribution over X XY
Let A > 0 be a scalar, f is an additive rule ensemble with k rules, f is a reference rule ensemble with
ko rules, if k +1 > ko(1 + 16 /\?), and assume that L is (k + 1 + ko, \)-sparsely-strongly convex.
Additionally, let T be an integer such that

1- L(0) — L(f

LA+ 1=ko) (L) = L)Y
20 €

Then if the fully corrective boosting is run for k iterations and its last predictor is provided as input

for the post-processing replacement procedure, which is then run for T iterations, then when the
procedure terminates at time t, we have L(f®) — L(f) < e.

(10)

Theorem 4.5. Let ¢ be the fixed parameters of a critic, inducing a fixed value function Vy(s) for each
state s € S. Let f be a parameterized function (e.g., the actor’s approximation to the advantage)
that is updated iteratively according to the update rule, the sequence { fi,} converges to f.

Proof. We first calculate the risk for rule ensembles for f and f;, based on the loss functions: L(f) =
—log m(aslse)f and L(fy) = —log 7y, (at|st) fi, respectively. When R(-) is error bounded, there
exists a lower bound with a constant v > 0 satisfying |L(f1) — L(f2)| > vIf1 = fall,
f1 and f5 in the parameter space. Based on Theorem [4.4] when equation m is satisfied, we have
Ife—fl < 2 ‘L fr) = L(f)| < <. Hence, bounding the difference in risk [L(fx) — L(f f)| by e

forces the parameter distance || f — f|| to lie within £ O

Under review as a conference paper at ICLR 2026

Theorem 4.6 (Convergence of NSAC). Ler {(wy, qt), ¢+ } be the sequence of actor and critic param-
eters updated via Egs. equation[6f-equation|[7lunder the Assumptions Then {(w¢, qt), ¢t}
converges almost surely to a set of stationary points of the associated ordinary differential equa-
tion (ODE) system: ¢ = F(¢; (w,q)), (w,q) = G((w,q); ¢) where F represents the temporal-
difference (critic) dynamics, and G represents the policy-gradient (actor) dynamics. In particular,
(w, q) converges to a local optimum of J(w, q), where J is the expected cumulative reward.

Proof. We employ the concepts of Two-timescale theorems (Borkar & Meyn, [2000; |Wu et al.| [2020)
and Theorem [4.5|for the proof. Please refer to Appendix [D]for the detailed proof of convergence. [J

Computational Complexity: This algorithm has a time complexity of O(d?nk) per rule, where d
is the number of attributes. It performs at most d iterations to construct a single rule (adding one
attribute per iteration), and in each iteration, it evaluates all d attributes as candidates. The bottleneck
lies in computing the orthogonal gradient boosting objective obj,, () = | a%ql/(llgL|| + €) for
each candidate, which requires O(nk) operations due to the orthogonal projection computation:
g1 = g — BBTg. This represents a k-fold increase in computational cost over standard gradient
boosting (which has complexity O(d?n)). The orthogonalization overhead is essential for the
algorithm’s ability to select more general rules and achieve better risk-complexity trade-offs in
practice. Fully-corrective weight calculation has a complexity of O(k?n) from solving a convex
optimization problem that re-optimizes all rule weights after adding each new rule. The k2 scaling
comes from computing the Hessian on the k£ x k& Gram matrix Q7 (). While more expensive than
stage-wise approaches, this cost is manageable for small ensemble sizes typically in interpretable
rule learning.

5 EXPERIMENTS AND RESULTS

We evaluated the performance of NSAC in five diverse RL environments: MountainCar-v0, Acrobot-
vl, CartPole-v1, Blackjack-v1, and Postman (Sutton, 2018} Dietterich, 2000). We also evaluated
our NSAC algorithm on a challenging, real-world HVAC control benchmark using Sinergym. This
environment models a multi-zone office building with coupled thermal dynamics, where each zone’s
temperature, humidity, and carbon dioxide concentration evolve according to nonlinear heat-transfer
and air-exchange equations. Control actions, such as heating and cooling set points, must be
chosen every 15 minutes to balance energy consumption against comfort constraints under stochastic
disturbances (varying weather, occupancy schedules) and long planning horizons. Our reward
function balances occupant comfort against energy use, encouraging high comfort with minimal
energy consumption. The high dimensionality of the state—action space, the strong inter-zone
couplings, and the requirement to satisfy strict comfort bands make this task a great testbed for our
algorithm. We conducted a comprehensive performance comparison against established benchmark
algorithms, including Q-Tabular (Sutton, 2018), DQN (Mnih, [2013)), PPO (Schulman et al., [2017)),
and A2C (Mnih et al. 2016)), all implemented using Stable-Baselines3 (Raffin et al.l 2021). We
additionally included Rainbow (Hessel et al., 2018), SDSAC (Kong et al.,[2021)), and SACBBF (Zhang
et al.,[2024)) as deep RL baselines. To cover symbolic approaches, we also evaluated three interpretable
methods: SYMPOL (Marton et al.l [2024), 74g..-D (Qiu & Zhu, |2022), and D-SDT (Silva et al.,
2020). For a fair comparison, we use the Gym environments in their original form without any
modifications. For each algorithm, we apply the recommended optimal parameters provided by the
RLzoo (Raffin & contributors, [2020) with Stable Baselines 3.

Performance Evaluation: As shown in Table[I] NSAC demonstrates strong and reliable performance
across a wide spectrum of tasks, outperforming or matching both classic deep RL methods and
symbolic approaches. Compared with classical methods such as Q-learning, DQN, A2C, PPO, SAC
variants, and Rainbow, NSAC achieves consistently higher returns with lower variance, particularly
in settings that demand stability and scalability. Unlike value-based methods that can be brittle in
continuous or high-dimensional domains, NSAC maintains robustness while still being competitive
in simpler benchmarks. Against symbolic methods such as SYMPOL, 74p,.-D, and D-SDT, NSAC
shows even clearer advantages: while symbolic policies can excel on select tasks due to strong
inductive biases, they often suffer from collapse or sharp degradation when scaled, whereas NSAC
delivers stable performance across all environments. These results highlight NSAC’s ability to
combine the adaptability and generalization strength of neural methods with symbolic reliability.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Various Methods with Our Approach Across RL Environments.

Environment | Q-table DQN A2C PPO SDSAC SACBBF Rainbow | SYMPOL 7,g,.-D D-SDT | NSAC

MCarv0 -147.68 -135.07 -157.51 -15040 -141.76 -139.23 -137.76 200 200 -200 -132.25
ar-v +952 F1642 +37.12 +405 +1391 +17.62 =+39.47 +0 +0 +0 | +16.08
Acrobot.yl | 20101 -112.68 98931 -82.629 -85.124 -88.708 -89.753 | -80.02 -42547 21231 | -87.714
crobot-v +1332 +£893 42952 F£279 +782 +£7.102 +898 | £428 45681 +419 | £695
CartPolevl | 21951 16100 45351 49873 48761 481.07 498.53 500 109 498.53 | 499.14
arttole-vl | + 692 +552 +£925 4+24 +£271 £1076 +2.12 +0 +768 4212 | £191
Blackiack.yl | -0-06 -0.06 -0.07 -0.06 -0.07 -0.06 -0.06 -0.06 -0.08 -0.08 -0.06
ackjack-vl| +002 4002 £001 +001 £002 +001 +£002 | £001 £+001 +0.02 | 001
Post 3524 3191 2423 34.35 34.91 31.12 34.67 2534 15.23 18.91 27.14
ostman +206 +£571 £3.09 +382 E£28 +£377 +468 | £342 +£491 +628 | +£3.38
HVAC-1Zone| Na 1445367 -1334562 -1865276 -1387692 -1423573 -1465732|-1478783 -1895286 -1862537 | -1251321
+20183 F 148658 + 135683 =+ 145619 + 34825 =+ 785732| 4 65293 =+ 42873 + 29763 | + 85241
HVAC-5Z NA -1876253 -1984843 -1676288 -1582742 -1547279 -1602142 | -1586352 -1969635 -1876374 | -1463601
->Zone + 198263 = 287237 + 462837 =+ 227221 F 241625 -+ 342612| + 65792 =+ 45241 + 33468 |+ 121678

Note. Bold indicates the best performance across all benchmarks. Underscore denotes the second-best performance. Red highlights the
best-performing method among symbolic-based approaches.

This makes it a practical and effective alternative that closes the gap between the strengths of classic
RL and symbolic reasoning while avoiding their respective weaknesses.

Interpretability Evaluation: We also evaluate the interpretability of our method. Common evalua-
tion metrics for interpretable models include fidelity, comprehensibility, and cognitive load. In our
approach, measuring fidelity is unnecessary because it is primarily relevant in post-hoc explanation
settings—where one model attempts to approximate and explain the behavior of another. In contrast,
our model is inherently self-explainable, meaning it achieves 100% fidelity by design, as the decisions
made by the model directly reflect its underlying logic. For comprehensibility and cognitive load, our
rule-based system offers a structured and measurable format. The additive rule ensembles consist
only of boolean propositions formed through simple comparisons (e.g., feature > threshold) and
logical conjunctions. In general, comprehensibility is negatively correlated with model complexity,
while cognitive load increases with complexity. We define model complexity in terms of the total
number of rules, conditions, and logical operations. Models with more parameters and operations
tend to be harder to understand and place a greater cognitive burden. Since the performance of
Tafine-D, and D-SDT is not directly comparable, we instead evaluate them in terms of interpretability.
Using model size as a proxy for complexity, we observe that across all environments our models
require, on average, 61.23 parameters to achieve the reported performance. In contrast, SYMPOL
uses 95.6 parameters (approximately one per node).

Human Interpretability Analysis - MountainCar: In this section, we use the MountainCar-v0
environments from OpenAl Gym as examples to illustrate the interpretability of our proposed
reinforcement learning algorithm. The Mountain Car environment involves a car situated between
two hills, tasked with reaching the flag at the top of the right hill. Due to insufficient engine power,
the car must build momentum by oscillating back and forth. The system state is characterized by
two continuous variables: the car’s position (p) and its velocity (v). The agent performs one of three
discrete actions: push left, do noth-
ing, or push right. For each action, a
set of rules evaluate the current state .
by applying specific conditions based = s o< 04t v oant
on p and v, assigning correspond- ” o ace Fules for o acd

ing scores that influence the decision-

making process. Consider a typical -
state where p = —0.5 (slightly to

the left of the center) and v = 0.02
(moving rightward). For the action Do
Nothing, one rule imposes a penalty >
of —13.4848 since the velocity v ex-
ceeds a small positive threshold, dis-
couraging inaction that could result in
insufficient momentum to overcome -0 0 50 R
the hill. For the action Push Left, only
one rule applies, which assigns a posi-

rules for left

left

[25311f v =-0.001
[10,568 if p<-0.502
3 51.035if v=-0.004

14514 if p=-0.581 & v =0.007 & v =-0.001

19.725if p=-0.510 & v £0.007 & v = -0.006
[-13.485if v20.001

[24220 if p=-0.485 & v < 0.000 & v = -0.009
[23371ifv<0.003

[24743 p =-0.402 & v £0.000

[-26.515 if p=-0.631 & v = 0.007 & v =-0.006

rules for right

[26215 if p=-0.510 & v =0.007
[27.518if p=-0.402 & v <0.001

21307 if v=0.001

18.688 if v = -0.001

19.766 if v= 0.000

213411 p=-0.633

11775 if p=-0.577 & v = 0.001
[16511 if v=0.000

-0.07 +
-1.20 -0.84 -0.48 -0.12 0.24 0.60 -1.20 -0.84 -0.48 -0.12 0.24 0.60
P P

Figure 2: Visual representation of the rules for MountainCar.

Under review as a conference paper at ICLR 2026

tive score as the velocity v is above a minimal threshold, encouraging a slight push left to maintain
momentum without overcompensating. Conversely, the action Push Right activates multiple rules:
three contribute 4-57.59 because the velocity v surpasses different threshold values for the correspond-
ing rules, strongly encouraging a push right to build momentum; another rule provides +11.7750
since both the position p > —0.5768 and velocity is positive are satisfied, indicating that a rightward
push is beneficial without risking overshooting the valley; There is also one rule contributing an
additional +1.3610 because the position p < —0.4494, p > —0.8744, and v < 0.0234 hold true,
subtly encouraging a push right to maintain the car within a stable range. The cumulative score for
Push Right thus amounts to +70.7247, clearly favoring this action. This comprehensive rule-based
scoring system demonstrates that, for the given state (p = —0.5, v = 0.02), pushing right is the
optimal choice as it significantly builds the necessary momentum to ascend the hill, outweighing the
moderate incentives to push left and the discouragement from doing nothing. We have also visualized
the rules of MountainCar in Figure 2] with all rules presented in Appendix [[] One can easily identify
the corresponding areas associated with a state and locate the applicable rules.

@ Action: htg=17,clg=26 £ Action: htg=18, clg=28 ¢ Action: htg=22, clg=26 ~ Human Interpretability Analysis -
g o g o g o ™ Real Time HVAC control: Along-
£ £ € .

g) 2 | .. side standard Gym benchmarks, we
o o o .

£ r) £ w0 » evaluated our algorithm on a challeng-
® doortemperamre © indoortemperature © indoor temperature w ing, real-world HVAC control prob-

Action: htg=18, clg=24 Action: htg=16, clg=26

-10 0 10

Action: htg=15,
I

0
-10 :‘

18 20 22

~26 = lem in a biological laboratory, where
maintaining temperature within a nar-
row band is vital to preserving the
viability of cultured viruses.In such

®

8

day of month

indoor temperature
outdoor temperature

°

18 20 22 24 24

indoor temperature outdoor temperature indoor temperature Safety-CI’itical Settings, intel‘pretabﬂity
is crucial: when RL governs biocon-
Figure 3: Visualization of the HVAC Rules tainment HVAC systems, even minor

errors can destroy cultures or compromise containment. As shown in Table[T} our rule-based actor
approach delivers performance nearly equal to—or even surpassing—that of traditional baseline
methods. More than this, our proposed algorithm also delivers interpretability by explaining why
and how each decision is made in human-understandable language, enabling users to assess the
correctness of its rules. Consider the very first rule as an example: if outdoor temperature < —4.5; htg
setpoint < 20.0; air temperature < 21.1503, and HVAC electricity demand rate > 1452.0250(kW),
+37.6076 What it means, in plain English: When all four of these conditions hold: 1. Outdoor
temperature is extremely low; 2. The heating setpoint remains at a moderate level; 3. The indoor air
temperature is still below the desired comfort threshold; 4. The HVAC system is already drawing
high power, then this rule “fires,” adding +37.6 to the score for choosing (htg = 15 degree, clg =26
degree)—i.e., heat turns on below 15 °C and cooling above 26 °C. A large positive weight like +37.6
signifies that, in this scenario, raising the heating setpoint to 15 °C is especially beneficial. Based on
visualized the rules of HVAC control in Figure 3] when it’s freezing outside, your target heating level
is still under typical comfort, the room hasn’t yet warmed up, and the system is working hard—so
raising the heat setpoint to 15 degree markedly improves comfort, which this rule captures (see details
in Appendix [J).

6 DISCUSSION AND CONCLUSION

Like all other self-interpretable methods, there is an inherent trade-off between interpretability and
performance. A more complex state space may require a greater number of rules to describe it, and
while an increased rule count can potentially enhance performance, it may significantly reduce inter-
pretability. The optimal number of rules varies, depending on specific environments and applications.
We may need to carefully select the right number of rules for each task, just like fine-tuning a neural
network’s hyperparameters. However, based on our experimental results, 10-15 rules are sufficient to
address most scenarios. In conclusion, this paper introduces a neural+symbolic approach within the
actor-critic framework. This method leverages both the robust function approximation capabilities of
neural networks critic and the interpretability provided by rule-based actor models. Users can trace
how and why the model makes each decision and evaluate its reasoning. In the future, we plan to
assess the scalability of our method in more complex environments across different domains, such as
robotics, finance, healthcare, or autonomous driving, and adapt with other actor-critic frameworks,
such as Soft Actor-Critic.

Under review as a conference paper at ICLR 2026

ETHICAL STATEMENT

This work does not involve human subjects, personal data, or identifiable information. All experiments
are conducted entirely in simulated environments, including stylized energy-system tasks designed
to probe safety and performance trade-offs. These simulations do not interface with or control any
real-world infrastructure. Our proposed NSAC framework aims to improve the interpretability and
trustworthiness of reinforcement learning systems by combining symbolic rules with statistical learn-
ing. This direction supports the broader goal of promoting transparency in Al decision-making. While
the symbolic actor promotes explainability, we acknowledge the importance of careful rule design to
avoid unintended consequences in safety-critical domains. However, our current implementation is
strictly research-oriented and intended for controlled, offline evaluation.

REPRODUCIBILITY STATEMENT

To support reproducibility, we include comprehensive details of our training procedures, hyperparam-
eter settings, and evaluation metrics within the main text and appendix. Upon publication, we will
release the full codebase, including: Random seeds and environment specifications, Training scripts
to replicate all experiments, Plotting utilities to reproduce all figures. All results can be reproduced
using a single command-line interface without manual intervention. Pretrained models and logs will
also be provided to facilitate benchmarking and verification.

REFERENCES

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. In NeurIPS, 2018.

José Manuel Benitez, Juan Luis Castro, and Ignacio Requena. Are artificial neural networks black
boxes? IEEE Transactions on neural networks, 8(5):1156-1164, 1997.

Vivek S Borkar and Sean P Meyn. The ode method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447-469, 2000.

Davide Castelvecchi. Can we open the black box of ai? Nature News, 538(7623):20, 2016.

Yannick Coppens, Konstantinos Efthymiadis, Tom Lenaerts, and Ann Nowé. Distilling deep rein-
forcement learning policies in soft decision trees. In IJCAI Workshop on Explainable Artificial
Intelligence (XAI), 2019.

Krzysztof Dembczyriski, Wojciech Kotlowski, and Roman Stowiniski. Ender: a statistical framework
for boosting decision rules. Data Mining and Knowledge Discovery, 21(1):52-90, 2010.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research, 13:227-303, 2000.

Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li, and Ruitong Huang. Cdt:
Cascading decision trees for explainable reinforcement learning. arXiv preprint arXiv:2011.07553,
2020.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(Apr):503-556, 2005.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189-1232, 2001.

Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. The annals of
applied statistics, 2(3):916-954, 2008.

Artur d’Avila Garcez, Aimore Resende Riquetti Dutra, and Eduardo Alonso. Towards symbolic
reinforcement learning with common sense. arXiv preprint arXiv:1804.08597, 2018.

10

Under review as a conference paper at ICLR 2026

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2015a.

Ujjwal Das Gupta, Erik Talvitie, and Michael Bowling. Policy tree: Adaptive representation for
policy gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015b.

Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement learning
by genetic programming. Engineering Applications of Artificial Intelligence, 76:158-169, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Leédn Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A Mcllraith. Symbolic plans as high-level in-
structions for reinforcement learning. In Proceedings of the international conference on automated
planning and scheduling, volume 30, pp. 540-550, 2020.

Yiting Kong, Yang Guan, Jingliang Duan, Shengbo Eben Li, Qi Sun, and Bingbing Nie. Decision-
making under on-ramp merge scenarios by distributional soft actor-critic algorithm. arXiv preprint
arXiv:2103.04535, 2021.

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep rein-
forcement learning. In International Conference on Machine Learning, pp. 5979-5989. PMLR,
2021.

Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforcement
learning with linear model u-trees. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings,
Part I 18, pp. 414-429. Springer, 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. Sdrl: interpretable and data-efficient
deep reinforcement learning leveraging symbolic planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 2970-2977, 2019.

Sascha Marton, Tim Grams, Florian Vogt, Stefan Liidtke, Christian Bartelt, and Heiner Stucken-
schmidt. Mitigating information loss in tree-based reinforcement learning via direct optimization.
arXiv preprint arXiv:2408.08761, 2024.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928-1937. PmLR, 2016.

W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National Academy
of Sciences, 116(44):22071-22080, 2019.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles. In The Tenth
International Conference on Learning Representations, 2022.

Antonin Raffin and contributors. RL Baselines3 Zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020. Accessed: YYYY-MM-DD.

11

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

Under review as a conference paper at ICLR 2026

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. URL |http://jmlr.org/papers/v22/
20-1364.html.

Aaron M Roth, Nicholay Topin, Pooyan Jamshidi, and Manuela Veloso. Conservative g-improvement:
Reinforcement learning for an interpretable decision-tree policy. arXiv preprint arXiv:1907.01180,
2019.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206-215, 2019.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in optimization
problems with sparsity constraints. STAM Journal on Optimization, 20(6):2807-2832, 2010.

Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Optimization
methods for interpretable differentiable decision trees applied to reinforcement learning. In
International conference on artificial intelligence and statistics, pp. 1855-1865. PMLR, 2020.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Yebin Tao, Lu Wang, and Daniel Almirall. Tree-based reinforcement learning for estimating optimal
dynamic treatment regimes. The annals of applied statistics, 12(3):1914, 2018.

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617-17628, 2020.

Fan Yang, Pierre Le Bodic, Michael Kamp, and Mario Boley. Orthogonal gradient boosting for simpler
additive rule ensembles. In International Conference on Artificial Intelligence and Statistics, pp.
1117-1125. PMLR, 2024.

Le Zhang, Yong Gu, Xin Zhao, Yanshuo Zhang, Shu Zhao, Yifei Jin, and Xinxin Wu. Generalizing
soft actor-critic algorithms to discrete action spaces. In Chinese Conference on Pattern Recognition
and Computer Vision (PRCV), pp. 34—49. Springer, 2024.

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Under review as a conference paper at ICLR 2026

A LIMITATION AND FUTURE WORK

A fundamental limitation of our approach lies in the natural trade-off between interpretability and
performance. While our symbolic, rule-based actor offers clear advantages in terms of transparency
and simulatability, this structure inherently constrains policy expressiveness compared to fully neural
counterparts—particularly in complex, high-dimensional environments. Although NSAC achieves
competitive performance across benchmark tasks, there may be scenarios where its symbolic policy
cannot match the nuanced optimisation achievable by deep learning-based policies.

Moreover, interpretability is not a binary property but exists on a spectrum. Different symbolic
approaches offer varying degrees of clarity, modularity, and simulatability, often depending on the
complexity of the rule structure, the nature of the environment, and the domain-specific knowledge
embedded within the rules. As such, the perceived interpretability of a symbolic method may vary
across users and use cases. Practitioners must therefore carefully consider the type and level of
interpretability required for their application—balancing traceability with scalability—when choosing
or designing a symbolic component. Future work may explore adaptive symbolic structures or hybrid
neuro-symbolic policy representations to better navigate this trade-off across diverse tasks.

B ALGORITHM

Algorithm 1 Neural+Symbolic Actor-Critic Algorithm

1: Initialize actor with each action rule ensemble function féo) =0
2: Initialize critic network V (s, ¢) with parameters ¢

3: Initialize environment and observe initial state s

4: repeat

5: for each step of episode do

6: Choose action a ~ 7(als,)
7: Execute action a in the environment
8: Observe reward r and new state s’
9: Calculate 6 = r + vV (s',0) — V (s, d)
10: Update critic by minimizing L(¢) = §2
11: for all a; in action space do
12: if a; = a then
13: Calculate policy gradient g;: —V o(1 — log w(als, wT'q))d for f,
14: else
15: Calculate policy gradient g;: Vi o log w(a|s, w?'q)d for f,
16: end if
17: use Rule Replacement Steps and policy gradient to find a new query for f,
18: use OGB to update the for f,
19: end for
20: s+ s
21: end for
22: if end of episode then
23: Reset environment and observe initial state s
24: endif

25: until convergence or maximum episodes reached.

C ACTOR’S L0OSS WITH L2 REGULARIZATION

Theorem C.1 (Local Strong Convexity of Actor’s Loss with L2 Regularization). Consider the actor’s
loss function in an A2C framework defined as

” A
L(0) = —Eonpm army [A7 (s, @) log mo(als)] + 5161,
where \ > 0 is the regularization coefficient for L2 regularization.

We assume:

13

Under review as a conference paper at ICLR 2026

Algorithm 2 Orthogonal Gradient Boosting (OGB)

7:

(o]

AN A R ol ey

: Input: data (z;, y;), number of rules k and g;
O =9
cfort=1,...,kdo
¢ = argmaxy |gT,ql/lqull
w = argmingy, _ w,)ere La(X)-; w595)
FOO) =g)+ +wP ()
end for
: Output:)

Algorithm 3 Rule Replacement Steps

Input: data (x;,y;), ¢ = 1,...,n, original rule ensemble with % rules f,go), maximum iteration
number 7" and g
fort=1,...,Tdo

Find the index of the smallest weight absolute value r = argmin;eq,.. |w(t_1)|

ek (W
w1 = arg ming,egr—1 L icm—(ry w@(t_l)‘ﬁ)

F(t—1 t—1)
YO = Siew ot Ve

Find the query q,(:) = arg max, Hngl Il/laL]

wt) = arg min., cge ﬁA(ZiG[k],{T} w;iq; + qug))
Letd = La(/®) = La(Siepg- gy 0 + wg)
ifo)0 then ()) (®)

fr’ = Yiem—py Wi @+ wrgr
else

break
end if

end for
Output: f ,gt)

14

Under review as a conference paper at ICLR 2026

Action

Update the Actor
Rule Ensembles

Update the Critic
Network

/6ritic
States

Value Function

3_’ Step 3: Based on the gradient calculated
with TD error, find a new query that could
maximize the OGB objective function.

Step 1: Remove the rule with minimum
weight.

Step 2: Recalculate the weight for all the
rules to minimize the policy loss.

Reward

‘ Step 4: Recalculate the weight for all the
rules to minimize the policy loss.

— Environment o«

Figure 4: The NSAC Algorithm.

1. The policy mg(a|s) is twice continuously differentiable with respect to 0;

2. At a local minimum 0%, the Hessian of the unregularized loss Lyye,(0) =
—E[A™(s,a) log Ty (als)] satisfies V? Luneq (0%) = 0 (positive semi-definite);

3. The regularization coefficient \ is chosen such that A > 0.

Then, there exists a neighborhood U around 0* where the regularized loss L(0) is strongly convex.
Specifically, within U,
V2L(0) = M,

where I is the identity matrix in R,

Proof. We aim to show that the regularized loss function L(#) is strongly convex in a neighborhood
around 6*.

The regularized loss can be expressed as the sum of the unregularized loss and the L2 regularization
term:

L(0) = Lunreg (0) + Lreg (6),
where
A2
Lieg(6) = 5 110]%.
Compute the gradient and Hessian of L(6):
VL(0) = VLuneg(0) + A0,
V2L(0) = V2 Lynreg (0) + M.
At the local minimum 6*, by assumption:
v2Lunreg(e*) = 0.

Therefore,
V2L(0*) = V? Lyneg (0%) + A = AI.

15

Under review as a conference paper at ICLR 2026

This shows that the Hessian of the regularized loss at 6 is positive definite, as A > 0. Since mg(a|s) is
twice continuously differentiable, VQLumeg(Q) is continuous in #. Hence, there exists a neighborhood
U around 0* where:
V2 Luneg(0) = 0, V0 € U.

Within U,

V2L(0) = V? Lynreg (0) + A = AI.
This inequality holds because VQLunreg(G) = 0 and M is positive definite. Since V2L(0) = I for
all @ € U, the loss function L(0) is **strongly convex** in the neighborhood &/ around 6* with
strong convexity parameter \.

O

Theorem C.2 (Local Error Bound under Local Strong Convexity). Let L : R — R be continuously

differentiable and p-strongly convex in a neighborhood N of some point f € R% In other words,
there exists p > 0 such that for all f € N,

A M A
L(f) = L(f) = SIIf—=fI*
Then, for every f in that neighborhood N,

. 2 N
1751 < 2 - L.
Proof. Since R is p-strongly convex in the neighborhood A around f , we have the inequality
A /J/ ~
L) - Uf) = BIf-fIE vien
Rearrange this to obtain
=17 <

Taking the square root of both sides yields

1741 < 2 (2 - 1),

Thus, in the local region A, a small gap in the objective value L(f) — L(f) forces f to be close to f.
This is precisely the local error-bound property. O

D PROOF FOR CONVERGENCE OF OUR PROPOSED ALGORITHM

Theorem D.1 (Convergence of our Proposed Algorithm). Let {(wy, gt), ¢+ } be the sequence of actor

and critic parameters updated via equation [6l-equation [/l under the Assumptions Then

{(w¢, qt), ¢+ } converges almost surely to a set of stationary points of the associated ODE system:
{05 = F(¢; (w,q)),

where F represents the temporal-difference (critic) dynamics and G represents the policy gradient
(actor) dynamics. In particular, (w, q) converges to a local optimum of J(w, q).

Proof. By Assumption (w.q(t)/as(t) = 0. Hence, on the “fast” timescale, we may treat 6; as
if it were quasi-static. Then the critic update is a standard temporal-difference learning procedure (or
mean-squared error minimization) for a fixed policy 7w q)-

From classical TD-learning results (or generalized linear function approximation theory), we know
that ¢; converges to the set

{¢"(w,q) : F(¢*(w,q)); (w,q) = 0},

provided that vy (¢) diminishes appropriately and under the usual conditions.

16

Under review as a conference paper at ICLR 2026

Formally, one shows that for each fixed (w, q), the ODE
¢ =F(¢; (W,q))

has a globally asymptotically stable equilibrium at ¢*(w, q). By the Two-timescale lemma (Borkar
& Meynl 20005 Wu et al., [2020), the actual sequence ¢, tracks this stable equilibrium as ¢ — co.

On the slower timescale, we consider the actor update:

(W,a)iy1 = (W, q)s + a(w,q)(t) v(w,q) 10g7f(w,<:1)t(at \ St)A\t~

As ¢, converges quickly to ¢*(w, q), the advantage estimate A, converges to A™(w.a) (s, a;). Hence,
up to diminishing approximation errors, the gradient update for our rule based model is driven from
the true policy gradient from the policy gradient theorem. Based on Theorem [4.3] ignoring the small

the errors, we have
G((W7 q)7 ¢* (W7 q)) = qu‘](w7 q)

Putting the fast and slow processes together, we return to the coupled ODE; By the previous steps:

F(¢; (w,q)) =0 implies ¢ = ¢*, (11)
G((w,q); ¢") = VugJ(W,q). (12)

Hence, an equilibrium (¢*, (w, q)) of the ODE occurs precisely, when

F(¢*;(w,q)) =0 and G((w,q); ¢*) =0,
which in turn implies
VJ(w,q) =0, if the advantage estimation is unbiased.

Therefore, the equilibrium corresponds to a stationary point of J(w, ¢). Under mild conditions (e.g.,
local convexity/concavity arguments or strict monotonicity), one concludes that the limit points are
local maxima of J(w, q).

We now invoke the standard Two-timescale theorems (Borkar & Meyn, 2000; [Wu et al.| [2020). then
the combined updates converge to an internally consistent equilibrium of the ODE. By the structure
of the ODE, the equilibrium is a stationary point and local optimal of J(w, q). [

E HYBRID WARM START FOR ACCELERATING CONVERGENCE

In NSAC, we also adopt a novel hybrid training strategy that incorporates both neural network-based
actor and rule-based actor. This hybrid strategy seeks to merge the quick learning attributes of neural
networks with the clear and straightforward nature of rule-based systems.

Step 1: We employ a traditional neural network-based actor-critic model to train the system. In this
phase, both the actor and the critic are implemented as neural networks, leveraging their ability to
approximate complex functions and capture high-dimensional patterns in the data. The model is
trained for a certain number of episodes but not until complete convergence. This pre-training phase
is designed to establish a preliminary value function estimation that captures essential features of the
optimal strategies in a computationally efficient manner.

Step 2: The neural network-based actor is replaced with the rule ensemble actor. This rule-based
system is designed to provide greater transparency and interpretability in decision-making. With the
rule ensemble actor in place, training continues, utilizing the previously trained neural network critic.
The critic assists the new actor in refining its policy through ongoing feedback and value estimation.

E.1 ABLATION STUDY

In our ablation study, we explored how variations in the rule count and the implementation of a warm
start influenced our method. We conducted tests in the CartPole-v1 environment under various rule
configurations, specifically using 5, 10, 12, 20, 30, 40, and 50 rules per action. Each configuration
was tested both with and without a warm start.

17

Under review as a conference paper at ICLR 2026

EEm warm start
400 - No warm start

200 1
0 .
5 10 12 20 30 40 50

Number of Rules

Rewards

Figure 5: Ablation study on different numbers of rules and warm start.

1. Number of Rules: As depicted in Figure |5} the model configured with 12 rules per action
and a warm start yields the highest reward. This outcome suggests that having 12 rules per action
provides the model with sufficient flexibility to effectively capture the essential dynamics of the
environment without being overly simplistic. Employing fewer than 10 rules, such as 5, may not
offer adequate coverage to manage the environment’s complexity, resulting in inferior performance.
Conversely, a larger number of rules may lead the model to overfit the training data, picking up
on noise or irrelevant patterns and diminishing its generalizability to new contexts. The findings
from this ablation study highlight a critical balance between the number of rules and overall model
performance. They demonstrate that merely increasing the number of rules does not invariably
improve performance, as an excess can lead to complexity and overfitting, whereas too few can
restrict the model’s performance.

2. Warm Start: When the number of rules is small, the model’s representational capability is limited,
so the initial conditions (e.g., the warm start) become more critical. A warm start can guide the model
toward better solutions early on, helping it learn an effective policy faster and avoid getting stuck
in poor local optima. In contrast, with a larger rule set, the model has greater capacity to explore
various configurations. In such cases, relying on an external initialization can sometimes constrain
exploration, preventing the model from fully leveraging its increased flexibility. As a result, the
model without a warm start may discover a better configuration on its own when there are many rules
to learn from.

F CONTINUOUS ENVIRONMENTS

Continuous environments differ fundamentally from the perspective of the theoretical framework
we propose. In this work, theoretical analysis is restricted to discrete action spaces, as our method
enables us to establish formal convergence guarantees.

In order to guarantee the convergence of our proposed method, we restrict our analysis to discrete
action spaces. The convergence proof relies on several technical assumptions—such as bounded
gradients, Lipschitz continuity, and stable critic updates—that are typically satisfied in discrete action
spaces, but are difficult to guarantee in continuous settings, particularly for actor—critic methods
([3] and [33] in submitted manuscript). Discrete policies (e.g., softmax) yield smooth and bounded
log-policy gradients, which facilitate stable actor updates and tractable Bellman backups using finite
sums. These same conditions are also required for the convergence of the rule-based function class
used in OGB. As a gradient-boosting-based algorithm, OGB requires the loss function to be Lipschitz
continuous, which means that the gradients are bounded. According to Theorem 2.4, 2.8 and 2.9
in Shalev-Shwartz et al. (2010) (cited in original paper as [28]), Lipschitz continuity is a necessary
condition for the learned models to converge to a theoretically optimal model within a certain number
of iterations for (fully corrective) boosting methods and the rule replacement steps.

In contrast, continuous action spaces present challenges, such as unbounded gradients (e.g., the policy
gradient can become unbounded as the standard deviation in Gaussian policies), integration-based
Bellman targets, and higher variance in gradient estimates. These factors violate the core assumptions
underpinning both the two-timescale stochastic approximation framework and the rule ensemble
model used in our convergence analysis.

18

Under review as a conference paper at ICLR 2026

G RELATED WORK

Ref

Work (short) Category Interp. at scale P/Pt/E

Performance

[9,13] Tree-based batch Tree policy Not interp.(large trees) N/N/Y

(31]
(1]
[25]
[29]
(8]
[14]
(3]
(18]

[12]

[19]

(16]

(17]

[15]

(32]

Ours

RL (native)

Tree RL for DTRs Tree policy Not interp.(multi-stage) N/N/Y
(native)

Policy extraction Tree policy Often not interp. (size N/Y/N
(extracted) balloons)

Conservative Tree policy Not interp.(large trees) N/N/Y

Q-Improvement (native)

Differentiable de- Tree policy Not interp.(math nota- N/N/Y

cision trees (diff.) tion)

Cascading Deci- Tree policy Not interpretable at N/N/Y

Strong on S/M; degrades on
L/complex

Hard to scale beyond structured
domains

Tracks teacher; small typical
drop

Strong on S/M; degrades on
L/complex

Solid on modest tasks; mixed
scaling

Good early; plateaus with com-
plexity

Tracks teacher; bigger drop for
small trees
Approximates
mild—moderate drop

teacher;

overall
Strong when priors fit; brittle if
misspecified

Often strong & sample-efficient;
planner-dependent

Good when plans align; limited
otherwise

Near-teacher on seen tasks;
drops under shift

Competitive on simpler control;
search limits scale

Lags in high-dimensional

Often strong & sample-efficient

sion Trees (native) scale
Policy Tree policy Often not interpretable N/Y/N
Tree(distill.) (distilled) at scale
Soft DT distilla- Tree policy Often not interpretable N/Y/N
tion (distilled) at scale
Linear Model U- Tree policy Not interp.(math nota- N/Y/N(onlfzood local fidelity; may trail
Trees (distilled) tion)
SRL with com- Symbolic Interpretable (symbolic Y/N/Y
monsense RL (prede- rules)
fined)
SDRL (symbolic Symbolic Interpretable (modules) Y/N/Y
planning) RL (prede-
fined)
Symbolic plans as Symbolic Interpretable (plans) Y/N/Y
instr. RL (prede-
fined)
Discovering symb. Symbolic Not interp.(math nota- N/Y/N
policies policy tion)
(from NN)
GP-based sym- Symbolic Not interp.(math nota- N/N/Y
bolic rules policy (di- tion)
rect)
Programmatic RL Program Not interp.(math nota- N/N/Y
(PIRL) synthesis tion)
policy
NSAC Symbolic Interpretable(symbolic N/N/Y
RL rules)

Table 2: Compact comparison of policy representations and learning setups.

We summarise representative interpretable RL approaches across tree-based, symbolic, and pro-
grammatic policy classes. Interp. at scale highlights whether interpretability persists as problem

size/complexity grows. P/Pt/E abbreviates Predefined knowledge? / Post-hoc from pretrained? /

Learn directly from environment? (Y/N). Performance sketches typical empirical behaviour. Overall,
native tree policies often face scalability—interpretability trade-offs, post-hoc distilled trees track
teachers but lose fidelity when heavily pruned, symbolic methods offer strong transparency and sam-
ple efficiency when priors/plans match the domain, and programmatic policies remain challenging in
high-dimensional settings.

19

Under review as a conference paper at ICLR 2026

H BENCHMARK SETTING

We recognize that certain algorithms might perform better with changes to the environment (e.g.,
adjusting the number of parallel environments or modifying rewards). Still, finding a single modifica-
tion that consistently benefits all tested algorithms remains challenging. Therefore, we rely on the
most basic version of each environment to maintain consistency across all methods. Additionally,
it is important to note that the complexity of our model is designed to balance comprehensibility
with the cognitive effort needed to understand all of the rules involved. Therefore, in our paper,
we deliberately selected 12 rules per action model, which helps ensure the interpretability of our
proposed method.

All experiments in this paper are conducted on a computer with processor “3.1GHz 6-Core Intel Core
15” and a memory of “72GB 2133 MHz DDR4”.

I ENVIRONMENT DESCRIPTIONS

1.1 CARTPOLE-V1

The CartPole-vI environment involves a pole attached by an un-actuated joint to a cart, which moves
along a frictionless track. The system is controlled by applying a force of +1 or —1 to the cart. The
pole starts upright, and the goal is to prevent it from falling over. A reward of +1 is provided for
every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees
from vertical, or the cart moves more than 2.4 units from the center.

1.2 MOUNTAINCAR-VO

In the MountainCar-v0 environment, a car is positioned between two hills and the objective is to
drive up the right-hand hill, which the car cannot accomplish without first backing up the left hill to
gain momentum. The reward is —1 for each time step, until the car reaches the goal, encouraging the
car to reach the goal as quickly as possible.

1.3 ACROBOT-VI1

The Acrobot-vI environment consists of a two-link, two-joint robot, or “acrobot,” which is actuated
only at the joint between the two links. The objective is to swing the end of the lower link up to a
given height by applying torques to the actuated joint. The reward is —1 for each timestep until the
goal is reached. The environment is considered solved when the end of the lower link swings above
the specified height.

1.4 BLACKJACK-VO

The Blackjack-v0 environment simulates the game of blackjack, where the objective is to obtain cards
whose sum is as close to 21 as possible without going over. The agent plays against a dealer, and can
request additional cards (hit) or stop (stick). The reward is +1 for winning, —1 for losing, and O for a
draw. The game follows typical Blackjack rules as found in casinos.

1.5 POSTMAN

In this custom environment, the agent acts as a postman, tasked with picking up and delivering items
at different locations within a grid. The agent must plan efficient routes for picking up and dropping
off items, navigating larger grids in the environments.

20

Under review as a conference paper at ICLR 2026

1080 1le6 g Action: htg=17, clg=26 g Action: htg=18, clg=28 g Action: htg=22, clg=26
—-1.2 2 2 2 |l
. o é = . 2w £
-1. £ 1 £ N 230
° L 2 <
1082 14 = = : ° : e
- <]] <]
o T -10 T -0 T -0 i 190
1083 g -1.5 %I 3 18 20 22 24 3 1 20 3 18 20 22 24
H indoor temperature indoor temperature indoor temperature 170
3
1 084 «-16 Action: htg=18, clg=24 @ Action: htg=16, clg=26 g Action: htg=15, clg=26 150
1085 -17 N — £ §
o S 2 a
1086 -18 = £ " 5 .
1087 -19 ° g 2 g "
1088 0‘:‘“ ¥e w0 a-\(\“o\s 505P“C spcv’a? C\O‘“‘}\ N 18 20 22 24 é * -10 0 10 g o 18 20 22 24 7
W y\‘)P“ indoor temperature outdoor temperature indoor temperature
1089 . L
1090 (a) Performance (b) Visualization of the Rules
1091 Figure 6: Comparing the Performance of NSAC with Baseline Methods and Visualize the rules.
1092
1093

1094 J RULES VISUALIZATION FOR HVAC CONTROL WITH SINERGYM
1095
1096
1097
1098
1099
1100
1101

htg=18, clg=30
htg=18, clg=29
htg=18, clg=28
F htg=18, clg=26
F htg=18, clg=25

1102

htg=18, clg=24
1103 75 200 225 250 200 225 250 75 200 225 250 htg=18, clg=23
1104 indoor temperature indoor temperature indoor temperature htg=22, clg=26

105 _———

9=20, clg=
1106 1 Ihtg=13, clg=26
1107 -htg=17, clg=26
1108 L htg=16, clg=26
1109

B htg=15, clg=26
1110 175 20.0 225 25.0 175 20.0 225 25.0 -10 0 10
1111 indoor temperature indoor temperature outdoor temperature

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123 g ' —
1124 s o & @
1125 Time of Day

1126 [0 Heating Power == Occupancy == Cooling Setpoint

[Cooling Power === |Indoor Temperature --- Comfort Range (18-27°C)
1127 = = Total Power == Qutdoor Temperature
1128

1129
1130
1131
1132
1133

outdoor temperature
air humidity

HVAC electricity demand rate

N
o

htg setpoint
-
©

air humidity

—
o

Figure 7: Visualization of action selection for NSAC.

I
o
o
o
L
T
w
o

w

o

o

o

L

>
N

o

N

o

o

o

s

o
Temperature (°C)

1000 1

Power Demand (W)

Figure 8: Average performance of our proposed algorithm.

21

Under review as a conference paper at ICLR 2026

Typical rules for HVAC control with sinergym:
Action htg=16, clg=26:

+50.5500 if — 11.7075 < outdoor_temperature < 15.0 & htg_setpoint < 20.0 & air_temperature < 20.8431
+42.3222 if hour < 6.0 & — 9.5 < outdoor_temperature < 4.3200 & air_temperature < 21.1095
+33.7433 if hour < 6.0 & outdoor_temperature < 3.0 & HVAC _electricity_demand_rate > 3524.0383
+30.0530 if air_temperature < 19.4323 & HVAC _electricity_demand_rate > 3492.0372
+23.8401 if hour < 6.0 & outdoor_temperature < —6.0 & HVAC_electricity_demand_rate > 1836.0156
+19.5165 if outdoor_temperature < —5.0 & air_temperature < 20.8367 & air_humidity > 34.4557
+19.3194 if outdoor_temperature < 4.3200 & clg_setpoint < 26.0 & air_temperature < 20.7468
& air_humidity > 44.9061 & HVAC_electricity_demand_rate < 8328.7136
+17.1997 if outdoor_temperature < —6.0 & air_temperature < 20.6569 & air_humidity > 34.4701
+12.2539 if outdoor_temperature < 1.1000 & air_temperature < 19.8760 & air_humidity > 48.4554 &
HVAC _electricity_demand_rate > 2194.6457
+10.1033 if day_of_month < 16.0 & outdoor_temperature < —9.5 & air_temperature < 21.4822
4+9.9095 if outdoor_temperature < —1.2000 & clg_setpoint < 28.0 & air_temperature < 18.6297 &
20.1259 < air_humidity < 57.8947
+6.5348 if hour < 5.0 & outdoor_temperature < —6.2000 & air_humidity > 46.6687 &
HVAC _electricity_demand_rate < 6047.4648

Action htg=18, clg=26:

+52.4710 if outdoor_temperature < 2.0 & htg_setpoint > 18.0 & air_temperature > 24.6918 &
36.4788 < air_humidity < 59.9498 & 655.1863 < HVAC _electricity_demand_rate < 3286.0521
+31.8345 if — 7.3000 < outdoor_temperature < —2.4800 & clg_setpoint > 28.0 & air_temperature > 22.7824 &
air_humidity < 53.0045 & HVAC_electricity_demand_rate < 2804.0908
+25.6196 if day_of_month < 23.0 & hour > 21.0 & htg_setpoint > 18.0 &
air_temperature < 21.2843 & 22.2264 < air_humidity < 57.4836 &
HVAC _electricity_demand_rate < 4727.3044
+14.6693 if hour < 16.0 & clg_setpoint > 28.0 & 24.3635 < air_temperature < 25.3421 &
air_humidity < 43.6038 & 1974.6005 < HVAC_electricity_demand_rate < 2847.7105
+12.8951 if day_of_month > 17.0 & 1.0 < hour < 5.0 & htg_setpoint < 16.0 &
air_temperature < 19.6280 & HVAC _electricity_demand_rate > 728.1273
+6.6281 if 14.0 < hour < 15.0 & outdoor_temperature < —2.4800 & 24.1909 < air_temperature < 25.1225
& air_humidity < 44.0097 & HVAC _electricity_demand_rate < 2856.4850
+3.6962 if outdoor_temperature < —2.4800 & air_temperature > 25.9993
+2.2511 if hour > 18.0 & — 5.0 < outdoor_temperature < —2.4800 & air_temperature > 22.3801
& air_humidity < 52.5242 & 1164.7935 < HVAC_electricity_demand_rate < 1443.5973
+1.7191 if — 7.3000 < outdoor_temperature < —3.0 & clg_setpoint > 30.0 &
air_humidity < 52.1981 & 1411.8365 < HVAC_electricity_demand_rate < 2783.3056
+1.6791 if 5.0 < day_of_month < 28.0 & — 3.4000 < outdoor_temperature < 6.6000 &
22.4682 < air_temperature < 23.2356 & HVAC_electricity_demand_rate < 1559.4128

22

Under review as a conference paper at ICLR 2026

Action htg=18, clg=25:
+76.0682 if month < 2.0 & day_of_month < 29.0 & — 2.4800 < outdoor_temperature < 15.0 &
htg_setpoint < 21.0 & air_temperature < 20.4542
+35.7797 if month < 2.0 & day_of_month < 28.0 & outdoor_temperature < 15.0 &
air_temperature < 20.4547 & HVAC _electricity_demand_rate < 888.4346
+19.5429 if hour < 17.0 & outdoor_temperature < 4.3200 & air_temperature > 21.3982
& air_humidity > 22.1544 & HVAC _electricity_demand_rate > 3353.0663
+11.0059 if outdoor_temperature < —7.3000 & air_temperature > 23.0022
& HVAC _electricity_demand_rate > 3343.0970
+10.4447 if month < 1.0 & outdoor_temperature < 0.0 & air_temperature > 22.3607
& air_humidity > 35.8469 & HVAC_electricity_demand_rate > 3237.7531
+9.2884 if day_of_month < 28.0 & — 2.4800 < outdoor_temperature < 15.0 & clg_setpoint < 25.0
& air_temperature < 20.4644
+8.4585 if hour < 16.0 & air_temperature > 23.5872 & HVAC _electricity_demand_rate > 3378.0424
+7.6878 if 2.0 < day_of_month < 8.0 & hour < 15.0 & outdoor_temperature < —6.7000 &
air_temperature > 22.9565 & HVAC_electricity_demand_rate < 5120.2045
+6.0944 if hour < 16.0 & outdoor_temperature < —9.5 & air_temperature > 22.3765
+6.0912 if — 2.4800 < outdoor_temperature < 1.0 & clg_setpoint < 29.0 & air_temperature < 18.5048
& 28.1472 < air_humidity < 57.5569
+4.1747 if air_temperature > 25.1225 & HVAC_electricity_demand_rate > 4135.6304
+2.7032 if 2.0 < day_of_month < 29.0 & hour > 1.0 & — 11.7075 < outdoor_temperature < —5.6000
& 18.0977 < air_temperature < 24.9366 & 4026.8635 < HVAC _electricity_demand_rate
< 7054.0210

Action htg=18, clg=28:
+47.6207 if outdoor_temperature < 1.1000 & air_temperature < 21.3847
+42.5021 if month < 2.0 & outdoor_temperature < 13.0150 & clg_setpoint < 29.0 &
air_temperature < 20.8932 & HVAC _electricity_demand_rate < 9236.5036
+37.5818 if month < 2.0 & htg_setpoint < 21.0 & 19.0381 < air_temperature < 22.2181
& air_humidity < 61.5915
+37.5560 if month < 2.0 & htg_setpoint < 21.0 & 19.0971 < air_temperature < 24.1215
& air_humidity < 62.4223
+26.1161 if outdoor_temperature < —3.4000 & 17.0 < htg_setpoint < 18.0
& air_temperature < 21.6418 & HVAC_electricity_demand_rate > 1616.5198
+25.3651 if month < 2.0 & hour < 6.0 & outdoor_temperature < 8.8000 & air_temperature < 21.0920 &
air_humidity < 51.7392
+21.4283 if hour < 6.0 & outdoor_temperature < —2.0 & htg_setpoint < 18.0 & air_temperature < 20.0191 &
HVAC _electricity_demand_rate > 1266.1656
+19.3831 if air_temperature < 19.0718
+18.9771 if clg_setpoint > 28.0 & air_temperature < 22.6279
& 3313.9887 < HVAC _electricity_demand_rate < 9094.2658
+15.9370 if outdoor_temperature < 1.0 & htg_setpoint < 20.0 & air_temperature < 21.1680
& air_humidity > 46.0692 & HVAC_electricity_demand_rate > 3766.4288
+11.4827 if outdoor_temperature < 1.1000 & air_temperature < 18.9835
& 2059.7858 < HVAC _electricity_demand_rate < 8526.6964
+11.1224 if 3.0 < day_of_month < 28.0 & hour > 22.0 & outdoor_temperature < —1.0 & htg_setpoint < 18.0
& 20.5696 < air_humidity < 57.0262 & HVAC_electricity_demand_rate > 2007.6986

23

Under review as a conference paper at ICLR 2026

K RULES VISUALIZATION FOR BLACKJACK-V1

With Usable Ace

stick rules for stick
12 9
. . 20 « 141 1 =1 1901 if
With Usable ace With Usable ace 9 164 i [1.038ifd=<9&p=12
& 1 7.944ifd=2&p=17
<18 1 [3910ifp<17&p=13
]] 0.985if p=21
15 20 3 2698if
hit rules for hit
124
10 144
216
&
218
ENEEEEEEN] 1 502421080217 8p=18
EENEEENEN 246810 5 46 810
2' 4' 6‘ 8‘ 10' 0 dealer dealer
dealer -5 0 5 10 15 20

Figure 9: Visualization for action, value and rules for Blackjack with Ace.

Without Usable ace

stick rules for stick
1.901if p=11
Without Usable ace Without Usable ace | 1 L08iasokp=12
20.0 1 4.483iface=0&p=14
' 7.944ifd=26&p=17
2 [3910 ps17&p=13
17.5 M 0.985ifp=21
1 2.698ifp=9
| 3 -0197ifd<8&p=8&p=8
15.0 -8.631iface=0 & p=13&p=8
1 0.088iface=0&d=10&p=16&p=14
12.5 hit rules for hit
] 4] BH—1 11
> 10.0 6 i — 171 2 o63sifd=9&p=s
f 8] LH =1 0assira<sapss
Q [-0.423ifd=8&p=7&p=6
7.5 . 104 1] 1.602ifd>4&d>5&p=8&p=6
512 1 £ -0559ifds9&ps7
5.0 Q14 q [0927ifd=6&p=7
. 16 1] 0339ifd=9&ps10&p=9
0.984ifd=8&psT
25 18 1 1 [J -0.385ifd=36&p=6
201 1 = 5.012ifd=10&p=17&p=18
20 - 0.0 246 810 2 46 810
. dealer dealer
g g 0 0 0 0 0
2 4 6 810 2 4 6 810 | —_
dealer dealer 0 10 20

Figure 10: Visualization for action, value and rules for Blackjack with no Ace.

Action O (Stick):

+1.9012 ifp > 11

4+1.0376 ifd <9andp > 12

+4.4833 iface > landp > 14

+7.9438 ifd>2andp > 17

+3.9105 ifp<17andp > 13

4+0.9851 ifp > 21

+2.6981 ifp>9

—0.1967 ifd<8andd<9andp < 8andp > 38
—8.6313 iface <Oandp < 13andp > 8

4+0.0882 iface < Oandd > 10andp < 16andp > 14

24

Under review as a conference paper at ICLR 2026

Action 1 (Hit):

40.6347 ifd<9andp <8

—0.4481 ifd<8andp <6

—0.4231 ifd<8andp<Tandp>6

+1.6016 ifd>4andd>5andp < 8andp > 6
—0.5585 ifd<9andp <7

40.9266 ifd>6andp <7

4+0.3394 ifd>9andp <10andp >9
4+0.9844 ifd>8andp <7

—0.3849 ifd>3andp <6

—5.0124 ifd>10andp > 17 and p > 18

L MOUNTAINCAR RULES

Action Left:

+25.3111 if v < —0.0006471572560258208

—10.5678 if p < —0.5023447513580322

+53.8697 if True

+51.0351 if v < —0.004265955928713083

—14.5140 if p > —0.5813989758491516 and v < 0.006803702469915152
and v > —0.0008947865571826689

—11.6162 if p < —0.41075775027275085 and v < —0.000661600707098839

+17.6882 if v > —1.5593287753289978 x 10~°
+16.4293 if p < —0.25240878462791444 and p > —0.6275408387184143
and v < 0.01510303020477297 and v > —0.01191
—17.9516 ifp < —0.4901819765567779 and p > —0.615831172466278
and v < 0.00759 and v > —0.004150 and v > 0.00126822
+21.4738 if v < 0.00040989847620949166
—2.3676 if p > —0.5437554597854615 and v < 0.0016861518379300846
and v > —0.0034104006830602885
+1.2316 if p < —0.1402401 and p > —0.4494079709053038
and v < 0.023414026945829402 and v > —0.01632060520350933

25

Under review as a conference paper at ICLR 2026

No Action:

—19.7248 if p > —0.5101138830184937 and v < 0.006803702469915152
and v > —0.005573090445250273

—13.4848 if v > 0.0007145821116864693

+24.2199 if p > —0.4848527312278747 and v < 0.00018940809495689726
and v > —0.009227151423692702

—23.3706 if v < 0.003292182506993414

—6.6878 if v < —9.685811237431741 x 10~°
+24.7429 if p < —0.4022643387317657
and v < 0.00020952874911017827
—26.5154 if p > —0.6311534523963929 and v < 0.006872396916151048
and v > —0.006245836243033409
—8.7515 if p > —0.39260063171386717 and v > 0.0019062188919633629
4+0.7214 if v < —0.006146392878144977
—0.9839 if True
+6.8736 if p > —0.5437554597854615 and v < 0.0038646903820335875
+1.0000 if v > —0.0010096890269778618

Action Right:

+26.2150 if p < —0.5101138830184937 and v < 0.006803702469915152
+6.3636 if p > —0.4848527312278747 and v > —0.009227151423692702
+6.1251 if p > —0.4855665504932403 and v > 0.003292182506993414

+24.0837 if True

+27.5176 if p < —0.4022643387317657 and v < 0.0012711382005363714

+21.3072 if v > 0.0007119119516573855

+18.6883 if v < —0.0005520289996638883

+19.7662 if v > 0.0004626010428182804

+21.3412 if p < —0.6329279899597166

+11.7750 if p > —0.5767600297927856 and v > 0.0012682238826528204

+16.5113 if v > 0.00040989847620949166

+1.3610 if p < —0.4494079709053038 and p > —0.8744302272796631 and v < 0.023414026945829402

M EXPLANATION OF CART-POLE RULES

The CartPole environment consists of a pole mounted on a cart that moves along a track. The
objective is to balance the pole upright by controlling the cart’s movement left or right. The state
space includes the cart’s position(p), velocity(v), pole angle(6), and angular velocity(#), while the
action space includes applying force to move the cart in either direction. Figure[TT]is the visualization
of our actor’s rule regarding the position and velocity. Please refer to Appendix [N|for all the resulted
rules.

Here we will use a typical state in the Cart-Pole game, where the optimal action is to move the cart to
the right, characterized by the parameters p = —0.05,v = 0.1,6 = 0.05 and # = 0.3, as an example
to illustrate the decision-making process for our proposed method. In this scenario, pushing right
reduces the pole’s angular velocity, helping stabilize the pole by balancing the torque induced by the
tilt. In our model, three rules become active when considering a leftward action; each rule incurs a
negative score because the pole’s angle is positive, decisively discouraging a left move. In contrast,
the overall score for moving right is 2.3, notably higher than that for moving left. Although the cart’s
slight leftward position imposes a small penalty, the pole’s rightward angular velocity plays a critical
role: one rule alone contributes +19.8 to the total, effectively countering any negative effects from the

26

Under review as a conference paper at ICLR 2026

left rules for left
0.41
1 -6.833 if pa =-0.060
[-6.822 if pa=-0.058
1 14.592 if pa=<0.047
> 0.0 = . — 3 15726 if

[3.470if cp=<0.365 & cp=0.031 & pa=-0.015
[-7.361if cp=0.368 & pa=-0.034

11.598 if cp = 0.252 & pa < 0.004 & pa=-0.020
[-7.779 if pa=-0.030
[-3.026 if cp=-0.422 & pa=-0.020 & pa=0.013
[7.091if cp=0.217 & pa=<-0.004 & pa =-0.020

-0.41

rules for right
0.41

[-3.547 if cp = 0.041
19.181 if cp =-0.077

1 -3.774if cp=-0.121

[2.038if cp=0.058 & pa =-0.069

1 -9.542 if cp < 0.047

1 -3.079 if cp=-0.016 & pa <-0.036 & pa =-0.056
10.287 if cp = 0.368 & pa < 0.003 & pa =-0.034

1 2.050 if pa=0.004

1 -5.776 if pa=-0.003

-0.41 T T [5.118 if cp = 0.402 & pa =< -0.009
-4.80 -2.40 0.00 2.40 4.80 -4.80 -2.40 0.00 2.40 4.80 -4.809 if cp < 0.217 & cp = 0.009 & pa =-0.004
p p
-30 -20 -10 0 10

Figure 11: Visual representation of the rules for CartPole involving position and velocity.

other rules. Consequently, given the pole’s rightward tilt and velocity, the agent’s optimal choice is to
push right, thereby maintaining stability and preventing undesirable outcomes.

N CARTPOLE RULES

Left:

—6.83310 if pa > —0.06048
—6.82240 if pa > —0.05751
+14.59180 if pa < 0.04701 and pav < 0.26781
+15.72630 if pav < —0.52576
+3.47030 if cp < 0.36470 and cp > 0.03103 and cv < 0.20766 and cv > —0.00962
and pa > —0.01513 and pav < 0.28779 and pav > —0.05232
40.88280 if cp > 0.24231 and cv > —0.40319 and pa < —0.03636 and pa > —0.05565
—7.36080 if cp > 0.36775 and cv > —0.00425 and pa > —0.03416 and pav < 0.12249
+11.59770 if cp > 0.25174 and pa < 0.00381 and pa > —0.02022 and pav < 0.11855
and pav > —0.37647
—7.77910 if pa > —0.02969
—0.86900 if cp < 0.16311 and cp < 0.30448 and cp > —0.11618 and cv < —0.01313
and cv < 0.17905 and pa < 0.03930 and pa > —0.02479 and pav < 0.14835
—3.02560 ifcp > —0.42154 and cv < 0.32329 and cv > —0.01879 and pa > —0.02018
and pa > 0.01293 and pav < 0.13896 and pav > —0.01362
+7.09090 ifcp <0.21659 and cv < 0.21317 and cv > —0.00898 and pa < —0.00355
and pa > —0.01990 and pav < —0.29080

27

Under review as a conference paper at ICLR 2026

Right:

—3.54700 ifcp < 0.04146
+19.18060 if cp > —0.07721 and pav > 0.20059
—3.77380 ifcp > —0.12061
+2.03760 if cp > 0.05832 and cv < 0.06116 and pa > —0.06911 and pav < —0.05532
—9.54210 ifcp < 0.04726

—3.07880 ifcp > —0.01648 and cv < 0.16053 and cv > —0.19434 and pa < —0.03636 and pa > —0.05565

+10.28650 if cp > 0.36775 and cv > —0.00425 and cv > 0.20400 and pa < 0.00317

and pa > —0.03416 and pav < 0.12249 and pav > —0.37842

+2.04960 if cv > —0.34930 and pa > 0.00381 and pav < 0.11855

—5.77560 if cv > —0.36800 and pa < —0.00339

+5.11750 if cp > 0.40156 and cv < 0.39100 and pa < —0.00914 and pav < —0.33129

+0.00510 if cp > 0.02529 and cv > —0.01879 and pa < 0.03998 and pa > 0.01293
and pav > 0.13896

—4.80880 ifcp < 0.21659 and cp > 0.00944 and cv < —0.28634 and pa < —0.00355
and pav < 0.30114 and pav > —0.01324

O ACROBOT RULES

+8.7846
+9.3353
+10.4909
+8.2458
+11.6541
+6.8474
+1.2850
+1.7239
+3.5813
+1.3335
+1.0000

if wy > —0.09082 and wo < 0.22991

if cos(f2) > 0.89409

if sin(6y) < 0.44980

if sin(f2) < 0.37771 and wy > —0.12610 and w2 < 0.15699
if True

if sin(f;) < 0.24220 and wo < 0.04877

if cos(62) > 0.99115 and sin(f;) < —0.01332

if sin(6;) < —0.01472 and w, < 0.02869

if cos(A1) > 0.88816 and sin(6;) > —0.28723 and w; < 0.77240
if cos(f1) > 0.48252 and wy < 1.78991 and w; > —1.70488
if cos(f2) < 0.95137 and sin(6;) > 0.01719

28

Under review as a conference paper at ICLR 2026

—3.0189 if cos(f) < 0.99319

—3.3464 if cos(f1) < 0.99048 and wo < 0.12677

—8.6917 if cos(f;) > 0.81787 and w; < 0.92265

—5.4697 if True

—9.3263 ifw; <0.21755 and we > —0.10354

—5.5746 if sin(f2) < 0.37771 and wy < 1.28679 and wo > 0.15699

+5.4709 if sin(f1) > —0.26647 and sin(fs) < 0.44500 and wy > —1.07104 and wy < 0.04877

—8.2010 if sin(f;) < 0.04400

+1.5784 if cos(f1) > 0.99341

—9.7807 if sin(f;) < 0.15513 and sin(6;) > —0.70608 and sin(fa) > —0.17949
and wy < 1.78991 and w; > —1.70488

—1.2848 if cos(f;) > 0.99674

+1.0000 if cos(f2) < 0.99350 and sin(6;) < —0.21224 and wy > 0.11238
and wo < —0.22888

+3.5980 if cos(f1) > 0.99689
+2.5385 if cos(f1) > 0.99048
+16.7525 if True
—3.7130 if cos(61) < 0.99999 and sin(f2) < —0.01789
~1.9920 if sin(fz) < —0.00190
+12.0937 if w; < —0.02180 and wo > 0.04994
4+9.6534 if wy > 0.04994
+1.1957 if cos(f2) > 0.24062 and wy > —0.32756 and we < 1.64803
—3.6820 if wy; > —0.12540
+15.8530 if cos(f;) > 0.88816 and wy > —0.41702
+10.0707 if cos(f;) < 0.99674 and cos(f3) > 0.92457
+1.6685 if cos(f2) < 0.99350 and sin(f1) < —0.21224 and w; > 0.11238
and wy < —0.22888

P STATEMENT ON LLM USAGE

Large language models (LLMs), such as ChatGPT, were used solely for editorial assistance in this
work. Their role was limited to improving grammar, rephrasing sentences, and enhancing clarity and
readability of the authors’ original text. No LLM was used to generate original scientific content,
analysis, or results. The authors take full responsibility for the integrity and validity of the work
presented.

29

	Introduction
	Related Work
	Preliminaries
	Advantage Actor-Critic Reinforcement Learning
	Additive Rule Ensembles

	Methodology
	Framework Design
	Policy Update
	Theoretical Analysis

	Experiments and Results
	Discussion and Conclusion
	Limitation and future work
	Algorithm
	Actor's Loss with L2 Regularization
	Proof for Convergence of our Proposed Algorithm
	Hybrid Warm Start for Accelerating Convergence
	Ablation Study

	Continuous Environments
	Related Work
	Benchmark Setting
	Environment Descriptions
	CartPole-v1
	MountainCar-v0
	Acrobot-v1
	Blackjack-v0
	Postman

	Rules Visualization For HVAC Control with sinergym
	Rules Visualization For BlackJack-V1
	MountainCar Rules
	Explanation of Cart-Pole Rules
	CartPole Rules
	Acrobot Rules
	Statement on LLM Usage

