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Abstract001

Extracting structured tables from chart images002
is a challenging task that underpins numer-003
ous downstream document analysis applica-004
tions. While previous studies have demon-005
strated that multimodal large language models006
(MLLMs) and vision-language models (VLMs)007
can convert charts into tables, these models fre-008
quently fail to adhere to strict formatting stan-009
dards, omit fine-grained labels, or introduce010
numerical inaccuracies. In this work, we intro-011
duce ChartAgent, a plug-and-play, agent-based012
framework that augments any off-the-shelf013
VLM through a two-stage agentic pipeline. In014
the first stage, a chart-to-table pretrained VLM015
generates an initial table directly from the chart016
image. In the second stage, a ReAct LLM-017
based agent iteratively corrects the generated018
table by cross-verifying visual regions and tex-019
tual entries. This agent can optionally utilize a020
novel zooming tool designed for detailed and021
precise inspection of complex, densely packed022
chart areas. To evaluate the effectiveness of023
ChartAgent, we benchmarked its performance024
on the ChartQA dataset against state-of-the-art025
methods. Our experiments demonstrate consis-026
tent improvements over both VLM-only and027
single-pass correction baselines across struc-028
tural and numerical metrics. The modular de-029
sign of ChartAgent enables seamless integra-030
tion with any VLM without requiring additional031
fine-tuning. This approach significantly en-032
hances header alignment, numerical fidelity,033
and overall table quality, providing a robust034
and efficient solution for accurate chart-to-table035
extraction.036

1 Introduction037

Charts are everywhere from scientific papers and038

technical reports to financial statements and busi-039

ness presentations and play a key role in sharing040

numbers and trends (Huang et al., 2024).041

These graphical tools transform raw datasets into042

intuitive visual patterns, making complex infor-043

Figure 1: ChartAgent performance on various VLM
and compared to VLM + MLLM models for the chart-
to-table extraction on RMS–F1 metric, showing that
ChartAgent achieves the highest score.

mation immediately accessible and serving as the 044

foundation for effective communication, strategic 045

decision-making, and scholarly inquiry. 046

Yet the data inside these charts often stays 047

trapped as an image, making it hard to run analy- 048

ses, write automated reports, or answer questions. 049

Automated extraction of chart images into struc- 050

tured tables is essential for quantitative information 051

embedded in charts. Such chart-to-table extraction 052

enables tasks like data analysis, report generation, 053

and question answering over document collections. 054

Although recent multimodal models can interpret a 055

wide range of chart types, but One-shot generation 056

often presents various shortcomings, such as adher- 057

ing to precise table schemas and can misread small 058

labels or crowded legends. These limitations hin- 059

der reliable data extraction in real-world settings. 060

VLMs (Masry et al., 2023), (Liu et al., 2022), 061

(Zhang et al., 2024a)(Meng et al., 2024) have 062

achieved strong performance on standard bench- 063

marks by converting chart visuals into linearized 064

table representations. However, their one-shot out- 065
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put may contain swapped headers, merged cells,066

or incorrect numerical values when faced with di-067

verse chart designs and They often make mistakes068

when addressing numerical calculation questions069

(Meng et al., 2024), which require reasoning steps070

for accurate answers. Single-pass correction with071

a general large language model can fix some er-072

rors but lacks the granularity needed to address073

fine-grained mistakes under strict formatting con-074

straints. To overcome these challenges, we propose075

ChartAgent, A modular pipeline that integrates an076

agentic correction stage with any existing chart-to-077

table VLM. In the first stage, the VLM produces078

an initial table from the chart image. In the second079

stage, a ReAct LLM-based Agent (Yao et al., 2023)080

iteratively refines both structure and content: it de-081

tects missing rows, swapped headers, and misread082

values through visual-textual cross-checking, and083

applies corrective edits. One major contribution of084

our work is our Zoom tool facilitates this process by085

partitioning the chart into overlapping quadrants086

for high-resolution inspection of complex areas087

or areas with high uncertainty. By combining an088

initial draft extraction with iterative focused cor-089

rection, ChartAgent substantially reduces residual090

errors without retraining the underlying models.091

We performed extensive evaluation on the092

ChartQA (Masry et al., 2022) dataset, showing that093

it outperforms the VLM-only and VLM + MLLM094

baselines in three complementary metrics: relative095

number set similarity (RNSS) proposed by (Masry096

et al., 2022) based on the graphIE metric proposed097

in (Luo et al., 2021), Relative Mapping Similarity098

(RMS-F1) proposed by (Liu et al., 2022), and Rel-099

ative Distance (RD-F1) proposed by (Kim et al.,100

2024). An ablation study confirms the importance101

of the agentic workflow and selective zooming, and102

qualitative examples highlight the system’s abil-103

ity to recover missing labels and split merged seg-104

ments. ChartAgent thus offers a robust and extensi-105

ble solution for accurate chart-to-table extraction106

in diverse applications and our main contributions107

are :108

1. We introduce ChartAgent, a modular agent-109

based correction pipeline that augments exist-110

ing vision-language models for chart-to-table111

extraction without retraining.112

2. We propose a Zoom Tool that enables fine-113

grained visual inspection of crowded chart re-114

gions, significantly improving label and value115

recovery.116

3. We validate ChartAgent on the ChartQA 117

benchmark, achieving state-of-the-art perfor- 118

mance across three complementary metrics, 119

and demonstrate the effectiveness of agentic 120

correction via ablation and qualitative studies. 121

2 RELATED WORK 122

2.1 General Purpose LLM 123

Multimodal large language models (MLLMs) have 124

demonstrated promising results in initial evalua- 125

tions on chart-to-table tasks. These models either 126

closed or open source can interpret chart images 127

and convert them into structured tabular data with- 128

out the need for task specific fine tuning. Examples 129

of closed sources includes Claude sonnet or Gem- 130

ini and open source like InternLM-XComposer 131

(Zhang et al., 2024b) and LLAMA (Touvron et al., 132

2023) that achieved promising scores on chart re- 133

lated tasks. While these MLLMs provide a scalable 134

and flexible alternative to dedicated chart models, 135

allowing broad application across diverse docu- 136

ment types and reducing the need for extensive 137

fine-tuning on charts However, these models often 138

struggle with chart-to-table tasks that require strict 139

formatting constraints. Despite strong general capa- 140

bilities, they may not reliably follow precise table 141

schemas specified via prompt and not always give 142

precise numerical values. 143

2.2 Multimodal chart understanding models 144

Vision- large language models (VLM) (Du et al., 145

2022) are widely used for chart-related tasks 146

and, more specifically, for chart-to-table extrac- 147

tion. UniChart (Masry et al., 2023) is pretrained 148

on a large corpus of charts covering diverse top- 149

ics and visual styles, leveraging a Donut (Kim 150

et al., 2022) based vision encoder and a chart- 151

grounded text decoder to optimize low-level el- 152

ement extraction and high-level reasoning tasks 153

before fine-tuning on chart-to-table parsing, which 154

yields state-of-the-art performance on multiple ex- 155

traction benchmarks; however, its reliance on a 156

chart-specific pretraining corpus may limit robust- 157

ness to novel chart formats beyond those seen dur- 158

ing pretraining. DePlot (Liu et al., 2022) employs a 159

Pix2Struct (Lee et al., 2023) derived image-to-text 160

Transformer trained end-to-end on a standardized 161

plot-to-table task, converting chart images into 162

linearized markdown tables that can be directly 163

prompted to an MLLM, though it has a limited 164

performance on highly stylized or unconvention- 165
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ally formatted charts outside its training distribu-166

tion. ChartAssistant (Meng et al., 2024) intro-167

duces a two-stage training pipeline via ChartSFT’s168

chart-text pairs first pretraining on chart-to-table169

translation to align visual elements with struc-170

tured text, then multitask instruction tuning across171

QA, summarization, and reasoning offering two172

variants (260 M-parameter Donut-based and 13173

B-parameter SPHINX-based (Lin et al., 2023)) that174

outperform UniChart and ChartLlama (Han et al.,175

2023) under zero-shot real-world settings; nonethe-176

less, the 13 B-parameter variant’s inference de-177

mands and potential missing on chart types absent178

from ChartSFT present deployment and generaliza-179

tion challenges. Finally, TinyChart (Zhang et al.,180

2024a) distills efficient chart-to-table capabilities181

into a 3 B-parameter MLLM by integrating Vi-182

sual Token Merging to compress high-resolution in-183

puts and a Program-of-Thoughts learning strategy184

to generate executable Python code for numerical185

calculations, achieving state-of-the-art results on186

ChartQA (Masry et al., 2022), Chart-to-Text, and187

Chart-to-Table benchmarks with two time faster188

inference; however, its PoT synthesis step may189

introduce additional latency and it may struggle190

to strictly adhere to complex table schemas when191

such constraints are prescribed in prompts. While192

these approaches contribute valuable insights into193

chart-to-table extraction, persistent challenges such194

as adhering to strict table formatting, managing195

variability in chart layouts, highlight the need for196

further methodological refinements in chart-related197

vision-language modeling.198

2.3 Agentic Workflows in chart related tasks199

Agentic workflows and AI agents have led to sub-200

stantial gains in the autonomy and adaptability of201

MLLM systems, enabling them to perceive, rea-202

son, and act within complex environments. These203

agents facilitate the development of AI systems204

capable of dynamic decision-making and task205

execution, thereby enhancing the efficiency and206

scalability of LLM-powered systems. In chart-207

related tasks, existing implementations have pre-208

dominantly focused on auxiliary functions, such209

as identifying chart regions or converting data into210

visual formats. For instance, ChartCitor (Goswami211

et al., 2025) employs a multi-agent framework to212

provide fine-grained visual attributions in chart213

question-answering scenarios, enhancing the ex-214

plainability of AI-generated responses. Similarly,215

METAL (Li et al., 2025) utilizes a multi-agent ap-216

proach for chart generation, decomposing the task 217

into specialized agents that collaboratively produce 218

high-quality charts. Despite these advancements, 219

the deployment of agentic frameworks in chart- 220

to-table extraction tasks remains underexplored. 221

This process involves extracting structured tabu- 222

lar data from complex chart images, a task that 223

poses significant challenges due to the variability 224

in chart designs and the intricacies of visual en- 225

coding. Our approach introduces a plug-and-play 226

agentic framework that actively intervenes in the 227

chart-to-table pipeline. By deploying specialized 228

agents to identify and correct errors made by chart- 229

to-table-specific VLMs, we enhance the accuracy 230

and reliability of the extracted tabular data. This 231

agentic intervention enables dynamic error detec- 232

tion and correction, allowing the system to adapt 233

to diverse chart formats and reduce the propaga- 234

tion of inaccuracies in downstream tasks. Such 235

an approach not only improves the fidelity of data 236

extraction but also contributes to the development 237

of more robust chart understanding AI systems. 238

3 Methodology 239

3.1 ChartAgent Architecture 240

Figure 2 illustrates the summary of our proposed 241

ChartAgent as a plug-and-play pipeline that en- 242

hances any chart-to-table VLM, such as TinyChart 243

(Zhang et al., 2024a) or UniChart (Masry et al., 244

2023), by layering a correction LLM agent on top 245

of its output. The core workflow unfolds in two 246

stages. 247

Stage 1, A pretrained chart-to-table VLM takes 248

the chart image and output an initial structured 249

table. These models are good at reading overall 250

layouts and most numbers and labels, but they can 251

sometimes miss small text or give some numerical 252

errors when charts are crowded. 253

Stage 2, An LLM-based ReAct agent is invoked 254

that both reasons about and acts upon the VLM’s 255

preliminary table. The agent takes as input the orig- 256

inal chart image plus the raw table, then iterate in 257

order to : (i) refines its structure by detecting miss- 258

ing rows, swapped headers, or unintended merged 259

cells through visual and textual cross-checking us- 260

ing the zoom tool; (ii) verifies content by targeting 261

specific chart regions to correct missing or misread 262

numerical/textual entries by using the zoom tool; 263

and (iii) applies edits on the input table by correct- 264

ing the textual, numerical values or adding missing 265

information if needed. By combining extraction 266
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Figure 2: Overview of ChartAgent. The chart image is provided to the VLM, which outputs an initial table. This
table, along with the chart, the ReAct prompt, and the instruction prompt, are given as inputs to the agent. The agent
then iteratively refines the table, optionally using the zoom tool and accessing the message history, until it either
reaches a final output table that it considers correct or hits the iteration limit.

with focused correction, ChartAgent overcomes267

residual errors and leverages the strengths of both268

systems without retraining large models.

Algorithm 1 ChartAgent Algorithm

Require: Image I , Prompt P , VLM, MLLM,
Zoom_Tool T

1: T0 ← VLM.generate_table(I)
2: A0 ← MLLM.answer(P, T0)
3: history← [(P,A0)]
4: for k = 1 to MaxSteps do
5: Ek ← MLLM.answer(history)
6: history.append(Ek)
7: if Ek == Correct then
8: return Final Answer Tk−1

9: else if Ek == Zoom then
10: crop← T .execute(I)
11: history.append(crop)
12: continue {Next iteration with refined

view}
13: end if
14: end for
15: Tk ← MLLM.answer(history)
16: return Final Answer Tk

269

3.2 Zoom Tool270

The Zoom Tool supports focused inspection of271

chart areas by first upscaling the image with Lanc-272

zos interpolation and then splitting it into four quad-273

rants (upper left, upper right, lower left, lower274

right). Exposed as a simple, stateless tool func-275

tion (Python), it accepts the original chart plus a276

quadrant identifier and returns the corresponding 277

high-resolution patch. While zoom operations have 278

appeared in prior systems (e.g., V* Search (Wu 279

and Xie, 2024), CogCom (Qi et al., 2024), Deep- 280

Eye (Zheng et al., 2025) ), our design is unique 281

in enabling explicit, agent-driven requests that im- 282

prove inspection of the chart for the chart to table 283

extraction task. We chose a 2×2 grid after an ab- 284

lation study (Table 3). By alternating selective 285

zoom with table refinement, ChartAgent reliably 286

disambiguates small ticks, overlapping labels, and 287

crowded legends, boosting transcription fidelity 288

with minimal extra cost. 289

4 Experimentation and Results 290

4.1 Implementation Details 291

Our ChartAgent system is implemented as a two- 292

stage, plug-and-play pipeline. In the first stage, 293

a vision-language model (VLM) performs initial 294

chart-to-table extraction. In the second stage, a 295

ReAct-based agent powered by a large language 296

model (LLM) iteratively refines the output table 297

through structured reasoning and visual-textual 298

cross-verification. 299

Stage 1: Chart-to-Table Extraction. We evalu- 300

ated three state-of-the-art VLMs DePlot (Liu 301

et al., 2022), UniChart (Masry et al., 2023), 302

and TinyChart (Zhang et al., 2024a) to gen- 303

erate initial tables from chart images. Each 304

model was used without any modifications to 305

its published configuration. 306
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Figure 3: Overview of the Zoom Tool.The LLM agent select the zoom tool and provide as an argument in the tool
call which quadrant is needed.

Stage 2: Agentic Refinement. For the correction307

phase, we built ReAct-style agents using An-308

thropic Claude Sonnet 3.5 MLLM. This agent309

iteratively inspects and edits the initial tables310

by reasoning over both the raw chart image311

and the extracted table. The iterative process312

continues until the agent determines that the313

table is correct or until a predefined iteration314

limit is reached. In our implementation, we315

set this recursion limit to 16 steps.316

Zoom Tool : To support fine-grained inspection of317

densely populated or ambiguous chart regions,318

we developed a custom Zoom Tool. This319

lightweight image-processing module dynam-320

ically crops the chart into four labeled quad-321

rants (upper-left, upper-right, lower-left, and322

lower-right), allowing the agent to selectively323

inspect specific areas without reprocessing the324

full image.325

4.2 Baselines Methods326

ChartAgent’s performance was evaluated against327

two baseline approaches under consistent experi-328

mental settings:329

1. VLM-Only: The chart-to-table models De-330

Plot, UniChart, and TinyChart were run inde-331

pendently, producing raw tables without any332

additional correction or refinement.333

2. Single-Pass MLLM Correction: A general-334

purpose large language model was applied335

once to post-process the VLM output, without336

iterative reasoning or visual cross-checking.337

3. ChartAgent (Ours): Our full pipeline aug- 338

ments the VLM output using a multi-step, 339

agent-driven correction stage that incorporates 340

structured reasoning and targeted visual in- 341

spection via the Zoom Tool. 342

4.3 Benchmark Dataset 343

All evaluations were conducted using the ChartQA 344

dataset (Masry et al., 2022), a widely adopted 345

benchmark for chart-to-table extraction. It includes 346

a diverse collection of real-world bar, line, and 347

pie charts, each paired with a ground-truth table 348

in markdown format. ChartQA is known for its 349

visual diversity and annotation quality, making it a 350

robust and challenging testbed. To ensure fair and 351

reproducible comparisons, all results are reported 352

on the held-out test split of the dataset, following 353

standard practice in prior work. 354

Following prior chart-to-table works, we evalu- 355

ate extracted tables using three scores that capture 356

different aspects of the generated table quality . 357

4.4 Evaluation Metrics 358

Relative Number Set Similarity (RNSS) 359

RNSS measures how well the unordered multiset 360

of numeric entries in the predicted table matches 361

the ground truth. Let 362

P = { pi}Ni=1, T = { tj}Mj=1 363

be the sets of predicted and true values. First define 364

the relative distance 365

D(p, t) = min
(
1,
|p− t|
|t|

)
. (1) 366
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Method #Parameters RMS–F1 RNSS RD–F1

UniChart 260M 91.01 94.00 88.00
Deplot 1.3B 87.22 95.57 90.91
TinyChart@768 3B 93.78 96.88 91.1
SimPlot 374M - - 92.32
Claude Sonnet 3.5 - 90.13 96.67 92.02
React Agent (Sonnet 3.5) - 82.14 76.01 90.97

TinyChart+ChartAgent (ours) 3B 94.05 97.95 94.3

Table 1: Quantitative results on the ChartQA test set across various chart types, evaluated using RD–F1, RMS–F1,
and RNSS metrics for chart-to-table extraction. SimPlot results are directly taken from their original paper and
report only RD–F1.

We then compute an optimal one-to-one matching367

X ∈ {0, 1}N×M between P and T . RNSS is given368

by369

RNSS = 1 −

N∑
i=1

M∑
j=1

Xij D(pi, tj)

max(N,M)
, (2)370

which ranges from 0 (no overlap) to 1 (perfect371

match).372

Relative Mapping Similarity (RMS)373

RMS accounts for both structure and content by374

comparing full table entries as triples (r, c, v). Let375

pi = (pri , p
c
i , p

v
i ) and tj = (trj , t

c
j , t

v
j ) denote the376

row key, column key, and value. We define377

NLτ (a, b) = normalized Levenshtein distance,378

and the relative distance as379

Dθ(vp, vt) = min
(
1,
|vp − vt|
|vt|

)
.380

Then the similarity between entries Dτ,θ(pi, tj) is381 (
1−NLτ (p

r
i ∥pci , trj∥tcj)

) (
1−Dθ(p

v
i , t

v
j )
)
.382

Using the same matching X , we compute precision383

and recall:384

385

RMSprecision = 1 −

N∑
i=1

M∑
j=1

Xij Dτ,θ(pi, tj)

N
,

(3)

386

RMSrecall = 1 −

N∑
i=1

M∑
j=1

Xij Dτ,θ(pi, tj)

M
.

(4)

387

and report the harmonic mean of the precision388

and recall as RMS-F1 .389

Relative Deviation (RD) 390

RD focuses exclusively on numeric fidelity under 391

the established matching X and it is proposed by 392

(Kim et al., 2024). to take into consideration the 393

equivalent textual data Using Dθ as above, we 394

define: 395

396

RDprecision = 1 −

N∑
i=1

M∑
j=1

Xij Dθ(p
v
i , t

v
j )

N
,

(5)

397

RDrecall = 1 −

N∑
i=1

M∑
j=1

Xij Dθ(p
v
i , t

v
j )

M
.

(6)

398

and combine them via harmonic mean to obtain 399

RD-F1 . 400

These three metrics RNSS, RMS-F1, and RD-F1 401

and together provide a thorough, quantitative eval- 402

uation of numeric set overlap, full table structure, 403

and raw value accuracy. RNSS measure the overall 404

numeric overlap regardless of position but ignores 405

row/column alignments; RMS-F1 jointly evaluates 406

structural correspondence and value correctness 407

yet may be sensitive to minor string mismatches in 408

row/column keys; RD-F1 isolates pure numerical 409

fidelity but does not account for textual alignment 410

in the table. By employing all three, we capture 411

complementary aspects matching, structural align- 412

ment, and raw deviation to ensure a comprehensive 413

assessment of chart-to-table extraction quality. 414

4.5 Main Results 415

Table 1 reports the quantitative performance of all 416

methods on the ChartQA test set, measured with 417
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Year Gabon São Tomé Dominica

1989 14.32 2.38 0.28
1992 4.42 - -
1994 4.42 1.78 14.04
1996 4.62 2.08 14.04
1998 4.25 2.58 14.42
2000 4.32 2.58 16.62
2002 4.72 3.38 7.25
2004 4.42 1.38 6.5
2007 4.42 0.78 0.28

Unichart output (with errors in red)

Year Gabon São Tomé Dominica

1989 14.0 2.0 0.0
1992 10.5 3.0 3.2
1994 14.0 4.0 1.5
1996 14.0 4.0 1.5
1998 14.0 4.0 1.5
2000 16.0 4.5 2.0
2002 8.5 5.0 3.0
2004 7.0 4.0 1.2
2007 4.0 0.5 0.2

Agent-corrected using ChartAgent

Quarter Revenue (US$ bn)

. . . . . .
Q11 11.2
Q1 ’12 9.7
Q4 ’11 10.4
Q3 ’11 10.7
Q2 ’11 9.0
Q11 10.8
Q4 ’10 9.8
Q3 ’10 10.0
Q2 ’10 8.6

Unichart output (with errors in red)

Quarter Revenue (US$ bn)

. . . . . .
Q2 ’12 11.2
Q1 ’12 9.7
Q4 ’11 10.4
Q3 ’11 10.7
Q2 ’11 9.0
Q1 ’11 10.8
Q4 ’10 9.8
Q3 ’10 10.0
Q2 ’10 8.6

Agent-corrected using ChartAgent

Comfort level Share of respondents

Uncomfortable 38%
Moderately comfortable 24%
Comfortable 29%
Missing row: Don’t know | 9%

Unichart output (with errors in red)

Comfort level Share of respondents

Uncomfortable 38%
Moderately comfortable 24%
Comfortable 29%
Don’t know 9%

Agent-corrected using ChartAgent

Year Dissatisfied Satisfied

2002 0 20
2004 0 26
2006 0 36
2008 0 54
2010 59 0
2012 0 46
2014 36 56
2016 0 58
2018 40 0

Tinychart output (with errors in red)

Year Dissatisfied Satisfied

2002 71 20
2004 64 27
2006 69 26
2008 56 32
2010 59 34
2012 60 45
2014 36 57
2016 37 58
2018 40 57

Agent-corrected using ChartAgent

Year Control gun ownership Protect the right of Americans to own guns

1993 0 0
1999 0 0
2003 0 0
2008 58 0
2011 50 49

Tinychart output (with errors in red)

Year Control gun ownership Protect the right of Americans to own guns

1993 57 34
1999 65 30
2003 54 42
2008 58 37
2011 50 46

Agent-corrected using ChartAgent

Entity Not at all likely Not very likely Somewhat likely Very likely NET likely

Dem/Lean Dem nan 27 42 20.0 62
Rep/Lean Rep nan 9 32 nan 85
Total 819.0 19 37 35.0 72

Tinychart output (with errors in red)

Entity Not at all likely Not very likely Somewhat likely Very likely NET likely

Dem/Lean Dem 9 27 42 20 62
Rep/Lean Rep 4 9 32 54 85
Total 7 19 37 35 72

Agent-corrected using ChartAgent

Figure 4: Examples of chart-to-table extraction and correction using ChartAgent on Tinychart@768 (Zhang et al.,
2024a) and Unichart (Masry et al., 2023)

three key metrics: RNSS, RMS–F1, and RD–F1.418

Our ChartAgent pipeline consistently outperforms419

both the standalone VLMs and the single-pass420

VLM+MLLM setup. It also outperforms single421

MLLM highlighting the effectiveness of the agen-422

tic correction stage in enhancing chart-to-table ex-423

traction accuracy.424

ChartAgent achieves the highest performance425

across all three evaluation metrics RNSS, RMS–F1,426

and RD–F1, demonstrating superior structural 427

alignment and numerical fidelity compared to both 428

VLM-only and VLM+MLLM baselines. Notably, 429

the agentic correction stage contributes signifi- 430

cantly to improvements in header matching (as re- 431

flected in RNSS) and raw value accuracy (captured 432

by RD–F1). 433
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4.5.1 Performance434

We conducted peformance tests on ChartAgent and435

found that ChartAgent based on Claude 3.5, con-436

verges in only 5–6 iterations on average (each iter-437

ation comprising one LLM call plus any required438

tool calls). Across these iterations, the end-to-end439

pipeline emits roughly 4,904 tokens per chart, cor-440

responding to an average cost of $0.01769 per441

chart. In terms of speed, we observe a median (p50)442

end-to-end latency of 7.629s. The p50 (median)443

indicates that half of all traced iterations complete444

in under 7.629s and half exceed this duration, pro-445

viding a robust measure of central tendency that446

is not skewed by extreme outliers. These numbers447

illustrate that our agent-based refinement not only448

yields state-of-the-art accuracy Table 1, but does so449

with low token overhead, minimal cost, and sub-10450

second response times.451

4.5.2 Ablation Study452

To isolate the contributions of each component, we453

conducted ablations by first removing the Zoom454

Tool by using only chart to table model and MLLM455

and using different MLLMs for the Agent. As we456

can see in Table 2, skipping the agentic stage re-457

duces all three metrics substantially, underscoring458

the value of iterative, tool-enabled corrections.459

Method RMS-F1 RNSS
Unichart 91.01 94.00
Unichart + (Claude) 90.05 95.20
Unichart + Agent (Claude) 91.21 96.00
Deplot 87.22 95.57
Deplot + (Claude) 90.10 97.10
Deplot + Agent (Claude) 90.54 97.40
Tinychart 93.78 96.88
Tinychart + (Claude) 93.10 96.91
Tinychart + Agent (Claude) 94.05 97.95
Tinychart + Agent (gemini) 90.91 94.39
Claude Sonnet 3.7 90.20 92.08
Gemini 2.5 flash 87.05 89.95

Table 2: Ablation study. We tested using reasoning
models for chart to table extraction and MLLM-based,
agent-based correction on different VLMs.

Additionally, we assess the impact of our Zoom460

Tool by comparing performance on original im-461

ages against quadrant-based upscaling strategies.462

Table 3 reports root-mean-square error (RMS-F1),463

relative difference (RD-F1) and RNSS. The 2×2464

quadrant (4× zoom) approach yields the best over-465

all fidelity, with an RMS-F1 of 94.05 and RNSS of466

94.30, showing that localized upscaling balances 467

detail preservation and computational cost more 468

effectively than larger grids. 469

Zoom Tool RMS-F1 RD-F1 RNSS
Original image 28.98 60.71 81.84
2×2 Quadrant 94.05 97.95 94.30
3×3 Quadrant 44.55 79.78 82.34
4×4 Quadrant 37.33 77.00 80.25

Table 3: Quantitative results (RMS-F1, RD-F1, RNSS)
for different Zoom Tool strategies on the ChartQA test
set.

4.5.3 Qualitative Analysis 470

Figure 4 presents representative examples where 471

ChartAgent corrects errors made by the base VLM. 472

In a dense bar chart, the agent identifies and re- 473

stores missing small-value labels; in a pie chart 474

with merged slices, it accurately splits and relabels 475

adjacent segments. These case studies illustrate 476

how targeted zooming and structured reasoning 477

combine to enhance table extraction. 478

5 Conclusion 479

In this work, we presented ChartAgent, a flexible, 480

plug-and-play framework that layers an agentic 481

correction stage on top of existing chart-to-table 482

vision-language models. By combining a strong 483

initial extractor (e.g., TinyChart or UniChart) with 484

a React LLM-based agent that iteratively refines 485

both structure and content and by introducing a 486

Zoom Tool for high-resolution inspection ChartA- 487

gent achieves significant gains on the ChartQA 488

benchmark. Our experiments that have been con- 489

ducted on different VLMs and metrics demonstrate 490

consistent improvements in header alignment, nu- 491

merical fidelity, and overall table quality compared 492

to VLM-only and single-pass correction baselines. 493

Importantly, these gains are obtained without any 494

retraining of large models, making ChartAgent an 495

efficient and extensible solution for accurate chart- 496

to-table extraction. 497

6 Limitations 498

Despite its strengths, ChartAgent has some lim- 499

itations. First, the iterative nature of the ReAct 500

LLM-based agent, combined with the Zoom Tool 501

and the two-stage pipeline, introduces additional 502

processing steps that may increase computational 503

cost and latency. This can be a limitation for real- 504

time applications. However, it does not negatively 505
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impact offline scenarios such as the ingestion stage506

in retrieval-augmented generation (RAG), where507

the system still benefits from iterative refinement.508

Besides, we also observed that the performance of509

ChartAgent can be influenced by the initial table510

extraction from the vision-language model (VLM).511

In cases where the VLM output suffers from severe512

misreads or layout issues, the refinement process513

may be less effective. In future work, we aim to514

reduce this dependence and enhance the robustness515

of the iterative correction process.516

Finally, our method shows strong potential for the517

chart-to-table extraction task, which is the primary518

focus of this study. Nevertheless, we believe the ap-519

proach can be extended to other chart-related tasks520

such as chart question answering, chart-to-text gen-521

eration, and open-ended chart understanding.522
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