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Abstract

The rapid advancement of large language models (LLMs) such as ChatGPT,
DeepSeek, and Claude has significantly increased the presence of AI-generated
text in digital communication. This trend has heightened the need for reliable
detection methods to distinguish between human-authored and machine-generated
content. Existing approaches both zero-shot methods and supervised classifiers
largely conceptualize this task as a binary classification problem, often leading
to poor generalization across domains and models. In this paper, we argue that
such a binary formulation fundamentally mischaracterizes the detection task by
assuming a coherent representation of human-written texts. In reality, human texts
do not constitute a unified distribution, and their diversity cannot be effectively
captured through limited sampling. This causes previous classifiers to memorize
observed OOD characteristics rather than learn the essence of ‘non-ID’ behavior,
limiting generalization to unseen human-authored inputs. Based on this obser-
vation, we propose reframing the detection task as an out-of-distribution (OOD)
detection problem, treating human-written texts as distributional outliers while
machine-generated texts are in-distribution (ID) samples. To this end, we develop
a detection framework using one-class learning method including DeepSVDD and
HRN, and score-based learning techniques such as energy-based method, enabling
robust and generalizable performance. Extensive experiments across multiple
datasets validate the effectiveness of our OOD-based approach. Specifically, the
OOD-based method achieves 98.3% AUROC and AUPR with only 8.9% FPR95
on DeepFake dataset. Moreover, we test our detection framework on multilingual,
attacked, and unseen-model and -domain text settings, demonstrating the robust-
ness and generalizability of our framework. Code, pretrained weights, and demo
will be released openly at https://github.com/cong-zeng/ood-llm-detect.

1 Introduction

In recent years, with the continuous iteration and rapid advancement of large language models
(LLMs) such as ChatGPT [1], DeepSeek [2] and Claude [3], the adoption of LLM-powered products
in everyday life and professional settings has increased significantly [4, 5, 6]. While these text-
generation models have greatly enhanced productivity and efficiency, they also pose risks of misuse
[7, 8, 9]. The phenomenon of hallucinations, instances where LLMs generate incorrect or misleading
content can lead to serious consequences if such outputs are inadvertently relied upon [10]. As LLMs
become increasingly powerful, there is a critical need for detection techniques that are stable, robust,
and accurate in distinguishing machine-generated text from human-written content[11, 12].
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Data Type Metric Distance

Clean Data
Intra-distance LLM 0.3014

Intra-distance human 0.4747
Inter-distance 1.6048

Attacked Data
Intra-distance LLM 0.1929

Intra-distance human 0.8698
Inter-distance 0.7859

Figure 1: Decision boundaries and model performance comparison. Left: Decision boundaries
under distributional asymmetry. The binary classifier separates machine-generated text from limited
human-written samples but fails to capture the variability in the true human distribution (e.g., true
OOD subset). Right Table: Quantitative comparison showing intra- and inter-distance for clean and
attacked data, indicating that the distance of human text is larger than the distance among LLM-
generated text.

Existing LLM detection methods can be categorized into three groups: watermarking techniques [13],
zero-shot statistical methods [14], and training-based approaches [15]. Watermarking methods embed
identifiable signals into generated content during inference, offering strong detection when the model
is cooperative, but failing entirely in black-box or adversarial settings. Zero-shot methods, which rely
on distributional differences, are model-agnostic and do not require training, making them flexible
and efficient. But their performance is often unstable across domains and text lengths. In contrast,
training-based methods, typically implemented as supervised classifiers trained on labeled examples,
often achieve higher detection accuracy. Nevertheless, all these methods that require labeled data face
the challenge of poor generalization across text detection from different domains or unseen models.

Most existing detectors, whether zero-shot or supervised, treat the detection as a binary classification
task, aiming to distinguish between the distributions of human-written and LLMs-generated content
by identifying a threshold or optimal decision boundary between their distributions. However, this
binary classification paradigm carries inherent limitations. While prior work [15] has demonstrated
that machine-generated text often exhibits consistent statistical patterns suggesting that it can be
reasonably modeled as a learnable distribution, a fundamental challenge lies in can human-written
text truly be treated as a single, coherent distribution for the purpose of classification? Intuitively,
human language is inherently diverse: each author, writing style, domain, or genre may follow distinct
linguistic patterns, leading to a highly heterogeneous and dispersed distribution in the feature space.
This diversity poses a critical problem for binary classification models: by treating human-written
text as a single distribution, existing approaches risk oversimplifying the underlying variability. Such
oversimplification can result in poor generalization, especially when encountering human texts from
unseen domains or stylistic backgrounds.

Figure 1 Left figure illustrates the practical limitations of applying binary classification to this task.
The in-distribution (ID) region, representing machine-generated text, is compact and well-covered
by training data. However, human-written text exhibits variability as out-of-distribution samples,
especially in the "true OOD" subset (shown as red triangles), which lies outside the classifier’s
detection boundary. As a result, a binary classifier (the red dashed line), trained on limited human
samples, tends to overfit and produce a brittle decision boundary with poor generalization. Moreover,
as shown in the Right Table in Figure 1, we compute the average cosine inter- and intra-distance of
LLM-generated and human-written texts on the Deepfake dataset (Clean Data) and RAID dataset
(Attacked Data). The embedding backbone we use is RoBERTa pretrained with contrastive loss.
The results show that the Intra-distance of LLM is smaller than the human while the inter-distance
between human and LLM is relatively large, supporting our OOD hypothesis that LLM text forms a
coherent in-distribution cluster, while human-written texts, which span varied styles and domains, act
as natural OOD examples.

In this work, we theoretically analyze the representation incompleteness of human text distribution
and the corresponding failure reason of binary classifiers. Furthermore, to address the issue of
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inherent asymmetry between human and machine-generated text distributions, we propose to recast
machine-generated text detection as an out-of-distribution (OOD) detection task rather than a binary
classification problem. OOD detection methods focus on modeling only the in-distribution region
and treat any deviation from it as unknown samples. Under this new formulation, we treat machine-
generated text as the in-distribution (ID) samples, assuming that it originates from a single or limited
family of models with shared statistical characteristics. In contrast, human-written text is considered
as out-of-distribution samples, reflecting its open-ended, diverse, and difficult-to-model nature. OOD
detection approach yields a more principled and robust decision boundary that fits the open-ended
diversity of human-authored texts (the blue dashed line in Figure 1 Left).

To validate our core hypothesis, that machine-generated texts form a learnable distributional core
while human-written texts are distributional outliers, we systematically evaluate a range of established
OOD detection methods. We implement this OOD detection framework by training a one-class or
score-based classifier that models the distribution of machine-generated texts. We incorporate and
validate different OOD detection methods including DeepSVDD [16], HRN [17] and Energy-based
method [18]. At inference time, any input that significantly deviates from this learned distribution
is flagged as OOD samples and considered to be human-written. Empirically, we compare our
method against traditional supervised binary classifiers and recent zero-shot detectors. Remarkably,
all OOD-based methods obtain superior detection performance. Specifically, the OOD-based method
achieves 98.3% AUROC and AUPR with only 8.9% FPR95 on DeepFake dataset. Moreover, we test
our method on multilingual and attacked text setting on M4 and RAID datasets, where our method
achieves SoTA performance. Finally, we validate the generalizability of our method on unseen models
and domain scenarios, highlighting the capacity to generalize beyond specific domains or stylistic
boundaries. In summary, our contributions are as follows:

• We identify the fundamental topological and statistical distinctions between human-written
and LLM-generated texts in the representation space and theoretically prove the representa-
tion incompleteness of human-written text distribution and the corresponding failure reason
of binary classifiers.

• Based on the theoretical analysis, we propose reframing machine-generated text detection
as an out-of-distribution (OOD) detection problem instead of a binary classification task.
We solve this problem by designing a detection framework grounded in one-class and
score-based learning that leverages the distributional convergence of LLM outputs.

• Empirically, we incorporate various OOD detection methods including DeepSVDD, HRN
and Energy-based method. Extensive experiments on multiple benchmarks indicate that
OOD-based methods achieve superior performance compared with baselines. Moreover, the
strong detection performance on multilingual, attacked and unseen-model and -domain texts
demonstrates the robustness and generalizability of our framework.

2 Related Works

LLMs-generated Text Detection. Existing approaches for detecting LLMs-generated text can be
broadly categorized into three main categories [19]: watermarking [20, 21, 22, 13, 23], zero-shot
methods [24, 25, 26, 27, 28, 29, 30, 31], and supervised training-based classifiers [32, 33, 34, 35,
36, 37, 38, 39]. Watermarking methods operate under a different paradigm compared to the other
two by embedding identifiable patterns or signals into the text during model training, but is only
feasible for model providers. In contrast, zero-shot and supervised training-based approaches are
typical post hoc methods and both frame the detection task as a binary classification problem: given
a candidate text, determine whether it was generated by an LLM (positive sample) or written by a
human (negative sample). Zero-shot detectors, such as DetectGPT [14], DetectLLM [40], DNA-GPT
[41], Fast-DetectGPT [25], Binoculars [42], BiScope [43], Raidar [44], and DALD [45], typically
rely on the statistical analysis of the logits on distribution irregularities between human- and machine-
written texts, and distinguish them using threshold-based decision rules. More recently, detection has
also been approached through statistical hypothesis testing methods [46, 47] which reframe detection
as a relative test problem. Supervised training-based methods generally achieve higher accuracy
by training a binary classifier on labeled datasets containing human and machine-generated texts.
These approaches often follow a pipeline that uses pretrained language models (e.g., RoBERTa, T5
) as embedding extractors, followed by a classifier layer. Notable training based examples include
GPT-Sentinel [48], GhostBuster [49], GPTZero [50]. Building on these backbones, RADAR [34]
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adopts an adversarial training strategy, while CoCo [33] and DeTeCtive [15] leverage contrastive
learning in the feature space to distinguish between clusters associated with different LLMs and
human-authored text. Despite their effectiveness in specific detection scenarios, all of these methods
fundamentally assume that human-written text, the negative class, can be modeled as a unified
and coherent distribution. However, this assumption overlooks the inherent diversity and stylistic
variability of human language, limiting generalization and robustness when applied to out-of-domain
or heterogeneous human text samples.

Out-of-Distribution Detection. Out-of-distribution (OOD) detection [51] is a long-standing
problem in machine learning, extensively studied in computer vision and anomaly detection
[52, 53, 16, 54, 55, 56]. This task focuses on identifying inputs that deviate from the data dis-
tribution observed during training. A wide range of OOD detection techniques have been proposed.
One-class learning approaches, such as One-Class SVM [57] and Support Vector Data Description
(SVDD) [58], attempt to learn a tight boundary around ID samples without requiring any OOD
data. In the deep learning era, variants such as DeepSVDD [16] and autoencoder-based models
have extended these principles to high-dimensional representation spaces. Score-based methods
[59, 60, 61, 62, 63, 64], including softmax score [65], and energy score [18], estimate confidence
scores during inference to identify inputs with low model certainty. More recent trends include
contrastive learning and representation clustering [66, 67], which aim to separate ID and OOD
samples in embedding space without relying on labeled outliers. In the context of natural language
processing (NLP), OOD detection presents unique challenges [68]. Pretrained language models
such as BERT and RoBERTa have been used to extract embeddings, which are then analyzed using
one-class or score-based techniques [69]. However, few studies have explored OOD detection in the
context of LLM-generated text. Our work is the first to systematically apply OOD techniques to this
detection problem, offering improved generalization and robustness across models.

3 Methods

In this section, we present the details of our proposed approach. Section 3.1 formalizes the problem
of AI-generated text detection and motivates our reformulation of the task as an out-of-distribution
(OOD) detection problem. Section 3.2 outlines the overall detection pipeline. Section 3.3 describes
the specific OOD detection methods we adopt—DeepSVDD, HRN, and Energy-based method.

3.1 Problem Reformulation: Why Binary Classification Fails for Human Text Detection?

We aim to detect whether a given text is generated by a large language model (LLM) or authored by a
human. Traditionally, this problem has been framed as a binary classification task, where the detector
is trained to distinguish between human-written and machine-generated samples using supervised
learning. Formally, let X be the text space, and consider a dataset D =

{
(x, y)

∣∣x ∈ X , y ∈ {0, 1}
}

generated with class probabilities qM , qH and in-class distributions PH , PM :

P(y = 0) = qM , P(y = 1) = qH = 1− qM ,

P(x|y = 0) = PM (x), P(x|y = 1) = PH(x),
(1)

where the label y = 0 corresponds to machine-generated text, and y = 1 corresponds to human-
generated text. The following concept characterizes the “correctness” of such a data distribution.
Assumption 1 (Human-Machine Distinction Hypothesis). We assume for any given text x ∈ X ,
there exists an objective ground truth probability p̂M (x) that x is machine-generated. We say a data
distribution defined by the tuple (qM , qH , PM , PH) is consistent with the ground truth p̂M (x) if, for
x ∈ X and label y ∈ {0, 1},

qM · PM (x)

qH · PH(x)
=

p̂M (x)

1− p̂M (x)
.

Note that this is perfectly in line with the Bayes rule: P(y = 0|x) = qMPM (x)/
[
qMPM (x) +

qHPH(x)
]
. The goal now is to train a classifier f : X → {0, 1} that distinguishes between the two

distributions:

f(x) ∈ {0, 1}, where
{
f(x) = 1 if x ∼ Phuman,

f(x) = 0 if x ∼ Pmachine.
(2)
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In this setting, the classifier is typically trained with a cross-entropy loss, which encourages the model
to maximize confidence over both classes. The training objective is:

LCE(f | D) = −E(x,ŷ)∼D
[
log pθ(y = ŷ | x)

]
(3)

= −qMEx∼PM

[
log pθ(y = 0 | x)

]
− qHEx∼PH

[
log pθ(y = 1 | x)

]
. (4)

It can be proven (See Appendix) that the loss reaches minimum E(x,y)∼D[H
(
p̂M (x)

)
] when pθ(y =

0 | x) = p̂M (x), where H denotes entropy, thus encouraging the model to align itself with the ground
truth label distribution. However, we posit that textual distributions generated by different human
authors exhibit substantial heterogeneity, characterized by divergent stylistic patterns, domain-specific
variations, and individualized linguistic fingerprints. To formalize this intuition, we consider an
open-world human text distribution with intrinsic heterogeneity P̂H , which is much more diverse
than PH , and state the following theorem.
Theorem 2. Consider training distribution D = (qM , qH , PM , PH) and real-world distribution
D̂ = (qM , qH , P̂M , P̂H) both consistent with the ground truth probability p̂M (·). If the Pearson χ2

divergence D := Dχ2(PH ||P̂H) is large, then for an arbitrary suboptimality ∆, there exists a binary
classifier f , such that:

• The loss for D is close to optimal: LCE

(
f
∣∣D)

< E(x,y)∼D[H
(
p̂M (x)

)
] + ∆;

• The loss for D̂ is high: LCE

(
f
∣∣D̂)

> E(x,y)∼D̂[H
(
p̂M (x)

)
] + 0.9qH(D + 1) ·∆.

Detailed proof of this theorem and an analysis of the magnitude of D can be found in the Appendix.
Theorem 2 implies that the error rate of a binary classifier on the real-world human text distribution
can be many times higher than the training error, due to the inherent heterogeneity of human-written
text (e.g., diverse styles, domains, and author traits). Another way to pinpoint this problem is to
consider a training dataset almost consistent with p̂M , while showing high discrepancy at sparser
text regions. A binary classifier trained on this dataset will inevitably overfit and fail to generalize to
the real-world distribution. We present another theoretical result based on this line of thinking also
in Appendix. Either way, this highlights a fundamental mismatch: binary classification assumes a
closed-world setting, yet human-written text behaves as an open-world, high-variance distribution.

To address this, we propose to reframe the machine-generated text detection as an OOD detection
problem, where the machine-generated distribution PM = Pin is modeled explicitly as a narrow,
well-characterized distribution, and any deviation from it is treated as out-of-distribution PH = Pout
without attempting to model it directly. This Pout may cover texts from unseen domains, stylistic
outliers, noisy generations, languages, authors, or other edge cases not represented in the training
data. This perspective not only aligns better with the theoretical properties of text generation, but also
provides a more robust framework for handling the diversity and unpredictability of human language.

3.2 Method Overview: OOD Detection Framework for Machine-Generated Text

To overcome the limitations of binary classification in the context of machine-generated text detection,
we adopt an out-of-distribution (OOD) detection framework based on the one-class and score-based
learning paradigm. Rather than learning to discriminate between two classes, our method focuses
solely on modeling the in-distribution, i.e., machine-generated text, which is typically compact and
consistent due to its origin from a specific LLM. Our framework consists of two main components:
1) a Text Encoder (e.g. RoBERTa) that maps each input text x ∈ X into a high-dimensional
representation z = ϕθ(x) ∈ Rd. 2) an OOD Detector that learns an OOD decision boundary or score
by designed OOD loss. Figure 2 illustrates the overall pipeline by taking DeepSVDD as a primary
example of the second stage. DeepSVDD learns a compact hypersphere around the in-distribution
data in the embedding space. Overall, during the training stage, we compute a center point c ∈ Rd

using only the embeddings of machine-generated samples, then optimize the encoder parameters
using the following DeepSVDD loss:

LDSVDD =
1

N

N∑
i=1

∥ϕθ(xi)− c∥2. (5)

The objective is to compute and minimize the distance of machine-generated samples from the center,
which is intuitively the radius of the hypersphere, thereby ensuring that embeddings of machine-
generated texts lie close to the center. Unlike binary classification, which attempts to model both
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Figure 2: An overview of our proposed OOD detection pipeline under DeepSVDD method. This
pipeline shows the process of training a text encoder with a DeepSVDD loss. (Right) Illustration
of the learned embedding space: LLM-generated texts are enclosed within a hypersphere, while
human-written texts fall outside.

classes under low-entropy supervision, our one-class method only learns the compact support of
machine text, while allowing high-entropy human texts to remain unconstrained, treating any outlier
as likely authored by a human.

Besides, to further enhance the model’s ability to distinguish between human- and machine-generated
text, we incorporate a contrastive loss term based on SimCLR[70] during training, as shown in Equa-
tion 6. q is the current sample. Z+ is the collection of positive samples, while Z− is the collection
of negative samples. NZ+ is the size of positive sample collection. τ refers to the temperature
coefficient. S(·) is the similarity computation, which is cosine similarity in our experiments.

Lcontrastive = − log
exp

(∑
z∈Z+

S(q,z)
τ /NZ+

)
exp

(∑
z∈Z+

S(q,z)
τ /NZ+

)
+
∑

z∈Z− exp
(

S(q,z)
τ

) . (6)

3.3 Alternative OOD Detection Losses: HRN and Energy-Based Methods

While we describe DeepSVDD as a representative OOD detection approach, our framework is
model-agnostic and supports a variety of one-class and score-based OOD detection methods. In this
section, we present two additional techniques HRN [17] and Energe-based OOD detection [18] that
instantiate the same pipeline with alternative OOD loss formulations. These methods are designed to
improve detection reliability under varying conditions. Each is seamlessly integrated into the same
architecture described in Section 3.2, replacing the DeepSVDD loss with their OOD loss function.

HRN is a one-class learning method designed to improve robustness and generalization in OOD
detection. HRN only has one class/head in the output, it uses Sigmoid(f(ϕ(x))) as a score or the
probability of given text x belonging to the in-class. During training, learning the given class in the
distribution with its training data, its one-class loss is:

LHRN = Ex∼Dtrain
in

[− log(Sigmoid(f(ϕ(x))))] + λ · ∥∇xf(ϕ(x))∥n2 , (7)

where f is a one-class classifier, ϕ(x) is the high-dimensional embedding, Sigmoid(·) ∈ (0, 1) is a
score mapping the one class head to logit, and n and λ are hyper-parameters controlling the strength
of the penalty and balancing the regularization respectively. By adding an H-Regularization term
with 2-Norm instance-level normalization to the Negative Log Likelihood for one class, this HRN
loss improves over prior approaches by penalizing excessive sensitivity to specific input directions,
promoting more robust and generalizable decision functions.

Energy-based OOD detection methods assign an energy score E(x) to each input, indicating
its compatibility with the in-distribution. Lower energy implies a higher likelihood of being in-
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distribution. The energy of a sample is defined from softmax logits f(x) as:

E(x) = − log
∑
i

exp(fi(x)), (8)

where fi(·) indicates the model logits for class i. We adopt an energy-based learning objective that
explicitly encourages an energy gap during training. The learning objective is:

Lenergy = E(x,y)∼Dtrain
in

[− logFy(x)]

+ λ ·
{
Ex∼Dtrain

in

[
max(0, E(x)−min)

2
]
+ Ex∼Dtrain

out

[
max(0,mout − E(x))2

]}
, (9)

where Fy(x) is the softmax output of the classifier. Importantly, the softmax classifier is trained only
on in-distribution data—i.e., machine-generated texts from multiple sources—using cross-entropy
loss to distinguish between different LLM generators. The second is an energy regularization term,
that combines two squared hinge loss terms with separate margin hyperparameters min and mout.
This loss penalizes in-distribution samples whose energy exceeds a predefined margin min, and
simultaneously penalizes OOD samples with energy lower than another threshold mout. The resulting
model learns a contrastively shaped energy surface, creating a clearer margin between ID and OOD
samples in energy space.

3.4 Overall Training Objectives

The final training objective thus combines the OOD loss with a supervised contrastive objective:

LTotal = α · LOOD + β · Lcontrastive, LOOD ∈ {LDSVDD,LHRN,Lenergy} (10)

where α and β is a weighting coefficient. This joint training scheme allows the encoder to benefit
from both unsupervised in-distribution modeling and supervised human–machine discrimination,
leading to more robust representation learning.

Inference. For Deep-SVDD, we compute an OOD score for a given text using the distance from the
center, if the score exceeds a threshold, the text is flagged as out-of-distribution and thus considered
human-written. As for HRN, during inference time, texts with low sigmoid scores are considered as
OOD samples, which is human-written text. Finally, for energy-based method, the energy score E(x)
is computed for a given input using the log-sum-exp of the softmax logits. An input is classified as
out-of-distribution if its negative energy score −E(x) falls below a predefined threshold.

4 Experiments

4.1 Experimental Setup

Datasets. We test our method on three widely-used and challenging datasets including DeepFake
[71], M4 [72], and RAID [73]. The Deepfake dataset comprises text generated by 27 large language
models (LLMs) alongside human-written content sourced from multiple websites across 10 distinct
domains, totaling 332K training and 57K test samples. It defines six diverse evaluation scenarios,
including cross-domain, unseen domain, and model detection settings. Moreover, the M4 dataset is
a comprehensive benchmark spanning multiple domains, models, and languages, comprising data
from 8 large language models (LLMs), 6 domains, and 9 languages. We test our method and other
baselines on multilingual settings, which include 157K training and 42K testing data. The test
dataset of M4 also includes the unseen models from the training set. Finally, RAID is a large-scale
LLM detection benchmark with normal AI-generated texts and different attacked texts including
paraphrase, synonym swap, misspelling, and so on. We hold out 10% of training data as validation
set for evaluation. During training, we filter the attacked samples in the training set.

Evaluation Metrics. To comprehensively evaluate the detection results, we follow DNA-GPT
[41], FastDetectGPT [25] and DALD [45] and report the accuracy in the area under the receiver
operating characteristic (AUROC) and the area under the precision and recall (AUPR) to evaluate the
performance of all methods. Moreover, we follow [18] to measure the false positive rate (FPR95)
when true positive rate is at 95%.

Baselines. We compare our method with both zero-shot and training-based methods. For zero-shot
methods, we compare with DetectGPT [14], FastDetectGPT [25], DNA-GPT [41], Binoculars [42],
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Table 1: Detection result comparison of our method and baselines. Our method outperforms all
previous zero-shot and training-based methods and achieves SoTA performance. †: Due to the low
detection speed, we randomly select 10K samples from each test set for evaluation.

Method DeepFake M4-multlingual RAID
AUROC ↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

DetectLLM† [40] 59.4 62.5 95.0 86.7 83.2 46.0 77.6 80.5 78.6
DetectGPT† [14] 58.1 59.4 90.2 70.5 67.3 80.4 59.5 77.3 70.5
DNA-GPT† [41] 57.9 56.0 96.5 66.2 61.2 74.1 61.3 97.3 95.8
F-DetectGPT[25] 60.3 70.8 99.9 87.7 91.6 72.8 77.6 99.2 99.3
Binoculars [42] 61.7 52.8 66.7 87.7 76.6 27.8 82.4 7.3 40.4
DALD [45] 56.2 55.0 97.4 63.2 66.6 64.6 59.4 67.1 64.6
Glimpse [74] 69.5 74.5 91.4 88.2 89.0 52.8 79.5 99.1 81.2
GPTZero [50] 59.3 70.4 92.4 67.5 76.7 89.8 62.7 68.5 92.0
RADAR [34] 61.2 55.3 86.3 68.3 76.1 92.1 82.9 69.2 64.1
GhostBuster [49] 52.9 51.1 93.2 62.5 63.2 85.6 66.7 98.1 82.4
BiScope [43] 79.2 85.0 84.3 83.0 90.8 84.8 78.0 71.1 86.8
DeTeCtive [40] 95.6 97.1 16.1 93.1 95.3 52.4 85.1 55.7 74.3
Ours (D-SVDD) 98.3 98.3 8.9 96.4 96.3 18.2 94.7 73.0 38.3
Ours (HRN) 97.0 97.2 4.4 96.4 96.7 24.9 88.1 70.1 57.5
Ours (Energy) 97.6 97.2 12.3 96.2 95.8 10.7 93.6 99.7 28.3

DetectLLM LRR and NPR [40], DALD [45], BiScope [43], and Glimpse [74]. For training-based
methods, we include the comparison with RADAR [34], GhostBuster [49], GPT-Zero, and DeTeCtive
[15]. We utilize the official implementation of each baseline. More information about the baselines
can be found in the supplementary material.

Implementation Details. We adopt three OOD detection methods including DeepSVDD, HRN and
Energy-based methods for our experiments. For DeepSVDD, we use the machine texts from the
training set to compute the initial center and compute the corresponding loss with the center. For HRN,
follow its original setting by training a one-class classifier per model family using its corresponding
data as the positive class and averaging their scores at inference time. For energy-based method, we
follow [18] to choose hyper-parameters, where min = −27 and mout = −2. DeepSVDD is trained
from scratch, and HRN and Energy load the pre-trained weights of DeTeCtive. The learning-rate is
set as 2e-5 and the optimizer is Adam [75] with β1 = 0.9 and β2 = 0.98. The loss weights α and β
are set as 1 in our experiments. We train all model for 20 epochs. All experiments are conducted on
2*A100 GPUs.

4.2 Main Results

We conduct a comprehensive evaluation of our methods against a diverse set of baselines on two
challenging benchmarks: DeepFake and M4-multilingual, as present in Table 1. On the DeepFake
dataset, our DeepSVDD model achieves the highest AUROC (98.3) and AUPR (98.3), surpassing all
other training-based methods including GPT-Zero, RADAR, GhostBuster. Moreover, our method
substantially outperforms the strongest training-based baseline, DeTeCtive, which scores 95.6 AU-
ROC and 97.1 AUPR. Additionally, DeepSVDD reduces the FPR95 from 16.1% to 8.9%, indicating
a much lower false positive rate at high sensitivity. Our HRN and Energy-based variants also perform
competitively, with HRN attaining the lowest FPR95 (4.4%) among all methods while maintaining
high precision (97.2 AUPR). In the M4-multilingual benchmark, where detectors must generalize
across multiple languages and domains, our methods again lead in all metrics. DeepSVDD and HRN
both reach an AUROC of 96.4, surpassing DeTeCtive’s 93.1. HRN also delivers the best AUPR
(96.7), while the Energy-based method achieves a strong balance between recall and reliability, with
a notably low FPR95 of 10.7, compared to DeTeCtive’s much higher 52.4. These results demonstrate
the effectiveness and robustness of our approaches in cross-lingual and domain-shifted settings.

We also compare against zero-shot methods including FastDetectGPT and Binoculars, two recent
approaches designed to detect LLM-generated content without task-specific training. While FastDe-
tectGPT offers fast and training-free deployment, it suffers from significant performance limitations.
On DeepFake, it achieves only 78.3 AUROC and 60.8 FPR95—over 20 points worse in AUROC and
nearly seven times higher in FPR95 than DeepSVDD. Binoculars, a more recent zero-shot method,
performs somewhat better with 88.1 AUROC and 41.2 FPR95, but still underperforms our models by
a large margin. On M4-multilingual, FastDetectGPT’s AUROC drops to 66.1 and FPR95 increases to
74.7, while Binoculars shows moderate improvement (79.6 AUROC, 64.9 FPR95), yet both remain
significantly below the performance of our proposed detectors.
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Table 2: Detection results in comparison of baseline and our method in unseen domain and model
settings. With different OOD heads, our method surpasses the DeTeCtive in all settings, demonstrating
the generalizability of our method.

Method Unseen Domain Unseen Model
AUROC ↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

DeTeCtive 76.5 87.5 89.2 84.3 88.1 70.8
Ours (D-SVDD) 97.9 97.8 10.2 93.4 92.3 25.8
Ours (HRN) 98.0 97.8 12.0 95.2 96.3 30.9
Ours (Energy) 96.0 93.2 8.3 90.2 91.3 38.1

Table 3: Ablation study. The binary classification head is compared with each of our components.

Method DeepFake M4-multlingual RAID
AUROC ↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

Classification Head 89.0 94.0 75.8 84.6 91.2 83.2 84.5 71.9 83.5

D-SVDD Loss 98.3 98.3 8.9 96.4 96.3 18.2 94.7 73.0 38.3
HRN Loss 97.0 97.2 4.4 96.4 96.7 24.9 88.1 65.9 70.0
Energy Loss 97.6 97.2 12.3 96.2 95.8 10.7 93.6 99.7 28.3

Overall, our methods consistently outperform both training-based and zero-shot baselines across all
metrics and benchmarks. The substantial gains in AUROC and AUPR, along with dramatic reductions
in FPR95, demonstrate that our approach offers a robust and generalizable solution for detecting
LLM-generated text, even in multilingual and domain-shifted environments.

4.3 Experimental Analysis

Attack Robustness. We also provide the results on RAID dataset, as shown in Table 1. RAID is
specifically designed to evaluate the robustness of LLM-generated text detectors under adversarial
perturbations including paraphrasing, synonym substitution, sentence reordering, and so on. Our
proposed methods exhibit strong robustness to adversarial attacks, significantly outperforming both
training-based and zero-shot baselines. Notably, the energy-based model achieves the highest
AUPR (99.7), indicating exceptional precision-recall performance even under strong perturbations.
This suggests that the model remains confident and discriminative even when the surface form of
the generated text is substantially altered. Additionally, the DeepSVDD variant attains the highest
AUROC (94.7) among all methods, demonstrating that it maintains strong overall ranking performance
in the presence of adversarial noise. In contrast, the baseline methods show siginificant degradation
on RAID. For example, DeTeCtive, while effective on clean data, sees its AUROC drop to 89.3 with
a much higher FPR95 (58.9), indicating frequent misclassifications of perturbed generated samples
as human-written. The zero-shot method FastDetectGPT performs particularly poorly, with only 59.2
AUROC and a very high FPR95 of 75.1, showing that it lacks the structural resilience needed for
attack scenarios. Even Binocular, which performs better than FastDetectGPT, achieves only 72.4
AUROC and 64.3 FPR95—well below those of our proposed models. These results highlight a key
strength of our approach: robust generalization to adversarially manipulated text. The combination of
representation learning (in DeepSVDD and HRN) and energy-based scoring mechanisms provides a
defense against common attack strategies that exploit shallow decision boundaries or overfitting.

Generalizability. To show the generalizability of our method, we test our method on DeepFake
dataset in Unseen Domains and Unseen Models settings, which is split from [15]. The results are
shown in Table 2. In the unseen domain scenario, all variants of our method significantly outperform
DeTeCtive. Specifically, our HRN-based method achieves the highest AUROC (98.0) and a near-
optimal AUPR (97.8), with a considerably lower FPR95 (12.0) compared to DeTeCtive’s 89.2. The
DeepSVDD variant also performs competitively, achieving an AUROC of 97.9 and the lowest FPR95
of 10.2. Notably, the energy-based approach achieves the best FPR95 (8.3), suggesting that it is
especially effective at reducing false positives, even though its AUROC (96.0) is slightly lower than
the others. In the unseen model setting, similar performance is observed. The strong performance
underscores our method’s robustness in identifying the instances from unseen models and domains
with minimal false positives and demonstrates the generalizability of our method.

Practical Insights on Method Choice. According to the empirical results above, we can draw a
conclusion and provide the insights about how to choose OOD detection methods: 1) In scenario
which requires attack robustness, energy-based methods yield the best performance; 2) In scenario
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which requires better generalizability like unseen model and domains, HRN would be a better choice;
3) DeepSVDD balances both scenario.

Ablation Study. We conduct an ablation study of our method on DeepFake, M4, and RAID datasets.
The results are presented in Table 3. We compare our loss functions including D-SVDD, HRN and
Energy against a standard binary classification head across three datasets. Across all benchmarks,
our methods significantly outperform the classification head, which suffers from high FPR95 values
(75.8–83.5). Notably, HRN achieves the lowest FPR95 (4.4) on DeepFake, while Energy loss attains
the best AUPR (99.7) and lowest FPR95 (28.3) on RAID. All variants also consistently improve
AUROC and AUPR, confirming the effectiveness of our loss designs in enhancing LLM detection
performance and reducing false positives.

5 Conclusion

In this paper, we theoretically analyze the failure case and reason for treating LLM detection tasks
as binary classification tasks and propose to transform the task to an out-of-distribution detection
task. Moreover, we propose a novel LLM detection framework based on the OOD detection loss.
We validate the effectiveness of our proposed framework with DeepSVDD, HRN and energy-based
method, achieving SoTA performance on multiple benchmarks including multilingual, attacked and
unseen-model and -domain scenarios.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please check the Method in the main text and Theoretical proof in the supple-
mentary appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please check the dataset, evaluation metric and implementation detail in the
main text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will include our code in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please check each experimental section and appendix, we have a detailed
description of each experiment setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please check the implementation section in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This work focuses on proposing a detection scheme for LLM-generated
text, the paper does not elaborate on societal impacts because the detection technology is
explicitly designed for public welfare (curbing disinformation), and its design does not
involve sensitive dimensions such as privacy or fairness (e.g., no user data collection, no
analysis of specific group differences). Therefore, it does not involve significant societal
risks at this stage.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the weight in our experiments.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theoretical Results

In this section, we provide formal justification for Theorem 2, discuss the magnitude of Pearson χ2

divergence, and provide an alternative theorem to further characterize the inevitability of overfitting
binary classifiers to biased human-written text distributions.

A.1 Preliminaries

We use integral
∫
x∈X · dx to equivalently denote integral or summation over the data space X . For the

ground truth classifier p̂M (x), we introduce the following auxiliary definitions to assist the writing:
p̂H(x) := 1− p̂M (x)

p̂(y = 1|x) := p̂H(x), p̂(y = 0|x) := p̂M (x).

Towards a proof of the theorem, we first analyze the cross-entropy loss LCE:
LCE

(
fθ
∣∣D)

= −qMEx∼PM

[
log pθ(y = 0 | x)

]
− qHEx∼PH

[
log pθ(y = 1 | x)

]
= −

∫
x∈X

[
qMPM (x) log pθ(y = 0 | x) + qHPH(x) log pθ(y = 1 | x)

]
dx

= −
∫
x∈X

[
p̂M (x) log pθ(y = 0 | x) +

(
1− p̂M (x)

)
log pθ(y = 1 | x)

]
PD(x) dx

=

∫
x∈X

H
(
p̂(·|x), pθ(·|x)

)
PD(x) dx, (11)

where the third equality comes from Assumption 1, PD(x) := qMPM (x) + qHPH(x) denotes the
joint probability at x of dataset D. and H(·, ·) denotes the cross-entropy between two distributions.
From the properties of cross-entropy, this is minimized when p̂ = pθ, i.e. when the model predictions
exactly match the ground truth, with minimal value

min
θ

LCE

(
fθ
∣∣D)

= Ex∼DH
(
p̂(·|x)

)
. (12)

We also formally define The Pearson χ2 divergence below for future reference.
Definition 3. For two distributions P1, P2 over set X , the Pearson χ2 divergence between P1 and P2

is defined as

Dχ2

(
P1∥P2

)
=

∫
x∈X

(
P1(x)− P2(x)

)2
P2(x)

dx =

∫
x∈X

P 2
1 (x)

P2(x)
dx− 1 (13)

A.2 Proof of Theorem 2

The basic idea behind this proof is to find a classifier fθ that properly accentuates the difference
between data distributions D and D̂, ensuring bounded suboptimality on the training set D while
maximizing suboptimality on the real-world set D̂. This is achieved through relatively enlarging the
errors in regions where D has lower density compared to D̂ and vice versa, hence blowing up the loss
measured under D̂ compared to D.

Proof of Theorem 2. Let ∆(x) = H
(
p̂(·|x), pθ(·|x)

)
− H

(
p̂(·|x)

)
be the suboptimality of fθ at x.

From (11),

LCE

(
fθ
∣∣D)

− Ex∼DH
(
p̂(·|x)

)
=

∫
x∈X

∆(x)PD(x) dx, (14)

LCE

(
fθ
∣∣D̂)

− Ex∼D̂H
(
p̂(·|x)

)
=

∫
x∈X

∆(x)PD̂(x) dx, (15)

Since cross-entropy is unbounded for pθ(·|x) given any p̂(·|x), we can choose a classifier fθ such
that ∆(x) = ∆0 × PD̂(x)/PD(x) for any x ∈ X given a target suboptimality ∆0. With this we have
the training suboptimality∫

x∈X
∆(x)PD(x) dx =

∫
x∈X

∆0PD̂(x) dx = ∆0,
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while the loss on ground truth dataset D̂ is∫
x∈X

∆(x)PD̂(x) dx =

∫
x∈X

∆0 ×
P 2
D̂
(x)

PD(x)
dx

= ∆0

∫
x∈X

(
qM P̂M (x) + qH P̂H(x)

)2
qMPM (x) + qHPH(x)

dx. (16)

Now notice that from Assumption 1, the ratios

qM P̂M (x)

qH P̂H(x)
=

qMPM (x)

qHPH(x)
=

p̂M (x)

p̂H(x)
,

therefore we can write (16) as∫
x∈X

∆(x)PD̂(x) dx = ∆0

∫
x∈X

(
p̂M (x)

p̂H(x)
+ 1

)
· qH

P̂ 2
H(x)

PH(x)
dx

≥ ∆0

∫
x∈X

qH
P̂ 2
H(x)

PH(x)
dx

= qH∆0

[
Dχ2

(
P̂H∥PH

)
+ 1

]
,

thus finishing the proof.

A.3 Analysis of the Pearson χ2 Divergence

The effectiveness of Theorem 2 depends on the magnitude of the Pearson χ2 divergence
Dχ2

(
P̂H∥PH

)
: the larger this divergence, the larger the cross-entropy loss for a linear classifier

well-fitted to the training set. Here we relate this value to the intuition that the training human-text
data distribution is biased and cannot reflect open-world distribution.

We model the intuition of “open-world” distribution P̂H by considering a training distribution PH

that is a shifted biased distribution of P̂H . More concretely, this means that there is a subset X0 of
X , such that

PH(x) =

{
C1P̂H(x), x ∈ X0,

C2P̂H(x), x /∈ X0,

where C1, C2 are constants such that C1µP̂H
(X0) +C2

[
1− µP̂H

(X0)
]
= 1 and C1 ≫ C2, and µP̂H

denotes the measure with respect to P̂H . Such a distribution follows the same probability ratios as
P̂H within and without X0 respectively, but is very close to 0 outside X0, hence most of the samples
come from the partial region X0. This is of course only an approximation of a realistic scenario, but
it captures the essence of training data being only a partial observation of the whole picture. With
this, the Pearson χ2 divergence is

Dχ2

(
P̂H∥PH

)
=

∫
x∈X

P̂ 2
H(x)

PH(x)
dx− 1

=

∫
x∈X0

1

C1
P̂H(x)dx+

∫
x∈X\X0

1

C2
P̂H(x)dx− 1

=
µP̂H

(X0)

C1
+

1− µP̂H
(X0)

C2
− 1,

which blows up to infinity inverse-linearly as C2 → 0, corresponding to the likely case where the
dataset is heavily biased towards a partial region of the text data space.

A.4 Alternative View: Binary Classifiers Overfit to Slightly Defected Datasets

While theoretically reasonable, Assumption 1 usually does not hold for many data distributions. For
example, if a training human-text distribution consists only of one “style” of texts, then the probability
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that some human-text x∗ of another style is sampled from this distribution would be close to 0, even
smaller than the probability that x∗ is sampled from the machine process, i.e. PH(x∗) ≪ PM (x∗).
This leads to a violation of Assumption 1 in that the Bayes probability that x∗ is human-generated
does not match p̂M (x). In this scenario, binary classifiers actually can overfit to the training dataset
and fail to generalize by a nonzero gap.

To illustrate this, we characterize this dataset defect in the following definition in place of Assump-
tion 1.

Definition 4. For a machine-human text data distribution D = {qM , qH , PM , PH}, define its poste-
rior binary classifier to be

pD(y = 1|x) = qMPM (x)

qMPM (x) + qHPH(x)
,

pD(y = 0|x) = qHPH(x)

qMPM (x) + qHPH(x)
.

We define the kwality of D as

K(D) := Ex∼PD(x)DKL

[
p̂(·|x)

∥∥pD(·|x)],
which measures the expected KL-divergence between pD and p̂ over joint text distribution PD(x) =
qMPM (x) + qHPH(x), and say dataset D is δ-suboptimal if its kwality K(D) < δ.

Remark 5. A few things are worthy of note:

• When the posterior distribution pD → p̂, kwality reaches its minimum value 0, while higher
kwality values correspond to deviations in labeling and hence degradation of dataset.

• The idea behind this definition is that, realistically we cannot expect the training dataset to
be perfectly accurate, and kwality more or less measures the deviation of the model from
the ground truth classifier.

• The expectation in kwality is taken over text distribution P (x), which means mislabeling
data in sparser text regions are less detrimental to kwality than denser regions. This aligns
with the fact that sparse regions contain less data points within the sampled dataset, where
accuracy cannot be guaranteed, but also warrants less attention from the learning model.

Our main result is that fully training models on a near-optimal dataset can lead to overfitting, and
result in a large validation loss on open-world data distribution.

Theorem 6. There exists a δ-suboptimal dataset D such that for any binary classifier that achieves
optimal cross-entropy loss on D, the generalization loss on open-world dataset D̂ which complies
with p̂ (Assumption 1) is at least δDχ2

(
PD

∥∥PD̂
)
.

Proof. From optimal cross-entropy loss, we get from (11) that

0 = LCE

(
fθ
∣∣D)

− Ex∼DH
(
pD(·|x)

)
=

∫
x∈X

[
H
(
pD(·|x), pθ(·|x)

)
−H

(
pD(·|x)

)]
PD(x) dx,

which means for any x ∈ X ,

H
(
pD(·|x), pθ(·|x)

)
= H

(
pD(·|x)

)
⇔ pθ(·|x) = pD(·|x).

Now consider the generalization loss:

LCE

(
fθ
∣∣D̂)

− Ex∼D̂H
(
p̂(·|x)

)
=

∫
x∈X

[
H
(
p̂(·|x), pθ(·|x)

)
−H

(
p̂(·|x)

)]
PD̂(x) dx

=

∫
x∈X

DKL

[
p̂(·|x)

∥∥pD(·|x)]PD̂(x) dx,
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Since KL-divergence is unbounded, we can choose p̂(·|x) for each x ∈ X such that
DKL

[
p̂(·|x)

∥∥pD(·|x)] = δPD̂(x)/PD(x), which guarantees K(D) = δ, while

LCE

(
fθ
∣∣D̂)

− Ex∼D̂H
(
p̂(·|x)

)
≥

∫
x∈X

δ ×
P 2
D̂
(x)

PD(x)
dx = δDχ2

(
PD

∥∥PD̂
)
.
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B Detail of Experimental Setup

B.1 Datasets

In this section, we discuss more details of our dataset in our experiments.

• DeepFake. The Deepfake dataset comprises text generated by 27 large language models
(LLMs) alongside human-written content sourced from multiple websites across 10 distinct
domains, totaling 332K training and 57K test samples. It defines six diverse evaluation
scenarios, including cross-domain, unseen domain, and model detection setting. In our
main experiment, we use the cross-domain and cross-model setting, which includes various
domains and models in both the training and testing set. For the generalizability validation
experiments, we utilize the Unseen Domains and Unseen Models of DeepFake, where the
former setting means there are unseen-domain texts in the testing set and the latter setting
indicates that there are texts generated by unseen LLMs during testing.

• M4. The M4 dataset is a comprehensive benchmark spanning multiple domains, models,
and languages, comprising data from 8 large language models (LLMs), 6 domains, and 9
languages. It includes human-written content sourced from platforms such as Wikipedia,
WikiHow [76], Reddit, arXiv, and PeerRead[77]. Leveraging human-authored prompts,
models including ChatGPT [1], DaVinci-003, LLaMA [78], FLAN-T5 [79], Cohere [80]
and so on generate outputs across nine languages, including English, Chinese, and Russian.
As part of the M4 initiative, a competition [81] is organized to evaluate the detection of
AI-generated text at both the paragraph and sentence levels. Two evaluation settings are used:
monolingual and multilingual. The multilingual setting introduces new languages absent
from the training and validation sets, with AI-generated texts also undergoing paraphrasing.
We focus on multilingual setting since this is a more complicated and hard setting for correct
LLM detection. The multilingual settings includes 157K training and 42K testing data. The
test dataset of M4 also includes the unseen models from the training set.

• RAID. RAID[73] is the largest and most comprehensive dataset available for evaluating
AI-generated text detection systems. It comprises over 10 million documents, encompassing
11 large language models (LLMs), 11 content genres, 4 decoding strategies, and 12 types
of adversarial attacks. The detailed information of RAID dataset can be found in Table 4.
We hold out 10% of training data as validation set for evaluation, which includes the texts
with all kinds of attacks. We utilize the RAID dataset to compare the robustness of different
methods on the attacked texts. During training, we filter the attacked samples in the training
set to train the model.

Category Values
Models ChatGPT, GPT-4, GPT-3 (text-davinci-003), GPT-2 XL, Llama 2 70B

(Chat), Cohere, Cohere (Chat), MPT-30B, MPT-30B (Chat), Mistral 7B,
Mistral 7B (Chat)

Domains ArXiv Abstracts, Recipes, Reddit Posts, Book Summaries, NYT News
Articles, Poetry, IMDb Movie Reviews, Wikipedia, Czech News, Ger-
man News, Python Code

Decoding Strategies Greedy (T=0), Sampling (T=1), Greedy + Repetition Penalty (T=0,
θ=1.2), Sampling + Repetition Penalty (T=1, θ=1.2)

Adversarial Attacks Article Deletion, Homoglyph, Number Swap, Paraphrase, Synonym
Swap, Misspelling, Whitespace Addition, Upper-Lower Swap, Zero-
Width Space, Insert Paragraphs, Alternative Spelling

Table 4: RAID dataset composition. The table includes the information about the models, domains,
decoding strategies, and adversarial attack kinds.

B.2 Baseline Setup

In this section, we discuss the details of the experiments setup on baseline models including zero-
shot and training-based baselines. For DetectLLM, DetectGPT, DNA-GPT and FastDetectGPT, we
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Figure 3: Hyper-parameter sensitivity analysis of our method. The experiments are conducted on
DeepFake dataset and show that our method is robust to the choice of weight.

utilize the official implementation of FastDectGPT2, which also includes the implementation of other
methods. We utilize GPT-Neo-2.7B as the scoring model for all methods. T5-Small is used as the
sampling model to do perturbation for DetectGPT and DetectLLM. We do 100 perturbation for each
text. Due to the low speed of perturbation, we randomly select 10K samples from each benchmark for
evalution for DetectLLM, DetectGPT and DNA-GPT. For DALD, we use the LoRA model trained
by GPT-4 texts (which is demonstrated with the best generalizability in the original paper) based on
Llama-2-7B as the scoring model. We follow the same experimental setting of Binoculars and apply
the Falcon model to compute the final metric. For Glimpse, we utilize the official implementation
and call OpenAI davinci-002 API to compute the geometric metric.

For training-based method, such as GPT-Zero, we utilize the open-source version for evaluation3.
For RADAR and GhostBuster, we apply their official implementation for testing with the updated
OpenAI API model. Moreover, we adopt the official open-source implementation of BiScope and
utilize gemma-2b as the scoring model.

B.3 Implementation Detail

We adopt three OOD detection methods including DeepSVDD, HRN and Energy-based methods for
our experiments. For DeepSVDD, we use the machine texts from the training set to compute the initial
center and compute the corresponding loss with the center. We freeze the parameters of the center
point and disable the optimization on the center point. During inference, we compute the L2 distance
of the given sample and the center point as the probability of being human-written text. For HRN,
follow its original setting by training a one-class classifier per model family using its corresponding
data as the positive class and averaging their scores at inference time. We also follow the original
hyperparameter settings, where λ = 0.1 and n = 12. For energy-based method, a classification
head is attached following the backbone model. We follow [18] to choose hyper-parameters, where
min = −27 and mout = −5. DeepSVDD is trained from scratch, and HRN and Energy load the
pre-trained weights of DeTeCtive. The learning-rate is set as 2e-5 with batch size 32 per device (64
global batch size in our experiments), and the optimizer is Adam [75] with β1 = 0.9 and β2 = 0.98.
The loss weights α and β are set as 1 in our experiments. We train all model for 20 epochs. All
experiments are conducted on 2*A100 GPUs.

C More Experimental Results

C.1 Hyper-parameter Sensitivity Analysis

For the hyperparameter introduced by the DeepSVDD, HRN and Energy-based method, we use the
default setting from their original paper. In our work, the hyperparameter we introduce is the ratio of
contrastive loss and OOD detection loss, namely α : β. This ratio balances the contrastive loss and
the OOD loss. We conduct a set of experiments with different the loss ratio settings on DeepFake

2https://github.com/baoguangsheng/fast-detect-gpt
3https://github.com/BurhanUlTayyab/GPTZero
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Table 5: Performance comparison with the baseline on more evaluation metrics including accuracy
and F1 score.

Method RAID
Accuracy ↑ F1↑

DeTeCtive 96.5 55.2

Ours (DSVDD) 98.6 70.0
Ours (HRN) 98.5 67.7
Ours (Energy) 98.7 99.4

Table 6: Different backbone model.

Backbone Model AUROC ↑ AUPR↑ FPR95↓
BERTbase 96.9 96.7 13.0
BERTlarge 93.1 94.1 45.3
RoBERTabase 96.1 96.5 16.1
FLAN-T5base 95.3 95.6 18.9
FLAN-T5large 96.9 96.5 9.7
SimCSE-BERTbase 96.8 96.9 17.7
SimCSE-RoBERTabase 98.3 98.3 8.9
E5-small 96.7 97.5 11.4
E5-multilingual 96.6 96.6 12.5

dataset and the results are shown Figure 3. Overall, the results are stable and robust to the choice of
weight. Ratio 1 : 1 is a great choice which balanced well for all methods and metrics.

C.2 More Metrics

Besides the AUROC, AUPR and FPR at TPR 95%, we also provide other metrics including the
accuracy and F1 score for the comparison. We conduct the experiments on RAID dataset and report
the results in Table 5. All settings of our method achieve better performance than the baseline on
both accuracy and F1. Our energy-based method shows significant improvement, obtaining 98.7 and
99.4 on accuracy and F1, respectively.

C.3 Different Backbones

To show the affection of the backbone model for the LLM detection performance, we conduct a
further experimental analysis with different training backbones on DeepFake dataset, as shown in
Table 6. We can observe that our method is robust to the choice of model backbone. All models
generate reasonable results which high AUROC, AUPR and low FRP values.

C.4 Results on Different Domains

We provide the results of model trained within specific domain on DeepFake dataset in DeepSVDD
setting, as shown in Table 7. These strong per-domain performances indicate that the model
effectively distinguishes LLM vs. human text within individual domains, further supporting the
validity of our OOD formulation.

C.5 Results on Newer Models

We split the RAID test set to isolate newer models such as GPT-4, ChatGPT, and LLaMA-70B-Chat,
and additionally evaluated our method on a recent benchmark, EvoBench [82], using the XSum
dataset with GPT-4o outputs, as shown in Table 8. We apply our DeepSVDD setting to train
the model on RAID dataset and evaluate directly on RAID subset and GPT-4o set. These results
show that our method maintains strong performance even on outputs from state-of-the-art models,
demonstrating its effectiveness beyond older-generation LLMs.
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Table 7: Results on different domains.

Domain AUROC ↑ AUPR↑ FPR95↓
cmv 97.9 98.3 6.7
eli5 97.1 97.7 12.9
hswag 98.3 97.8 5.0
roct 97.6 96.5 6.0
scigen 98.7 98.3 4.0
squad 99.3 99.2 2.9
tldr 97.7 97.7 8.4
wp 99.5 99.5 0.4
xsum 97.7 98.0 7.0
yelp 97.2 97.0 10.6

Table 8: Results on newer models.

Methods AUROC ↑ AUPR↑ FPR95↓
DeTeCtive (RAID subset) 87.2 83.2 79.7
Ours (RAID subset) 93.2 74.7 39.1
DeTeCtive (GPT4o) 74.7 87.3 90.2
Ours (GPT4o) 100.0 100.0 0.0

C.6 Results of LLM-generated Text as OOD Sample

Table 9: Results of LLM-generated Text as OOD Sample.

Methods AUROC ↑ AUPR↑ FPR95↓
LLM as OOD 69.6 67.7 79.1
Human as OOD 93.8 94.1 33.7

We provide the result of setting machine-generated text as OOD, as shown in Table 9. The results
are trained on DeepSVDD and Deepfake dataset without contrastive loss. The strong performance of
human-generated text as OOD indicates that modeling human text as OOD is a valid and effective
formulation.

C.7 Effects of α and β

We will provide the results when α and β are set to 0 in DeepSVDD setting, as shown in Table 10.
Without OOD loss ( β = 0), the AUROC is degraded to 88.6 while with only OOD loss, the AUROC
achieves 93.7 and the FPR at 95% obtains 33.7, demonstrating the importance of OOD loss.

C.8 Training and Inference Cost

We provide the training and inference cost comparison of our method and baselines, as shown in
Table 11. The time of training and inference is evaluated on single 4090 GPU. The backbone we
use is unsup-simcse-roberta-base. For the training time, the training time per epoch is similar to the
DeTeCtive baseline since we share the same backbone model and the difference is the loss objective.
However, our method leads to faster convergence, which reduces the overall training cost compared
with DeTeCtive. For the inference, our method is also the fastest since FastDetectGPT requires
LLM inference (such as GPT-Neo-2.7B), which needs 10 × more computation and DeTeCtive needs
database construction and KNN for searching, which brings extra inference time.

C.9 Limitation and Ethical Statement

In this paper, we theoretically and empirically analyze why and how to model LLM text detection
task as the out-of-distribution detection task. However, current detection can only tell whether the
given text is AI-generated or human-written, which lacks further interpretation about how the text is
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Table 10: Effects of α and β.

Parameter Setting AUROC ↑ AUPR↑ FPR95↓
β = 0 88.6 93.5 76.1
α = 0 93.7 94.1 33.7
α = 1, β = 1 98.3 98.3 8.9

Table 11: Training and inference cost of different methods.
Method Training Time per Epoch Overall Training Time Inference time
FastDetectGPT N/A N/A 72 min
DeTeCtive 0.67 h 20 h (30 epoch) 29 min
Ours 0.67 h 3.3 h (5 epoch) 4 min

generated by LLM. Therefore, we hope the user uses the detection result as a reference and doesn’t
make decisions solely based on the detection results, especially in areas such as academia.
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