
Learning-Augmented Algorithms with Explicit
Predictors

Marek Eliáš
Bocconi University, Milan

Haim Kaplan
Tel Aviv University
Google Research

Yishay Mansour
Tel Aviv University
Google Research

Shay Moran
Department of Mathematics, Technion

Department of Computer Science, Technion
Department of Data and Decision Sciences, Technion

Google Research.

Abstract

Recent advances in algorithmic design show how to utilize predictions obtained
by machine learning models from past and present data. These approaches
have demonstrated an enhancement in performance when the predictions are
accurate, while also ensuring robustness by providing worst-case guarantees when
predictions fail. In this paper we focus on online problems; prior research in
this context was focused on a paradigm where the algorithms are oblivious of the
predictors’ design, treating them as a black box. In contrast, in this work, we
unpack the predictor and integrate the learning problem it gives rise for within
the algorithmic challenge. In particular we allow the predictor to learn as it
receives larger parts of the input, with the ultimate goal of designing online learning
algorithms specifically tailored for the algorithmic task at hand. Adopting this
perspective, we focus on a number of fundamental problems, including caching and
scheduling, which have been well-studied in the black-box setting. For each of the
problems, we introduce new algorithms that take advantage of explicit and carefully
designed learning rules. These pairings of online algorithms with corresponding
learning rules yields improvements in the overall performance in comparison with
previous work.

1 Introduction

We study online algorithmic problems within the realm of learning-augmented algorithms. A
learning-augmented algorithm possesses the capability to work in conjunction with an oracle that
supplies predictive information regarding the data it is expected to process. This innovative approach
has been discussed in landmark studies by Kraska et al. [2018] and Lykouris and Vassilvitskii [2021],
situating it neatly within the “beyond worst-case analysis” framework [Roughgarden, 2020, chap. 30].

In this framework, studies typically define predictions specifically tailored to the problem at hand,
which could presumably be learnt from historical data. Predictions might include, for instance, the
anticipated next request time for a page in a caching problem or the expected duration of a job in a
scheduling task. These predictions are accessible either before or together with the online requests,
allowing the algorithm to utilize them for performance enhancement (measured by competitive ratio
or regret). The objective is for the algorithm’s performance to gracefully decrease as prediction
accuracy declines, ensuring it never underperforms the baseline achievable without predictions.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Despite the elegance of these results, several important aspects were neglected: the ad-hoc nature of
the predictions, the lack of standardized quality measures, and the frequently overlooked prediction
generation methods and their relation to the algorithmic process. We believe that addressing these
aspects is likely to yield substantial improvements.

Consider week-day and festive traffic patterns in a city – a simple example of a setting with two typical
inputs requiring very different predictive and algorithmic strategies. Achieving a good performance
in such setting requires a learning component in the algorithm which discerns between the festive and
week-day input instances and suggests an appropriate routing strategy. Such learning components are
already present (explicitly or implicitly) in works on combining algorithms in a black-box manner
[Dinitz et al., 2022, Emek et al., 2021, Anand et al., 2022, Antoniadis et al., 2023], where a switch
between algorithms is made after incurring a high cost.

Our approach goes one step further. It is based on making the computation of the predictions an
integral part of the algorithmic task at hand. We do this by making all the data (historical and current)
directly available to the online algorithm (rather than summarizing it into ad-hoc predictions). This
gives the algorithm two important abilities. The first ability is to learn the input instance based on its
prefix (the shorter the better) and adapt the algorithmic strategy before incurring significant cost. E.g.,
in the example above, week-day and festive traffic patterns can be easily discerned already in early
morning when the traffic is low and possibly suboptimal routing decisions have negligible impact
on the overall cost. The second ability is to identify actions which are beneficial for many plausible
input instances simultaneously but are not suggested by any of the black-box predictors. We use both
abilities in design of our algorithms.

In more detail, we model the past data through the assumption that the algorithm is equipped with prior
knowledge comprising a set of descriptions of past input instances. Each description offers specific
statistics or characteristics that represent essential information of the input instance. Borrowing
terminology from learning theory, we call this set a hypothesis class and denote it by H. More
specifically, H is a set of hypotheses, where each hypothesis, h(I), consists of information regarding
a specific possible input instance I of the algorithmic task.

In the simplest setting each hypothesis could be the input instance itself (h(I) = I). Like the
sequence of pages to arrive in a caching instance, or a set of jobs to arrive in a scheduling instance. In
other situations, an hypothesis h(I) could be a more compact summary of the instance I , such as
the distribution of the arriving jobs (what fraction are of each “type”). In such case, many past input
instances will correspond to the same hypothesis and the size of H will be much smaller than the size
of the dataset of past instances. However, in all cases that we consider, each hypothesis h(I) provides
sufficient information about the instance in order to determine an offline optimal solution OPT(I).

We distinguish between realizable and agnostic settings. In the realizable setting, we make the
assumption that the actual input instance that the online algorithm has to serve, perfectly aligns with
one of the hypotheses in H. That is, if I is the real input, then h(I) ∈ H. In the agnostic setting we
remove this assumption and consider arbitrary inputs. Our goal is to deliver performance guarantees
that improve if the actual input is “close” (defined in a suitable manner) to the hypothesis class H.
Agnostic setting with |H| = 1 captures the (usual) setting of ML-augmented algorithms with a single
black-box predictor. The realizable case is interesting mostly from a theoretical perspective as a
very special case of the agnostic setting. Its simplicity makes it a logical starting point of a study.1 If
the current instance does not match any hypothesis perfectly (in the realizable setting) or is far from
H (in the agnostic setting), we can still achieve good performance using robustification techniques,
see e.g. [Wei, 2020, Antoniadis et al., 2023, Lattanzi et al., 2020, Lindermayr and Megow, 2022].

Our methodology is to split the algorithm into two parts. One (called predictor) produces predictions
based on the provided hypothesis class (H) and the part of the input seen so far. Its goal is to produce
the best prediction for the instance at hand which could be a hypothesis from H or some other suitable
instance designed based on H. The second part is the online algorithm itself. It uses the prediction of
the first part to serve the input instance with low cost. In particular, it can compute the offline optimal
solution for the prediction and serve the input instance according to this solution.

The predictor is the learning component of our algorithm. It solves a learning task which is associated
with the algorithmic problem at hand. For example, the learning task associated with caching is

1Boosting technique, which had a great impact on applied and practical machine learning, was developed
while studying relationship between weak and strong PAC learning in the realizable setting.

2

caching load balancing non-clairvoyant scheduling

realizable OPT+k log ℓ O(log ℓ)OPT OPT+ℓ
√
2OPT

agnostic OPT+O(µ∗ + k log ℓ) O(log ℓ)ALG∗ OPT+µ∗ +O(n5/3 log ℓ)
previous works OPT+O(µ∗ + k +

√
Tk log ℓ) O(log ℓ)ALG∗ (1+ϵ)OPT+O(1/ϵ5)µ∗

[Emek et al., 2021] [Dinitz et al., 2022] [Dinitz et al., 2022]

Figure 1: Summary of our results. Notation: ℓ = |H|; k and T : cache size and instance length
respectively in caching; m: the number of machines in load balancing; n: the number of jobs in
non-clairvoyant scheduling; µ∗: distance of the input from the hypothesis class in caching and
non-clairvoyant scheduling; ALG∗: cost of the best algorithmic strategy suggested by H.

a variant of online learning with two kinds of costs: the smaller cost is due to a misprediction of
an individual request and the larger one due to switching to a different predicted sequence. The costs
are chosen to reflect the impact of the two events on the overall performance of the algorithm.

We consider this new way to model a setting of “online algorithm with predictions” as one of our
core contributions (in addition to the algorithms for the specific problems that we describe below).
In a sense, our technique interpolates in an interesting way between the learning challenge (from
historical data) and the algorithmic challenge, while addressing both of them.

1.1 Performance bounds of our algorithms

We propose algorithms (within our framework) for three fundamental online algorithmic problems:
caching, load balancing, and non-clairvoyant scheduling. For caching and non-clairvoyant scheduling,
we achieve a (small) additive regret compared to the offline optimal solution instead of a multiplicative
competitive ratio. For load balancing, we achieve a competitive ratio with logarithmic dependence on
the size ℓ of the hypothesis class. Our results are summarized in Figure 1, while the full description is
deferred to Section 2.

We focus our presentation on the basic framework with performance bounds dependent on the size of
the hypothesis class H. We assume H to be restricted in the sense that not every instance I is close to
some hypothesis in H. This ensures that there is some structure in the input instances which can be
learnt. With an unrestricted H, every input would be possible and we would be in the classical online
setting. However, our modular approach allows replacing the learning component in order to achieve
additional desirable properties. This includes fast running time, better performance with clusterable
datasets (see Dinitz et al. [2022]), and better performance on instances composed of several parts,
each resembling a different hypothesis (see [Anand et al., 2022, Antoniadis et al., 2023]).

Recent works by Dinitz et al. [2022] and Emek et al. [2021] consider algorithms with access to a
portfolio of predictors trying to achieve performance comparable to the best one. Our results can be
interpreted in their setting by considering the output of each predictor in the portfolio as a hypothesis.
We achieve comparable and sometimes better results (see Figure 1 for comparison) using an arguably
simpler approach, separating the learning and algorithmic part and solving them separately.

Organization. Section 2 describes our main contributions including the description of the problems
studied and the approach which leads to our results. The survey of the related literature in Section 3
is followed by a warm-up in Section 4 containing an exposition of our approach on caching in
realizable setting. The main technical part of our paper is in Appendix. Appendix B considers the
load balancing problem and Appendix C the non-clairvoyant scheduling problem. We conclude our
paper with treatment of caching in agnostic setting in Appendix D.

2 Main Results

Our study focuses on three fundamental online algorithmic problems: caching, load balancing, and
non-clairvoyant scheduling. For each of these problems, we define learning tasks and devise explicit
and efficient predictors for solving them. We demonstrate how these predictors can be integrated into
algorithms designed to tackle the respective online problems. A key feature of our approach is the

3

modular separation of the learning and algorithmic components. By decoupling these aspects, we
develop simpler algorithms that often yield improved bounds compared to previous works in the field.

2.1 Caching

In the caching problem, the input is a sequence of page requests. The online algorithm holds a cache
of size k, and it must ensure that the currently requested page is always available in the cache. If the
requested page is absent from the cache, a page fault occurs, prompting the page to be loaded into the
cache. If the cache is already full, another page must be evicted to make room. The ultimate objective
is to minimize the number of page faults.

In the offline scenario, where the input sequence is known ahead of time, an optimal algorithm
adheres to the intuitive policy of removing a page that will not be requested again for the longest
time. This algorithm, known as Furthest in the Future (FitF) [Belady, 1966], achieves the minimum
possible number of page faults.

The Learning Task: “Sequence Prediction with Switching Cost”

In this context we consider a variant of the classical learning task of sequence prediction that includes
a switching cost. More precisely, the objective of the predictor is to predict the sequence of page
requests denoted by r1, r2, ..., rT . In each round t, the predictor presents a prediction for all remaining
requests in the sequence πt, πt+1, ..., πT . At the conclusion of the round, the predictor sees rt and
incurs a loss of 1[πt ̸= rt] if the prediction was incorrect. After observing rt, the predictor can
choose to alter the subsequent predictions to π′

t+1, ..., π
′
T . Each time the predictor decides to modify

the predictions, a switching cost of k is incurred (remember that k ≥ 1 represents the size of the
cache). Thus, the total loss of the predictor is equal to the number of prediction errors plus k times
the number of switches.

Hypotheses. Each hypothesis in our class H is a possible input sequence. In the realizable scenario,
we operate under the assumption that the actual input matches one of the hypotheses within the class.
In the agnostic case we relax this assumption and provide guarantees that scale with the Hamming
distance between the input sequence and the hypothesis class.

In the realizable case we design a deterministic predictor whose total loss is at most k log ℓ (recall that
ℓ = |H|). It is based on majority vote or the halving algorithm [Littlestone, 1987]. An interesting and
subtle point is that our predictor is improper, meaning it occasionally predicts the remaining sequence
of page requests in a manner that does not align with any of the hypotheses in H. To incorporate
such improper predictors, we need to use an optimal offline caching algorithm that is monotone in
the following sense: applying the algorithm on an input sequence r1, . . . , rT produces a caching
policy which is simultaneously optimal for all prefixes r1, . . . , rt for t ≤ T . Fortunately, Belady’s
FitF algorithm has this property, as outlined in Observation 4.

For the agnostic setting, we design a randomized predictor with a maximum total loss of O(µ⋆ +
k ln ℓ), where µ⋆ is the Hamming distance of the actual input sequence from the class H. This
predictor utilizes a multiplicative-weight rule [Littlestone and Warmuth, 1994], and its learning
rate is specifically adapted to achieve the optimal balance between the cost of changing predictions
(switching costs) and the inaccuracies in the predictions themselves (prediction errors).

Our final caching algorithm incorporates a predictor for this problem in such a way that at each round
t, it applies Belady’s FitF algorithm to the predicted suffix of the sequence πt, ..., πT . We then show
that the cumulative loss of the predictor serves as an upper bound on the additional number of page
faults that our algorithm experiences compared to the offline optimal algorithm. Overall we obtain
the following guarantees for our caching strategy:
Theorem 1 (Caching). Let H be a hypothesis class of size ℓ and I be an input instance with offline
optimum value OPT(I). There is a deterministic algorithm for the realizable setting (i.e., I ∈ H)
which has cost at most OPT(I) + k log ℓ. There is a randomized algorithm for the agnostic setting
with expected cost at most OPT(I)+(5+6/k)µ⋆+(2k+1) ln ℓ, where µ⋆ is the Hamming distance
between I and the best hypothesis in H.

Our algorithms can be robustified, i.e., we can ensure that their cost is not larger than
O(log k)OPT(I) while loosing only a constant factor in the dependency on µ⋆ and ln ℓ in our

4

additive regret bound, see Section D.1 for details. Note that the previous methods used to achieve
robustness for caching usually lose an additive term linear in OPT(I), see [Wei, 2020, Blum and
Burch, 2000, Antoniadis et al., 2023]. In Section D.2, we describe how to extend our results to
the setting where each hypothesis, instead of a complete instance, is a set of parameters of some
prediction model producing next-arrival predictions. In Section D.3, we show that the dependency
on ℓ, k, and µ⋆ in Theorem 1 cannot be improved by more than a constant factor. Our result is
an improvement over the O(µ⋆ + k +

√
Tk log ℓ) regret bound of Emek et al. [2021] whenever

T = ω(k log ℓ).

2.2 Load Balancing

In online load balancing on unrelated machines, we have m machines numbered from 1 to m and
a total of n jobs. The jobs arrive sequentially, and the objective is to assign each job to one of the
machines upon its arrival in order to minimize the makespan, which is the total time that the busiest
machine is actively working. Each job is characterized by its type, which is an m-dimensional vector
p. The value p(i) indicates the time required for the i-th machine to complete the job. As the jobs
arrive, the algorithm observes the job’s type and makes a decision on which of the m machines to
schedule it. These scheduling decisions are made in an online manner, without knowledge of future
jobs.

In the offline setting, the ordering of the jobs in the input sequence does not play any role. In fact, an
instance of load balancing is sufficiently described by the number of jobs of each type which need
to be scheduled and these numbers are available to the algorithm in advance. A 2-approximation
algorithm by Lenstra, Shmoys, and Tardos [1990] based on linear programming achieves a makespan
that is at most twice the makespan of the optimal schedule.

The Learning Task: Forecasting Demand

The learning problem that arises in this context of makespan minimization is a rather natural one and
might be interesting in other contexts. The goal of the predictor is to forecast, for each possible job
type p, the number of jobs of type p that are expected to arrive. The predictor maintains a prediction
that includes an upper bound, denoted as np, on the number of jobs of each possible job type p.
Similar to caching, the learning problem involves two distinct costs: prediction errors and switching
costs. A prediction error occurs when the actual number of jobs of a particular type exceeds the
predicted upper bound np. The cost of a prediction error is determined by the type of the job that
witnessed it. A switching cost occurs when the predictor decides to modify its prediction (i.e., the
predicted upper bounds np’s). The cost of such a modification is the makespan associated with the
new prediction.2

Hypotheses. In load balancing each hypothesis f in our class H predicts the frequency of the jobs
of each type p. That is, for each type p it assigns a number fp ∈ [0, 1] which represents the fraction
of jobs in the input whose type is p. We stress that the hypothesis does not predict the actual number
of jobs of each type, nor does it even predict the total number of jobs in the input. In practice, the
numbers fp can be estimated by past statistics. With the knowledge of the correct hypothesis f , we
are able to produce an integral assignment of jobs to machines at a low cost. Previously studied
machine-weight predictions [Lattanzi et al., 2020] allow producing a fractional assignment which
requires a costly rounding procedure [Li and Xian, 2021].

In the realizable scenario, we operate under the assumption that the actual input matches one of the
hypotheses within the class. In the agnostic case we relax this assumption and provide guarantees
that scale with the maximum (multiplicative) approximation error between the true frequencies and
those predicted by the best hypothesis (see below).

In the realizable case, we design a simple randomized predictor, ensuring that the total expected
loss is at most O(OPT(I) · log ℓ) (recall that ℓ = |H|), where OPT(I) represents the makespan of
the input instance I .3 The key idea is to guess the total number of jobs in the input sequence and
accordingly to scale the frequencies in each hypothesis to predict the number of jobs np of each

2Note that the offline optimal makespan does not depend on the order of the jobs, it only depends on the
number of jobs of each type, and hence, it is a function of the predicted numbers np for the types p.

3We refer to the makespan of the optimal schedule for an instance as the makespan of the instance.

5

type. The randomized predictor maintains a random hypothesis consistent with the processed jobs.
Whenever one of the predicted counts np is violated, the predictor switches to a randomly chosen
consistent hypothesis from H, resembling the classical randomized marking strategy in caching [Fiat
et al., 1991].

We additionally present a deterministic predictor with loss of at most O(OPT(I) · log(|H|) · log τ),
where τ is the number of job types with non-zero frequency in at least one of the hypotheses. The
deterministic rule predicts the median among the counts np provided by the hypotheses for each job
type p. The analysis of this deterministic learning rule is more intricate than that of the randomized
one. The crucial insight is that the produced “medians” prediction can be scheduled within makespan
at most O(OPT(I) log τ). Our predictors in the agnostic setting are based on those in the realizable
case.

Our scheduling algorithm incorporates a predictor for this problem in such a way that at each round t,
it behaves in accordance with the algorithm of Lenstra et al. [1990], applied to the predicted upper
bounds np’s. We demonstrate that the cumulative loss of the predictor serves as an upper bound on
the makespan. We obtain the following result:

Theorem 2 (Load balancing). There are algorithms using a deterministic and randomized predictor
respectively which, given a hypothesis class H of size ℓ and an instance I with makespan OPT(I),
satisfy the following. In the realizable setting (i.e., h(I) ∈ H, where h(I) is the distribution
corresponding to I), they produce a schedule whose makespan is at most O(log ℓ log τ OPT(I))
and O(log ℓOPT(I)) in expectation, respectively, where τ is the number of job types with non-zero
frequency in at least one of the hypotheses. In the agnostic case they produce a schedule with
makespan at most O(αβ log ℓ log τ OPT(I)) and O(αβ log ℓOPT(I)) in expectation, respectively,
where α and β describe the multiplicative error of the best hypothesis f⋆ ∈ H.

In agnostic case, the multiplicative error of hypothesis f with respect to an instance with frequencies
f∗ is defined as follows. If there is a job type p such that fp ̸= 0 and f⋆

p = 0, we define α := n+ 1,
where n denotes the number of jobs in the input instance. Otherwise, we define α := max{fp/f⋆

p |
f⋆
p ̸= 0}. Similarly, if there is a job type p such that fp = 0 and f⋆

p ̸= 0, we define β := n + 1.
Otherwise, β := max{f⋆

p /fp | fp ̸= 0}. We have α, β ≤ n+ 1.

Our algorithms can be robustified so that their competitive ratio4 is never larger than O(logm) (the
best possible competitive ratio in the worst-case setting [Azar et al., 1992]), while loosing only a
constant factor in the bounds mentioned in Theorem 2, see Section B.5. In Section B.7, we show
that our competitive ratio in the realizable case cannot be improved by more than a constant factor.

Previous works focused on predictions assigning weight to each machine which indicates its expected
load [Lattanzi et al., 2020], and acquiring a solution for the fractional variant of the problem. Dinitz
et al. [2022] showed how to aggregate outputs of ℓ algorithms into a single fractional solution, loosing
a factor of O(log ℓ) compared to the best of the algorithms. A fractional solution can be rounded
online, loosing a factor of Θ

(
log logm

log log logm

)
in the competitive ratio [Lattanzi et al., 2020, Li and Xian,

2021]. Instead, we use job-type frequencies which allow us to produce an integral solution directly
without the costly rounding procedure. However, our approach can be used to aggregate outputs of
any ℓ algorithms, preserving integrality of their solutions, see Section B.6.

2.3 Non-clairvoyant Scheduling

We consider a non-clairvoyant scheduling problem in which a single machine is assigned the task
of completing a set of n jobs, denoted as j1, j2, . . . , jn. The jobs are released at time 0 and the
scheduler’s objective is to determine the order in which they should be scheduled such that the sum
of their completion times is minimized.

The optimal ordering is obtained by sorting the jobs in ascending order of their processing times.
However, in the non-clairvoyant setting, the scheduler does not know these processing times. To
address this challenge, the scheduler is allowed to preempt a job before it is completed, meaning that
it can interrupt the ongoing execution of a job and replace it with another job. The remaining portion
of the preempted job is then rescheduled for completion at a later time. Round-Robin algorithm is

4The maximum ratio between the cost of the algorithm and the offline optimal solution over all instances.

6

2-competitive and this is the best competitive ratio achievable in non-clairvoyant setting in the worst
case [Motwani et al., 1993].

The Learning Task: Comparing Job Durations

In the learning task explored within this context, the objective is for the predictor to learn the optimal
ordering of jobs. We investigate two variants of this learning problem, one suited to the realizable
setting and one suited to the agnostic setting.

In the realizable case, we adopt a similar approach to the previous sections. Here, each hypothesis
within the class provides predictions for the processing times of all n jobs. We then design a predictor
that learns the correct hypothesis in an online fashion. Our overall scheduling algorithm in the
realizable case operates by always scheduling first the job with the shortest predicted processing time.

In the agnostic setting we follow a different methodology which is more in line with statistical
learning. We use here a weaker type of hypotheses: each hypothesis is a permutation of the n jobs,
indicating a prediction of the optimal ordering, without specifying the exact processing times.

In this learning task, the predictor is provided with a training set consisting of a small subset of the
jobs that is sampled uniformly. For each job in the training set the predictor sees their lengths. Using
this training set, the predictor generates a permutation π of the n jobs.

Each permutation π is associated with a loss5 which reflects the performance of a scheduler that
follows the order suggested by π. In particular, the loss is defined in such a way that the optimal
permutation has the best (lowest) loss, and more generally permutations with faster completion times
have smaller losses. The predictor we design for this task uses the training set to approximate the loss
of every permutation in the class H, and outputs the one which minimizes the (approximated) loss.

In order to avoid scaling issues, we formulate our guarantees for instances with maximum job length
at most 1.6

Theorem 3 (Completion Time). Consider an input instance I , let OPT(I) denote the offline optimal
value of its total completion time objective, and let H be a hypothesis class of size ℓ. We assume,
without loss of generality, that the maximum job length in I is at most 1. Then, there is a deterministic
algorithm which achieves total completion time at most OPT(I) + ℓ

√
2OPT(I) in the realizable

setting (i.e., I ∈ H). In the agnostic setting, there is a randomized algorithm that with high probability
achieves total completion time of at most OPT(I)+µ∗+O(n5/3 log1/3 ℓ), where µ∗ is the difference
between the total completion time of the best hypothesis in the class and OPT.

Note that the value of OPT(I) is quadratic in n unless the size of a vast majority of jobs in I is either
0 or vanishing as n grows.

We have also found an unexpected separation: there is an algorithm for the realizable setting with
regret at most n log ℓ on input instances containing jobs of only two distinct lengths (Section C.1).
On the other hand, there is no algorithm with regret o(ℓn) on instances with at least three distinct
lengths (Section C.3).

Previous work by Dinitz et al. [2022] showed the following. For any ϵ > 0, there is an algorithm which
achieves expected total completion time (1 + ϵ)OPT+O(1/ϵ5)µ∗ under certain assumptions about
the input. Therefore, their bound always gives a regret linear in OPT and a higher dependency on µ∗.

Any algorithms can be robustified by running it at speed (1−δ) simultaneously with the Round Robin
algorithm at speed δ. This way, we get O(δ−1)-competitive algorithm in the worst case, because the
schedule produced by Round Robin is 2-competitive with respect to the optimal schedule processed at
speed δ. Dinitz et al. [2022] used the same approach to robustify their algorithm, incurring the factor

5Formally, the loss of a permutation π is the expected value of the following random variable: sample a
pair of jobs uniformly at random; if the ordering of the jobs in π places the longer job before the shorter one,
output the difference between their respective lengths. Conversely, if the ordering in π does not violate the
length ordering, output zero. Notice that the optimal permutation has 0 loss and moreover expected loss of any
permutation π is proportional to the regret; that is, to the difference between the objective achieved by π and the
one achieved by the optimal permutation, as shown by Lindermayr and Megow [2022].

6If a solution for instance I has total completion time objective OPT(I) + R, then the same solution on
a scaled instance I ′ obtained from I by multiplying all job lengths by α has objective α(OPT(I) + R) =
OPT(I ′) + αR.

7

1
1−δ on top of their bound quoted above. This procedure unfortunately worsens the performance of
the original algorithm by a constant factor, i.e., such robustification of our algorithm achieves additive
regret only with respect to 1

1−δ OPT(I).

3 Related Work

The closest works to ours are by Dinitz et al. [2022] and Emek et al. [2021]. Dinitz et al. [2022]
design algorithms with access to multiple predictors. They study (offline) min-cost bipartite matching,
non-clairvoyant scheduling, and online load balancing on unrelated machines.7 The main difference
from our approach is conceptual: while we treat the task of identifying the best prediction as an
independent modular learning problem, they treat it as an integral part of their algorithms. In the case
of load balancing, they propose an O(log ℓ)-competitive algorithm which combines solutions of ℓ
prediction-based algorithms into a fractional solution. A fractional solution can be rounded online,
incurring an additional multiplicative factor of Θ(log logm

log log logm) where m is the number of machines,
see [Lattanzi et al., 2020, Li and Xian, 2021]. For non-clairvoyant scheduling for minimizing total
completion time, they propose an algorithm which works under the assumption that no set of at most
log log n jobs has a large contribution to OPT. Their algorithm achieves a total completion time of
(1 + ϵ)OPT+O(ϵ−5)µ∗ for any ϵ > 0, where µ∗ denotes the difference between the cost of the best
available prediction and the cost of the offline optimum.

Emek et al. [2021] study caching with ℓ predictors which predict either the whole instance, or the
next arrival time of the currently requested page. Based on each prediction, they build an algorithm
with performance depending on the number of mistakes in this prediction. Then, they combine the
resulting ℓ algorithms using the technique of Blum and Burch [2000] to build a single algorithm with
a performance comparable to the best of them. Note that our approach is in a sense opposite to theirs:
we use online learning techniques to build a single predictor comparable to the best of the given ℓ
predictions and then we use this predictor in a simple algorithm. Their algorithm has a regret bound
of O(µ⋆ + k +

√
Tk log ℓ), where T is the length of the sequence, k is the size of the cache, and µ∗

is either the hamming distance of the actual input sequence from the closest predicted sequence or
the number of mispredicted next arrival times in the output of the best predictor. This bound is larger
than ours unless T is very small, e.g., o(k log ℓ).

There are numerous works on data-driven algorithm design, see the survey [Balcan, 2021]. They
consider (potentially infinite) hypothesis classes containing parametrizations of various algorithms
and utilize learning techniques to identify the best hypothesis given its performance on past data. The
main difference from our work is that the hypothesis is chosen during the analysis of past data and
before receiving the current input instance. In our case, learning happens as we receive larger and
larger parts of the current input instance.

There are papers that consider our problems in a setting with a single black-box predictor which
corresponds to our agnostic setting with a hypothesis class of size 1. For caching, these are [Lykouris
and Vassilvitskii, 2021, Rohatgi, 2020, Wei, 2020, Antoniadis et al., 2023]. For online load balancing
on unrelated machines and its special case restricted assignment, there are works on algorithms using
predicted weights [Lattanzi et al., 2020, Li and Xian, 2021]. The papers [Purohit et al., 2018, Wei and
Zhang, 2020, Im et al., 2021, Lindermayr and Megow, 2022] address the problem of non-clairvoyant
scheduling.

Other related papers are by Bhaskara et al. [2020] who studied online linear optimization with several
predictions, and [Anand et al., 2022, Antoniadis et al., 2023] who designed algorithms competitive
with respect to a dynamic combination of several predictors for online covering and the MTS problem,
respectively. There are also works on selecting the single best prediction for a series of input instances
online [Khodak et al., 2022] and offline [Balcan et al., 2021]. The main difference from our work is
that they learn the prediction before solving the input instance while we learn the prediction adaptively
as we gain more information about the input instance.

7They state their result for a special case called restricted assignment, because no ML-augmented algorithms
for unrelated machines were known at that time. However, they mention in the paper that their approach works
also for unrelated machines.

8

Other relevant works are on various problems in online learning which consider switching costs
[Cesa-Bianchi et al., 2013, Altschuler and Talwar, 2018] and on online smoothed optimization [Goel
et al., 2019, Zhang et al., 2021, Chen et al., 2018].

Since the seminal papers of Lykouris and Vassilvitskii [2021] and Kraska et al. [2018], many works
on ML-augmented algorithms appeared. There are by now so many of these works that is not possible
to survey all of them here. Instead, we refer to the survey of Mitzenmacher and Vassilvitskii [2020]
and to the website maintained by Lindermayr and Megow [2023].

Caching in offline setting was studied by Belady [1966]. Sleator and Tarjan [1985], laying the
foundations of online algorithms and competitive analysis, showed that the best competitive ratio
achievable by a deterministic caching online algorithm is k. Fiat et al. [1991] proved that the
competitive ratio of randomized caching algorithms is Θ(log k). Non-clairvoyant scheduling with
the total completion time objective was studied by Motwani et al. [1993] who showed that Round-
Robin algorithm is 2-competitive and that this is the best possible competitive ratio. Azar et al.
[1992] proposed an O(logm)-competitive algorithm for online load balancing on unrelated machines
and showed that this is the best possible. In the offline setting, Lenstra et al. [1990] proposed a
2-approximation algorithm and this remains the best known algorithm. There was a recent progress
on special cases [Svensson, 2012, Jansen and Rohwedder, 2017].

4 Warm-up: Caching in the Realizable Setting

In this section, we describe the simplest use case of our approach and that is caching in the realizable
setting. In caching, we have a universe of pages U , a cache of size k and its initial content x0 ∈

(
U
k

)
.

As it is usual, we assume that U contains k "blank" pages b1, . . . , bk which are never requested
and x0 = {b1, . . . , bk}, i.e., we start with an empty cache. We receive a sequence of requests
r1, . . . , rT ∈ U \ {b1, . . . , bk} online. At each time step t, we need to ensure that rt is present in
the cache, i.e., our cache xt ∈

(
U
k

)
contains rt. If rt /∈ xt−1 we say that there is a page fault and

we choose xt ∈
(
U
k

)
such that rt ∈ xt. This choice needs to be made without the knowledge of the

future requests.

We measure the cost of a solution to a caching instance by counting the number of page loads (or,
equivalently, page evictions) performed when transitioning from xt−1 to xt at each time t = 1, . . . , T .
Denoting d(xt−1, xt) = |xt \ xt−1|, the total cost of the solution x = x1, . . . , xT is

cost(x) =

T∑
t=1

d(xt−1, xt).

Offline algorithm FitF. An intuitive offline optimal algorithm FitF was proposed by Belady [1966]:
if there is a page fault at time t, it evicts a page from xt−1 which is requested furthest in the future
(FitF). In case there are pages which will never be requested again, it breaks the ties arbitrarily. The
following monotonicity property will be useful in our analysis.
Observation 4. Consider a request sequence r1, . . . , rT . For any t ≤ T , the cost incurred until time
t by FitF algorithm for sequence r1, . . . , rT is the same as the cost incurred by FitF algorithm for
sequence r1, . . . , rt.

To see why this observation holds, it is enough to notice that the solution produced by FitF on
r1, . . . , rT until time t is the same as the solution of FitF on r1, . . . , rt which breaks ties according
to the arrival times in rt+1, . . . , rT .

Learning task. In the realizable setting, we are given a class H of ℓ hypotheses r1, . . . , rℓ ∈ UT

such that the actual input sequence of requests r is one of them (but we do not know which one). We
split the task of designing an algorithm for this setting into two parts. First, we design an (improper)
predictor that maintains a predicted sequence π = π1, . . . , πT . This predictor makes a small number
of switches (changes to π) until it determines the correct hypothesis. Second, we design an algorithm
which uses an access to such predictor and its performance depends on the number of switches made
by the predictor.

Predictor. Our Predictor 1 below is based on a majority rule. It maintains a set A of all hypotheses
(sequences) in the class H which are consistent with the past requests. In time t = 1 the set A is

9

initialized to be the entire class, i.e. A = H, and it is updated whenever the current request rt differs
from the predicted request πt (i.e., when there is a prediction error). The prediction π used by our
predictor is defined based on the set A as follows: We set πt := rt and, for τ = t + 1, . . . , T , we
choose πτ to be the request agreeing with the largest number of hypotheses in A. This way, the
predicted sequence π is modified exactly after time-steps t when πt ̸= rt, and whenever this happens
at least half of the hypotheses in A are removed. Observe that we assume the realizable setting and
hence at all times A contains the hypothesis which is consistent with the input sequence. In particular
A is never empty. This implies the following lemma:
Lemma 5. In realizable setting, Predictor 1 with a class H of ℓ hypotheses makes σ ≤ log ℓ switches
and the final prediction is consistent with the whole input.

Predictor 1: Majority predictor for caching in realizable setting
1 for t = 1, . . . , T do
2 if t = 1 or prediction πt differs from the real request rt then // make a switch
3 A := {i ∈ {1, . . . , ℓ} | riτ = rτ ∀τ = 1, . . . t} ; // consistent hypotheses
4 update πt = rt and πτ = argmaxp∈U |{i ∈ A | riτ = p}| for each τ = t+ 1, . . . , T ;

Algorithm. Our overall algorithm (See Algorithm 2) uses Predictor 1 and maintains the FitF
solution x1, . . . , xT ∈

(
U
k

)
for the current prediction π at time t. Then it changes the cache to xt.

This solution needs to be recomputed whenever π is modified.

Algorithm 2: caching, realizable setting
1 for t = 1, . . . , T do
2 if there is a switch then
3 receive π from the predictor;
4 compute FitF solution x1, . . . , xT for π;
5 move to xt.

Lemma 6. Consider an input sequence r and let OPT(r) denote the cost of the optimal offline
solution for this sequence. Algorithm 2 with a predictor which makes σ switches and its final
prediction is consistent with r incurs cost at most

OPT(r) + kσ.

Proof of Lemma 6 can be found in Appendix A. Combining lemmas 5 and 6, we get an algorithm for
caching in a realizable setting with the following guarantee.
Theorem 7. There is an algorithm for caching in realizable setting which, given a class H of ℓ
hypotheses, achieves regret at most k log ℓ.

5 Conclusions

We introduce a new approach to modeling algorithms with predictions. Unlike the traditional black-
box access to a predictor, we extend the algorithmic problem by studying the accompanying learning
problem. This allows the algorithm designer to improve the algorithm by:

1. Learning while processing the input,
2. Classifying the input instance to select the most suitable strategy before incurring high costs,
3. Accelerating the classification of the input by taking actions that may not be directly aligned

with any strategy suggested by past data.

To achieve this, we split the computational problem into a learning component and an algorithmic
component, addressing each separately. By applying our algorithms to existing settings with
prediction portfolios [Dinitz et al., 2022, Emek et al., 2021], we demonstrate that our approach
often results in simpler algorithms with improved performance compared to previous methods.

10

Acknowledgements

Haim Kaplan is supported by Israel Science Foundation (ISF) grants 1595/19 and 1156/23, and by
the Blavatnik Research Foundation.

Yishay Mansour has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 882396), by the Israel
Science Foundation, the Yandex Initiative for Machine Learning at Tel Aviv University and a grant
from the Tel Aviv University Center for AI and Data Science (TAD).

Shay Moran is a Robert J. Shillman Fellow; he acknowledges support by ISF grant 1225/20, by
BSF grant 2018385, by an Azrieli Faculty Fellowship, by Israel PBC-VATAT, by the Technion
Center for Machine Learning and Intelligent Systems (MLIS), and by the the European Union (ERC,
GENERALIZATION, 101039692). Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Research Council
Executive Agency. Neither the European Union nor the granting authority can be held responsible for
them.

References
[1] J. Altschuler and K. Talwar. Online learning over a finite action set with limited switching. In

S. Bubeck, V. Perchet, and P. Rigollet, editors, Proceedings of the 31st Conference On Learning
Theory, volume 75 of Proceedings of Machine Learning Research, pages 1569–1573. PMLR,
06–09 Jul 2018. URL https://proceedings.mlr.press/v75/altschuler18a.html.

[2] K. Anand, R. Ge, A. Kumar, and D. Panigrahi. Online algorithms with multiple predictions.
In ICML, volume 162 of Proceedings of Machine Learning Research, pages 582–598. PMLR,
2022.

[3] A. Antoniadis, C. Coester, M. Eliáš, A. Polak, and B. Simon. Online metric algorithms
with untrusted predictions. ACM Trans. Algorithms, 19(2), apr 2023. ISSN 1549-6325. doi:
10.1145/3582689. URL https://doi.org/10.1145/3582689.

[4] A. Antoniadis, C. Coester, M. Eliáš, A. Polak, and B. Simon. Mixing predictions for online
metric algorithms. In Proceedings of the 40th International Conference on Machine Learning,
volume 202, pages 969–983. PMLR, 2023.

[5] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. J. Algorithms, 18:
221–237, 1992.

[6] M.-F. Balcan. Data-Driven Algorithm Design, page 626–645. Cambridge University Press,
2021. doi: 10.1017/9781108637435.036.

[7] M.-F. Balcan, T. Sandholm, and E. Vitercik. Generalization in portfolio-based algorithm
selection. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):12225–12232,
May 2021. doi: 10.1609/aaai.v35i14.17451. URL https://ojs.aaai.org/index.php/A
AAI/article/view/17451.

[8] L. A. Belady. A study of replacement algorithms for virtual-storage computer. IBM Syst. J., 5
(2):78–101, 1966. doi: 10.1147/sj.52.0078. URL https://doi.org/10.1147/sj.52.0078.

[9] A. Bhaskara, A. Cutkosky, R. Kumar, and M. Purohit. Online linear optimization with many
hints. In Advances in Neural Information Processing Systems, volume 33, pages 9530–9539.
Curran Associates, Inc., 2020.

[10] A. Blum and C. Burch. On-line learning and the metrical task system problem. Mach. Learn.,
39(1):35–58, 2000. doi: 10.1023/A:1007621832648.

[11] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998. ISBN 978-0-521-56392-5.

[12] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006. ISBN 978-0-521-84108-5. doi: 10.1017/CBO9780511546921. URL https:
//doi.org/10.1017/CBO9780511546921.

11

https://proceedings.mlr.press/v75/altschuler18a.html
https://doi.org/10.1145/3582689
https://ojs.aaai.org/index.php/AAAI/article/view/17451
https://ojs.aaai.org/index.php/AAAI/article/view/17451
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1017/CBO9780511546921
https://doi.org/10.1017/CBO9780511546921

[13] N. Cesa-Bianchi, O. Dekel, and O. Shamir. Online learning with switching costs and other
adaptive adversaries. Advances in Neural Information Processing Systems 26, January 2013.

[14] N. Chen, G. Goel, and A. Wierman. Smoothed online convex optimization in high dimensions
via online balanced descent. In Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research, pages 1574–1594. PMLR, 06–09 Jul
2018.

[15] M. Dinitz, S. Im, T. Lavastida, B. Moseley, and S. Vassilvitskii. Algorithms with prediction
portfolios. In Advances in Neural Information Processing Systems, volume 35, pages 20273–
20286. Curran Associates, Inc., 2022.

[16] Y. Emek, S. Kutten, and Y. Shi. Online Paging with a Vanishing Regret. In 12th Innovations in
Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 67:1–67:20, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-177-1. URL https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.67.

[17] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young. Competitive
paging algorithms. Journal of Algorithms, 12(4):685–699, 1991. ISSN 0196-6774. doi:
https://doi.org/10.1016/0196-6774(91)90041-V. URL https://www.sciencedirect.com/
science/article/pii/019667749190041V.

[18] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. ISSN
0022-0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL https://www.sciencedirec
t.com/science/article/pii/S002200009791504X.

[19] G. Goel, Y. Lin, H. Sun, and A. Wierman. Beyond online balanced descent: An optimal
algorithm for smoothed online optimization. In Neural Information Processing Systems, 2019.

[20] G. R. Grimmett and D. R. Stirzaker. The lost boarding pass and other practical problems. The
Mathematical Gazette, 105(563):216–221, 2021. doi: 10.1017/mag.2021.49.

[21] S. Im, R. Kumar, M. Montazer Qaem, and M. Purohit. Online knapsack with frequency
predictions. In Advances in Neural Information Processing Systems, volume 34, pages 2733–
2743. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_f
iles/paper/2021/file/161c5c5ad51fcc884157890511b3c8b0-Paper.pdf.

[22] K. Jansen and L. Rohwedder. On the Configuration-LP of the Restricted Assignment Problem,
pages 2670–2678. 2017. doi: 10.1137/1.9781611974782.176. URL https://epubs.siam.o
rg/doi/abs/10.1137/1.9781611974782.176.

[23] M. Khodak, M.-F. F. Balcan, A. Talwalkar, and S. Vassilvitskii. Learning predictions for
algorithms with predictions. In Advances in Neural Information Processing Systems, volume 35,
pages 3542–3555, 2022.

[24] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures.
In Proceedings of SIGMOD’18, pages 489–504, 2018. doi: 10.1145/3183713.3196909.

[25] S. Lattanzi, T. Lavastida, B. Moseley, and S. Vassilvitskii. Online scheduling via learned weights.
In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages
1859–1877. SIAM, 2020. URL https://doi.org/10.1137/1.9781611975994.114.

[26] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. Math. Program., 46:259–271, 1990. doi: 10.1007/BF01585745. URL
https://doi.org/10.1007/BF01585745.

[27] S. Li and J. Xian. Online unrelated machine load balancing with predictions revisited. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 6523–6532. PMLR,
18–24 Jul 2021.

12

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.67
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.67
https://www.sciencedirect.com/science/article/pii/019667749190041V
https://www.sciencedirect.com/science/article/pii/019667749190041V
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://proceedings.neurips.cc/paper_files/paper/2021/file/161c5c5ad51fcc884157890511b3c8b0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/161c5c5ad51fcc884157890511b3c8b0-Paper.pdf
https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.176
https://epubs.siam.org/doi/abs/10.1137/1.9781611974782.176
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1007/BF01585745

[28] A. Lindermayr and N. Megow. Permutation predictions for non-clairvoyant scheduling. In
SPAA, pages 357–368. ACM, 2022.

[29] A. Lindermayr and N. Megow. Algorithms with predictions. https://algorithms-with-p
redictions.github.io, 2023. URL https://algorithms-with-predictions.githu
b.io. Online: accessed 2023-07-12.

[30] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages
68–77, 1987. doi: 10.1109/SFCS.1987.37.

[31] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inf. Comput., 108(2):
212–261, 1994. doi: 10.1006/inco.1994.1009. URL https://doi.org/10.1006/inco.199
4.1009.

[32] T. Lykouris and S. Vassilvitskii. Competitive caching with machine learned advice. J. ACM, 68
(4):24:1–24:25, 2021.

[33] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. In Beyond the Worst-Case
Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.

[34] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, page 422–431, USA,
1993. Society for Industrial and Applied Mathematics. ISBN 0898713137.

[35] M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ml predictions. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
URL https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427b
adebe0e32caa2e1fc7530b7f3-Paper.pdf.

[36] D. Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’20, page 1834–1845, USA, 2020. Society for Industrial and Applied Mathematics.

[37] T. Roughgarden, editor. Beyond the Worst-Case Analysis of Algorithms. Cambridge University
Press, 2020. ISBN 9781108637435. doi: 10.1017/9781108637435. URL https://doi.org/
10.1017/9781108637435.

[38] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commun.
ACM, 28(2):202–208, 1985. doi: 10.1145/2786.2793.

[39] O. Svensson. Santa claus schedules jobs on unrelated machines. SIAM J. Comput., 41(5):
1318–1341, 2012. doi: 10.1137/110851201. URL https://doi.org/10.1137/110851201.

[40] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2018. doi: 10.1017/9781108231596.

[41] A. Wei. Better and Simpler Learning-Augmented Online Caching. In J. Byrka and R. Meka,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2020), volume 176, pages 60:1–60:17, Dagstuhl, Germany,
2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL https://drops.dagstuhl
.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.60.

[42] A. Wei and F. Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. In Advances in Neural Information Processing Systems, volume 33, pages
8042–8053, 2020.

[43] L. Zhang, W. Jiang, S. Lu, and T. Yang. Revisiting smoothed online learning. In Advances in
Neural Information Processing Systems, volume 34, pages 13599–13612. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file
/70fc5f043205720a49d973d280eb83e7-Paper.pdf.

13

https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io
https://doi.org/10.1006/inco.1994.1009
https://doi.org/10.1006/inco.1994.1009
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/73a427badebe0e32caa2e1fc7530b7f3-Paper.pdf
https://doi.org/10.1017/9781108637435
https://doi.org/10.1017/9781108637435
https://doi.org/10.1137/110851201
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.60
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.60
https://proceedings.neurips.cc/paper_files/paper/2021/file/70fc5f043205720a49d973d280eb83e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/70fc5f043205720a49d973d280eb83e7-Paper.pdf

Appendix

A Caching in realizable setting: omitted proof

Proof of Lemma 6. At every switch, we pay at most k for switching the cache from the FitF solution
of the previous predicted sequence to the cache of the newly computed one. Thus it suffices to show
that in between these switches, our algorithm has the same number of page faults as OPT.

Denote t1, . . . , tσ the times when switches happen; for convenience, we also define t0 = 1, tσ+1 =
T + 1. We denote π0, . . . , πσ the predictions such that πi−1 was predicted before the ith switch and
πi after. Let κj

i be the cost of the FitF solution for πj paid during time steps ti, . . . , ti+1 − 1, for
i = 0, . . . , σ. In this notation, the cost of OPT is

∑σ
i=0 κ

σ
i , since πσ = r (recall that r is the input

sequence), while, excluding the switching cost considered above, the cost of the algorithm is
∑σ

i=0 κ
i
i,

because it pays κi
i during time steps ti, . . . , ti+1 − 1 when following a FitF solution for πi. We use

induction on i to show that κj
i = κσ

i for each j = i, . . . , σ. This implies
∑σ

i=0 κ
σ
i =

∑σ
i=0 κ

i
i. This

essentially follows from Obsevation 4 and the fact that all sequences πj , j = i, . . . , σ agree on the
prefix up to time ti+1 − 1. The formal details follow.

In the base case with i = 0, Observation 4 implies that FitF solutions for each πi incur the same
cost during time steps 1, . . . , t1 − 1 and we have κ1

0 = · · · = κσ
0 . For i > 0, the cost of the FitF

solution for each πj with j ≥ i during time steps 1, . . . , ti+1− 1 is
∑i

m=0 κ
j
m =

∑i−1
m=0 κ

σ
m+κj

i by
induction hypothesis. Using Observation 4,

∑i−1
m=0 κ

σ
m + κi

i = · · · =
∑i−1

m=0 κ
σ
m + κσ

i and therefore
κj
i = κσ

i for each j = i, . . . , σ.

In total, the algorithm incurs cost

ALG(r) ≤
σ∑

i=0

κi
i + σk =

σ∑
i=0

κσ
i + σk = OPT(r) + σk.

B Online Load Balancing on Unrelated Machines

We are given a set M of m machines and a sequence of jobs arriving online. At each time step, we
receive some job j described by a vector pj , where pj(i) is its processing time on machine i ∈ M .
We say that the job j has type pj . We have to assign job j to one of the machines immediately without
knowledge of the jobs which are yet to arrive. Our objective is to build a schedule of minimum
makespan, i.e., denoting Ji the set of jobs assigned to a machine i, we minimize the maximum load∑

j∈Ji
pj(i) over all i ∈ M . The best competitive ratio achievable in online setting is Θ(logm) [5].

In offline setting, there is a 2-approximation algorithm.
Proposition 8 (Lenstra et al. [26]). There is an offline 2-approximation algorithm for load balancing
on unrelated machines.

Here we use the competitive ratio to evaluate the performance of our algorithms. We say that
a (randomized) algorithm ALG achieves competitive ratio r (or that ALG is r-competitive), if
E[cost(ALG(I))] ≤ r · cost(OPT(I)) + α holds for every instance I , where OPT(I) denotes the
offline optimal solution for instance I and α is a constant independent of I .

Learning task. We are given a class H of ℓ hypotheses H1, . . . ,Hℓ, each specifying the frequency
fp ≥ 0 for every job type such that

∑
p fp = 1. For simplicity, we assume that there is a constant

δ > 0 such that all frequencies in all hypotheses are integer multiples of δ. For a hypothesis H with
frequencies fp and an integer h ≥ 1, we define a scaling H(h) as an instance containing hfp/δ jobs
of type p, for each p. This way, any type p with fp ̸= 0 is represented by at least a single job in H(1).
We denote c0 the largest makespan of H(1) over all hypotheses H ∈ H.

We say that an instance I ′ is consistent with the input so far, if the following holds for every job type
p: the number of jobs of type p in instance I ′ is greater or equal to the number of jobs of type p which
already arrived in the input sequence.

We note that the value c of the makespan of the real instance can be guessed (up to a factor of two)
by doubling while loosing only a constant factor in the competitive ratio. Using doubling and a

14

2-approximation offline algorithm (Proposition 8), we can also find a scaling Ii of each hypothesis
Hi such that the makespan of Ii is between c and 4c. Therefore, we start by assuming that we have
the value of c and the scaled instances I1, . . . , Iℓ in advance, and postpone the discussion of finding
them to Section B.3. We begin with the realizable setting, where the task of the predictor is either to
identify an instance Ii consistent with the whole input or return ERR which signals an incorrect value
of c. Agnostic case is considered in Section B.4 and robustification of our algorithms in Section B.5.
Section B.7 contains lower bounds.

B.1 Predictors

We propose a deterministic and a randomized predictors for the realizable setting. Each of these
predictors receives c – the guessed value of the makespan of the real instance – and ℓ problem instances
I1, . . . , Iℓ whose makespan is between c and 4c created by scaling the hypotheses H1, . . . ,Hℓ. For
each p and i, we denote ni

p the number of jobs of type p in instance Ii. Both predictors switch to a
new prediction whenever they discover that, for some p, the number of jobs of type p which arrived
so far is already larger than their predicted number. At each switch, they update a set A ⊆ {1, . . . , ℓ}
of instances which are consistent with the input up to the current moment, i.e., the number of jobs of
type p which appeared so far is at most ni

p for all p and i ∈ A.

There is a simple proper predictor which makes ℓ switches. This predictor starts by predicting
according to an arbitrary instance. Whenever the current instance stops being consistent with the jobs
arrived so far, it removes this instance from A, and switches to an arbitrary instance still in A. In
what follows, we provide a more sophisticated predictors with lower number of switches.

Deterministic predictor. Our deterministic predictor is improper. At each switch, it predicts a
“median” instance Ĩ created from the instances in A as follows. For each type p, Ĩ contains ñp jobs of
type p, where ñp is a median of ni

p over all i ∈ A. This way, whenever the number of jobs of type p
exceeds ñp, at least half of the instances are removed from A. Once A is empty, the algorithm returns
ERR. In the realizable setting, this happens when the guess of c is not correct.

Predictor 3: load balancing on unrelated machines, deterministic
1 A := {1, . . . , ℓ}
2 choose ñp as a median of {ni

p | i = 1, . . . , ℓ} for each job type p // switch to initial Ĩ
3 for time step when, for some p the (ñp + 1)st job of type p arrives do
4 A := set of instances consistent with the input so far
5 if A = ∅ then return ERR
6 for each job type p do
7 choose ñp as a median of {ni

p | i ∈ A}. // switch to a new Ĩ

Lemma 9. Predictor 3 maintains a prediction which is always consistent with the jobs arrived so
far. Given ℓ instances of makespan between c and 4c, it makes σ ≤ log ℓ switches before it either
identifies an instance Ii⋆ consistent with the whole input, or returns ERR if there is no such instance.
The makespan of each prediction is at most 4c log τ , where τ is the number of distinct job types
present in the instances I1, . . . , Iℓ.

Proof. First, note that whenever a number of jobs of some type exceeds the prediction, Predictor 3
switches to a new prediction consistent with this number.

Consider a switch when the number of jobs of type p exceeds ñp. Since ñp was chosen as a median
of ni

p over i ∈ A, the size of A decreases by factor of at least 2 by this switch. Therefore, we have at
most log ℓ switches.

Now, we bound the makespan of Ĩ by 4c log τ , where Ĩ is the prediction constructed from the current
set of instances A. We do this by constructing a schedule for Ĩ . We say that an instance Ii covers type
p, if ni

p ≥ ñp. By the construction of Ĩ , we have that for every p, at least half of the instances in A
cover p. This implies that we can find an instance Ii covering half of the job types. Indeed, consider
a matrix M whose columns correspond to instances i in A and its rows to τ ′ ≤ τ different job types

15

p present in instances of A. We define Mp,i as 1 if Ii covers p and 0 otherwise. Since every row has
at least |A|/2 ones, there are at least τ ′|A|/2 ones in M so there must be a column i of M containing
τ ′/2 ones.

So, we pick Ii and add all its jobs to the schedule, using a schedule of Ii of makespan at most 4c.
Then we remove i from A, and remove all job types covered by Ii from Ĩ . |A| decreases by 1, τ ′
decreases by factor of 2, and we still have that every remaining job type is covered by at least |A|/2
instances: This follows since for any type p not covered by Ii, the number of instances covering it
remains the same while |A| decreases by 1. Therefore, after iterating this process at most log τ times
we cover all job types using makespan at most 4c log τ .

Randomized predictor. Our randomized predictor is proper. At each switch, it predicts an instance
Ii, where i is chosen from A uniformly at random. We show that it satisfies the same bound on the
number of switches as Predictor 3, but the makespan of its predictions is much smaller.

Predictor 4: load balancing on unrelated machines, randomized
1 A := {1, . . . , ℓ} choose i ∈ A uniformly at random
2 set ñp = ni

p for each job type p // switch to initial Ĩ
3 for time step when, for some p the (ñp + 1)st job of type p arrives do
4 A := set of instances consistent with the input so far
5 if A = ∅ then return ERR
6 choose i ∈ A uniformly at random
7 set ñp = ni

p for each job type p // switch to a new Ĩ

Lemma 10. Predictor 4 maintains a prediction which is always consistent with the jobs arrived so
far. Given ℓ instances of makespan between c and 4c, it makes σ ≤ log ℓ switches in expectation
before it either identifies an instance Ii⋆ consistent with the whole input, or returns ERR if there is no
such instance. Each prediction has makespan at most 4c.

Proof. First, note that whenever a number of jobs of some type exceeds the prediction, Predictor 4
switches to a new prediction consistent with this number.

Now, we bound the expected number of switches done by Predictor 4 in the style of the airplane seat
problem. For every i = 1, . . . , ℓ, define ti as the time step when an arriving job of type p exceeds ni

p,
or ∞ if no such time step exists. Note that for every instance i which is inconsistent with the input, ti
is finite. The instances are eliminated in the order of increasing ti. Since we choose i uniformly at
random over the remaining instances, we have tj ≤ ti for at least half of the inconsistent instances
(in expectation). The formal proof then follows from the traditional analysis of the lost boarding pass
problem, see e.g. [20].

B.2 Algorithm

Our algorithm uses a predictor whose predictions are always consistent with the jobs arrived so far.
At each switch, it computes a 2-approximation of the optimal solution for the predicted instance using
the algorithm from Proposition 8 and schedules jobs based on this solution until the next switch.

Algorithm 5: load balancing on unrelated machines
1 for each incoming job j do
2 if this is the first job or there was a switch then
3 get a new prediction Ĩ from the predictor or return ERR
4 compute Lenstra(Ĩ)

5 assign j to a machine based on Lenstra(Ĩ)

Lemma 11. Given a predictor which makes σ switches and produces predictions that are always
consistent with the jobs arrived so far and have makespan at most κ, Algorithm 5 uses makespan at

16

most 2κσ and either schedules all jobs in the input sequence or reports ERR if none of the instances
is consistent with the input sequence.

Proof. At each switch, Algorithm 5 starts building a new schedule for the predicted instance with
makespan at most 2κ. Therefore the total makespan is at most 2κσ.

B.3 Guessing the Optimal Makespan and Scaling

First, we discuss how to find a scaling of a hypothesis H that has the required makespan. Let c be
our estimate of OPT such that c ≤ OPT ≤ 2c. We start with h = 1 and keep doubling h until
Lenstra(H(h)) becomes at least 2c. (and at most 4c). Since Lenstra is a 2-approximation, we
know that when Lenstra(H(h)) ≥ 2c then OPT(H(h)) ≥ c. Since this is the smallest h for which
Lenstra(H(h)) ≥ 2c we know that OPT(H(h/2)) ≤ 2c so OPT(H(h)) ≤ 4c.

Algorithm 6 is our scheduling algorithm. We start with the initial guess of c0 for the optimal solution,
where c0 is an upper bound on the makespan of H(1) for each H ∈ H. At each iteration we double
our guess c. We scale the hypotheses to build instances with makespan between c and 4c. We run
Algorithm 5 with these instances until it returns error. We keep iterating until the whole input is
processed.

Algorithm 6: guessing the optimal makespan by doubling

1 for c = c0, . . . , 2
1c0, 2

2c0, 2
3c0, . . . do

2 for i = 1, . . . , ℓ do
3 find scaling hi

c such that Ii := Hi(h
i
c) has makespan between c and 4c

4 Run Algorithm 5 with I1, . . . , Iℓ
5 if not ERR then finish: all the jobs are scheduled

Lemma 12. If Algorithm 6 uses makespan at most γc in an iteration with guess c, then it uses
makespan at most O(γ)c⋆, where c⋆ denotes the value of c in the last iteration.

Proof. The total makespan used by the algorithm is at most

log(c⋆/c0)∑
i=0

2ic0γ ≤ 2c⋆γ.

Lemma 13. Let c⋆ be the value of c in the last iteration of Algorithm 6 in the realizable setting. Then
the makespan of the offline optimal solution is at least c⋆/2.

Proof. Let Hi⋆ be the correct hypothesis describing the input instance I . We know that Hi⋆(h
i⋆

c⋆/2) ⊊
I , otherwise Algorithm 6 would terminate in the previous iteration. We have

c⋆/2 ≤ OPT(Hi⋆(h
i⋆

c⋆/2)) ≤ OPT(I),

implying OPT(I) ≥ c⋆/2. The first inequality is by the choice of hi⋆

c⋆/2 and the last one since
Hi⋆(h

i⋆

c⋆/2) ⊊ I .

Theorem 14. There are algorithms for the realizable setting with deterministic and randomized
predictors which, given a hypothesis class H of size ℓ, achieve competitive ratio O(log ℓ log τ) and
O(log ℓ) respectively, where τ is the total number of different job types in H.

Proof. Combining Lemmas 12 and 13, the makespan achieved by Algorithm 6 is at most O(γOPT).
By Lemmas 9, 10, and 11, we have γ = log ℓ log τ in case of the deterministic Predictor 3 and
γ = log ℓ in case of the randomized Predictor 4.

17

B.4 Agnostic Setting

The algorithm above works also in the agnostic setting. Let fp and f⋆
p be the frequency of job type p

according to a hypothesis H ∈ H and its true frequency, respectively. If there is a job type p such
that fp ̸= 0 and f⋆

p = 0, we define αH := n+ 1, where n denotes the number of jobs in the input
instance. Otherwise, we define αH := max{fp/f⋆

p | f⋆
p ̸= 0}. Similarly, if there is a job type p

such that fp = 0 and f⋆
p ̸= 0, we define βH := n + 1. Otherwise, βH := max{f⋆

p /fp | fp ̸= 0}.
Note that both αH and βH are at most n+ 1: the smallest f⋆

p > 0 is at least 1/n for the job types
represented by a single job and the same holds for the scaling H(1) of each hypothesis H ∈ H. Let
H ∈ H be a hypothesis achieving the smallest product αHβH . We call a pair (α, β), where α = αH

and β = βH the error of hypothesis class H.

We prove the following variant of Lemma 13 for agnostic setting, in the case with α, β ≤ n.

Lemma 15. Let c⋆ be the value of c in the last iteration of Algorithm 6 in the agnostic setting, given
a hypothesis class H with error α, β ≤ n. Then, the makespan of the offline optimal solution is at
least c⋆

O(αβ) .

Proof. The main idea here is that even if all hypothesis are incorrect, Algorithm 6 terminates once
the input instance I is subsumed by a large enough scaling of some hypothesis. Consider the correct
hypothesis H⋆ for I consisting of real frequencies f⋆

p for each job type p (H⋆ may not be in H in the
agnostic setting) and the best hypothesis H ∈ H (such that α, β = αH , βH). We assume below that
α and β are integers, otherwise we round them up to the closest integers.

We have the following: I = H⋆(h) for some integer scaling h. Since, f⋆
p ≤ βfp, we have

H⋆(h) ⊆ H(βh). Therefore, in the last iteration of Algorithm 6, we have c⋆ within a constant factor
from the optimum makespan of H(βh) Similarly, since fp ≤ αf⋆

p , we have that H(βh) ⊆ H⋆(αβh)
which implies that the optimum makespan of H(βh) is at most αOPT(H⋆(βh)) ≤ αβOPT(I).
Altogether, we have c⋆ ≤ O(αβOPT(I)).

Theorem 16. There are algorithms for the agnostic setting with deterministic and randomized
predictors which, given a hypothesis class H of size ℓ with error (α, β), achieve competitive ratio
O(αβ log ℓ log τ) and O(αβ log ℓ),respectively, where τ is the total number of different job types in
H.

Proof. Consider an algorithm which schedules all jobs of type p such that fp = 0 according to all
hypotheses in H to the machine argmini∈[m] pi, i.e., the machine which can process the job fastest.
Let J0 denote the set of such jobs. All other jobs in I \ J0 are scheduled using Algorithm 6. The
resulting makespan is at most

|J0|OPT+γc∗ ≤ |J0|OPT+O(αβγ)OPT

where c∗ is the value of c in the last iteration of Algorithm 6 processing jobs in I \J0. This is because,
for every j ∈ J0, we have OPT ≥ mini∈[m] pi. The inequality follows from lemmas 15 and 12.

If |J0| > 0, then at least one of α and β is at least n+ 1. Therefore, our makespan is always at most
αβγOPT. By lemmas 9, 10, and 11, we have γ = log ℓ log τ in case of the deterministic Predictor 3
and γ = log ℓ in case of the randomized Predictor 4.

B.5 Achieving Robustness

With large α, β, the competitive ratio in Theorem 16 might be worse than O(logm) which is
achievable without predictions, i.e., Algorithm 6 is not robust. This can be fixed easily: once
Algorithm 5 returns ERR at iteration c, we run a classical online algorithm by Azar et al. [5] as long
as it uses makespan γc. That is, we stop it as soon as its makespan go above γc (and we do not
schedule the job that makes it go above γc. This increases the makespan of the solution by factor at
most 2 and ensures that OPT ≥ γc/O(logm).

The following lemma holds both in realizable and in the agnostic setting.

Lemma 17. The makespan of the solution produced by Algorithm 7 is at most a constant factor
higher than of Algorithm 6. Moreover, its competitive ratio is always bounded by O(logm).

18

Algorithm 7: robust variant of Algorithm 6

1 for c = c0, . . . , 2
1c0, 2

2c0, 2
3c0, . . . do

2 for i = 1, . . . , ℓ do
3 find scaling hi

c such that Ii := Hi(h
i
c) has makespan between c and 4c

4 Run Algorithm 5 with I1, . . . , Iℓ
5 Run Online algorithm of Azar et al. [5] as long as it uses makespan of at most γc
6 if all jobs are scheduled then finish

Proof. Algorithm 6 terminates once it finds c⋆ and i, such that the actual instance I is a subset of
Hi(h

i
c⋆). With the same c⋆, Algorithm 7 terminates as well. While Algorithm 6 uses a makespan of

at most γc⋆ in each iteration, Algorithm 7 uses makespan of at most 2γc⋆ in each iteration.

Now we prove the O(logm) bound on the competitive ratio. Consider I ′ ⊆ I the set of jobs assigned
to machines by the online algorithm of Azar et al. [5] in the next to last iteration (line 5 of Algorithm 7).
We have OPT(I) ≥ OPT(I ′) ≥ γc⋆/2

O(logm) because the online algorithm is O(logm)-competitive
and it required makespan γc⋆/2 in the second to last iteration. Since Algorithm 7 uses makespan at
most O(γc⋆) by Lemma 12, the bound on its competitive ratio follows.

B.6 A note on combining arbitrary integral algorithms

Dinitz et al. [15] considered a portfolio of ℓ algorithms for load balancing on unrelated machines and
proposed a way to combine their outputs in a single fractional solution of cost at most O(log ℓ)-times
higher than the cost of the best algorithm in the portfolio. Such solution can be rounded online only
by loosing an additional factor of Θ(log logm/ log log logm).

Our approach described above can be used to produce directly an integral solution as far as all the
algorithms in the portfolio are integral. The cost of this solution is at most O(log ℓ)-times higher than
the cost of the best algorithm in the portfolio.

We guess the value c of the makespan achieved by the best algorithm in the potfolio using the doubling
trick, loosing a constant factor due to this guessing as in Section B.3. We create a randomized predictor
similar to Predictor 4 as follows. Start with the set of active algorithms A := {1, . . . , ℓ} and predict
an algorithm chosen from A uniformly at random. Once its makespan exceeds c, we update A to
include only those algorithms whose current makespan is at most c, choose one of them uniformly at
random and iterate. We continue either until all jobs are scheduled or until A is empty which signals
an incorrect guess of c. At each time step, we schedule the current job based on a decision of the
algorithm currently chosen by the predictor, paying at most c while following a single algorithm.
An argument as in the proof of Lemma 10 shows that our predictor switches O(log ℓ) algorithms in
expectation at each iteration.

B.7 Lower Bound

Our lower bound holds for a special case of load balancing on unrelated machines called restricted
assignment, where processing of each job j is restricted to a subset Sj of machines, i.e., its processing
time is 1 on all machines belonging to Sj and +∞ otherwise. Our construction requires m ≥ ℓ
machines and is inspired by the construction of Azar et al. [5] (ℓ is number of hypothesis in H as
before). Since we can ensure that all jobs have infinite processing time on machines ℓ+ 1, . . . ,m,
we can assume that ℓ = m and that ℓ is a power of two.

We construct ℓ instances of restricted assignment on ℓ machines, each with makespan c ∈ N. In
instance i ∈ {1, . . . , ℓ}, there are cℓ/2j jobs restricted to machines whose index agrees with i in
the j − 1 most significant bits, for j = 1, . . . , log ℓ. In particular, each instance starts with cℓ jobs
which can be processed on any machine. The jobs arrive in iterations from j = 1 to log ℓ (from
less restricted to more restricted). If numbers i and i′ have a common prefix of length j − 1, then
instances i and i′ have the same jobs in the first j iterations.

Optimal solution for instance i can be described as follows: For each j = 1, . . . , log ℓ, schedule all
cℓ/2j jobs evenly on machines whose index agrees with i up to bit j − 1 but disagrees with i in bit j:

19

There are ℓ/2j−1 − ℓ/2j = ℓ/2j such machines. We leave all the machines which agree with i in the
first j bits empty for the following iterations. Since, for each j, we schedule cℓ/2j jobs evenly on
ℓ/2j machines, their load is c.
Theorem 18. There is no (randomized) algorithm which, with a hypothesis class of size ℓ ≤ m, that
achieves competitive ratio o(log ℓ).

Proof. The adversary chooses the correct instance i bit by bit, fixing the jth bit ij at the end of iteration
j depending on the behavior of the algorithm. Bit ij is chosen according to the following procedure:
Given the knowledge of the distribution over algorithm’s decisions, count the expected number of
jobs from iterations 1, . . . , j assigned to machines whose first j bits are i1, . . . , ij−1, 0. If this number
is higher than the expected number of jobs assigned to machines with prefix i1, . . . , ij−1, 1, then
choose ij = 0. Otherwise, choose ij = 1.

For each j = 1, . . . , log ℓ, we denote Mj the set of machines with prefix i1, . . . , ij , with M0 =
{1, . . . , ℓ}. We show by induction on j that at least 1

2jcℓ/2
j jobs are assigned to the machines

belonging to Mj in expectation. This way, Mlog ℓ contains a single machine with expected load at
least 1

2c log ℓ.

The base case j = 1 of the induction holds: We assign cℓ jobs to ℓ machines in M0 and i1 is chosen
so that machines in M1 get at least half of them, in expectation. For j > 1, the expected number of
jobs from iterations up to j − 1 assigned to machines in Mj−1 is at least 1

2 (j − 1)cℓ/2j−1 by the
induction hypothesis. There are cℓ/2j jobs restricted to machines in Mj−1 scheduled in iteration j.
Therefore, the total expected number of jobs from iterations 1, . . . , j assigned to machines in Mj−1

is at least
1

2
(j − 1)c

ℓ

2j−1
+ c

ℓ

2j
= jc

ℓ

2j
.

Since ij is chosen such that the machines in Mj are assigned at least half of the jobs assigned to
machines in Mj−1 in expectation, the expected number of jobs assigned to Mj is at least c

2jℓ/2
j .

While the makespan for the instance i is c, the machine in Mlog ℓ has expected load at least 1
2c log ℓ,

showing that the competitive ratio of the algorithm is at least 1
2 log ℓ.

C Non-clairvoyant Scheduling

We have a single machine and n jobs available from time 0 whose lengths p1, . . . , pn are unknown to
the algorithm. We know the length pj of the job j only once it is finished. If it is not yet finished
and it was already processed for time xj , we only know that pj ≥ xj . Our objective is to minimize
the sum of the completion times of the jobs. To avoid scaling issue in our regret bounds, we assume
that the length of each job is at most 1. Note that if a solution for instance I has total completion
time objective OPT(I) + R, then the same solution on a scaled instance I ′ obtained from I by
multiplying all job lengths by α has objective α(OPT(I) + R) = OPT(I ′) + αR. There is a
2-competitive Round Robin algorithm which runs all unfinished jobs simultaneously with the same
rate [34]. Consider an algorithm which schedules the jobs in order 1, . . . , n, denoting p1, . . . , pn
their lengths. Then, its total completion time objective can be expressed as

n∑
j=1

j∑
i=1

pj =

n∑
j=1

pj(n− j + 1).

This objective is minimal if p1 ≤ · · · ≤ pn which is the ordering chosen by the optimal algorithm
Shortest Job First (SJF) for the clairvoyant setting where we know lengths of all the jobs in advance
[34].

Learning task. We are given a class H of ℓ hypotheses, each of them specifies length of all jobs,
denoting pij the length of job j according to the hypothesis Hi. A predictor uses H to produce
prediction π, where πj is the predicted length of the job j. We call a predictor monotone if, at
each time step, it maintains a prediction which is consistent with our knowledge about job lengths
and πj ≤ pj holds for every job j (i.e., it never overestimates a length of a job). We propose a
monotone predictor only for the realizable setting. Non-clairvoyant scheduling in the agnostic setting
is considered in Section C.2 with a different kind of hypotheses.

20

Predictor. We propose a monotone predictor which works as follows. At the beginning, we start
with A := {1, . . . , ℓ}. At each time instant t, we remove from A each hypothesis i such that there is
some job j which was already processed for time xj > pij . Whenever A changes, we switch to a new
prediction by updating the predicted lengths of unfinished jobs as follows. For every unfinished job,
we predict the smallest length specified by any instance in A.

Predictor 8: non-clairvoyant scheduling, realizable setting
1 for t = 0 or whenever some hypothesis is removed from A do
2 U := set of unfinished jobs
3 for j ∈ U do πj := min{pij | i ∈ A} // switch: update pred. unfinished jobs

Lemma 19. In the realizable setting, Predictor 8 is monotone and makes σ ≤ ℓ switches.

Proof. Switch happens whenever xj = πj for some unfinished job j. In that case, the hypothesis
predicting πj for job j is removed from A; therefore there can be at most ℓ switches.

In the realizable setting, there is a hypothesis i⋆ which is correct and is never removed from A.
Therefore, at each time instant, we have πj ≤ πi⋆

j = pj for any job j.

Algorithm. At each time instant, our algorithm receives the newest prediction from the predictor
and always processes the job whose current predicted length is the smallest. When a switch happens,
it interrupts the processing of the current job, leaving it unfinished.

Algorithm 9: non-clairvoyant scheduling
1 for each time instant t do
2 U := set of unfinished jobs
3 get the newest prediction π from the predictor
4 run job j := argminj∈U{πj}

Lemma 20. With a monotone predictor which makes σ switches, Algorithm 9 produces a schedule
with total completion time at most OPT(I) + σ

√
2OPT(I) on an input instance I with job lengths

bounded by 1 and offline optimal completion time of OPT(I).

Proof. We relabel the jobs so that p1 ≤ · · · ≤ pn. The optimal solution is to schedule them in this
exact order, always running the shortest unfinished job, achieving total completion time

OPT(I) =

n∑
i=1

pi · (n− i+ 1).

At each switch of the predictor, our algorithm leaves the current job unfinished. On the other hand,
whenever a job j is completed, it must have been the shortest unfinished job, because it was the
unfinished job with the shortest πj and we have pj ≤ πj ≤ πj′ ≤ pj′ for any unfinished job j′ by the
monotony of the predictor. Therefore, the total completion time of the algorithm is

ALG(I) ≤
n∑

i=1

(Ci + pi) · (n− i+ 1),

where Ci is the time between the completion of jobs i− 1 and i spent processing jobs which were
left unfinished due to a switch – we denote the set of these jobs by Qi. Algorithm 9 processes a job
j only when πj ≤ πj′ for all unfinished jobs j′. Therefore, each job j ∈ Qi can contribute to Ci

at most πj ≤ πi ≤ pi, by the monotony of the predictor. Therefore we can bound the cost of the
algorithm as follows:

ALG(I) = OPT(I) +

n∑
i=1

Ci · (n− i+ 1) ≤
n∑

i=1

∑
j∈Qi

pi(n− i+ 1).

21

Note that σ =
∑n

i=1 |Qi|. So, the sum in the right-hand side contains σ summands and each of them
can be bounded by

√
2OPT(I), since we have

(
pi(n− i+ 1)

)2 ≤ 2pi
(n− i+ 1)2

2
≤ 2

n∑
k=i

pi(n− k + 1) ≤ 2

n∑
k=i

pk(n− k + 1) ≤ 2OPT(I).

The first inequality follows since pi ≤ 1 and the third inequality since pi ≤ pk for each k ≥ i.
Therefore, we have

ALG(I)−OPT(I) ≤ σ
√
2OPT(I).

Lemma 19 and Lemma 20 imply the following theorem.

Theorem 21. Consider an instance I with maximum job length 1 and let OPT (I) be the offline
optimal completion time of I . There is an algorithm for the realizable setting which, given a hypothesis
class H of size ℓ, achieves objective value at most OPT(I) + ℓ

√
2OPT(I).

C.1 Instances with Two Distinct Lengths

Consider the case in which the larger jobs have length 1 and the smaller ones have length λ ∈ [0, 1).
We propose the following predictor which makes only log ℓ switches and constructs its prediction
based on the majority rule.

Predictor 10: non-clairvoyant scheduling with two distinct lengths
1 for time instant t do
2 if t = 0 or some prediction was shown to be wrong then
3 A := set of instances consistent with the input so far
4 U := set of unfinished jobs
5 for j ∈ U do πj := argmaxx=1,λ |{pij = x | i ∈ A}| // majority prediction

By its definition, Predictor 10 makes a switch every time its prediction is shown to be incorrect. The
following lemma bounds its total number of switches.

Lemma 22. Predictor 10 makes makes at most log ℓ switches in total.

Proof. When a prediction πj is shown to be incorrect, the predictor makes a switch and the size of A
decreases by at least factor of 2, because the length of j was predicted to be πj by at least half of the
hypotheses in A. Therefore, there can be at most log ℓ switches.

Our algorithm works as follows. If there is an unfinished job j with πj = λ, it runs it to completion.
Otherwise, it chooses an unfinished job predicted to have length 1 uniformly at random and runs it to
completion. The following lemma is useful for the analysis.

Algorithm 11: non-clairvoyant scheduling with two distinct lengths
1 for time step 0 and whenever some job is finished do
2 update the prediction π
3 U := set of unfinished jobs
4 if there is j ∈ U s.t. πj = λ then run j until it is completed
5 else choose j from U uniformly at random and run it to completion

Lemma 23. Consider two schedules without preemption such that the second one differs from the
first one by moving a single job of size 1 earlier, jumping over d jobs. Then the total completion time
of the second schedule is larger by at most d−

∑d
i=1 pi where p1, . . . , pd are the processing times of

the jobs which were delayed. This difference is at most (1− λ)d. If all these d jobs have length λ,
then the difference is exactly (1− λ)d.

22

Proof. The completion time of the job we shifted earlier get smaller by
∑d

i=1 pi, and the completion
time of the d jobs which were delayed increases by at most 1. All other completion times do not
change.

Lemma 24. Algorithm 11 for instances with job lengths in {1, λ} with a predictor which makes a
switch whenever its prediction is shown to be incorrect and makes σ switches in total produces a
schedule with expected total completion time at most OPT(I) + σ(1− λ)n, where OPT(I) is the
total completion time of the offline optimal solution.

Proof. The offline optimum schedules all jobs of length λ before the jobs of length 1. If we finish a
job and there was no switch, the prediction of its length was correct. We write σ = σ′ + σ′′, where
σ′ is the number of times we process a job with incorrect predicted length λ (type-1 switch) and σ′′

is the number of times we process a job with incorrect predicted length 1 (type-2 switch).

Every type-1 switch causes a job of length 1 to be scheduled before at most n jobs of length λ. By
Lemma 23, the schedule produced by the algorithm is more expensive than the solution where these
σ′ jobs were executed last by at most σ′(1− λ)n. It remains to analyze by how much this modified
schedule, in which type-1 switches never happen, is more expensive than the optimal schedule.

We split the time horizon into intervals moments when a type-2 switch happens (recall that the switch
happens right after we scheduled a short job with predicted length 1). There are σ′′ + 1 intervals
i = 0, 1, . . . , σ′′. We denote by qi the number of jobs of predicted length λ scheduled first in the ith
interval (including the first job causing the type-2 switch) and by mi the number of jobs of predicted
length 1 scheduled thereafter in the ith interval. Let ni denote the total number of unfinished jobs
when we finish scheduling the qi jobs of predicted length λ, and let si be the number of unfinished
jobs of length λ at that time. We have qi = si−1 − si.

With this notation and using Lemma 23, the regret of the algorithm is

(1− λ)

σ′′−1∑
i=0

misi

This is because the optimal schedule processes jobs of length λ first and our schedule can be
constructed by moving (one by one) mi jobs of length 1 forward, leaving si jobs of length λ behind
for each i = 1, . . . , σ′′.

Since we choose to process a random job of predicted length 1 we have E[mi | ni, si] =
ni+1
si+1 ≤ n

si
,

as we are drawing from ni jobs without replacement until the first of si jobs of size λ is drawn.
Therefore E[mi | si] ≤ n/si and E[misi] =

∑n
j=1 P(si = j)E[misi | si = j] ≤ n. So, the

expected regret in case a type-1 switch never happens is

(1− λ)

σ′′−1∑
i=0

E[misi] ≤ (1− λ)nσ′′.

Therefore, the cost of the algorithm is ALG ≤ OPT+(1− λ)nσ.

Lemma 22 and Lemma 24 together imply the following theorem.
Theorem 25. Consider an instance I with jobs of length either 1 or λ for some fixed λ ∈ (0, 1).
There is an algorithm which, given a hypothesis class H of size ℓ, produces a schedule with expected
total completion time at most OPT(I) + σ(1 − λ)n in the realizable setting (i.e., I ∈ H), where
OPT(I) is the total completion time of the offline optimal solution.

C.2 Agnostic Setting

We propose an algorithm for the agnostic setting with a different type of hypotheses, each specifying
an optimal ordering of the jobs rather than their lengths. Given a class of such hypotheses H, the
predictor maintains an ordering π and, at each switch, it can change the ordering of the unfinished
jobs. Let J = {1, . . . , n} be the set of all jobs. We call a mistake every inversion in this ordering, i.e.,
two jobs i, j ∈ J such that pi < pj but π(j) < π(i). For every pair of jobs {i, j}, we define

µ(π, {i, j}) =
{
(pi − pj)

+ if π(i) < π(j)

(pj − pi)
+ otherwise.

23

If the order of i j in π is incorrect, then µ(π, {i, j}) is the weight of this mistake. Otherwise, it is
equal to 0. For a set of pairs of jobs P ⊆

(
J
2

)
, where

(
J
2

)
denotes the set of all pairs of jobs, we

denote µ(π, P) =
∑

{i,j}∈P µ(π, {i, j}), and µ(π) = µ(π,
(
J
2

)
) is the total weight of mistakes in π.

Proposition 26 (Lindermayr and Megow [28]). Let OPT denote the cost of the offline optimal
solution and cost(π) the cost of the solution where the jobs are processed according to the ordering
π. Then cost(π)−OPT = µ(π).

Predictor. It has a parameter m. First, it samples m pairs of jobs, P = {{ji, j′i} | i = 1, . . . ,m}.
The initial predicted permutation starts with these jobs, i.e., j1, j′1, . . . , jm, j′m and the rest of the
jobs follow in an arbitrary order. Once the lengths of the jobs in P are determined, the predictor
calculates µ(h, P) for each h ∈ H. Then, it makes a switch to its final prediction by ordering the
jobs not contained in P according to the hypothesis with the smallest µ(h, P).

Predictor 12: non-clairvoyant scheduling, agnostic case
1 At time 0: sample m pairs of jobs P
2 When the last job in P is completed:
3 for h ∈ H do compute µ(h, P)

4 Switch to a new prediction based on ĥ with minimum µ(ĥ, P)

Predictor 12 makes only one switch which happens at the moment when the last job from P is
completed.
Lemma 27. Let π be the final prediction produced by Predictor 12 during its only switch. With
probability (1−δ), we have µ(π) ≤ µ(h∗)+O(n5/3(log ℓ

δ)
1/3), where h∗ denotes the best hypothesis

in H.

Proof. The total weight of the mistakes in the last prediction can be bounded by

µ(π) ≤ µ(ĥ) + 2mn, (1)

where ĥ is the hypothesis chosen at line 4. This follows because the 2m jobs belonging to P which
are at the beginning of π have length at most 1 and each of them delays the completion of at most n
jobs. We need to show that, with high probability, we have to show that µ(ĥ) similar to µ(h∗).

For each hypothesis h ∈ H and a pair {i, j} ∈
(
[n]
2

)
chosen uniformly at random, we denote

ρh = E[µ(h, {i, j})] = µ(h)/
(
n
2

)
. Since the pairs in P are chosen uniformly at random, we

have E[µ(h, P)] = ρhm for each h ∈ H. Now we use Hoeffding’s concentration inequality [40,
Thm 2.2.6] to show that µ(h, P) is close to its expectation with a high probability. Choosing
m = log(2ℓ/δ)/2ϵ2, where ϵ is a parameter to be decided later, we have

P
(
|µ(h, P)− ρhm| > ϵm

)
≤ 2 exp

(
− 2(ϵm)2/m

)
= 2 exp(−2ϵ2m) ≤ δ/ℓ,

for each h ∈ H. So, by a union bound, with probability at least 1−δ, we have |µ(h, P)−ρhm| ≤ ϵm

for all hypothesis h ∈ H and the chosen hypothesis ĥ must have ρĥ ≤ ρh⋆ + 2ϵ. Multiplying by
(
n
2

)
we get µ(ĥ) ≤ µ(h∗) + 2ϵ

(
n
2

)
with probability 1− δ.

The total weight of mistakes in the final prediction π is bounded as follows:

µ(π) ≤ µ(h∗) + 2ϵ

(
n

2

)
+

log(2ℓ/δ)

ϵ2
n.

We choose ϵ = O
(log(ℓ/δ)

n

)1/3
, getting µ(π) ≤ µ(h∗)+O

(
n5/3(log ℓ

δ)
1/3

)
with desired probability.

Algorithm. At each step, it chooses the first unfinished job in the predicted ordering and runs it
until it is completed.
Lemma 28. Given a predictor which makes switches only at moments when some job is completed,
never changes ordering of finished jobs, and the total weight of the mistakes in its final predictions is
µ, the regret of Algorithm 13 is µ.

24

Algorithm 13: non-clairvoyant scheduling, agnostic case
1 for each time instant t do
2 run the first unfinished job according to the current prediction π

Proof. If switches happen only at job completions then Algorithm 13 never preempts any job before it
is finished. Since, the predictor changes only the ordering of the unfinished jobs during, the algorithm
processes jobs in the order suggested by the final prediction. By Proposition 26, the difference
between the cost incurred by the algorithm and the offline optimum is equal to µ.

Algorithm 13 when run with Predictor 12 first processes jobs in P . Once the last job in P is completed,
Predictor 12 switches to its final prediction by updating the ordering of unfinished jobs, fulfilling the
conditions of Lemma 28. Together with Lemma 27, we get the following theorem.

Theorem 29. Consider an instance I with maximum job length 1. There is an algorithm for the
agnostic setting which, given a hypothesis class H of size ℓ with error µ, produces a schedule with
total completion time at most OPT(I) + µ+O(n5/3(log ℓ

δ)
1/3) with probability at least (1− δ).

C.3 Lower Bound

In this section, we prove a lower bound for instances with three distinct job lengths. The instances
used in our construction will use only integer job lengths and the following technical lemma helps
simplifying the exposition of the lower bound.

Lemma 30. Consider instance of non-clairvoyant scheduling with jobs of integer lengths. Any online
algorithm A on this instance can be converted to an online algorithm A′ with no larger cost which
interrupts and starts processing of jobs only at integer time steps.

Proof. Let t1, . . . , tN be time instants such that the processed part of some job in the schedule
produced by A reaches an integer value. We use the following notation: The milestone i reached at
time ti is described by ki ∈ N and ji ∈ {1, . . . , n} meaning that ki units of job ji become completed
at ti. Since jobs are guaranteed to have integral lengths, algorithm A discovers new information
about job lengths only at times t1, . . . , tN . Namely, at time t, it knows that the length of a job j is
max{ki | ti ≤ t and ji = j} if j is finished, and at least max{ki + 1 | ti ≤ t and ji = j} if j is
unfinished.

We describe algorithm A′ which reaches the milestones 1, . . . , N in the same order as A, reaching
milestone i at time i ≤ ti. At time t = 0, it chooses job j1 and processes it for a single time unit,
reaching milestone 1 with j1 and k1 = 1 at time 1 ≤ t1. Having i milestones reached at time step
i ∈ 1, . . . , N − 1, A′ chooses job ji+1 and processes it for a single time unit. Since the previous
milestone involving ji+1 was already reached by A′, ji+1 is processed for ki+1 time units, reaching
milestone i + 1. We have ti+1 ≥ i + 1, because reaching each milestone requires a single unit of
computational time and no algorithm can reach i+ 1 milestones before time i+ 1.

Since all jobs have integer lengths, they can be completed only when some milestone is reached.
Since A′ reaches all milestones no later than A, its total completion time is at most the one achieved
by A.

Lemma 31. Consider two schedules such that the second one differs from the first one by moving at
least a single unit of some job j earlier, jumping over completion times of d jobs, while the completion
time of j does not change. Then the total completion time of the second schedule is larger by at least
d.

Consider two schedules such that the second one differs from the first one by moving a whole job j of
size 3 earlier, jumping over d jobs of size at most 2. Then the total completion time of the second
schedule is larger by at least d.

Proof. First case: the completion times of d delayed jobs increase by 1 and all other completion
times remain the same.

25

Second case: the completion time of j decreases by at most 2d, while the completion times of the
delayed jobs increase by 3. All other completion times do not change.

Theorem 32. There is a hypothesis class of size ℓ such that no algorithm for non-clairvoyant
scheduling in realizable setting can achieve a regret bound o(ℓn).

Proof. We construct ℓ instances with n ≥ 2ℓ2 jobs. The job lengths will be 1, 2, 3. However, we can
rescale the time to make an execution of a job of size 3 to last 1 time unit. Such rescaling changes
both the optimal and algorithm’s total completion time as well as their difference by factor of 3.

The first ℓ2 jobs are divided into ℓ blocks of ℓ jobs each. The ith block includes jobs (i−1)ℓ+1, (i−
1)ℓ+ 2, . . . , iℓ. The jobs in the ith block have length 1 in instance i and 3 in all other instances. The
jobs ℓ2 + 1, . . . , n have length 2 in all instances.

The correct instance is picked uniformly at random. By Yao’s principle (see, e.g., [11]), it is enough
to prove a lower bound for any deterministic algorithm on this randomized instance to get a lower
bound for any randomized algorithm. The optimal solution of any of these instances is to schedule ℓ
jobs of size 1 first, then n− ℓ2 jobs of size 2, and finally ℓ2 − ℓ jobs of size 3.

We assume that the algorithm starts and preempts jobs only in integral time steps. This assumption
is without loss of generality by Lemma 30. When deciding which job to run at time t ∈ N, it can
choose either a job from 1, . . . ℓ2 or a job from ℓ2 +1, . . . n. If it runs a job from 1, . . . , ℓ2 for at least
1 time unit, it discovers the length of all jobs in the same block. If the true size of the job was 1 and
the job is finished, it also discovers the true instance. We denote by A ⊆ {1, . . . , ℓ} the set of blocks
such that the algorithm still does not know the lengths of the jobs in these blocks. We consider the
following two cases:

• Algorithm runs a job j ∈ {ℓ2 + 1, . . . , n}: such a job has size 2 in all instances. If the
correct instance is not yet determined and there are still ℓ unfinished jobs of length 1, this
action worsens the algorithm’s schedule by ℓ, by Lemma 31.

• Algorithm runs a job j ∈ {1, . . . , ℓ2}: the length of j is 1 with probability 1/|A| if j belongs
to a block i ∈ A and 0 otherwise. If it is 1, the algorithm determines the correct instance and
suffers no more regret. Otherwise, |A| decreases by 1. If ALG processes this job completely,
it suffers regret ≥ rt by Lemma 31, where rt is the number of unfinished jobs of size 2. If it
processes the job for at least 1 time unit without finishing it, it also suffers regret ≥ rt.

One of the following complementary events occurs with probability at least 1/2: When the first job of
size 1 is scheduled, either (1) rt < (n− ℓ2)/2 or (2) rt ≥ (n− ℓ2)/2.

If the event (1) occurs, at least (n− ℓ2)/2 jobs of size 2 are scheduled before the first job of size 1,
each of them causes regret at least ℓ. With n ≥ 2ℓ2, we have the regret at least Ω(ℓn).

In case event (2) occurs, we calculate how many jobs of size 3 are scheduled before the first
job of size 1 in expectation. If each job j ∈ {1, . . . , ℓ2} chosen by the algorithm belongs to
a different block, it will run ℓ2+1

ℓ+1 ≥ ℓ/2 jobs of size 3 before it runs the first job of size 1 in
expectation. Otherwise, the expectation is even higher. Therefore, the algorithm suffers regret at least
(ℓ/2)rt ≥ (ℓ/2)(n− ℓ2)/2 ≥ (ℓ/2)(n/4) = Ω(ℓn).

D Caching in Agnostic Setting

We describe extensions of our results from Section 4 to agnostic setting and setting with a more
natural hypotheses. We also prove our lower bounds.

In agnostic setting, we are given a set of ℓ hypotheses H = {r1, . . . , rℓ} which does not necessarily
contains the input sequence r. The number of mistakes of hypothesis ri is defined as the number of
time steps t ∈ {1, . . . , T} such that rit ̸= rt. The best hypothesis is the one with the smallest number
of mistakes.

26

Predictor: At each time step t, the predictor chooses a hypothesis i at random according to the
probability distribution produced by the HEDGE algorithm [31, 18]. If i is different from the
hypothesis chosen at time t− 1, there is a switch to a new prediction π which is consistent with the
previous prediction until time t and, for τ = t, . . . , T , the predictor updates πτ := riτ .

We construct a sequence of loss functions as an input to HEDGE: At time t, the loss of hypothesis i is
1 if it predicts an incorrect request and 0 otherwise. At each time step t, HEDGE gives us a probability
distribution ξt over the hypotheses. The predictor samples a hypothesis from this distribution in the
following way. Let f be a min-cost flow of the probability mass from distribution ξt−1 to distribution
ξt (i.e.,

∑ℓ
j=1 fij = ξt−1

i and
∑ℓ

i=1 fij = ξtj), where flow fij has cost 1 if i ̸= j and 0 otherwise.8

Note that the cost of this flow
∑

i ̸=j fij is equal to Total Variation Distance (TVD) between ξt−1 and
ξt. If hypothesis i was chosen at time t− 1 as a sample from ξt−1, then the predictor switches to a
hypothesis j with probability fij/ξ

t−1
i . This way, the probability of choosing j at time t is

ℓ∑
i=1

P(i chosen at t− 1)P(switching to j | i chosen at t− 1) =

ℓ∑
i=1

ξt−1
i

fij

ξt−1
i

= ξtj

and the probability of a switch occurring is
∑

i ̸=j fij = TVD(ξt−1, ξt). See Predictor 14 for a
summary.

Predictor 14: caching, agnostic setting

1 η := ln 1
1−1/k ; // Learning rate parameter

2 w := (1, . . . , 1), ξ0 := w/ℓ;
3 predict a hypothesis sampled from ξ0;
4 for t = 1, . . . , T do
5 for i ∈ {1, . . . , ℓ} s.t. rit ̸= rt do
6 wi := wi exp(η) ; // loss of instance i is 1: update wi using HEDGE

7 ξti := wi/
∑ℓ

i=1 wi for each i = 1, . . . , ℓ ; // Update distribution over
hypotheses

8 compute min-cost flow f from ξt−1 to ξt, so that
∑ℓ

i=1 fij = ξtj ;
9 if the previous prediction was hypothesis i, switch to j w.p. fij/ξt−1

i ;

The following performance bound of the HEDGE algorithm can be found, e.g., in [12, Thm 2.4].

Proposition 33. Let µ⋆ be the loss of the best of the hypotheses. Then, the expected loss of the
HEDGE algorithm with learning rate parameter η is

µ ≤ ηµ⋆ + ln ℓ

1− exp(−η)
.

The probability distribution produced by HEDGE is relatively stable. We can bound TVD(ξt−1, ξt)
as a function of η and the expected loss incurred by HEDGE at time t.

Proposition 34 (Blum and Burch [10] (Thm 3)). Let ξt−1 and ξt be probability distributions of
HEDGE learning rate parameter η at times t− 1 and t respectively. Then, we have

TVD(ξt−1, ξt) ≤ η
∑

i,rit ̸=rt

ξti .

Lemma 35. Let µ⋆ be the number of mistakes of the best hypothesis. The predictor for the agnostic
setting makes µ mistakes and σ switches in expectation, where

µ ≤ (1 + 1/k)µ⋆ + k ln ℓ and σ ≤ (1/k + 1/k2)µ.

8In our situation, the min-cost flow fij can be expressed using an explicit formula: we define δ = ξt − ξt−1

and write fij = (−δi)
+ δ+j∑ℓ

m=1 δ+m
for each i, j ∈ {1, . . . , ℓ}, using notation x+ := max{0, x}.

27

Proof. The number of mistakes made by Predictor 14 is equal to the loss achieved by HEDGE
algorithm. By Proposition 33, we have

µ ≤ ηµ⋆ + ln ℓ

1− exp(−η)
. (2)

We choose η := ln 1
1−1/k which is ≤ 1/k + 1/k2, whenever k ≥ 4. This is to make kσ = kηµ

comparable to µ. We substitute this upper bound in 2, and get

µ ≤
(ln 1

1−1/k)µ
⋆ + ln ℓ

1/k
≤ (1 + 1/k)µ⋆ + k ln ℓ.

At each time step t, Predictor 14 makes a switch with probability
∑

i ̸=j fij = TVD(ξt−1, ξt). By
Proposition 34, the expected number of switches made by our predictor is

σ ≤
T∑

t=1

η
∑

i,rit ̸=rt

ξti = ηµ ≤ (1/k + 1/k2)µ,

since
∑

i,rit ̸=rt
ξti is the expected number of mistakes at time t.

Algorithm. Our algorithm follows the FitF solution recomputed at each switch. If it happens that
the current request rt is not served by this solution (i.e., there is a mistake in the prediction), the
algorithm loads rt ad-hoc and removes it instantly in order to return to the FitF solution.

Algorithm 15: caching, agnostic setting
1 for t = 1, . . . , T do
2 if t = 1 or there is a switch then
3 recompute x1, . . . , xT the FitF solution for the current prediction;
4 move to xt;
5 if rt /∈ xt then
6 load rt, evicting an arbitrary page, and serve rt;
7 return back to xt;

If the predictor makes 0 mistakes, i.e., µ = 0, then rt /∈ xt never happens and this algorithm is the
same as the one for the realizable case (but note that the predictor is different). If µ > 0, then it
suffers an additional cost of 2 for every mistake.
Lemma 36. Consider an input sequence r and let OPT(r) be the cost of the optimal offline solution
for this sequence. If the predictor makes µ mistakes and σ switches during this sequence, then the
algorithm above has cost at most

OPT(r) + 4µ+ kσ.

Proof. For t = 1, . . . , T , let πt denote the prediction made for rt at time t. Here, πt = rt if the
predictor was right or decided to make a switch. Otherwise, the predictor chose to suffer a mistake.

If the real input was π1, . . . , πT , the cost of the algorithm would be at most OPT(π)+kℓ by Lemma 6.
Since π and r differ in µ time steps, the cost of the algorithm is at most OPT(π) + kσ + 2µ.

Now, note that we can use the optimal solution x1, . . . , xT for r to produce a solution for π of cost at
most OPT(r) + 2µ: whenever πt /∈ xt (this can happen only if πt ̸= rt), we evict an arbitrary page
to load πt, serve the request and return back to xt. This implies OPT(π) ≤ OPT(r) + 2µ.

Therefore, the cost of our algorithm is at most

OPT(r) + 4µ+ kσ.

Theorem 37. With a class H of ℓ hypothesis, Algorithm 15 has expected cost at most

OPT+(5 + 6/k)µ⋆ + (2k + 1) ln ℓ

where µ⋆ denotes the minimum number of mistakes over hypotheses in H and OPT the cost of the
offline optimum.

28

Proof. By Lemma 36 and Lemma 34, the cost of the algorithm is at most

OPT(r) + 4µ+ kσ

≤ OPT(r) + 4(1 + 1/k)µ⋆ + k ln ℓ+ k(1/k + 1/k2)(1 + 1/k)µ⋆ + k(1/k + 1/k2)k ln ℓ

≤ OPT(r) + (5 + 6/k)µ⋆ + (2k + 1) ln ℓ.

D.1 Achieving Robustness

We can robustify our algorithms both for the realizable and agnostic setting in the following way. We
partition the input sequence into intervals such that the cost paid by OPT in interval i is 2ik. Note
that we start with an empty cache and OPT ≥ k on any non-trivial instance: if OPT ≤ k, less than
k distinct pages were requested and any lazy algorithm is optimal. In each of these intervals, we
first run our algorithm until its cost reaches 2ik log k. Then, we switch to an arbitrary worst-case
algorithm with competitive ratio O(log k) for the rest of the time window.
Lemma 38. Consider an algorithm ALG which, given a predictor making µ mistakes and σ switches
achieves regret αµ+ βkσ. We can construct an algorithm ALG′ which is O(log k)-competitive in
the worst case and its regret is always bounded by O(α)µ+O(β)kσ.

Proof. We denote G the set of intervals i where ALG paid cost ALGi ≤ 2ik log k. The cost of
ALG′ is then

ALG′ ≤
∑
i∈G

ALGi +
∑
i/∈G

(O(log k) 2ik + 2k),≤
∑
i∈G

ALGi +
∑
i/∈G

O(log k) 2ik,

where 2k denotes the cost of switching to the worst-case algorithm and back to ALG. This already
shows that ALG′ is O(log k)-competitive: we have ALG′ ≤ O(log k)OPT, because OPT pays 2ik
in window i.

To show that it still preserves good regret bounds, note that αµi + βkσi ≥ 2ik log k in each interval
i /∈ G, where σi denotes the number of switches and µi the number of mistakes in interval i.
Therefore, we have

ALG′ ≤ ALG+O(α)µ+O(β)kσ.

D.2 Extension to Next-arrival-time Predictions

In order to compute a step of FitF, we either need to know the whole request sequence or, at least,
times of next arrivals of the pages in our current cache. Lykouris and Vassilvitskii [32] proposed
acquiring a prediction of the next arrival time (NAT) of each page when requested. Precise NAT
predictions allow us to simulate FitF. Lykouris and Vassilvitskii [32], Rohatgi [36], Wei [41] proposed
algorithms able to use them even if they are not precise.

Our result can be extended to setting where each hypothesis is not an explicit caching instance
given in advance but rather a set of prediction models which generate the relevant parts of the
instance over time. Consider models generating next-arrival-time predictions, as considered by
Lykouris and Vassilvitskii [32]. Given the part of the sequence seen so far, they produce a next arrival
time of the currently requested page. Using this information, we can compute the FitF solution to
an instance which fully agrees with the predictions. Moreover, we can easily detect mistakes by
comparing the currently requested page with the page which was predicted to arrive at the current
moment. Therefore, Theorem 7 and Theorem 37 hold also with H containing ℓ models producing
next-arrival-time predictions.

D.3 Lower Bounds

Lemma 39. In realizable setting, there is an input instance and a class H of ℓ hypotheses such that
any (randomized) algorithm has regret at least k

2 log ℓ.

Proof. Let ℓ be power of two. We use universe of pages U = {1, . . . , 2k} and define sequences
a = 1, . . . , k and b = k + 1, . . . , 2k. By concatenating a and b in a specific manner, we construct
building blocks of the input sequence and the hypotheses: σ0 = akba2k+1 and σ1 = akbbkbak. Here
ak denotes a sequence a iterated k times, and both blocks are chosen to have equal length.

29

For each i = 1, . . . , ℓ, we use its binary representation bi1b
i
2 · · · bilog ℓ to construct a hypothesis

ri = σbi1
σbi2

· · ·σbilog ℓ
from blocks σ0 and σ1. Note that for any input sequence constructed from

blocks σ0 and σ1, we can construct an offline solution such that:

• at the beginning and at the end of each block, its cache content is {1, . . . , k}.

• during block σ0, it keeps pages 1, . . . , k − 1 in cache, paying k for page faults during
sequence b and 1 for loading page k, i.e., k + 1 page faults in total

• during block σ1, it pays 2k, because it replaces the whole cache with {k+1, . . . , 2k} during
the first occurrence of b and then with {1, . . . , k} after the last occurrence of b.

For each i = 1, . . . , log ℓ, we issue akb – the common prefix of σ0 and σ1 – and compute ni the
expected number of pages from {1, . . . , k} in the cache. Note that any algorithm has to pay at least k
during akb since it contains 2k distinct pages. If ni < k/2, we issue a2k+1, completing block σ0.
Otherwise, we issue bkbak, completing block σ1.

In the first case, its expected cost will be at least k + (k − ni) > k + k/2, because the algorithm will
have at least k − ni page faults during the sequence a2k+1 at the end of σ0.

In the second case, the expected cost of the algorithm will be at least k + ni + k ≥ 2k + k/2, where
k page faults are during akb, ni page faults during bk, and another k page faults during for bak
(contains 2k distinct pages). In both cases, the difference from the cost of the offline solution is at
least k/2.

This way, we constructed an instance j ∈ {1, . . . , ℓ} with binary representation b1b2 · · · blog ℓ, where
bi = 0 if ni < k/2 and bi = 1 otherwise. Moreover, in each iteration i = 1, . . . , log ℓ, the algorithm
pays at least by k/2 more compared to the offline solution.

Lemma 40. There is no deterministic algorithm which, given a predicted request sequence with µ
mistakes achieves regret smaller than µ.

Proof. We construct a predicted instance π = ((1, . . . , k, 0)(2, . . . , k)(0, 1, . . . , k))n which is given
to the algorithm ALG. We construct a real instance which is constructed online based on ALG’s
decisions.

For any iteration i = 1, . . . , n, we build a corresponding part of the real instance which differs from
the predicted one in at most one request and show that ALG has one more page fault compared
to a described adversarial strategy ADV which starts and ends each iteration with cache content
{1, . . . , k}.

First, any algorithm has a page fault during (1, . . . , k, 0) because k + 1 distinct pages are requested,
so both ALG and ADV pay 1. At the moment when 0 is requested, ALG must be missing some
page from p ∈ {1, . . . , k}. If p = 1, ADV evicts k instead and the real request sequence continues
with (2, . . . , k − 1, 1) instead of (2, . . . , k), causing a single mistake in the prediction. ALG has a
page fault during this part, while ADV has no page fault. If p ∈ {2, . . . , k}, ADV evicts 1 and the
real request sequence continues as predicted without any mistake, causing a page fault to ALG, while
ADV has no page fault. In the last part (0, 1, . . . , k), both ALG and ADV have a page fault. So,
ALG had at least 3 page faults while ADV only 2, and there was at most one mistake.

Therefore, the total cost of ALG is at least 3n while ADV pays 2n. Since µ ≤ n, the regret of ALG
is at least µ.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claim made in abstract is that we propose a new way of designing
Learning-augmented algorithms and that this way can be used to design simple algorithms
with performace better and comparable to the previous works. We discuss the novelty of our
approach in the introduction and the bounds achieved by algorithms using our approach are
discussed in Section 2.
Guidelines: Section 2 contains formal statements of our theoretical results which match
with the content of abstract and introduction.

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is a theoretical work and we state our results including all assumptions
required for their validity. Our results states the performance bounds of our algorithms
in terms of regret and competitive ratio, as common in the areas of online algorithms and
online learning. We do not discuss the running time of our algorithm, since this is not the
subject of research in these areas.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use

31

their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide formal statements of all our results including all assumptions
needed for their validity. We also provide formal proofs of all our results including references
to utilized results from the literature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

32

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [NA]

Justification: This paper does not include any experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [NA]

Justification: This paper does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [NA]
Justification: This paper does not include any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This is a theoretical research which does not involve processing any data and
does not involve any human participants.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical research proposing new research directions. We do not
expect any direct societal impact.

34

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not release any code nor data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This work does not use any existing code, dat, nor models. Previous theoretical
results which are used in this paper are well cited and credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

35

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce nor release any assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

36

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Performance bounds of our algorithms

	Main Results
	Caching
	Load Balancing
	Non-clairvoyant Scheduling

	Related Work
	Warm-up: Caching in the Realizable Setting
	Conclusions
	Caching in realizable setting: omitted proof
	Online Load Balancing on Unrelated Machines
	Predictors
	Algorithm
	Guessing the Optimal Makespan and Scaling
	Agnostic Setting
	Achieving Robustness
	A note on combining arbitrary integral algorithms
	Lower Bound

	Non-clairvoyant Scheduling
	Instances with Two Distinct Lengths
	Agnostic Setting
	Lower Bound

	Caching in Agnostic Setting
	Achieving Robustness
	Extension to Next-arrival-time Predictions
	Lower Bounds

