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Abstract

Many natural language inference (NLI)001
datasets contain biases that allow models to002
perform well by only using a biased subset of003
the input, without considering the remainder004
features. For instance, models are able to005
classify samples by only using the hypothesis,006
without learning the true relationship between007
it and the premise. These structural biases lead008
discriminative models to learn unintended009
superficial features and generalize poorly out010
of the training distribution. In this work, we011
reformulate the NLI task as a generative task,012
where a model is conditioned on the biased013
subset of the input and the label and generates014
the remaining subset of the input. We show015
that by imposing a uniform prior, we obtain a016
provably unbiased model. Through synthetic017
experiments, we find that this approach is018
highly robust to large amounts of bias. We019
then demonstrate empirically on two types of020
natural bias that this approach leads to fully021
unbiased models in practice. However, we find022
that generative models are difficult to train and023
generally perform worse than discriminative024
baselines. We highlight the difficulty of the025
generative modeling task in the context of026
NLI as a cause for this worse performance.027
Finally, by fine-tuning the generative model028
with a discriminative objective, we reduce029
the performance gap between the generative030
model and the discriminative baseline, while031
allowing for a small amount of bias.032

1 Introduction033

Natural language processing (NLP) datasets are034

plagued with artifacts and biases, which allow mod-035

els to perform tasks without learning the desired036

underlying language capabilities. For instance, in037

natural language inference (NLI) datasets, models038

can predict an entailment relationship y from the039

hypothesis text H alone, without considering the040

premise P at all (Gururangan et al., 2018; Poliak041

et al., 2018). Another identified source of bias is042

lexical overlap between P and H , which is associ-043

ated with an entailment prediction (McCoy et al., 044

2019). We refer to such biases as structural biases, 045

cases where an undesired subset of the input alone 046

incorrectly identifies the label. Relying on such bi- 047

ases results in poor out-of-distribution (o.o.d) gen- 048

eralization when models are applied to data without 049

bias. Furthermore, models that contain such biases 050

may make surprising predictions when the bias is 051

present, causing problems in critical systems. 052

A line of work has attempted to improve the 053

performance on o.o.d datasets by proposing differ- 054

ent objective functions (e.g., Utama et al., 2020a; 055

Karimi Mahabadi et al., 2020). However, these 056

methods typically still result in a significant gap 057

between the performance in and out of distribution, 058

which indicates that the models are still biased. 059

Table 1 shows this gap, which we term the o.o.d 060

generalization gap (∆). 061

In this work, we reformulate classification as a 062

generative task, where the model’s task is to gen- 063

erate the remainder features R conditioned on the 064

biased features B and the label y. Using Bayes’ 065

Rule, we decompose the posterior p(y | B,R) into 066

the likelihood p(R | y,B) and the prior p(y | B). 067

This reformulation lets us control the amount of 068

bias present in the final model. By setting a uniform 069

prior we can obtain a provably unbiased model. We 070

denote this generative model as GEN.. 071

To assess the extent to which a given model is 072

biased w.r.t a specific structural bias, we consider 073

two metrics: the o.o.d generalization gap and the 074

correlation between a model and a biased model 075

p(y | B), such as a hypothesis-only or overlap-only 076

model. We first experiment with injecting synthetic 077

bias into a fraction of the training set and evalu- 078

ating on test sets with and without that bias. We 079

find that the discriminative model’s performance 080

decreases as the amount of bias increases, while 081

GEN maintains similar performance at all bias lev- 082

els. Moreover, the biased-ness of the discriminative 083

model increases, while GEN remains unbiased. 084
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SNLI MNLI

Test Hard test ∆ Test Hard test ∆

Utama et al. (2020a) – – – 82.8 79.8 +3.00
Karimi Mahabadi et al. (2020) 89.57 83.01 +6.56 83.47 76.83 +6.64
Sanh et al. (2021) – – – 83.32 77.63 +5.69
Gururangan et al. (2018) 86.5 72.7 +13.8 76.5 64.4 +11.1
Stacey et al. (2020) 79.39 69.92 +9.47 – – –
GEN (BERT) 65.53 66.18 −0.65 58.55 57.33 +1.22
GEN (BART) 70.58 72.19 −1.61 64.09 65.74 −1.65

Table 1: Results on regular and hard (o.o.d) test sets of SNLI and MNLI. Prior work exhibits large o.o.d general-
ization gaps (∆), while our generative approach reduces the gap significantly.

Next, we experiment with two kinds of natural085

bias: hypothesis-only and overlap. We demonstrate086

that GEN is unbiased compared to the discrimina-087

tive baseline as measured by its low ∆ and low088

absolute correlation with a biased model (ρ).089

However, while our approach leads to unbiased090

models, it performs worse than the discriminative091

baseline even on o.o.d data. We then identify and092

quantify several causes for the poor performance of093

GEN. We show that generative modeling is a more094

challenging task than discriminative modeling, and095

that it requires learning a large amount of spurious096

signal compared to the discriminative model.097

Finally, to mitigate the difficulty of the genera-098

tive modeling task, we fine-tune GEN with a dis-099

criminative objective (Lewis and Fan, 2019). While100

this leaks some bias into the model, the final model101

(denoted as GEN-FT) matches or surpasses the dis-102

criminative baseline while maintaining a relatively103

small o.o.d generalization gap.104

To conclude, our contributions are as follows:105

• We develop a generative modeling approach,106

which provably eliminates structural biases in107

natural language understanding tasks.108

• We demonstrate experimentally on two bias109

types and different NLI datasets that this ap-110

proach leads to unbiased models.111

• We analyze the strengths and weaknesses of112

the generative model.113

• We show how discriminative fine-tuning im-114

proves the generative model, while allowing115

some bias to leak into the model.116

2 Related Work117

2.1 Biases and Artifacts118

Many natural language understanding (NLU)119

datasets contain biases or artifacts, superficial fea-120

tures that are associated with a certain label. Ex- 121

amples include hypothesis-only biases in NLI such 122

as negation words in the hypothesis being corre- 123

lated with a contradiction label (Poliak et al., 2018; 124

Gururangan et al., 2018). Similar one-sided biases 125

have been found in other tasks, including visual 126

question answering (VQA) (Agrawal et al., 2018; 127

Das et al., 2019), reading comprehension (Kaushik 128

and Lipton, 2018), and fact verification (Schuster 129

et al., 2019). Another kind of bias identified in NLI 130

is lexical overlap, which is correlated with an entail- 131

ment decision in NLI datasets (McCoy et al., 2019). 132

We view all these cases as structural biases, cases 133

where the input can be split into two disjoint sets, 134

of the biased features and the remainder features. 135

The existence of structural biases in datasets al- 136

lows models to perform unreasonably well when 137

given access only to the biased features, such as 138

a hypothesis-only model being able to predict en- 139

tailment without access to the premise. The bias 140

learned by the model manifests in poor o.o.d gen- 141

eralization when evaluated on a test set where the 142

training set correlation between the biased features 143

and a certain label does not hold. 144

2.2 Mitigation Strategies 145

Common approaches for improving o.o.d general- 146

ization combine the main model with a bias model, 147

such as a hypothesis-only model. For instance, a 148

bias model may be trained adversarially, making 149

the main model perform worse when the bias model 150

performs well (Belinkov et al., 2019b; Stacey et al., 151

2020). Others use a bias model to modulate the 152

main model’s predictions in different ways (He 153

et al., 2019; Karimi Mahabadi et al., 2020; Utama 154

et al., 2020b). All these approaches use discrimi- 155

native models to estimate p(y | P,H). Moreover, 156

they typically still result in a gap between in- and 157

out-of-distribution performance. 158
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In contrast, we propose a novel generative for-159

mulation of the NLI task, which leads to an unbi-160

ased model, in theory, and in practice. Belinkov161

et al. (2019a) also proposed to solve a generative162

problem, modeling p(P | y,H), in order to en-163

courage the model to consider the premise in its164

predictions. However, they ended up not using a165

generative model; rather, they approximated it with166

discriminative models. Lewis and Fan (2019) used167

a generative model for a different task, VQA, and168

found it improves generalization from biased train-169

ing data. While our basic approach is similar, we170

analyze the generative model more rigorously, in-171

vestigate the effect of different modeling options,172

and focus on quantifying the model’s bias.173

3 Structural Bias174

Consider the general case of a classification task,175

for which we wish to build a model pθ(y|X) where176

y is a low-dimensional label and X is an arbitrarily177

large set of features. The model is trained on an178

empirical training set D = {(Xi, yi)}Ni=1. The179

dataset is constructed by humans, and inadvertently180

contains structural biases. We define a structural181

bias as a case where, if the input X is split into two182

disjoint sets X=(B,R = X −B), the label y can183

be learned to be reliably predicted given only B.184

For most choices of B this is not a problem, but185

in some cases, the subset represents an externally186

imposed constraint that needs to be maintained or187

an externally imposed understanding of how the188

model should operate.189

This formulation comprises a broad set of com-190

monly considered biases. For example, in the NLI191

task, X = (P,H) where P and H are the premise192

and hypothesis. If we choose the split B = H , we193

arrive at the hypothesis-only bias. This is an unde-194

sirable bias because as humans we know that NLI195

is impossible if one is only given the hypothesis.196

Taking different splits leads to representations197

of different biases. For instance, we can model the198

lexical overlap bias under the structural bias frame-199

work with the subset B = P
⋂
H . NLI models200

should perform no better than chance when given201

only the overlapping tokens between P and H .202

Finally, this formulation extends beyond NLI203

and NLP to broader biases. For example, if one204

of the features in X is a protected characteristic s205

(e.g., gender or race), B = s. Then, depending on206

the task, an undesirable structural bias may exist if207

a model can learn to predict y given s.208

We denote these biases as structural biases be-209

cause they are defined through the structure B ⊂ 210

X , rather than specific known patterns in the data. 211

For example, in the hypothesis-only case, this for- 212

mulation does not require knowledge about what 213

aspects of the hypothesis allow a hypothesis-only 214

model to predict the label (e.g., negation words), 215

only that somehow the hypothesis alone incorrectly 216

gives a signal about the label. Thus, this type of 217

bias is broader than specific known biases such as 218

the presence of negation words, but narrower than 219

unknown biases because it requires some knowl- 220

edge of where the bias might be found. 221

3.1 Generative Classifiers Eliminate 222

Structural Bias 223

Generative classifiers are models that make predic- 224

tions according to Bayes’ Rule. The generative 225

classifier framework provides a principled way of 226

handling structural bias: 227

pθ(y | X) = pθ(y | B,R) (1) 228

=
pθ(R | y,B)pθ(y | B)

pθ(R | B)
229

=
pθ(R | y,B)pθ(y | B)∑
y′ pθ(R | y′, B)pθ(y′ | B)

. 230

We emphasize that under this framework, one 231

may separately model pθ(R | y,B) and pθ(y | B), 232

but the marginal likelihood must be constructed 233

by marginalizing over the product of those compo- 234

nents rather than estimated separately. 235

Separating the bias component gives explicit con- 236

trol over a given structural bias in the model. For- 237

mally, consider the ability of any model to predict 238

the label given the bias subset, p(y | B), defined 239

by marginalizing out the remainder features: 240

p(y | B) =

∫
pθ(y | R,B)pθ(R | B)dR. (2) 241

For a discriminative model this may take any 242

value, but for a generative classifier this becomes: 243

p(y | B) =

∫
pθ(y | R,B)pθ(R | B)dR (3) 244

=

∫
pθ(R | y,B)pθ(y | B)dR 245

= pθ(y | B)

∫
pθ(R | y,B)dR = pθ(y | B). 246

Therefore, for any given structural bias, the abil- 247

ity of the model to rely on the bias alone, p(y | B), 248

can be eliminated in a principled way by training a 249

generative model to learn pθ(R | y,B) and setting 250
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pθ(y | B) = Uniform(Y). R andB are collections251

of tokens, so the actual training process amounts to252

training a standard encoder–decoder model. Predic-253

tions are made using Eq. 1 at inference time. Un-254

like other methods, this approach does not require255

a specific model for pθ(y | B); it simply requires256

the desired pθ(y | B), which is often uniform.257

3.2 Measuring Structural Bias258

Typically, debiasing methods are evaluated by mea-259

suring the accuracy of the resulting model on a260

“hard” test set, a subset of the test set for which a261

bias-only model p(y | B) predicts the incorrect la-262

bel. While this captures overall quality, it does not263

assess the extent to which bias remains. For some264

applications, the overall quality on non-biased data265

is a reasonable final objective, but for other appli-266

cations complete removal of bias is critical.267

To quantify the remaining biased-ness of a given268

model, we consider two metrics: the difference269

between the accuracy of the model on the standard270

test set and its accuracy on a “hard” set created with271

respect to the bias in question, which we term the272

o.o.d generalization gap (∆), and the correlation273

(ρ) between the predictions of a given model and a274

fully biased model, i.e., p(y | B).275

A truly unbiased model will give a similar perfor-276

mance on the original test set and the hard test set,277

because it cannot rely on the predictive power of B278

in the original test set even when it is present. Thus279

low values of ∆ indicate the model is unbiased.280

Similarly, a model that consistently makes simi-281

lar decisions to the fully biased model p(y | B) in282

the original test set is likely using only the biased283

features B as the fully biased model. Therefore,284

a larger ρ gives additional evidence that a specific285

structural bias remains in a given model.286

4 Experiments287

In all experiments, we estimate p(R | y,B) with an288

encoder-decoder model, with inputs (y,B) and out-289

put R. To condition on y, we prefix a label-specific290

token to B. We then train the model as a condi-291

tional generative model, by fine-tuning BERT (De-292

vlin et al., 2019) or BART (Lewis et al., 2020) with293

the standard auto-regressive cross-entropy loss. At294

test time, we attach all possible label tokens to each295

B and pick ŷ = arg maxy∈Y pθ(R|y,B).296

4.1 Synthetic Experiment297

To empirically verify the analysis in Section 3, we298

construct a synthetic experiment by artificially in-299
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Figure 1: Results for models trained with synthetic bias
and evaluated on MNLI dev hard without bias.
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Figure 2: The o.o.d generalization gap (∆) and the cor-
relation to a bias model (ρ) of generative and discrim-
inative models. ρ is calculated on an unbiased test set.
Appendix A.2 shows correlations on a biased test set.

jecting a hypothesis-only bias into an NLI dataset, 300

similarly to He et al. (2019). We use MNLI 301

(Williams et al., 2018), an English NLI dataset, 302

as the base NLI dataset. For each example, we 303

add one of three tokens to the beginning of the hy- 304

pothesis, each token corresponding to a label. With 305

probability p the token corresponds to the true label 306

and with probability 1 − p the token is randomly 307

selected from the three labels. The result is that 308

p directly controls the amount of hypothesis-only 309

bias present in the data. 310

Figure 1 shows the results when training with 311

synthetic bias in MNLI, for different values of p, 312

and evaluating on MNLI dev hard (without syn- 313

thetic bias), a subset that a hypothesis-only model 314

predicts incorrectly. The discriminative model’s 315

performance degrades gradually as p increases, 316

while GEN maintains similar performance. At high 317

levels of p, the discriminative model falls below the 318

generative one, indicating that the presence of large 319

amounts of bias precludes the discriminative model 320

from learning the task effectively. Figure 2 shows 321

the two biased-ness metrics, calculated for the gen- 322
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erative and discriminative models across a range323

of p values. For each p, ∆ is calculated from the324

difference in accuracy for a given model between325

a version of the dev set with the synthetic bias in-326

cluded as in training, and a version of the dev set327

with the synthetic bias token randomly chosen for328

each example. The fully biased model used as the329

reference when calculating ρ is a model that always330

selects the label that corresponds with the synthetic331

bias token prefixed to the hypothesis. According to332

both metrics, as the bias ratio p increases, the dis-333

criminative model quickly becomes significantly334

biased while GEN remains entirely unbiased.335

4.2 Hypothesis-only Bias336

We train our models on the (English) Stanford Nat-337

ural Language Inference dataset (SNLI; Bowman338

et al. 2015) and on the MNLI dataset, two NLI339

datasets that are known to contain hypothesis-only340

biases (Poliak et al., 2018; Gururangan et al., 2018;341

Tsuchiya, 2018). We evaluate models on the avail-342

able in-distribution test sets and on o.o.d test sets343

that have fewer or no hypothesis-only biases. For344

SNLI, we use the hard set provided by Gururangan345

et al. (2018). For MNLI, we use the blind evalua-346

tion test and hard test sets for MNLI matched.347

We experiment with two kinds of pre-trained348

models: a BERT model, which is combined in349

an encoder-decoder model during the fine-tuning350

stage, and BART, a pre-trained encoder-decoder,351

which is then fine-tuned. For the first kind of model,352

we used BERT as both an encoder and a decoder.353

The encoder is a regular BERT model, and the354

decoder is a BERT model with a language model-355

ing layer, which starts generating from the “CLS”356

token. All models are taken from the Transform-357

ers library (Wolf et al., 2019). Both models are358

fine-tuned with either the baseline discriminative359

objective or our proposed generative formulation.360

4.3 Overlap Bias361

Another type of bias that has been demonstrated362

in the MNLI dataset is lexical overlap bias. Mc-363

Coy et al. (2019) demonstrate that, while somewhat364

uncommon, lexical overlap, subsequence overlap,365

and constituent overlap between the premise and366

hypothesis give a strong signal for entailment. Like367

hypothesis-only bias, this signal comes from pe-368

culiarities of the dataset creation process. For a369

model performing actual NLI, the overlap of words370

between the hypothesis and the premise should not371

give any indication of the label. This is emphasized372

by McCoy et al. (2019), as they create a separate373

label-balanced evaluation set where each example 374

has a high overlap. 375

To treat overlap bias in the generative formula- 376

tion, we set B = P
⋂
H . Specifically, we con- 377

catenate the premise and hypothesis and mask out 378

any tokens that do not appear in both of them. The 379

input to the encoder of GEN is then the label y 380

followed by this partially masked concatenation. 381

For simplicity, the output of GEN is the unmasked 382

concatenation of P and H . In principle, we do not 383

need to output the unmasked tokens, but this sim- 384

plifies training and remains probabilistically valid.1 385

Because this setup is closely connected to the 386

way the BART model is pretrained, we experiment 387

solely with the BART model for this configuration. 388

While not traditionally studied in the overlap 389

bias case, we perform the same analysis as in the 390

hypothesis-only bias by constructing a hard set for 391

overlap bias. We train a discriminative model that 392

predicts the label from the masked concatenated 393

premise–hypothesis input, and filter the MNLI dev 394

set for examples where this model is incorrect.2 395

5 Results 396

5.1 GEN Reduces the Generalization Gap 397

Hypothesis-only bias Table 2 shows the results 398

of the proposed generative model and the discrimi- 399

native baseline in the case of hypothesis-only bias. 400

For GEN, we show results with either a hypothesis- 401

only prior for p(y | H) or a uniform prior. The 402

generative approach with the uniform prior leads to 403

nearly identical accuracy on the i.i.d and o.o.d test 404

sets, that is, unbiased models as measured by low 405

o.o.d generalization gap (∆ between −2 and 3). In 406

contrast, the discriminative model has much larger 407

gaps (∆ of at least 9 on SNLI and 7 on MNLI), 408

meaning that it is a more biased model. GEN with 409

a hypothesis-only prior also exhibits large gener- 410

alization gaps, demonstrating the bias leak in this 411

model. Obviously, a hypothesis-only model is the 412

most biased, with the largest gaps. 413

These results also show the advantage of using 414

a pre-trained encoder-decoder (BART) compared 415

to plugging a pre-trained encoder (BERT) and fine- 416

tuning it as an encoder-decoder. While both genera- 417

tive models are unbiased, BART is more amenable 418

to the generative fine-tuning than BERT, with over- 419

all better results. For this reason, we only report 420

results with BART henceforth. 421

1An example for the data preparation is in Appendix A.4.
2As we cannot use the hidden test to filter based on labels,

we use dev matched/mismatched for val./eval. respectively.
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SNLI MNLI

Model Test Hard test ∆ Test Hard test ∆

B
E

R
T

Bias-only 70.82±0.6 32.09±1.7 38.73±1.2 59.77±0.4 34.41±2.3 25.36±2.1
Discriminative 90.49±0.2 80.55±0.3 9.94±0.1 84.08±0.4 76.27±0.3 7.81±0.2
GEN, hyp-only 81.42±0.5 61.39±1.4 20.02±0.9 68.5±0.3 52.24±1.4 16.21±1.5
GEN, uniform 65.86±0.3 66.74±0.5 −0.88±0.3 56.98±0.7 54.73±0.2 2.26±0.5

B
A

R
T

Hypothesis-only 70.37±0.3 31.61±0.3 38.76±0.1 57.89±2.3 37.83±1.6 20.05±3.9
Discriminative 90.78±0.3 81.04±0.6 9.74±0.3 85.67±0.1 78.84±0.4 6.83±0.4
GEN, hyp-only 84.36±0.1 67.22±0.8 17.14±0.7 73.85±0.6 60.79±0.6 13.06±0.2
GEN, uniform 70.80±0.2 73.16±0.9 −2.36±0.7 64.22±0.4 64.11±1.0 0.11±0.8

Table 2: Comparison between discriminative baselines and generative models, with Hyp-only or uniform prior, in
the hypothesis-only bias case.

Model Dev Hard dev ∆

Bias-
only

56.32±0.3 9.37±8.3 46.95±8.5

Disc. 86.44±0.5 79.72±0.8 6.73±0.2
GEN 63.67±1.1 65.56±0.6 −1.88±0.4

Table 3: Comparison of discriminative and generative
models (fine-tuned from BART) in the lexical overlap
bias case. GEN was trained with a uniform prior.

Overlap bias Table 3 shows similar results in422

the case of overlap bias on a hard set w.r.t this423

bias.3 GEN exhibits a lower generalization gap (∆)424

than the discriminative baseline. As expected, the425

overlap bias model shows the greatest gap.426

While the generative approach leads to unbiased427

models for both bias types, it also performs sig-428

nificantly worse than the discriminative model, on429

both in-distribution and o.o.d test sets. We return430

to this issue in Sections 6 and 7.431

5.2 GEN is Uncorrelated with a Bias Model432

Table 4 shows correlations ρ of GEN and the dis-433

criminative baseline with a bias-only model. In the434

hypothesis-only case, the models were trained on435

SNLI or MNLI and correlations were measured on436

predictions on SNLI test or MNLI dev mismatched,437

respectively. In the overlap case, the models were438

trained on MNLI and correlations were measured439

on MNLI dev mismatched.440

In both bias types, the discriminative model pre-441

dictions are much more correlated with the bias442

models than the predictions of the generative mod-443

els. In fact, the correlations of the generative mod-444

els are as low as those of a majority model or a445

uniform model, which is unbiased by construction.446

3For results on HANS evaluation sets, see Appendix A.1.

Model Hyp-SNLI Hyp-MNLI Overlap

Disc. 0.271 0.223 0.171
GEN −0.025 −0.009 −0.043
Majority 0.005 0.055 0.016
Uniform −0.018 −0.006 0.007

Table 4: Correlations of discriminative, generative, ma-
jority, and uniform models with bias models, on hyp-
only (on SNLI/MNLI) and overlap bias (on MNLI).

6 Evaluating Generated Premises 447

So far, we have only used GEN to score existing ex- 448

amples (with teacher forcing), conditioned on the 449

label and the biased features. In this section, we 450

evaluate the quality of its generations when decod- 451

ing without constraints. For the experiments here, 452

we consider the hypothesis-only bias and evaluate 453

the quality of GEN in generating premises. We 454

use a BART model trained on SNLI and generate 455

premises for all hypotheses in the test set. 456

To evaluate how well our model can generate 457

premises, we used two metrics: BLEU (Papineni 458

et al., 2002) of the generated premises w.r.t gold 459

premises, to measure the generation quality (higher 460

is better), and self-BLEU (Zhu et al., 2018) to mea- 461

sure the diversity of the generations (lower is more 462

diverse). We report a BLEU value of 0.1078, in- 463

dicating that the model is not very good at gener- 464

ating premises. We report self-BLEU of 0.8032 465

for the generated premises compared to 0.5875 for 466

the original premises, suggesting that the generated 467

premises are less diverse. Table 5 also shows exam- 468

ples where, given different hypotheses, the model 469

generates very similar premises. 470

A possible explanation for the difficulty of the 471

generative task may be found in the nature of NLI 472
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Label Hypothesis Generated premise

contradiction an elderly woman is sitting on a bench with her legs crossed and [...]
entailment the woman is young a young woman in a black shirt and jeans is walking down the street

neutral a woman in a red shirt is sitting on a bench with a bag in her lap

Table 5: Generated premises by GEN from <y,H> pairs. The original premise for the hypothesis was“A woman
with a green headscarf, blue shirt and a very big grin” and the gold label was “neutral”.

SNLI MNLI

Model Test Hard test ∆ ρ Test Hard test ∆ ρ

Disc. 90.78±0.3 81.04±0.6 9.74±0.3 0.27 85.67±0.1 78.84±0.4 6.83±0.4 0.22
GEN-FT 86.30±0.4 82.20±0.3 4.09±0.1 0.09 79.66±1.5 76.45±0.7 3.21±1.3 0.07

Table 6: Fine-tuned model results for hypothesis-only bias. Disc. is the discriminative baseline.

examples in common datasets. In many cases, the473

relationship is determined by a small number of474

words in the premise and hypothesis pair. To quan-475

tify this, we measured the number of words high-476

lighted as explanations in the e-SNLI dataset (Cam-477

buru et al., 2018) and found that less than 21% of478

words in the premise are highlighted on average.4479

This pattern is reflected also in decisions made by480

NLI models. By applying gradient attributions,5481

we found that more than 70% of the premise words482

have low attributions values (between −0.1 to 0.1),483

with fewer than 6% of the words having absolute484

values greater than 0.3. This shows that only a485

small number of words had any significant effect486

on the model predictions. Table 13 in the appendix487

shows a qualitative example of this behavior. Fi-488

nally, this pattern is also reflected in the generations489

produced by GEN, as demonstrated in Table 5.490

7 Discriminative Fine-tuning491

The analysis in Section 6 suggests that the central492

limitation of GEN is that at training time there is493

no indication of the model’s downstream use as a494

classifier. The model is rewarded at training time495

for devoting significant capacity to modeling the496

full high-dimensional distribution of R, even when497

large parts of that distribution are unimportant for498

making downstream predictions.499

To help GEN in such cases, we experiment with500

an additional fine-tuning step in which we directly501

optimize for predictive performance. Specifically,502

for the fine-tuning step we construct the discrimina-503

tive distribution using Bayes’ Rule in Eq. 1 and use504

4Of the premises that were highlighted at all.
5We computed attributions with Integrated Gradients (Sun-

dararajan et al., 2017) using Captum (Kokhlikyan et al., 2020).

it at training time by minimizing the label cross- 505

entropy loss: 506

Lft = −
N∑
i=1

log pθ(yi | Bi, Ri) (4) 507

= −
N∑
i=1

log
pθ(Ri | yi, Bi)pθ(yi | Bi)∑
y′ pθ(Ri | y′, Bi)pθ(y′ | Bi)

. 508

Using this objective requires a choice of 509

pθ(y | B). We explore the impact of different 510

choices for this distribution in App. A.3, but found 511

that using a pretrained and frozen pθ(y | B) dur- 512

ing the fine-tuning step works best. We hypothe- 513

size that this setup allows the generative compo- 514

nent pθ(R | y,B) to ignore as much bias as possi- 515

ble. At inference, as we would like to ignore the 516

bias, we take the fine-tuned generative component 517

pθ(R | y,B) and perform inference the same way 518

as before, using Bayes’ Rule with a uniform prior. 519

The adjusted training procedure is composed of 520

the following steps: 1) Train a discriminative prior 521

model, pθ(y | B), freeze the weights. 2) Train 522

a generative model, pθ(R | y,B), as in Section 523

4. 3) Fine-tune the model using Eq. 4, using the 524

pretrained pθ(y | B). 4) Test the model using Eq. 1 525

with a uniform prior. 526

7.1 Results 527

Tables 6 and 7 show the results of the fine-tuning 528

pipeline. The fine-tuned generative models (de- 529

noted as GEN-FT) achieve smaller o.o.d general- 530

ization gaps (∆) and correlations to the biased mod- 531

els (ρ) than the discriminative baselines. GEN-FT is 532

also significantly better than GEN in terms of o.o.d 533

performance, at the expense of slight bias leakage 534

(higher ρ compared to GEN in Table 4). In the case 535

7



Model Dev Hard dev ∆ ρ

Disc. 86.44 79.72 6.73 0.171
GEN-FT 79.87 74.98 4.89 0.106

Table 7: Fine-tuned model results for overlap bias on
MNLI mismatched dev set.

of hypothesis-only bias, GEN-FT match or surpass536

the results of the discriminative baselines on the537

o.o.d sets. In the overlap bias case, GEN-FT does538

not match the discriminative model on the o.o.d set,539

but it narrows the gap.540

The above results were obtained using a bias541

model prior in the fine-tuning step and a uniform542

prior at inference time. This was the strategy that543

achieved the lowest generalization gap (∆) on the544

dev set while outperforming the discriminative545

baseline. See Appendix A.3 for an ablation study546

of additional options.547

8 Scalability548

Given that the generative approach consumes more549

compute than the discriminative baseline, it is natu-550

ral to ask whether it can scale to larger models. To551

answer this, we experimented with the T5 model552

(Raffel et al., 2020), an encoder-decoder available553

in five sizes, from 60M to 11B parameters. We fo-554

cus on the hypothesis-only bias case in SNLI. We555

train the generative and discriminative models us-556

ing regular fine-tuning (also called model-tuning),557

and also experiment with prompt-tuning (Lester558

et al., 2021), a faster and cheaper approach, which559

adds a small number of learnable tokens to the start560

of the input, and trains them end-to-end, while the561

model’s original weights stay frozen (Memory and562

training statistics are found in Table 14, App. B.1).563

Figure 3 shows that both the generative and564

discriminative approaches scale with model size.565

Prompt-tuning is effective, matching model-tuning566

performance at larger sizes. In larger models, the567

generative approach narrows the gap from the dis-568

criminative one, but cannot close it. Table 8 shows569

that with the largest 11B model, the generative ap-570

proach leads to unbiased models. The table also571

shows that discriminative fine-tuning is possible572

at this scale and obtains a similar performance to573

the discriminative model on the hard set. Prompt-574

tuning also allows us to hold only one model for575

the discriminative fine-tuning phase (compared to576

two models in model-tuning). We conclude that577

the generative approach is scalable and can be used578

with very large models to mitigate structural biases.579
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Figure 3: SNLI Hard results with different T5 models.

Method Model Test Hard test ∆

Model- Disc. 92.80 85.00 7.8
tuning GEN 76.76 78.53 −1.77

Prompt- Disc. 92.88 85.46 7.42

tuning GEN 79.91 79.70 0.21
GEN-FT 89.68 85.22 4.46

Table 8: Results on SNLI with T5-XXL (11B) model.

9 Conclusion 580

Structural biases are common in various NLI 581

datasets and are a major obstacle when trying to 582

create robust systems for this task. We proposed a 583

generative approach for NLI, which leads to unbi- 584

ased models. We demonstrated that our generative 585

models are robust to large amounts of bias and per- 586

form equally well in and out of distribution. This 587

comes, however, with a trade-off, where the gen- 588

erative models perform worse than discriminative 589

baselines. We investigated reasons for the difficulty 590

of training generative NLI models, highlighting the 591

large output space of generating sentences, as op- 592

posed to identifying a small subset of words that 593

are often sufficient for solving the task. We showed 594

how to mitigate this problem by fine-tuning GEN 595

with a discriminative objective. Finally, we demon- 596

strated that the method scales efficiently to large 597

language models. Our work lays down a novel for- 598

mulation for the NLI task, which may be applied to 599

many other natural language understanding tasks. 600

Future work can examine other kinds of bias and 601

different tasks. For instance, if the bias variables 602

are constructed according to protected attributes 603

like race or gender, our approach leads to unbiased 604

models w.r.t the protected attributes. 605
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A Appendix807

A.1 HANS evaluation sets808

Given that we study overlap bias, it is natural to809

evaluate the generative classifier approach on the810

HANS evaluation set (McCoy et al., 2019). The811

three HANS evaluation sets are constructed to be812

label balanced, while containing exclusively ex-813

amples of significant amount of overlap. Three814

specific types of overlap are considered: lexical815

overlap, subsequence overlap, and constituent over-816

lap. See McCoy et al. (2019) for more details.817

Table 9 shows the accuracies of the generative818

classifier and previous results from the literature,819

reported by Utama et al. (2020a). In general, the820

accuracies for the generative classifier are low. We821

hypothesize that this is due to the fact that the exam-822

ples in the HANS evaluation set are significantly823

out of distribution compared to the training set,824

w.r.t the amount of overlap between premise and825

hypothesis. In the training set, sentences often have826

20 or 30 tokens with only 1 or 2 token overlaps.827

In the HANS set, sentences are shorter and all but828

1 or 2 tokens overlap. This makes the input sig-829

nificantly more out of domain for the generative830

classifier only, which is used to seeing many mask831

tokens in the input and in the HANS set sees almost832

no mask tokens.833

Model Lex. Subseq. Const.

Hypothesis-only 48.2 48.7 50.4
Discriminative 80.7 55.5 66.3

Learned-mixin 77.5 54.1 63.2
PoE 72.9 65.3 69.6
Conf. reg. 73.3 66.5 67.2

Generative 50.7 57.7 53.2

Table 9: Discriminative and generative models evalu-
ated on the three HANS evaluation sets.

A.2 Correlations834

Figure 4 shows the correlations of generative and835

discriminative models to a bias model under dif-836

ferent bias ratios in the synthetic bias case. Here837

the correlations are calculated on a biased test set,838

while in Section 5.2 they were calculated on an839

unbiased test set. The pattern is the same: the dis-840

criminative model is become more biased (higher841

ρ) as the bias ratio increases, while GEN remains842

unbiased (small ρ).843

0.1 0.3 0.5 0.7 0.9

0.0

0.25

0.5

0.75

1.0

Bias Ratio

ρ

Generative
Discriminative

Figure 4: The correlation to a bias model (ρ) of gen-
erative and discriminative models under different bias
ratios. ρ is calculated on a biased test set, so that each
model used the same bias ratio at training and inference
time.

A.3 Ablation study of fine-tuning pipeline 844

Our fine-tuning pipeline allows different ways to 845

combine the steps, such as choosing a prior or 846

whether to use another step of fine-tuning. Ta- 847

ble 10 presents an ablation study of the different 848

possible combinations, using BART on SNLI with 849

hypothesis-only bias. (The table shows means and 850

standard deviations of 3 runs with different random 851

seeds.) Row 1 shows the results of GEN, without 852

any fine-tuning; the same model from Section 3. 853

Fine-tuning with a hypothesis-only prior leads to a 854

smaller gap than fine-tuning with a uniform prior 855

(compare rows 3 and 5). We can explain these ap- 856

parently surprising results by the hypothesis-only 857

prior capturing some of the bias, such that remov- 858

ing it during inference allows the predictions to 859

be less biased. Fine-tuning with a uniform prior 860

does not allow such a decomposition, resulting in a 861

large gap (row 3). In contrast, using a hypothesis- 862

only prior at inference leads to biased predictions 863

(large generalization gaps; rows 2, 4 and 6). These 864

models perform well on the test set (relative to us- 865

ing uniform prior at inference; rows 3, 5, 7), but 866

relatively poorly on the o.o.d set. In fact, maintain- 867

ing the same kind of prior throughout the pipeline 868

(rows 3 and 6) leads to results similar to the dis- 869

criminative baseline (row 11). 870

The fine-tuning step allows a balancing of bias 871

and performance. Fine-tuning with a hypothesis- 872

only prior and using a uniform prior at test time 873
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Prior

Training Fine-tuning Inference Dev Hard Dev ∆

1

GEN

– Uniform 71.14±0.4 72.68±0.2 −1.54±0.3
2 – Hypothesis-only 84.99±0.3 64.29±0.7 20.69±0.9
3 Uniform Uniform 90.32±0.1 77.17±0.8 13.15±0.7
4 Uniform Hypothesis-only 89.31±0.5 70.33±1.9 18.98±1.4
5 Hypothesis-only Uniform 87.12±0.5 80.55±0.1 6.57±0.5*
6 Hypothesis-only Hypothesis-only 90.06±0.0 75.53±0.8 14.53±0.8

7

–

Uniform Uniform 90.05±0.1 76.54±0.4 13.51±0.3
8 Uniform Hypothesis-only 89.66±0.4 71.71±1.5 17.95±1.2
9 Hypothesis-only Uniform 87.11±0.9 80.53±1.2 6.58±0.6

10 Hypothesis-only Hypothesis-only 90.04±0.2 76.13±0.6 13.91±0.4

11 Discriminative baseline 91.49±0.0 79.59±0.5 11.90±0.5

Table 10: Ablations on SNLI validation set (Dev) with BART-base. Hard Dev was created similarly to SNLI hard
(Gururangan et al., 2018). Fine-tuning is done with a discriminative objective, while inference is always using
the generative objective. Uniform/Hypothesis-only refers to the kind of prior that was used during this phase. “*”
marks the model with the smallest o.o.d generalization gap (∆) that is better than the discriminative baseline.

Premise Hypothesis

A smiling costumed woman is holding an um-
brella

A happy woman in a fairy costume holds an um-
brella

Remainder Bias

A smiling costumed woman is holding an um-
brella <SEP> A happy woman in a fairy costume
holds an umbrella

A <mask> <mask> woman <mask> <mask> an
umbrella <SEP> A <mask> woman <mask> a
<mask> <mask> <mask> an umbrella

Table 11: Example for the data preparation for the overlap bias case.

results in good o.o.d performance and relatively874

small generalization gaps (row 5). This setting875

achieve the smallest generalization gap that still876

beats the discriminative baseline (row 11).877

Another consideration is the additional training878

time incurred by two phases of training. If we879

skip the generative training phase and directly train880

with the discriminative objective, we lose a bit in881

terms of test performance but maintain a good o.o.d882

performance, resulting in a medium-size general-883

ization gap (row 9).884

The model on row 9 shows comparable perfor-885

mance to the one in row 5, with a slight perfor-886

mance drop and a larger standard derivation. In887

practice, that model demonstrated slight instability888

and performed worse on the test and hard test sets889

than the model on row 6, showing that the initial890

generative training phase may allow the model to891

generalize better.892

A.4 Data preparation for overlap bias 893

Table 3 shows an example for how a P,H pair is 894

transformed to R,B which are used as an input to 895

the model in Section 4.3. 896

B Gradient Attributions Example 897

Table 13 gives qualitative examples for the phe- 898

nomenon in Section 6. 899

B.1 Hyperparameters and Training Details 900

Table 12 shows the hyperparameters for the models 901

used throughout the paper. We experimented with 902

word dropout values of: 0.01, 0.1, 0.3, 0.5, weight 903

decay values of: 0.001, 0.01, 0.1, 1, learning rate 904

values in the range: [10−6, 10−4], and maximum 905

number of 5, 10, 20 and 100 epochs. The values 906

that achieved the best accuracy on the validation set 907

appear in the table. All other hyperparameters are 908

the default ones in Wolf et al. (2019). Where mean 909
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Model Learning rate No. of epochs Word dropout Weight decay

Discriminative /
Hypothesis-only

10−5 20 – –

Generative 10−5 20 – –
Fine-tuning 5 · 10−6 5 0.1 0.1

Table 12: Hyperparameters for models. All of the models used early stooping of 3 epochs without improvement.

Premise Hypothesis Label

a woman in a black shirt looking at a bicycle .
a woman dressed in black

shops for a bicycle .
entailment

a black man in a white uniform makes a spectacular

reverse slam dunk to the crowd ’ s amazement.
the man is asian contradiction

Table 13: Gradient attributions example. Green/red show positive/negative attributions.

and standard deviation is specified, we calculate910

those values over 3 runs, each with a different seed.911

Otherwise, those are the results of only one run.912

Each experiment was performed on one or two913

NVIDIA RTX 2080 Ti GPUs. Training takes about914

6–7 hours for discriminative models, 7–8 hours915

for generative models, and 15–20 hours for the916

discriminative fine-tuning step. Discriminative917

BERT/BART models have 109M/140M parame-918

ters, while generative BERT/BART models have919

247M/139M parameters.920

The experiment in Section 8 were preformed us-921

ing NVIDIA A100s cards. The statistics for those922

experiments are presented in Table 14. All experi-923

ments used a batch size of 32, except for the model-924

tuned T5-XL and T5-XXL, which were trained925

with batch sizes of 16 and 8 respectively . For a fair926

comparison, we used T5.1.1 “LM Adapted” check-927

points,6 which are compatible with both model-928

tuning and prompt-tuning. For prompt-tuning, we929

used 20 additional tokens, resulting in <100K train-930

able parameters even for the largest 11B model.931

932

6https://github.com/google-research/
text-to-text-transfer-transformer/
blob/main/released_checkpoints.md#
lm-adapted-t511lm100k
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Model
Number of
Parameters
(approx. )

Training Time
(hours)

Number of
GPUs For
Training

M
od

el
-T

un
in

g Small 60M 2 1
Base 220M 5 2
Large 770M 10 2
XL 2.8B 24 4
XXL 11B 48 8

Pr
om

pt
-T

un
in

g Small 60M + 10K 2 1
Base 220M + 15K 4 1
Large 770M + 20K 6 1
XL 2.8B + 40K 15 2
XXL 11B + 80K 20 4

Table 14: T5 model statistics. For the number of parameters for prompt-tuning, X + Y means that the model have
X fixed parameters, and additional Y learnable parameters are used for prompt-tuning.
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