
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STABLE-FAST: STABILIZING INFERENCE OF AUTORE-
GRESSIVE VISION-LANGUAGE-ACTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive Vision-Language-Action (VLA) models are a promising path to-
ward generalist robot policies, yet their performance is critically dependent on
action tokenization. The pioneering FAST tokenizer (Pertsch et al., 2025) is the
first to enable autoregressive VLAs for dexterous, high-frequency tasks by com-
pressing action sequences via the discrete cosine transform. However, this leads
to variable-length token sequences for fixed-length action chunks, which causes
cascading errors, jerky motions, and reduced task success. We introduce Stable-
FAST, a tokenization strategy that resolves this instability at its source by parti-
tioning action trajectories in the training dataset into variable-length action chunks
that yield token sequences with markedly reduced length variance. This simple
but effective reframing enables the training of VLAs with stabilized inference and
markedly reduced action instability. Extensive experiments on real robots, using
multiple VLA backbones including the π0-FAST architecture, demonstrate that
Stable-FAST improves action smoothness and increases the absolute task success
rate by 10.8% on average, while reducing task completion times by over 40%.
This offers a more reliable foundation for deploying autoregressive VLAs in the
real world. We refer to the project page for the code and videos.

1 INTRODUCTION

Figure 1: We propose Stable-
FAST, a simple but effective ap-
proach to improve action tok-
enization for autoregressive VLA
models. Stable-FAST enables
much faster task completion (av-
eraged only over successful tra-
jectories) and better task perfor-
mance.

The pursuit of generalizable robotic control has been profoundly
influenced by the success of data-driven approaches in the broader
machine learning community (Brown et al., 2020). A leading
paradigm is to scale up models and data to produce generalist
robot policies, capable of handling diverse tasks and generaliz-
ing to novel scenarios (Brohan et al., 2022; Ghosh et al., 2024).
Vision-Language-Action (VLA) models, particularly those built on
high-capacity Transformers, have emerged as a powerful architec-
ture for this purpose (Zitkovich et al., 2023; Kim et al., 2024;
Black et al., 2024). Among VLA variants, autoregressive models
(Zitkovich et al., 2023; Kim et al., 2024; Belkhale & Sadigh, 2024;
Pertsch et al., 2025) are especially promising; their architectural and
objective-level alignment with Large Language Models (LLMs) al-
lows them to more readily benefit from the broad knowledge of pre-
trained models (Pertsch et al., 2025; Black et al., 2025). However,
the efficacy of these models hinges on a critical component: the
tokenization of continuous robot actions. This crucial step, which
translates high-frequency motor commands into a discrete sequence
for the Transformer, directly dictates the model’s performance, ef-
ficiency, and the smoothness of the resulting robot behavior.

A promising recent approach to action tokenization is the
Frequency-space Action Sequence Tokenization (FAST) (Pertsch
et al., 2025). By transforming continuous action chunks into the
frequency domain via the discrete cosine transform (DCT), FAST provides a compressed and effec-
tive representation that enables autoregressive VLAs to learn high-frequency, dexterous skills where
prior methods based on simple binning would fail. Despite its advantages, we identify a critical and

1

https://stablefast-anonymous.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Action chunk Token sequence

FAST

Stable-FAST

Figure 2: By standardizing the complexity of action chunks, Stable-FAST stabilizes the length of
tokenized sequences and reduces inference instability. Left: Conceptual illustration. FAST maps
fixed-length action chunks to token sequences of variable length. Our Stable-FAST inverts this, creating
sequences with low-variance length from variable-length chunks. Right: The two resulting forms of in-
stability. FAST’s variable tokenization leads to high variance in inference time (left plot) and significant
physical action instability (right plot), causing pauses and jerky motions. By ensuring a consistent pre-
diction task, Stable-FAST resolves both issues, yielding stable latency and smooth actions. Plots show
representative successful inference trajectories on the LIBERO benchmark (Liu et al., 2023).

unaddressed limitation in its formulation. We empirically find that the length of the token sequence
generated by FAST is a direct proxy for the underlying action complexity of the chunk; simple mo-
tions like moving through free space yield short sequences, while intricate manipulations produce
much longer ones. Consequently, FAST must map fixed-length chunks to variable-length tokens,
which we found is the root cause of the instability we observe: it leads to unpredictable inference
latency, a cascade of reconstruction and prediction errors, and ultimately, non-smooth actions that
degrade task success, as illustrated in Figure 2 and detailed in Section 3.

In this paper, we introduce Stable-FAST, a novel tokenization strategy that directly addresses this
fundamental challenge. Our key insight is to reframe the problem: instead of predicting fixed-
length chunks of variable complexity, the VLA should learn to predict variable-length chunks of
fixed complexity (Figure 2). We achieve this with a simple yet effective pre-processing method that
dynamically adjusts each action chunk’s length, using the number of non-zero DCT coefficients as
a principled proxy for its complexity. This ensures that the resulting token sequences have small
variance in length. Our contributions are threefold: (1) We are the first to formally identify and
analyze how variable token lengths leads to unstable inference and degrades VLA performance. (2)
We propose Stable-FAST, a practical tokenization strategy that stabilizes the token length of action
chunks, leading to smoother and more effective policies. (3) We conduct extensive experiments
across simulation and real-world settings, demonstrating that our approach significantly improves
task success rates, action smoothness, and reduces task completion times (see Figure 1).

2 PRELIMINARIES

In this section, we establish the technical foundation necessary to understand our work. We begin by
framing the robot learning problem as an autoregressive sequence modeling task, and then provide
a detailed overview of the FAST tokenizer, the state-of-the-art method that our work builds upon
and aims to improve. Finally, we introduce the key metrics used to quantitatively measure action
instability, which is the central problem we address.

Problem formulation. We formulate the robot learning problem as a sequence modeling task. At
each timestep t, the robot receives a visual observation ot and a natural language instruction l. The
goal is to learn a policy π(a1:H |ot, l) that generates a action chunk of length H , which makes it easier
to produce temporally-consistent actions and reduces compounding error. Typically, the number of
actions H is fixed throughout training and inference. The goal of action tokenization is to define
two mappings—a tokenizer TE : a1:H → T1:N from an action chunk a1:H to a sequence of discrete
tokens T1:N with vocabulary size |V|, and a detokenizer TD : T1:N → a1:H that maps back from
tokens to actions. With this formulation, an autoregressive VLA policy with parameters θ is trained
to model the conditional probability of the token sequence T1:N given current observation ot and
language instruction l in an autoregressive manner:

log p(T1:N |ot, l) =
N∑

n=1

log pθ(Tn|T<n, ot, l). (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

During inference, the policy generates the token sequence token by token, and the full sequence is
then passed to the detokenizer TD to produce a continuous action chunk executed by the robot. In
this framework, the length of the token sequence, N , becomes a critical variable influencing both
inference speed and model performance, which is the central focus of our work.

The FAST tokenizer. The core idea of the FAST tokenizer is to first transform an action chunk
a1:H ∈ RH×D from the time domain to the frequency domain using the discrete cosine transform
(DCT). For each action dimension d ∈ {1, . . . , D}, this produces a vector of H frequency coeffi-
cients. The resulting coefficients for all dimensions are then concatenated and flattened into a single
vector of length H × D. This vector is subsequently tokenized into a sequence of discrete tokens
T1:N using a standard text tokenization algorithm, such as Byte Pair Encoding (BPE) (Gage, 1994).
Typically, N is much smaller than H × D, thus producing a compressed representation. The cor-
responding detokenizer, TD, first decodes the token sequence T1:N back into the flattened vector
of frequency coefficients using BPE. This vector is then reshaped back to the size H ×D, and the
inverse discrete cosine transform is applied to each dimension to reconstruct the action chunk a1:H .
A key characteristic of the whole process is that for a fixed action chunk length H , the number of
tokens N generated by the BPE algorithm is variable, depending on the complexity of the action
chunk itself (as will be demonstrated in Section 3).

Metrics for action smoothness. To quantitatively analyze the smoothness and dynamic properties
of action trajectories, we adopt two metrics from recent work (Valle et al., 2025): one based on action
velocity and another on action acceleration. These metrics are derived from the finite differences of
the action sequence. The first metric, Action Velocity Metric (A-VI), is the second-order difference
of the action sequence. This corresponds to the discrete second derivative (acceleration) and is
effective at capturing sharp changes in velocity. For a trajectory τ including N actions a1:N , it is
calculated as:

A-VI(τ) =
1

N − 2

N∑
t=3

||∆at −∆at−1||1 =
1

N − 2

N∑
t=3

||at − 2at−1 + at−2||1. (2)

The second metric, Action Acceleration Metric (A-AI), further captures fine-grained, jerky motions
by measuring the rate of change in acceleration. It is defined as the third-order difference of the
action sequence, which corresponds to the discrete third derivative (jerk):

A-AI(τ) =
1

N − 3

N∑
t=4

||∆2at −∆2at−1||1 =
1

N − 3

N∑
t=4

||at − 3at−1 + 3at−2 − at−3||1. (3)

In general, higher values for these metrics indicate a less smooth and more dynamic action sequence.
In Section 4, we will show how these fundamental metrics can be repurposed to define both the
intrinsic complexity of a task and the erroneous instability of a policy.

3 FROM VARIABLE TOKEN LENGTH TO ACTION INSTABILITY

In this section, we conduct a detailed analysis to empirically validate our central hypothesis: that
the variable action complexity inherent in robotic tasks is the primary source of inference instability
and performance degradation when using the FAST tokenizer. We utilize the standard LIBERO
dataset (Liu et al., 2023) for this analysis, as it encompasses a wide range of manipulation behaviors
with varying action complexities.

3.1 DISENTANGLING COMPLEXITY FROM INSTABILITY: A MORE RIGOROUS METRIC

To rigorously test our hypothesis, we must first precisely disentangle two related but critically differ-
ent concepts: the intrinsic complexity of a task and the erroneous instability of a policy. Complexity
describes the necessary, and often highly dynamic, motion an expert must perform to succeed; it is
an objective, neutral property of the task itself. Instability, in contrast, is an undesirable artifact of the
policy—it is the unnecessary, oscillatory motion produced by control errors. A simple measurement
of a policy’s output conflates these two: the observed motion is a combination of the task’s required
complexity and the policy’s own instability. Therefore, to truly understand and quantify policy fail-
ure, we must isolate the latter from the former. In the following, we provide formal definitions for
these concepts to achieve this separation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Analyzing the mechanism of instability from variable action complexity to task failure. (a)
The token sequence length generated by FAST for a fixed-length chunk shows a strong positive correla-
tion with the chunk’s intrinsic action complexity. (b) The wide distribution of token lengths thus reflects
the wide range of action complexities present in the dataset. (c) The tokenizer’s reconstruction fidelity
degrades for longer sequences, as these correspond to more complex actions that are harder to accurately
compress. (d) The VLA’s token prediction error rises sharply for these longer, more complex sequences,
which represent an intrinsically harder prediction target. (e) This cascade of errors manifests as action
instability in the robot’s output, representing excess, erroneous motion. (f) Critically, this instability is
directly correlated with task outcomes, with failed episodes exhibiting significantly higher levels of erro-
neous motion than successful ones. Together, these results establish an unbroken causal chain, beginning
with the initial variable action complexity and culminating in task failure.

Action complexity. We begin by defining the intrinsic difficulty of a task. Action complexity is
an objective and neutral descriptor of the physical motion required by an expert to solve a task. To
quantify this concept, we employ the A-VI and A-VI metric (as defined in Section 2), applying it
to the expert demonstration data. For a given task l within a dataset of demonstrations D, its action
complexity wrt A-VI is formalized as the expected A-VI over all expert trajectories:

A-VIcomplexity(l,D) = Eτ∼D(l)[A-VI(τ)], (4)

where D(l) are the subset of demonstrations D of task l. Action complexity wrt A-AI is similarly
defined. This value represents the baseline level of necessary action dynamics inherent to task l.

Action instability. In contrast, action instability is an undesirable artifact of the policy, not the task.
To quantify this, we must isolate this erroneous motion from the necessary motion defined above.
We first measure the total dynamism of a model π’s behavior by taking the expected A-VI over its
inference trajectories (τ ′ ∼ π(l)). Our core insight is that the true instability is the portion of this
motion that exceeds the task’s intrinsic complexity:

A-VIins(l, π,D) = Eτ ′∼π(l) [A-VI(τ ′)]− A-VIcomplexity(l,D). (5)

A-AIins can be similarly defined. This metric isolates the purely erroneous component of the motion.
A value near zero implies the model is as smooth as the expert, while a high positive value indicates
significant unnecessary motion. For the LIBERO benchmark, this metric is directly computable. All
subsequent mentions of “instability” in our analysis refer to this instability metric.

3.2 EMPIRICAL ANALYSIS OF THE INSTABILITY CASCADE

Having established our precise metrics, we now proceed with the empirical investigation of our cen-
tral hypothesis, illustrated in Figure 3. Our analysis begins by validating the foundational premise
of our work: that token length in the FAST framework is a direct proxy for action complexity.
Figure 3(a) plots the token sequence length against action complexity of the corresponding chunk,
measured by A-VIcomplexity. The strong, near-monotonic positive correlation provides clear empirical
evidence for this link.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

With this relationship established, the wide, right-skewed distribution of token lengths shown in
Figure 3(b) can be understood as a direct reflection of the diverse action complexities present in
the LIBERO dataset. With a mean of 14.74 tokens and a standard deviation of 5.20, it is evident
that action chunks of the same length can represent an order-of-magnitude difference in underlying
complexity. This variability in action complexity is the starting point of the instability cascade that
we investigate next.

Next, we examine how this variability impacts the tokenizer’s own performance. As shown in Fig-
ure 3(c), this variability is not benign; it is directly correlated with a decrease in the tokenizer’s recon-
struction fidelity. Longer token sequences generally correspond to more complex, high-frequency
actions that have more significant, non-zero DCT coefficients. The quantization and rounding steps
in FAST introduce more error for these complex signals, and the BPE algorithm requires more to-
kens to represent them. The plot shows that the mean reconstruction error, normalized per action in
the chunk, increases steadily with the token sequence length. This indicates that the action chunks
requiring longer token sequences are also the ones that are reconstructed less accurately, introducing
an initial source of error before the policy even makes a prediction.

The challenge is further compounded during policy learning, as the VLA must learn to predict these
variable-length sequences. Figure 3(d) reveals that the VLA’s token prediction error rises sharply
as the target sequence length increases. This demonstrates a non-linear, almost exponential trend,
where longer sequences become significantly more difficult for the model to predict accurately.
This difficulty arises from two sources: first, the autoregressive nature of the model means that the
probability of an error compounds with each additional token that must be predicted. Second, as
established, longer sequences represent more intricate and complex actions, which are intrinsically
harder for the policy to infer from a given visual observation and language instruction.

Ultimately, these compounding errors manifest as physical instability in the robot’s behavior. Fig-
ure 3(e) demonstrates a strong positive correlation between the generated token length and the action
instability of the VLA’s output, as measured by both A-VIins and A-AIins. This shows that the in-
accurate predictions for longer token sequences, which themselves have higher reconstruction error,
are detokenized into jerky and oscillatory action trajectories. Figure 3(f) provides the final, critical
piece of evidence, directly linking this physical instability to task outcomes. Across both A-VIins
and A-AIins metrics, episodes that ended in failure consistently exhibit significantly higher levels of
instability compared to those that succeeded.

This analysis, therefore, validates our central hypothesis by establishing a clear chain of conse-
quences: from the variable action complexity inherent in the task, to the variable token lengths
produced by FAST, to the cascading reconstruction and prediction errors, to physically unstable ac-
tions, and finally, to a tangible increase in task failure. Having identified and empirically verified
this fundamental issue, we are motivated to develop a solution that directly targets it.

4 STANDARDIZING ACTION COMPLEXITY FOR STABLE TOKENIZATION

Our analysis pinpoints the source of instability in the FAST tokenization scheme to its variable-
length token output, a direct result of processing fixed-length chunks of varying complexity. To build
a robust VLA policy, we must first stabilize the very foundation it is built upon by standardizing the
complexity of the action chunks.

Our approach inverts the standard paradigm: rather than processing action chunks of fixed length and
variable complexity, we adaptively segment the action trajectory at training into chunks of variable
length to ensure each possesses a consistent level of complexity. This principle is the cornerstone
of Stable-FAST, our novel tokenization paradigm. By adopting this approach, we shift the prob-
lem from managing variable-length outputs to a new challenge in data preprocessing: how do we
partition the raw action trajectories to create these iso-complex chunks? We can no longer use a sim-
ple, fixed-size sliding window; instead, we need a principled strategy to determine the appropriate
length, H , for each chunk.

To implement this strategy, we require a principled, low-cost proxy for action complexity that
is computable before the BPE tokenizer is trained. The theory of DCT provides a natural
and computationally efficient solution. Due to its energy compaction property (Khayam, 2003),
the DCT concentrates the informational content of a smooth, simple signal into a few sig-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

nificant low-frequency coefficients. Conversely, a complex, high-frequency signal requires a
larger number of non-zero coefficients for an accurate representation. The number of non-zero
DCT coefficients therefore serves as a theoretically grounded measure of an action chunk’s in-
trinsic complexity. As empirically verified in the top plot of Figure 4, this choice is vali-
dated by a near-perfect linear correlation between the non-zero coefficient count and the fi-
nal number of BPE tokens, confirming it can serve as a highly effective and reliable proxy.

Figure 4: Top: The num-
ber of non-zero DCT coeffi-
cients shows a near-perfect lin-
ear correlation with the final to-
ken length. Bottom: Using
this proxy successfully reduces
the token length’s standard de-
viation while maintaining the
mean. An unstable alternative
(“Tokenizer”) is shown to fail,
causing the mean to drift signif-
icantly.

An alternative might be to use the token count from the FAST to-
kenizer to decide the horizon H for each chunk. However, this
approach introduces a problematic circular dependency: the data
partitioning would depend on a specific tokenizer, but we must then
train a new tokenizer on this new partition. This process is in-
herently unstable and can cause the tokenizer’s properties to drift
unpredictably. Our experiments confirm this instability; using this
method resulted in a significant shift in the tokenizer’s characteris-
tics, increasing the average token count from 14.74 to 20.62 (shown
in Figure 4) and the average action chunk length from 10 to 13.08.
In contrast, our non-zero coefficient approach is independent of any
specific BPE vocabulary, providing a stable and principled founda-
tion.

Our complete data preparation and training pipeline is formalized
in Algorithm 1 and proceeds as follows. First, we establish a target
complexity, Ctarget, by calculating the average number of non-zero
DCT coefficients over action chunks of a fixed, reasonable length
(e.g., H = 10) across the entire training dataset. Second, we re-
process the trajectories to generate a new dataset of variable-length
action chunks, each with a complexity that closely matches this tar-
get. For each potential starting point in a given trajectory, we itera-
tively expand an action chunk by incrementing its length H . If the
chunk boundary exceeds the trajectory’s length, we pad the chunk
by repeating the final action. The expansion continues until the
chunk’s complexity just surpasses Ctarget. We then select the chunk,
of length H or H − 1, whose complexity is numerically closer to
Ctarget, thereby creating a new dataset, Dstable, where each entry has
a near-constant complexity. Finally, we train a new BPE tokenizer
on this dataset of variable-length chunks and then use it to train the VLA policy. The VLA model,
trained on these new sequences, implicitly learns to predict the appropriate action chunk length by
generating token sequences of low-variance length.

As shown in the bottom plot of Figure 4, our Stable-FAST approach is highly effective. The standard
deviation of the token sequence length is markedly reduced from 5.20 to 2.21. This stabilization is
achieved without sacrificing efficiency; the mean token count remains remarkably consistent (14.74
for FAST vs. 14.87 for Stable-FAST), as does the average action chunk length (10.0 for FAST vs.
11.4 for Stable-FAST). This demonstrates that our method successfully standardized the complexity
of the prediction task, evidenced by the stabilized token length, thus laying a more principled and
stable foundation for training and deploying autoregressive VLA models.

5 EXPERIMENTS

This section validates Stable-FAST in both simulation and real-world environments. We demon-
strate that our core approach of standardizing action complexity yields policies with markedly im-
proved success rates, action smoothness, and task completion time.

5.1 EXPERIMENTAL SETUP

Evaluation tasks. As illustrated in Figure 5, we test VLA performance on 4 evaluation tasks (3 real
robot, 1 simulated), ranging from simple manipulation tasks to complex, long-horizon tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

• LIBERO: Following Pertsch et al. (2025), we train a single policy on a mixture of 40 tasks from
the 4 splits of the LIBERO benchmark (LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and
LIBERO-10), and measure average performance across them.

• Table bussing: A complex, long-horizon manipulation task requiring the robot to place all trash
items into a trash bin and all plates and bowls into a plastic container. The task requires general-
ization across various combinations and spatial arrangements of objects.

• Sorting: A task demanding precise, sequential manipulation, where the robot must sort small
wooden blocks of different colors into their designated containers (a white basket or a blue plate)
in the correct order. The key challenges lie in adhering to the sequence and ensuring accurate
placement into the appropriate container.

• Multi-task: Pick-and-place tasks designed to test language following capabilities in the presence
of distractors. The task consists of 10 distinct objects (e.g., lemon, bread, bowl). The policy is
trained jointly on all objects, and during evaluation, random distractors are introduced.

LIBERO

Multi-task (lemon, bread, waterlemon, bowl, etc)

Table bussing Sorting

Figure 5: Evaluation environments. We evaluate
Stable-FAST on a diverse suite of 1 simulation and
3 real-world tasks. These tasks are designed to test
VLA performance across a spectrum of complexity,
ranging from simple manipulation tasks to complex,
long-horizon tasks.

Implementation details. All real-world exper-
iments are conducted using an AgileX Piper
robotic arm equipped with a wrist-mounted and
a third-person camera. For our dataset, we col-
lected 50 expert trajectories for both the Table
Bussing and Sorting tasks. For the Multi-task
setup, we gathered 30 demonstrations for each
of its 10 sub-tasks, yielding a total of 300 expert
trajectories. We employ a consistent pipeline
to train all policies. Each model is trained for
320000 steps using a cosine annealing learning
rate schedule, which is initialized at 2 × 10−5

with a 1000-step warmup phase. For evalua-
tion, we assess each of the 40 LIBERO simula-
tion tasks over 50 trials, resulting in 2000 total
rollouts. The Table bussing and Sorting tasks
are each evaluated for 25 trials. The Multi-task setup is also evaluated with 25 trials for each of its 10
sub-tasks, totaling 250 real-world rollouts. To ensure metrics are not skewed by random failures, the
A-VIins, A-AIins, and task completion time are calculated exclusively from successful trajectories.
Except for the VLM backbone comparison in Figure 7, all our experiments use SmolVLM-500M
(Marafioti et al., 2025) to initialize the VLA for training.

5.2 ABLATION STUDIES

We conduct a comprehensive ablation study to analyze three key aspects of our method on LIBERO:
(1) We investigate how varying the target action complexity affects policy performance and compare
our method against the FAST. (2) We assess the benefits of our method across different VLA back-
bones. (3) We position our contribution by comparing Stable-FAST against preceding tokenization
paradigms—learned vector quantization (VQ) (Lee et al., 2024) and FAST—to demonstrate a clear
progression in solving the trade-off between representational fidelity and inference stability.

In our first ablation study, we evaluate Stable-FAST by focusing on its key hyperparameter: the target
action complexity. The goal is to understand how varying this parameter affects policy performance
and to benchmark our method against the FAST tokenizer. To create a fair comparison, as FAST
requires a fixed action chunk length, we designed two baselines. The first, FAST-C (for similar
Complexity), uses a fixed chunk length chosen such that the average complexity of its resulting
tokens matches the target complexity level of Stable-FAST. The second, FAST-L (for similar chunk
Length), sets its fixed chunk size to match the average length of the variable-length chunks produced
by Stable-FAST at a given complexity setting (see Appendix D for details).

Our primary finding, illustrated in Figure 6(a), is that Stable-FAST’s complexity-driven partitioning
mechanism is highly effective. It consistently and significantly reduces the standard deviation, σ,
of the token sequence length across all evaluated complexity levels, directly validating its ability to
standardize chunk complexity. This stabilization at the tokenization level has a direct and positive
impact on the policy’s behavior. As shown in Figures 6(b) and (c), the smoother and more consistent

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

FAST-C FAST-L Stable-FAST
0

10

20

30 Level 1 Complexity
Level 2

Level 3
Level 4

(a) in Token Lengths of Chunks

FAST-C FAST-L Stable-FAST

0.00

0.18

0.36

0.54

0.72

A-
VI

in
s

(b) Action Velocity Instability

FAST-C FAST-L Stable-FAST

0.0

0.5

1.0

A-
AI

in
s

(c) Action Acceleration Instability

FAST-C FAST-L Stable-FAST

65

70

75

S
uc

ce
ss

 R
at

e

(d) Policy Performance

Figure 6: Ablation study on target action complexity. We evaluate Stable-FAST across four complexity
levels and compare it against two FAST baselines that are calibrated to match Stable-FAST’s properties at
each level: FAST-C, which is matched for chunk complexity, and FAST-L, which is matched for average
chunk length (See Appendix D for details). (a) Standard deviation of the output token sequence length
per chunk. A lower value indicates more stable tokenization. (b, c) The resulting A-VIins and A-AIins,
where lower is better. (d) Final task success rate, where higher is better. Stable-FAST demonstrates lower
token length variance, which translates to reduced action instability and higher task success.

tokenization leads to a marked reduction in both action velocity instability (A-VIins) and action
acceleration instability (A-AIins). This reduction in erroneous, jerky motion ultimately translates to
higher task success rates, as shown in Figure 6(d).

FAST Stable-FAST

M
et

ri
c

72.5% 75.8%

5.15

2.20

4.47e-2

-3.91e-2

8.75e-2

-0.16

 in Token Length
of Chunks
Success Rate
A-VIins
A-AIins

(a) Qwen 0.5B

FAST Stable-FAST

M
et

ri
c

78% 80.35%

5.00

2.15

2.66e-3

-6.24e-2

5.92e-3

-0.17

(b) Paligemma 3B

Figure 7: Stable-FAST consistently excels across
different VLMs. We compare performance using
two other backbones: (a) Qwen 0.5B, as used in
MiniVLA, and (b) Paligemma 3B, the VLM used in
π series. For both, replacing the FAST with Stable-
FAST yields consistent improvements.

The study also reveals that, analogous to chunk
size in FAST, the target complexity is a crucial
hyperparameter for Stable-FAST. Performance
is not monotonic with complexity; instead, an
optimal level exists. For the LIBERO bench-
mark, a “level 2” complexity yields the best
results. Setting the complexity too low (level
1) results in overly short action chunks that
can lead to temporally-inconsistent actions and
compounding errors (Zhao et al., 2023; Pertsch
et al., 2025). Conversely, setting it too high
(levels 3, 4) causes even Stable-FAST to pro-
duce long token sequences with higher vari-
ance, leading back to the action instability and
lower success rates we sought to avoid.

Remarkably, when operating at its optimal complexity level, Stable-FAST achieves negative values
for both action instability metrics. By our definition of instability, this implies that the learned
policy generates actions that are even smoother and more dynamically consistent than the expert
demonstrations themselves. This suggests that the expert data contains a degree of suboptimal,
unnecessary motion, and that the stabilizing effect of our method is powerful enough to filter out
this inherent noise. This demonstrates that Stable-FAST not only stabilizes policy inference but can
also enable the policy to learn behavior that surpasses the qualitative limitations of the training data.

Table 1: Comparison with alternative tokenizer
paradigms. Stable-FAST shows superiority against
both VQ method and FAST across all metrics.

VQ FAST Stable-FAST

σ of Token Length (↓) 0.00 5.20 2.21
% Success Rate (↑) 66.45±1.06 71.40±1.01 74.50 ±0.97

A-VIins(×10−2)(↓) 10.06±8.55 5.24±5.60 -3.22±2.74

A-AIins(×10−2)(↓) 15.64±13.68 9.84±10.27 -15.10±12.84

In our second ablation, we test if
the benefits of Stable-FAST generalize
across different VLM backbones. We
replaced our standard SmolVLM with
both Qwen-0.5B (Bai et al., 2025) and
PaliGemma 3B used in π model series
(Black et al., 2024; 2025; Pertsch et al.,
2025). The results in Figure 7 show that
Stable-FAST consistently provides su-
periority over the FAST tokenizer, re-
gardless of the underlying VLM. This confirms our method’s benefits are fundamental and not
architecture-specific. We also observe a clear trend: as the VLM’s capability increases (PaliGemma
> SmolVLM > Qwen), action instability decreases and success rates improve. This suggests that
more powerful foundation models contribute significantly to learning effective control policies, and
Stable-FAST provides a robust tokenization layer to unlock their potential.

In our third ablation, we contextualize our contribution by positioning Stable-FAST within the evo-
lution of action tokenization, comparing it against a learned VQ approach and the FAST. The results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Stable-FAST on real-world tasks. σ denotes the standard deviation in the token lengths of
generated action chunks. Stable-FAST outperforms FAST across all metrics.

σ Success Rate% Task Progress% A-VIins(×10−3) A-AIins(×10−3) Time (s)

Table
Bussing

FAST 2.39 16.00±7.48 66.67±4.30 19.2±17.3 37.5±30.0 85.47±10.21

Stable-FAST 1.60 24.00±8.72 77.33±3.45 -6.56±7.56 -15.9±13.4 50.23±3.99

Sorting
FAST 2.74 12.00±6.63 58.67 ±5.19 21.3±18.1 29.1±26.1 50.31±5.95

Stable-FAST 1.85 24.00±8.72 70.67±4.00 -8.68±9.24 -22.8±10.3 30.09±2.12

Multitask
FAST 1.00 26.80±2.81 / 23.7±6.0 43.5±11.4 21.92±6.19

Stable-FAST 0.77 39.20±3.09 / -5.74±3.27 -38.9±7.8 12.40±3.00

in Table 1 reveal a clear performance hierarchy, showing that FAST comprehensively outperforms
VQ, and Stable-FAST, in turn, outperforms FAST in both success rate and action stability. This
demonstrates a clear and logical progression in tokenization methods.

This performance trend is explained by the evolution of the tokenization paradigm. Learned VQ-
based tokenizers operate on a rigid “fixed-in, fixed-out” principle, creating a representational bottle-
neck that struggles with variable action complexity. FAST was a significant advancement, resolving
this with a “fixed-in, variable-out” approach that allows the token representation to adapt to the ac-
tion’s complexity. However, this introduced a new challenge: the variable output complexity became
a direct source of action instability. Stable-FAST resolves this final issue by inverting the process to
a “variable-in, fixed-complexity-out” strategy. It not only retains the crucial representation flexibil-
ity of FAST but also stabilizes the inference of VLAs, marking the next logical step in developing
robust action tokenizers.

5.3 REAL-WORLD PERFORMANCE OF STABLE-FAST

To validate our approach in the complexities of a physical environment, we evaluate Stable-FAST on
three real-world manipulation tasks, directly comparing Stable-FAST against the FAST tokenizer.
The results, summarized in Table 2, provide compelling evidence that the benefits of our method
hold true amidst the noise and randomness of the real world. Stable-FAST consistently produced
token sequences with lower standard deviation, which directly translated to policies with markedly
lower action instability. This enhanced motion smoothness and control, in turn, led to a superior
task success rate across all evaluated tasks.

Crucially, these experiments revealed a significant system-level advantage: a reduction in task com-
pletion time by over 40%. We attribute this significant speed-up to two factors. First, the enhanced
stability of the generated motions enables the policy to complete tasks more directly, requiring fewer
steps overall (e.g., Figure 2). Second, in non-blocking control systems where action generation and
execution overlap, the variable-length outputs of FAST can force the robot to pause while the VLA
processes a complex action. In contrast, Stable-FAST’s consistent prediction complexity facilitates
a synchronized, rhythmic pipeline between the VLA and the robot, minimizing idle time. This un-
derscores that stabilizing inference is critical not just for success, but for creating a more efficient
and practical robotic system.

6 CONCLUSION

In this work, we introduced Stable-FAST, a novel action tokenization strategy designed to address
the critical issue of inference instability in autoregressive VLA models. While the pioneering FAST
tokenizer enabled high-frequency control, its variable-length token outputs introduced unpredictable
variance into the model’s prediction target, leading to erratic actions. We resolve this by re-framing
the tokenization problem: instead of encoding fixed-length action chunks into sequences of variable
complexity, we encode variable-length chunks into sequences of standardized complexity. This fun-
damental shift allows Stable-FAST to generate token sequences with significantly reduced length
variance. Both simulated and real-world experiments demonstrate that Stable-FAST enables the
training of VLAs with markedly improved inference reliability, smoother physical actions, and
higher task success rates, providing a more robust foundation for training and deploying the high-
performance, generalist robot policies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez Arenas, Travis
Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini
robotics: Bringing ai into the physical world. arXiv preprint arXiv:2503.20020, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Suneel Belkhale and Dorsa Sadigh. Minivla: A better vla with a smaller footprint, 2024. URL
https://github.com/Stanford-ILIAD/openvla-mini.

Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen
Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using language. arXiv
preprint arXiv:2403.01823, 2024.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash
Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmenta-
tions and action chunking. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4788–4795. IEEE, 2024.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0.5: a vision-language-action model with
open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for
scalable and intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian Gongye, Xueyan Zou, Jan Kautz, Erdem
Bıyık, Hongxu Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot vision-language-action
model for navigation. arXiv preprint arXiv:2412.04453, 2024.

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi Zhu,
and Cewu Lu. Rh20t: A comprehensive robotic dataset for learning diverse skills in one-shot.
arXiv preprint arXiv:2307.00595, 2023.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.

Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna,
Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken Gold-
berg, and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual feature
extraction. arXiv preprint arXiv:2503.03734, 2025.

10

https://github.com/Stanford-ILIAD/openvla-mini

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhenyu Jiang, Yuqi Xie, Kevin Lin, Zhenjia Xu, Weikang Wan, Ajay Mandlekar, Linxi Fan, and
Yuke Zhu. Dexmimicgen: Automated data generation for bimanual dexterous manipulation via
imitation learning. arXiv preprint arXiv:2410.24185, 2024.

Syed Ali Khayam. The discrete cosine transform (dct): theory and application. Michigan State
University, 114(1):31, 2003.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. arXiv preprint arXiv:2403.03181, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Za-
kka, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, et al. Smolvlm: Redefining small and
efficient multimodal models. arXiv preprint arXiv:2504.05299, 2025.

Atharva Mete, Haotian Xue, Albert Wilcox, Yongxin Chen, and Animesh Garg. Quest: Self-
supervised skill abstractions for learning continuous control. Advances in Neural Information
Processing Systems, 37:4062–4089, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction
following with hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417,
2025.

Pablo Valle, Chengjie Lu, Shaukat Ali, and Aitor Arrieta. Evaluating uncertainty and quality of
visual language action-enabled robots. arXiv preprint arXiv:2507.17049, 2025.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
for robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, we employed Large Language Models (LLMs) solely as a writing
assistance tool for limited text polishing and language refinement. LLMs were not involved in any
aspects of research ideation, conceptual development, technical analysis, algorithm design, experi-
mental execution, or result analyses. All scientific contributions, methodological innovations, and
intellectual content remain entirely our own.

B RELATED WORK

Vision-Language-Action models. The paradigm of learning robotic policies from large, diverse
datasets (O’Neill et al., 2024; Fang et al., 2023; Walke et al., 2023; Khazatsky et al., 2024; Bharad-
hwaj et al., 2024; Jiang et al., 2024; Bu et al., 2025) has gained significant traction, inspired by the
tremendous success of foundation models in natural language and vision. This has led to the devel-
opment of VLA models (Zitkovich et al., 2023; Kim et al., 2024; Black et al., 2024; Pertsch et al.,
2025; Zawalski et al., 2024; Cheng et al., 2024; Belkhale et al., 2024; Abeyruwan et al., 2025; Bjorck
et al., 2025; Black et al., 2025; Shi et al., 2025; Huang et al., 2025; Belkhale & Sadigh, 2024; Kim
et al., 2025), which leverage high-capacity architectures, typically Transformers, to map raw sensory
inputs (vision) and high-level instructions (language) directly to robot actions. Different generative
modeling approaches for continuous actions have been explored. One way is to use diffusion models
(Ghosh et al., 2024; Bjorck et al., 2025) or flow-based models (Black et al., 2024; 2025), which can
directly model complex, continuous action distributions. An alternative and equally powerful way,
and the focus of our work, is autoregressive modeling. Autoregressive VLAs (Zitkovich et al., 2023;
Kim et al., 2024; Belkhale & Sadigh, 2024; Pertsch et al., 2025) frame robot control as a sequential
prediction problem, generating action tokens one by one conditioned on visual and language con-
text. This formulation offers a distinct advantage in its seamless architectural alignment with Large
Language Models (LLMs), facilitating knowledge transfer from web-scale pretrained models.

Action representations of autoregressive VLA models. The discretization of continuous, high-
dimensional action spaces is a pivotal design choice in autoregressive VLAs. The most straight-
forward and widely adopted method is uniform per-dimension binning, where each dimension of
the action vector at each timestep is independently discretized into a set of uniform bins (Brohan
et al., 2022; Zitkovich et al., 2023; Kim et al., 2024). However, as control frequency or action di-
mensionality increases, it leads to excessively long token sequences, which makes inference time
prohibitively long and poses difficulties in modeling fine-grained, dynamic movements due to high
similarities between consecutive actions (Pertsch et al., 2025). To address these limitations, sub-
sequent research has explored more compressed action representations, including learned vector-
quantized action representations (Lee et al., 2024; Belkhale & Sadigh, 2024; Mete et al., 2024). By
encoding short action chunks into discrete latent codes, these methods can create a vocabulary of
reusable action “primitives”, leading to more compact sequences. However, this approach fails on
high-frequency tasks when fine-grained control is required (Pertsch et al., 2025). Most recently,
Pertsch et al. (2025) introduced the FAST tokenizer. By transforming action chunks into the fre-
quency domain using DCT, it provides a highly efficient and effective representation that captures
both low-frequency trends and high-frequency details of an action trajectory, enabling autoregressive
VLAs to excel at dexterous, high-frequency tasks where prior methods struggled. Our work directly
builds on the FAST framework. While we retain its powerful frequency-domain representation, we
diagnose and resolve a fundamental instability in its tokenization process.

C ADDITIONAL EXPERIMENTAL DETAILS

This section provides further details on the experimental setup and data analysis procedures for the
results presented in the main paper.

C.1 HARDWARE AND ENVIRONMENT

All real-world experiments in Section 5 were conducted on a single workstation equipped with
an NVIDIA GeForce RTX 4090D GPU. Other inference experiments, including data analysis in

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Section 1 and Section 3, were conducted on an NVIDIA GeForce RTX 3090 GPU. All real-world
demonstrations were collected at a frequency of 10 Hz.

C.2 ANALYSIS DETAILS FOR FIGURE 2

The two plots on the right of Figure 2, illustrating the inference time variation and action instability
within an episode, were generated from the same single, representative inference trajectory. This
was done to qualitatively showcase the direct correlation between the moments of high inference
latency and the resulting physical action instability during a single run.

C.3 DATA ANALYSIS PROTOCOL FOR FIGURE 3

The comprehensive analysis in Figure 3, which traces the causal chain from action complexity to
task failure, was conducted as follows:

• Subplots (a), (b), and (c): The data for these plots, which analyze action complexity, the
token length distribution of FAST, and the reconstruction error of FAST, were derived by
processing the entire training dataset of all 40 LIBERO tasks. These statistics reflect the
intrinsic properties of the dataset and the FAST tokenizer itself, independent of a trained
policy.

• Subplots (d) and (e): The results for VLA token prediction error and VLA output action
instability were obtained using a VLA policy that was trained with the FAST tokenizer
and initialized with SmolVLM weights. To generate the data, we performed single-step
inference on every observation contained within the LIBERO training set. The model’s
predicted tokens and the resulting detokenized actions were then compared against the
corresponding ground-truth tokens and actions from the dataset to calculate the error and
instability metrics.

• Subplot (f): The “instability comparison: success vs. failure” plot was also generated
using the same VLA model (FAST tokenizer + SmolVLM). The statistics were compiled
by analyzing full inference trajectories executed by the policy. These rollouts were obtained
from the LIBERO environment, and the resulting action instability metrics were aggregated
and conditioned on whether the episode ended in success or failure.

C.4 MULTI-TASK SETUP DETAILS

The multi-task environment is designed to evaluate the policy’s ability of language instruction fol-
lowing. This setup comprises 10 distinct pick-and-place sub-tasks, each involving a different object.

Data collection. We collected a total of 300 expert trajectories for this setup, with 30 demonstrations
for each of the 10 sub-tasks. To enhance the policy’s robustness, two random distractors are present
in the scene during data collection for each demonstration. All data was recorded at a sampling
frequency of 10Hz.

Task list. The policy was jointly trained on the following 10 sub-tasks, with the instruction format
”pick up the [object] and place it into the basket”. See Figure 8.

System configuration. (a) Inputs. The policy receives visual input from two cameras: a wrist cam-
era and a third-person camera. Both provide images at a resolution of 640×480 pixels. Propriocep-
tive states from the robot arm are also included as input. (b) Action Execution. During deployment,
the policy predicts an action chunk, and all actions within that chunk are executed sequentially by
the robot.

D DERIVATION OF THE FOUR COMPLEXITY LEVELS FOR ABLATION STUDY

We details the method used to establish the 4 complexity levels for the ablation study presented in
Figure 6. Our goal is to create a rigorous comparison between Stable-FAST and FAST. To achieve
this, we defined two calibrated baselines, FAST-C (matched for Complexity) and FAST-L (matched

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Waste Paper Bread Lemon Heart Water Lemon

Plate Bowl Block Tape Cube

Figure 8: Overview of the Multi-task sub-tasks. The evaluation involves 10 distinct object manipulation
tasks (paper, bread, lemon, heart, watermelon, plate, bowl, block, tape, and cube). Random distractors
are present during both training and inference.

for average chunk Length), for each complexity level. As the number of non-zero DCT coeffi-
cients serves as our proxy for complexity, we used its value to define these complexity levels. The
calibration process proceeded in two main stages.

1. Calibrating target complexities and defining FAST-C. We first established the 4 target com-
plexity values that guide the Stable-FAST data preparation pipeline. To do this, we began with the
standard FAST framework and set 4 representative fixed chunk lengths: 5, 10, 30, and 50. For each
of these lengths, we processed the entire LIBERO dataset and computed the average number of non-
zero DCT coefficients generated per chunk. These average values (11.42, 18.84, 55.58, and 99.65)
are then designated as the four target complexities for Stable-FAST, corresponding to level 1 through
level 4, respectively. This procedure simultaneously defined the first FAST baseline, FAST-C, where
each variant (e.g., FAST-C at level 2) uses the fixed chunk length (e.g., 10) whose resulting average
complexity matches the corresponding target complexity of Stable-FAST.

2. Deriving average chunk lengths of Stable-FAST and defining FAST-L. After training Stable-
FAST tokenizers with the four target complexities, we defined the second FAST baseline. For the
chunks encoded by each of the Stable-FAST tokenizers, we calculated the overall mean chunk length
(6, 11, 36, and 63) and then use these lengths as the fixed chunk sizes for the FAST-L baseline.
Therefore, FAST-L matches the average chunk length of Stable-FAST.

E STATISTICAL RESULTS OF INFERENCE TIME

Figure 9: Statistical
comparison of infer-
ence time per chunk
on a representative
LIBERO task.

To provide a more quantitative analysis of the inference time instability dis-
cussed in the introduction, this section presents a statistical comparison that
complements the qualitative plot in Figure 2. We evaluated the inference
time per action chunk for policies trained with both the baseline FAST to-
kenizer and our Stable-FAST method. The evaluation was conducted on a
representative task from the LIBERO benchmark, using models initialized
with SmolVLM.

As illustrated in Figure 9, while the average inference time per chunk is nearly
identical for both methods, Stable-FAST demonstrates a dramatic reduction in
variance. This result empirically validates our central claim: by standardizing
the complexity of the prediction task, Stable-FAST eliminates the large fluc-
tuations in inference latency inherent to the original FAST tokenizer, leading
to a more stable and predictable control loop.

F TAKS PROGRESS DEFINITION

To provide a more granular measure of performance on the long-horizon manipulation tasks pre-
sented in Table 2, we introduce the Task Progress metric. While the final success rate offers a binary

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

measure of task completion, it does not capture the degree of partial success in trials that do not ulti-
mately succeed. The Task Progress metric is therefore designed to offer a more nuanced evaluation
by quantifying how far the policy progress toward the final goal.

The metric is normalized for each task to represent the percentage of key objectives completed. The
specific calculations for the two long-horizon tasks are as follows.

Table bussing. The progress is calculated as the percentage of trash items that are correctly placed
into the trash bin relative to the total number of trash items.

Sorting. The progress is defined as the percentage of wooden blocks successfully placed into their
designated containers in the correct sequence.

F.1 LIMITATION AND FUTURE WORK

While this work presents a logical analysis of inference instability in autoregressive VLAs and offers
Stable-FAST as an effective solution, we acknowledge several limitations due to resource and time
constraints, which also point toward future works.

First, the scalability of Stable-FAST on massive datasets remains to be explored. Our experiments
are conducted on established but relatively constrained benchmarks. It is an open question how
the distribution of action complexities will evolve as robot datasets scale up. A more complex and
diverse dataset may challenge Stable-FAST for establishing a consistent target complexity. Future
work should investigate the robustness and performance of Stable-FAST on large-scale, heteroge-
neous data.

Second, we do not complete real-world experiments for all VLM backbones, notably Paligemma.
Similarly, our experiments are confined to a single robotic arm embodiment. We plan to extend
our evaluation to more complex setups, such as bimanual manipulation and other diverse embodi-
ments. Furthermore, we intend to incorporate more tasks that specifically demand dexterous, high-
frequency control to provide a more specific comparison against the FAST.

Finally, while we observe a significant reduction in total task execution time, the precise underlying
mechanisms for this improvement require a more detailed investigation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F.2 THE STABLE-FAST ALGORITHM

Algorithm 1 The Stable-FAST data preparation and training pipeline

Require: Raw action trajectory dataset Dtraj, initial chunk length Hinitial, DCT quantization scale γ.
Ensure: Trained Stable-FAST tokenizer Tstable, trained VLA policy πθ.

1: PART I: Calibrate target complexity
2: Initialize complexity list Lcomplexity ← []
3: for each trajectory τ ∈ Dtraj do
4: for each valid start time t in τ do
5: achunk ← τ [t : t+Hinitial]
6: Cdct ← round(γ · DCT(achunk)) ▷ Compute quantized DCT coefficients
7: Ccurrent ← count non zero(Cdct)
8: Append Ccurrent to Lcomplexity
9: end for

10: end for
11: Ctarget ← mean(Lcomplexity) ▷ Establish the average target complexity
12: PART II: Generate stable-complexity action chunks
13: Initialize new dataset Dstable ← []
14: for each trajectory τ ∈ Dtraj do
15: for each valid start time t in τ do
16: H ← 1
17: Cprev ← 0
18: loop
19: if t+H > length(τ) then
20: ▷ Handle boundary case by padding with the last action
21: apad ← τ [length(τ)− 1]
22: achunk ← concatenate(τ [t : length(τ)− 1], repeat(apad, t+H − length(τ)))
23: else
24: achunk ← τ [t : t+H]
25: end if
26: Cdct ← round(γ · DCT(achunk))
27: Ccurrent ← count non zero(Cdct)
28: if Ccurrent ≥ Ctarget then
29: if abs(Ccurrent − Ctarget) < abs(Cprev − Ctarget) then
30: ▷ Chunk of length H is closer to the target complexity
31: Append achunk to Dstable
32: else
33: ▷ Chunk of length H-1 was closer, reconstruct and append it
34: if t+H − 1 > length(τ) then
35: apad ← τ [end]
36: achunk prev ← concatenate(τ [t : end], repeat(apad, t+H − 1− length(τ)))
37: else
38: achunk prev ← τ [t : t+H − 1]
39: end if
40: Append achunk prev to Dstable
41: end if
42: break ▷ Found the best chunk for this start time
43: end if
44: Cprev ← Ccurrent
45: H ← H + 1
46: end loop
47: end for
48: end for
49: PART III: Train tokenizer and VLA policy
50: Train BPE tokenizer Tstable on quantized DCT coefficients from Dstable.
51: Tokenize all chunks in Dstable using Tstable to get tokenized dataset Dtokenized.
52: Train VLA policy πθ on observations paired with token sequences from Dtokenized.

16

	Introduction
	Preliminaries
	From Variable Token Length to Action Instability
	Disentangling Complexity from Instability: A More Rigorous Metric
	Empirical Analysis of the Instability Cascade

	Standardizing Action Complexity for Stable Tokenization
	Experiments
	Experimental Setup
	Ablation Studies
	Real-World Performance of Stable-FAST

	Conclusion
	The Use of Large Language Models
	Related Work
	Additional Experimental Details
	Hardware and Environment
	Analysis Details for Figure 2
	Data Analysis Protocol for Figure 3
	Multi-task Setup Details

	Derivation of the Four Complexity Levels for Ablation Study
	Statistical Results of Inference Time
	Taks Progress Definition
	Limitation and Future Work
	The Stable-FAST Algorithm

