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ABSTRACT

In medical image registration, where targets exhibit piecewise smooth structures, a
carefully designed low-resolution data structure can effectively approximate full-
resolution deformation fields with minimal accuracy loss. Although this physical
prior has proven effective in traditional registration algorithms, it remains underex-
plored in current learning-based registration literature. In this paper, we propose
AdaWarp, a novel neural network module that leverages this prior for efficient and
accurate medical image registration. AdaWarp comprises an encoder, a guidance
map generator, and a differentiable bilateral grid, enabling an edge-preserving
low-frequency approximation of the deformation field. This design reduces compu-
tational complexity with low-resolution feature maps while increasing the effective
receptive field, achieving a balanced trade-off between registration accuracy and
efficiency. Experiments on two registration datasets covering different modalities
and input constraints demonstrate that AdaWarp outperforms existing methods in
accuracy-efficiency and accuracy-smoothness tradeoffs.

1 INTRODUCTION

Image registration is a fundamental step in various medical imaging tasks, such as population
modeling and statistical atlas construction [1, 2]. Traditional methods [3, 4, 5] minimize an energy
function via gradient descent or discrete optimization, often requiring many iterations and extensive
hyperparameter tuning. Since they optimize each input pair independently, these methods cannot
perform amortized optimization, making it challenging to integrate label supervision from a cohort and
leading to slow processing times. Recently, learning-based approaches have accelerated registration
by pre-training neural networks on image pair cohorts using amortized optimization. VoxelMorph [6],
a seminal model in this domain, leverages a convolutional neural network (ConvNet) [7] to predict
deformation fields, achieving fast and accurate image registration.

Several follow-up works have explored different strategies to improve registration accuracy [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18]. Many of these approaches leverage advanced network architectures,
such as transformers [19, 8, 10] and large convolutional kernels [11, 20], achieving modest accuracy
gains at a disproportionately higher computational cost. Moreover, to handle datasets with large
deformations, cascaded and pyramid structures such as VTN [16] and LapIRN [9] have been employed
to improve registration accuracy; however, they often compromise the balance between registration
accuracy and deformation smoothness. While several methods [15, 12, 18, 14], such as DeepFLASH
[15] and FourierNet [12], have specifically targeted improving the accuracy-efficiency tradeoff,
achieving an optimal balance between the two remains a challenge.

Previous studies have shown that incorporating prior knowledge improves the accuracy-efficiency
trade-off in image segmentation [21, 22, 23, 24] and image registration [15, 12, 25], motivating
the design of our proposed architecture. Combining this insight with our observations from daily
MRI and CT scans in cardiac and abdominal regions, we note two consistent patterns: (1) intensity
variations within anatomical regions are generally smooth, and (2) distinct boundaries often exist
between organs and the background or neighboring organs. For instance, in cardiac imaging, intensity
within regions like the right ventricle and myocardium is relatively homogeneous, while clear and
well-defined boundaries are formed by intensity differences between these regions (see Fig. 1,
columns 1&2). These consistent intra-region smoothness and inter-region boundaries indicate that
certain medical images exhibit piece-wise smooth structures, serving as a valuable physical prior for
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Figure 1: Visual comparison of the deformation fields from end-systole (ES) to end-diastole (ED)
generated by both the pseudo-ground truth (GT) and FourierNet [12]. The pseudo-GT was obtained
using the DDIR model [31], achieving a Dice (%) exceeding 98% (details in §A) of the appendix.
Column 1 displays the original ES and ED images, with Column 2 focusing on the image patches
highlighted by the orange box. Column 3 compares the pseudo-GT and FourierNet deformation fields
from ES to ED, while Columns 4 to 6 illustrate the corresponding deformation fields in the frequency
domain.

image registration. Based on this observation, we propose the following assumption to guide the
design of our network module throughout the paper:

Piece-wise Smooth (P-S) Assumption. In medical image registration tasks where the targets of
interest exhibit piece-wise smooth structures, a carefully designed low-resolution data structure can
effectively approximate full-resolution deformation fields.

Several studies [12, 15] have shown that displacement fields exhibit limited high-frequency content in
the Fourier domain. This insight allows neural networks to operate in a band-limited space, reducing
computational complexity without sacrificing accuracy, particularly in brain MR image registration.
Interestingly, follow-up research by Jia et al. [13] demonstrates that FourierNet, leveraging band-
limited approximation for cardiac registration, not only reduces computations but also improves
accuracy by enlarging the effective receptive field (ERF) [26]. However, reliance on global smoothness
constraints makes these methods less effective for datasets with large deformations and complex
motions. For instance, as shown in Fig. 1, cardiac imaging involves the heart moving within the rigid
thoracic cavity or displaying complex localized motion between ventricles and myocardium, resulting
in local discontinuities. In such cases, imposing a globally smooth deformation field becomes too
restrictive. To address these discontinuities, some works have employed bilateral filters [27, 28],
which preserve edges and improve registration performance in the presence of local discontinuities
[29, 30]. However, the non-trainable nature of these filters limits their broader adaptability in
learning-based registration frameworks.

Here, we identify a gap in the literature: existing learning-based registration frameworks lack an
end-to-end learnable approach to incorporate the physical prior, i.e., the P-S Assumption, into
neural networks, leading to suboptimal registration performance. In this paper, we address this gap
by introducing AdaWarp, a neural network module that integrates the P-S assumption, enforcing
global smoothness while respecting local discontinuities. AdaWarp employs learnable adaptive
filtering to register medical scans, achieving better accuracy-efficiency and accuracy-smoothness
trade-offs. AdaWarp comprises an encoder, a guidance mapper, and a differentiable bilateral grid. The
encoder, based on ConvNets [32, 33] or Vision Transformers (ViTs) [34], generates low-resolution
representations, while the guidance mapper, a multi-layer perceptron (MLP), produces a guidance map
representing the range dimension and capturing local intensity differences. The core of AdaWarp is
the differentiable bilateral grid [35, 36], which inherently incorporates the P-S prior. The grid begins
with a differentiable splatting module that maps the 3D image into a 4D bilateral grid, spanning
the 3D spatial domain and a 1D range domain. This grid undergoes learnable blurring for adaptive
filtering, followed by a slicing module to produce a piece-wise smooth output. The main contributions
of this paper are as follows:

• We propose AdaWarp, a novel neural network module that integrates the P-S prior in an end-
to-end learnable manner, filling the gap of existing learning-based registration frameworks.
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• Extensive experiments on two datasets spanning different modalities (MRI & CT) and
input constraints (un- and semi-supervised) demonstrate that AdaWarp achieves superior
accuracy-efficiency and accuracy-smoothness tradeoffs compared to existing methods.

2 RELATED WORK

Bilateral Grid and High-Dimensional Filtering: The bilateral filter [27, 28] enhances image quality
by replacing each pixel with a weighted average of its neighbors, using weights based on spatial
proximity (spatial domain S) and intensity similarity (range domain R). While effective for edge-
preserving image manipulation, its native implementation is slow. Accelerated techniques like the
bilateral grid [35, 36], Gaussian KD-Trees [37], permutohedral lattice [38], and adaptive manifolds
[39] project signals into compact high-dimensional spaces for real-time performance. These methods
have been integrated into neural networks for tasks like scene-dependent image transformation [40]
and stereo matching [41], though their use in dense medical image registration remains limited.
Recent innovations such as bilateral neural networks [42] and the fast bilateral solver [43] extend
these ideas but have yet to find broad applicability in medical imaging.

Learning with Differentiable Transformations: The bilateral grid requires both grid-push and
grid-pull operations to manage splatting and slicing. While prior studies [44, 41] have represented the
range domain using deep bilateral grids and channel shuffling [45], by directly reshaping the encoded
tensor U ∈ RC×H×W with C = CΓ ×R into a bilateral grid Γ ∈ RCΓ×H×W×R, this method does
not fully capture the range domain. Though conceptually similar, grid-push and grid-pull are adjoint
operations. Grid-push handles transformations involving summation, such as Hough transform [46,
47] and splatting in the bilateral grid [35, 36]. Conversely, grid-pull deals with transformations
involving spatial sampling, such as image warping using a deformation field [6]. In our work, we use
existing differentiable grid-push and grid-pull techniques [48, 49] to build the differentiable grid.

Learning-based Image Registration: Image registration aims to align a moving image Im with
a paired fixed image If by estimating a deformation field ϕ. The transformation at each voxel is
defined as ϕ(x) = x+ u(x), where x is a spatial location in the domain Ω ⊆ RH×W×D, and u(x)
is the displacement vector at x. This deformation field ϕ establishes a voxel-wise mapping from each
location in If to its corresponding location in the warped moving image Im ◦ ϕ. Learning-based
methods, such as VoxelMorph [6], employ unsupervised learning to optimize the expected loss
function and derive neural network weights θ from a cohort of image pairs D, formulated as:

θ̂ = argmin
θ

{E(If ,Im)∼D[f(If , Im ◦ gθ(If , Im)) + λr(gθ(If , Im))]}. (1)

Here, f and r represent the dissimilarity and regularization functions, respectively. The function gθ,
once trained, predicts the deformation field ϕ directly from the input, i.e., ϕ = gθ(If , Im). Recent
advancements in learning-based image registration extend beyond VoxelMorph [6] by incorporating
Vision Transformers [19, 50] into frameworks like TransMorph [8] and XMorpher [10]. Innovations
such as symmetric networks [51, 52], multi-channel architectures [31], large-kernel convolutions
[11, 53], and cascaded frameworks [54, 9, 17] have further advanced the field. More recent methods
like RDP [55] and CorrMLP [56] combine image pyramids [57] or multi-scale strategies [17] with
advanced modules like MLPs and vision transformers [58], achieving competitive performance.
However, as noted by Jena et al. [59] and Hansen et al. [60], amortized optimization with the same
voxel-wise dissimilarity as iterative instance optimization methods offers no clear advantages in
unsupervised settings. AdaWarp addresses this gap by integrating the P-S prior, naturally modeling
pairwise voxel relationships and enhancing flow signal propagation within a learned cost volume in
an edge-aware manner.

3 ADAWARP

In this section, we present the details of AdaWarp, starting with an introduction to the traditional
bilateral grid. We then describe how AdaWarp incorporates a differentiable bilateral grid into the
current backbone network. While AdaWarp is applied to 3D volumetric images using a 4D grid, for
simplicity, we illustrate the framework using a 2D spatial domain.
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Splatting Slicing

Figure 2: Visual illustration of the bilateral grid process on a random step function. Splatting:
Projects the 1D step function from a (1x128) space into a 16x6 sparse spatial-range grid using nearest
interpolation with sampling rates ss = 8 and sr = 0.16. Blurring: Gaussian filters with σ = 1 to
both spatial and range dimensions, corresponding to σs = σ×ss and σr = σ×sr in the initial image
space. Slicing: Utilizes linear interpolation for slicing, normalized via homogeneous coordinates.
Left: The initial step function is shown in yellow dots, with the projected intensities linked by blue
lines in the bilateral grid. Right: The blurred bilateral grid and the filtered signal are visualized, with
red dots representing the sliced output compared to the original yellow signal.

3.1 PRELIMINARIES

Here we briefly review the process of implementing fast bilateral filtering via a bilateral grid [35, 36]
(ref to Fig. 2 for an visual example). Consider a guidance image G ∈ Rh×w normalized to the range
(0, 1), and an input image I ∈ Rh×w. Let ss and sr denote the sampling rates in the spatial domain S
and the range domain R, respectively. We can establish a bilateral grid Γ ∈ R[ h

ss
]×[ w

ss
]×[ 1

sr
]×2. This

grid is initially set to zero and then updated by accumulating homogeneous coordinates (I(x, y), 1):

Γ

([
x

ss

]
,

[
y

ss

]
,

[
G(x, y)

sr

])
+= (I(x, y), 1). (2)

Here, (x, y) are the original image coordinates, and the triplet (x, y,G(x, y)) represents grid
coordinates for accessing elements in the bilateral grid, with [·] denoting the rounding operation.
The process described in Eq. (2) is called splatting, where image signals are projected onto the
higher-dimensional space S ×R. Any function f , including neural networks that take the constructed
grid Γ as input, can blur (manipulate) the grid, producing Γ̃ = f(Γ). Subsequently, slicing generates
a new image by sampling at grid location

(
x
ss
, y
ss
, G(x,y)

sr

)
using multi-linear interpolation. This

tri-phase splatting-blurring-slicing process serves as the primary building block of AdaWarp.

3.2 DIFFERENTIABLE BILATERAL GRID

Adopting notations from prior research [49, 48], we formally define the differentiable splatting and
slicing operations in the following sections. While high-dimensional filtering can project signals onto
arbitrary spaces, we focus on extending by one additional dimension. This single range dimension
is sufficient to respect object boundaries by capturing pairwise voxel intensity differences, thereby
implementing the P-S Assumption. Extending to higher dimensions is possible and could generalize
adaptive filtering further, but this lies beyond the scope of the current paper. See the appendix for a
preliminary derivation.

3.2.1 SPLATTING, BLURRING & SLICING

Splatting and slicing are symmetric operations, essential for producing piece-wise smooth outputs.
Given a source tensor U ∈ RH×W×C and a target bilateral grid Γ ∈ RH′×W ′×R×C , where H,W
are input and H ′,W ′ are output spatial dimensions, R is the range dimension size, and C is the
number of channels. A sampling grid G ∈ RH×W×3, consisting of Gx and Gy as mesh grids and
Gr as the guidance map, along with a kernel function K(), are used. The accumulated values at a
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Figure 3: Overview of the AdaWarp framework, which consists of an encoder, a guidance map
generator implemented with an MLP, and learnable adaptive filtering using a differentiable bilateral
grid. Details on the splatting and slicing processes are provided in §3.2, while the overall workflow
of the framework is described in §3.3.

cell Γijk ∈ RC and the value at cell (n,m) in the sliced feature map V ∈ RH×W are determined as:

Γijk =

S∑
(n,m)

UnmK(Gx
nm, i)K(Gy

nm, j)K(Gr
nm, k), (3)

Vnm =

S×R∑
(i,j,k)

Γ̃ijkK(Gx
nm, i)K(Gy

nm, j)K(Gr
nm, k), (4)

Here the kernel function K() can be any predefined kernel, such as the linear interpolation kernel
K(p, q) = max(0, 1 − |p − q|). Eq. (3) can be represented as D : (U,G;K) 7→ Γ, and Eq. (4)
can be represented as F : (Γ̃,G;K) 7→ V. The Γ̃ijk is generated through a "blurring" function,
implemented using a learnable neural network layer composed of two convolutional layers. This
transforms the bilateral grid, where Γ̃ = f(Γ) represents the blurring operation applied to Γ. The
difference between splatting and slicing lies in the data flow dynamics. In splatting, each cell in U
"pushes" its values to a specific location in Γ. Conversely, in slicing, each cell in V "pulls" values
from a specific location in Γ̃. In the equations, for splatting (Eq. 3), each cell on the left side may
accumulate values from multiple locations on the right, whereas in slicing (Eq. 4), each cell on the left
side typically samples from a single location on the right. We refer to these as locations rather than
cells on the right side because, with the use of a multi-linear kernel, a single location can correspond
to multiple cells. For additional details on gradient computations for both processes, see [49, 48].

3.2.2 ACHIEVING ADAPTIVE FILTERING

For edge-preserving filtering in the bilateral grid, it is essential to track the pixel count or weight per
grid cell. During splatting, a tensor the same spatial size as U, filled with ones, is concatenated with
U across channels. The grid is then divided into a value tensor and a weight tensor post-splatting,
with the former normalized by the latter before further processing.

Filtering in the original image maintains translation-equivariance in the spatial domain S but can
propagate information across nearby objects, causing issues in image registration with local dis-
continuities. In contrast, filtering in the bilateral grid preserves locality in both spatial and range
domains S ×R, enabling edge-preserving filtering. As the same filter is applied to each cell in the
grid, originally adjacent cells in the spatial domain may become farther apart in the range domain.
When projected back to image space, each pixel is effectively filtered with a unique kernel, adapting
to local intensity variations, akin to the adaptability of self-attention mechanisms. See the appendix
for the derivation of connections between adaptive filtering and self-attention.

3.3 ADAWARP FRAMEWORK

In this section, we introduce the AdaWarp framework, designed to improve the accuracy-efficiency
trade-off in image registration by leveraging the piece-wise smooth (P-S) prior, as discussed in
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§1. As shown in Fig. 3, AdaWarp consists of an image encoder, a guidance map generator, and a
differentiable bilateral grid (detailed in §3.2).

The encoder, which could be any existing backbone network such as ResNets [32] or a U-Net [7] with
linear interpolation, reduces the spatial size of the input image (H0,W0) by a certain factor, producing
a feature map of spatial size (H,W ). This feature map serves as a low-resolution approximation
of the original input images. The moving and fixed feature maps are used to compute disparities,
which are then reshaped to form a cost volume tensor U ∈ RH×W×C , similar to ConvexAdam
[61, 62]. We use a multi-layer perceptron (MLP), following prior work [40, 41], to generate a
single-channel guidance map Gr in the range (0, 1). By applying a sampling rate sr, we compute
Gr

sr
as the grid coordinate for the range domain. This, along with the spatial coordinates Gx

ss
and Gy

ss

of the original image, forms the complete sampling grid (G
x

ss
, Gy

ss
, Gr

sr
). The sampling grid enables

access to elements in the bilateral grid, supporting the splatting and slicing processes. The feature
map U is then splatted onto a bilateral grid Γ ∈ RH′×W ′×R×C and blurred via learnable convolution
layers to yield the refined grid Γ̃ ∈ RH′×W ′×R×C′

. Slicing this grid recovers the original spatial size
(H0,W0) in the final feature map V ∈ RH0×W0×C , resulting in spatial and range sampling rates set
at ss = H0

H′ = W0

W ′ and sr = 1
R , respectively.

4 EXPERIMENTS & RESULTS

In this section, we evaluate AdaWarp on two tasks: unsupervised cardiac cine-MR registration and
semi-supervised abdomen CT registration. We detail the datasets, implementation, baselines, and
metrics, followed by results and analysis focusing on accuracy-efficiency and accuracy-smoothness
trade-offs.

4.1 DATASETS, IMPLEMENTATION DETAILS, BASELINE METHODS & EVALUATION METRICS

Cardiac Dataset (Unsupervised Learning). We evaluate unsupervised intra-subject cardiac cine-
MR image registration on the ACDC dataset [63], containing 150 subjects with ED and ES phase
images and segmentation masks for the right ventricle (RV), left ventricular myocardium (LVM),
and left ventricular blood pool (LVBP). We register ED to ES images and vice versa, resulting in
300 image pairs. The dataset is split into 170 training, 30 validation, and 100 testing pairs, with no
subject overlap. All images are normalized to (0,1), resampled to a voxel size of 1.8x1.8x10 mm, and
cropped to 128x128x16. In the unsupervised setting, no masks were used for training or testing.

Abdomen Dataset (Semi-supervised Learning). We evaluate inter-subject multi-organ registration
on the Abdomen CT dataset [64], which includes 30 scans with 13 segmented structures. The dataset
was split into 380 pairs (20×19) for training, 6 pairs (3×2) for validation, and 42 pairs (7×6) for
testing. All images were resampled to a voxel size of 2 mm, resized to 192×160×256, and min-max
normalized to (0, 1) with intensities clipped to [−800, 500] Hounsfield units. In the semi-supervised
setting, masks were used only during training.

4.1.1 TRAINING DETAILS AND BASELINE METHODS

All experiments and baseline methods were conducted using Python 3.7 and PyTorch 1.9.0 [65]
on an A100 GPU and a 16-core CPU. TorchScript was used to implement splatting and slicing for
performance optimization. Training details can be found in §C of the appendix.

Baseline Methods. We benchmark AdaWarp against leading learning-based models, including
VoxelMorph [6], TransMorph [8], LKU-Net [11], FourierNet [12], CorrMLP [56], and RDP [66].
For the cardiac dataset, we also include MemWarp [17], a recently developed multi-scale network
specifically for cardiac registration, and DeBG, a deep bilateral grid model previously used in image
manipulation [40] and stereo matching [41]. For the abdomen CT dataset, we include LapIRN
[9] and textSCF [25], both designed for handling large deformations. Additionally, we evaluate
discrete optimization methods ConvexAdam [67] and SAMConvex [68], tailored for dataset with
large deformations and limited instances.
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Model Avg. (%) RV (%) LVM (%) LVBP (%) HD95 ↓ SDlogJ ↓
Initial 58.14 64.50 48.33 61.60 11.95 -

VoxelMorph [6] 76.35* 74.69 73.19 81.15 9.28 0.049
TransMorph [8] 76.89* 75.39 73.52 81.75 9.11 0.049
FourierNet [12] 77.04* 75.30 73.88 81.96 9.10 0.045

LKU-Net [11] 77.10* 75.16 74.20 81.75 9.14 0.048
MemWarp [17] 77.25* 75.86 73.92 81.99 9.23* 0.074

DeBG [40] 77.36* 76.05 74.41 81.61 8.75 0.042
CorrMLP [71] 77.58* 74.84 75.68 82.21 9.23* 0.052

RDP [66] 77.62* 74.70 75.95 82.20 9.15 0.050
Ada-Cost (Ours) 79.82 77.58 77.95 83.92 8.98 0.050

Table 1: Quantitative evaluation of different models on the ACDC
dataset. Top scores are highlighted in bold. Metrics include
Average Dice (%), RV Dice (%), LVM Dice (%), LVBP Dice
(%), HD95 (mm), and SDlogJ, with ↓ indicating lower is better.

Model Type Dice (%) HD95↓ SDlogJ ↓
Initial - 30.86 29.77 -

FourierNet [12] L 42.80* 22.95* 0.13
VoxelMorph [75] L 47.05* 23.08* 0.13

TransMorph [8] L 47.94* 21.53* 0.13
LapIRN [70] L 51.39* 20.89* 0.06
LKUNet [11] L 52.08* 20.34* 0.28

CorrMLP [71] L 56.58* 20.40* 0.16
RDP [66] L 58.77* 20.07* 0.22

TextSCF [25] L 60.75* 22.44* 0.87
ConvexAdam [67] D 51.10* 23.14* 0.11
Ada-ConvexAdam D 51.29* 23.29* 0.11
SAMConvex [68] D 53.65* 18.66* 0.12
Ada-SAMConvex D 53.94* 18.52* 0.12
Ada-Cost (Ours) L&D 64.97 13.70 0.17

Table 2: Quantitative compari-
son on the Abdomen CT dataset.
“L” denotes learning-based meth-
ods, and “D” represents discrete
optimization-based methods.

4.1.2 IMPLEMENTATION DETAILS

For all methods, including AdaWarp, we follow Balakrishnan et al. [6] and use scaling and squaring
[69] with 7 integration steps for diffeomorphic transformation. It is worth noting that the guidance
map is sourced from the fixed image only, as for each voxel location in the target image, the
deformation field samples a value from moving image. Dataset-specific implementation details are
provided below.

Ada-Cost. The instantiation of AdaWarp for deformable image registration is Ada-Cost, which
follows ConvexAdam’s discrete optimization strategy [62, 61] while being end-to-end trainable like
other learning-based methods. It uses two 3D conv-norm-act blocks as encoder to extract moving and
fixed feature maps, followed by trilinear downsampling to form a 3-level image pyramid. At each
pyramid level, a cost volume with one neighbor is computed, followed by two 4D conv-norm-act
blocks for adaptive filtering, and finalized with a 3D conv-norm-act block and a convolution to extract
the deformation field. Unlike prior multi-scale methods [70, 71, 17], Ada-Cost processes cost volumes
with shared network weights across pyramid levels, reducing parameters while maintaining optimal
performance. For the cardiac dataset, raw images are processed through an additional conv-norm-act
block before being input to the encoder. For the abdomen dataset, feature maps extracted by a
pretrained universal segmentation network [72] (pre-softmax) serve as input to the encoder.

Dataset specifics. In cardiac dataset, for DeBG, aside from the encoder and splatting adapted
from [44, 41], all other components (e.g. spatial and range sampling rates) follow the Ada-Cost
setup. In DeBG, FourierNet, and Ada-Cost, downsampling is omitted in the axial direction due to
slice thickness considerations. Discrete optimization methods use pretrained feature descriptors:
ConvexAdam utilizes MIND [73], while SAMConvex employs contrastively pretrained descriptors
from a large CT dataset [74]. As SAMConvex’s pretrained model is unavailable, we replace it with a
pretrained CT segmentation model [72], the same used as input to Ada-Cost. Both methods adopt a
3-level image pyramid. In Table 2, Ada-* denotes the use of a non-learnable bilateral filter for cost
volume filtering with Gaussian kernels (σ = 1) for both spatial and range domains.

4.1.3 EVALUATION METRICS.

Following standard practice [6, 8], we use the Dice Similarity Coefficient (Dice) and 95th percentile
Hausdorff Distance (HD95) to assess anatomical alignment, and the standard deviation of the Jacobian
determinant’s logarithm (SDlogJ) to measure deformation smoothness. Computational complexity is
evaluated using multiply-add operations (Multi-Adds, G) and parameter size (Params, MB). Statistical
significance is determined using paired t-tests on both Dice (%) and HD95, with an asterisk (*)
indicating significance for comparison methods at p < 0.05. Absence of an asterisk denotes no
significance.

4.2 RESULTS AND ANALYSIS

4.2.1 QUANTITATIVE RESULTS & ANALYSIS

Cardiac Dataset. Table 1 compares methods on the ACDC dataset, highlighting that all approaches
produce smooth deformation fields with low SDlogJ. Ada-Cost achieves the highest Dice scores across
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Figure 4: Qualitative results on the abdomen dataset. The first row shows the original fixed image
alongside the warped moving images produced by each method. The second row displays the original
moving image and the deformation fields in grid format for each method. The third row illustrates the
projected 2D vector fields of each method. Color contours highlight objects of interest, with different
organs represented in distinct colors.

all anatomical structures, surpassing DeBG, which uses shuffled channels for range representation but
lacks Ada-Cost’s performance. Multi-scale methods like RDP, CorrMLP, and MemWarp outperform
single-scale approaches like VoxelMorph and LKU-Net in Dice (%). Ada-Cost exceeds the runner-up
RDP by 2.83% in Dice (%), while maintaining comparable deformation smoothness measured by
SDlogJ. The most notable improvement is observed for the right ventricle (RV), likely due to the
complex motion between RV and LV compared to the relatively uniform motion within LVM and
LVBP. This highlights the importance of preserving local discontinuities and leveraging piece-wise
smooth properties rather than relying purely on band-limited approaches. The comparison between
Ada-Cost and DeBG further emphasizes the benefits of actual splatting to maintain the image manifold
in high-dimensional space, as opposed to reshaping tensors for range representation. Interestingly,
while not observed for the abdomen dataset, multi-scale methods like Ada-Cost exhibit slightly higher
HD95 compared to their single-scale counterparts.

Abdomen Dataset. Table 2 compares various methods on the Abdomen dataset. Discrete optimization
methods generally outperform single-scale learning-based approaches, except for TextSCF. While
TextSCF achieves high Dice scores by leveraging pretrained segmentation masks with a visual-
language model to steer dynamic filters, it produces implausible deformation fields, as indicated by an
SDlogJ of 0.87. Multi-scale methods, including CorrMLP, RDP, and Ada-Cost, excel in anatomical
alignment accuracy while maintaining relatively smooth deformation fields. Specifically, Ada-Cost,
with similar or slightly higher SDlogJ, surpasses the best-performing multi-scale approach RDP
and the discrete optimization method SAMConvex by 10.54% and 21.10% in Dice improvement,
respectively. In HD95 reduction, Ada-Cost achieves improvements of 31.73% over RDP (20.07 to
13.70) and 26.61% over SAMConvex (18.66 to 13.70). Interestingly, the bilateral filter counterparts
of ConvexAdam and SAMConvex slightly outperform their original versions in Dice but fall short
compared to Ada-Cost. This highlights the superiority of using learnable adaptive filtering over
fixed-kernel bilateral filtering.

4.2.2 QUALITATIVE RESULTS & ANALYSIS

Abdomen Dataset. The qualitative results of Ada-Cost compared to other baseline methods on the
abdomen dataset are shown in Fig. 4. From the first row, Ada-Cost achieves the closest anatomical
alignment to the fixed image in two notable aspects: (1) For the left and right kidneys, which have
large displacements nearly exceeding their size, only Ada-Cost preserves kidney integrity without
affecting surrounding tissues (e.g., ConvexAdam misaligns the liver, and other methods distort the
vertebral spine); (2) Ada-Cost and CorrMLP are the only methods to correctly capture and respect
the body margin near the image boundary visible in the fixed image. From the second and third
rows, we observe the following: (1) Only Ada-Cost and CorrMLP produce outward-pointing vectors
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Figure 5: Visual comparison of the trade-off be-
tween Avg. Dice (%) and computational complex-
ity on the cardiac dataset, with Multi-Adds (G) on
a logarithmic x-axis and Params (MB) indicated
by circle size. TransMorph is shown in three ver-
sions (tiny, small, normal), while complexity for
FourierNet, LKU-Net, RDP, and Ada-Cost is ad-
justed by varying the initial channel count.
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Figure 6: Visual comparison of the trade-off be-
tween Avg. Dice (%) and computational com-
plexity on the abdomen dataset, with Multi-Adds
(G) on a logarithmic x-axis and Params (MB) in-
dicated by circle size and label. TransMorph is
shown in its normal version, while complexity
for others and Ada-Cost is adjusted by varying
the initial channel count.

at the left/right boundaries, while others point inward, failing to capture the margins. (2) Ada-Cost
exhibits certain foldings in the displacement field, but the displacements within each object remain
smooth, e.g., only ConvexAdam and Ada-Cost show smooth fields within the left kidney (left refers
to the image position throughout). (3) Ada-Cost effectively preserves local discontinuities and sharp
object boundaries, such as the left/right kidneys and the right side of the liver, while RDP shows
discontinuities inside organs, which is implausible.

Cardiac Dataset. Qualitative results for Ada-Cost compared to other methods on the ACDC dataset
are shown in Fig. 10 in §F of the appendix. Key observations: (1) Despite similar SDlogJ values,
Ada-Cost produces smoother fields, particularly in background regions and transitions between the
RV and LV myocardium. (2) When registering end-diastole to end-systolic phases, only Ada-Cost
exhibits a single realistic center in the RV with inward-pointing vector fields, while others show two.

4.2.3 RESULTS & ANALYSIS ON COMPUTATIONAL COMPLEXITY

We evaluate network complexity using Multi-Adds (G) and Params (MB), adjusted by parameter size
for each network. Fig. 5 compares Ada-Cost’s accuracy and complexity against other methods on the
ACDC dataset. Table 1 highlights Ada-Cost achieving 79.82% Dice with 1.72 MB and 208 G Multi-
Adds. A smaller version achieves 79.34% Dice with 0.67 MB and 106 G Multi-Adds, outperforming
the runner-up RDP by 2.21% in Dice, reducing parameter size by 92.48%, and Multi-Adds by 31.17%.
This demonstrates Ada-Cost’s superior accuracy-efficiency trade-off on the cardiac dataset compared
to all baselines.

Fig. 6 compares the accuracy-efficiency tradeoff of Ada-Cost with other methods on the abdomen
dataset. By adopting discrete optimization and using pretrained feature extraction with shared weights
across pyramid levels, Ada-Cost reduces the parameter size to under 1 MB while substantially
improving registration accuracy in terms of Dice and HD95. Similar to TextSCF [25], which
incorporates external segmentation masks during training and inference, Ada-Cost and SAMConvex
[68] utilize pretrained feature maps for enhanced performance. Ada-Cost (0.23 MB) achieves a
slightly higher Dice (61.94%) compared to the runner-up TextSCF (60.75%, 33.35 MB), while
reducing Multi-Adds by 64.91% and Params by 99.31%. However, it is important to note that the
feature extractor itself adds 1110 G Multi-Adds and 19.07 MB in Params. Future work will focus on
developing more efficient feature extractors using contrastive learning or masked auto-encoders.

4.2.4 RESULTS & ANALYSIS ON DEFORMATION FIELD SMOOTHNESS

We omit smoothness plotting for the cardiac dataset, as all methods produce smooth deforma-
tion fields with SDlogJ below 0.1, the largest being 0.074 from MemWarp [17]. Details on
the plausibility and regularity of the deformation fields are provided in Fig. F in the appendix.
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Figure 7: Trade-off between smoothness and Dice score
(%) for Ada-Cost and benchmarks. Smoothness regu-
larization λ for Ada-Cost is listed on top, while Fourier-
Net parameters are below. ’Int’ indicates integration
was applied.

In contrast, the abdomen dataset exhibits
greater variability in smoothness due to in-
herently larger deformations, which requir-
ing careful handling to prevent overfitting
to segmentation masks and the generation
of implausible fields. As shown in Fig. 7,
Ada-Cost with varying λ : 10.0 → 1.0 →
0.1 → 0.01 in Eq. (1) shows that Dice
scores peak at an SDlogJ of 0.17 before de-
clining, indicating strong anatomical align-
ment across different smoothness levels. No-
tably, with similar Dice to TextSCF (60.1%
vs. 60.75%), Ada-Cost (λ = 10.0) achieves
a much smaller SDlogJ (0.10 vs. 0.87).
FourierNet, while producing smooth defor-
mation fields due to its band-limited design,
fails to capture local discontinuities, leading
to poor anatomical alignment. This high-
lights the effectiveness of incorporating the proposed P-S assumption, which is crucial for certain
medical image registration tasks.

5 DISCUSSIONS

5.1 EFFECTS OF SAMPLING RATE sr & ss .

The sampling rate sr affects the range domain (R). At sr = 1, the range dimension reduces to
1, turning the process into a gated attention process, where the guidance map gates the linearly
upsampled encoder output. Decreasing sr increases range dimensionality, enhancing edge distinction
but also raising computational costs. Experiments show that reducing sr from 1 to 1/64 improves
accuracy in both cardiac and abdomen registration, peaking at sr = 1/8 and sr = 1/32, respectively,
before declining. The smaller optimal sr for abdomen reflects its higher need for handling local
discontinuities. The sampling rate ss influences the spatial domain (S). At ss = 1, spatial dimensions
match the original image, and increasing ss smooths the results while reducing computation. Raising
ss from 1 to 32 improves accuracy, peaking at ss = 8 for both tasks before decreasing.

5.2 LIMITATIONS.

The development of AdaWarp revealed two key limitations. First, while AdaWarp effectively
respects object boundaries by projecting image signals to a higher-dimensional space, we only
explored intensity differences for edge awareness. As discussed in §B of the appendix, AdaWarp
represents a special case of a more generalized adaptive filtering framework. Future work could
investigate contextual differences beyond intensity differences through high-dimensional adaptive
filtering. Second, projecting to high-dimensional space results in many zero-valued cells, with
non-zero cells forming a submanifold [76]. Restricting grid manipulations, such as convolutional
filtering, to this submanifold could further reduce computational overhead.

6 CONCLUSIONS

Our paper introduces AdaWarp, a novel neural network module for medical image registration that
improves both accuracy-efficiency and accuracy-smoothness trade-offs by leveraging the piece-wise
smooth prior. This prior is implemented through a learnable bilateral grid with guidance mapping,
enabling accurate low-frequency approximations while preserving boundary details. Its success in
two medical registration tasks highlights its broader applicability to similar problems. Moreover,
AdaWarp transforms deformable registration into a keypoint detection task, with potential applications
in segmentation tasks as briefly discussed in the appendix.
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A PSEUDO-GT GENERATION

Figure 8: The first two figures depict the original moving and fixed images, while the third figure
shows the warped image generated by DDIR. The final figure illustrates the deformation field, where
colors correspond to the normalized direction and magnitude of displacement, as indicated in the
reference circle at the bottom right.
The pseudo-ground truth (pseudo-GT) deformation field is generated using DDIR [31], a pioneering
neural network designed to produce high-quality deformation fields that preserve discontinuities.
DDIR employs region-specific masking to separate foreground and background areas, generating
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separated deformation fields for each region through independent yet identical U-Net architectures [7].
The final deformation field is obtained by composing all the separated deformation fields, ensuring
local smoothness while preserving edge discontinuities. Prior methods [77, 78] generate deformation
fields directly from region-of-interest masks. However, these approaches overlook intensity variations
across different places of a region, which can degrade registration accuracy.

The accuracy of segmentation masks significantly influences the performance of DDIR. In the original
work, the masks were automatically generated by a neural network[79], which led to suboptimal
results for producing high-quality deformation fields. However, when using ground truth masks,
the Dice score between the warped moving image and the fixed image reaches 98%, allowing the
corresponding deformation field to be considered a pseudo ground truth, see Fig. 8.

B CONNECTIONS WITH SELF-ATTENTION.

Here we show that in an arbitrary dimensional space, Lipschitz-constrained L2 self-attention [80]
becomes a special case of this adaptive filtering approach, specifically when the key-query projection
matrices satisfy Wq = Wk [81].

ṽi =

n∑
j=1

e−
1
2∥pi−pj∥2

vj . (5)

Eq. (5) represents high-dimensional Gaussian filtering that associates each position vector pi with
a corresponding value vector ṽi to be filtered, then combines these values with others located at
proximate positions. By substituting pi with x⊤

i W and vj with x⊤
j Wv, the model is transformed

into constrained self-attention as described in Eq. (6). In this formulation, self-attention is equivalent
to high-dimensional Gaussian filtering. When projecting these Gaussian kernels back into the
image space, each pixel is assigned a different weight, effectively implementing adaptive filtering.
Replacing the Gaussian kernel with a learnable kernel K parametrized by θ extends Eq. (6) to
adaptive high-dimensional filtering in Eq.(7), positioning constrained self-attention as a special case
within this broader framework. Here, γ is a normalization factor derived from the Softmax weights
used in the attention mechanism.

ṽi =
1

γi

n∑
j=1

e−
1
2∥x

⊤
i W−x⊤

j W∥2

x⊤
j Wv. (6) ṽi =

1

γi

n∑
j=1

Kθ(∥x⊤
i W−x⊤

j W∥2)x⊤
j Wv. (7)

Our AdaWarp is also a special case of Eq. (7). If we replace x⊤
i W − x⊤

j W with Gi −Gj , where
Gi = [Gx

i ,G
y
i ,G

r
i ], representing spatial coordinates (Gx

i ,G
y
i ) along with the guidance map value

Gr
i at that location, with Kθ as the learnable convolutional filters, it is essentially the proposed

adaptive filtering.

C TRAINING DETAILS

Hyperparameters are optimized via grid search, and all learning-based networks use the Adam
optimizer with a 1e-4 learning rate and a polynomial decay scheduler (rate 0.9). For smoothness, we
apply L2 regularization on deformation gradients (λ = 0.01 for cardiac, λ = 1 for abdomen). We
use MSE for cardiac and local NCC for abdomen as dissimilarity losses, with an additional Dice loss
for incorporating abdomen segmentation (training only). Cardiac models are trained for 500 epochs
with a batch size of 4, while abdomen models are trained for 100 epochs with a batch size of 1.

C.1 DESCRIPTION OF λ VALUES

We performed a grid search with λ = 0.01, 0.1, 1.0, and 5.0. We found λ = 0.01 to be optimal
for the ACDC dataset and λ = 1.0 for the abdomen dataset. Most baseline methods use the same
parameters and training settings as AdaWarp. Below, we provide more details:

C.1.1 ACDC DATASET

All learning-based methods adopt the same hyperparameters as AdaWarp, with λ = 0.01, MSE as
the dissimilarity loss, and scaling-and-squaring with 7 steps for the diffeomorphic transformation
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model. For Fig. 5, while keeping other hyperparameters the same, we vary computational complexity
by adjusting the starting channel count in FourierNet, LKU-Net, and Ada-Cost, and by modifying the
backbone of TransMorph (tiny, small, and normal).

C.2 ABDOMEN DATASET

The abdomen dataset presents more challenges due to the large displacement problem. To clarify:

• FourierNet, VoxelMorph, TransMorph, and Ada-Cost use local NCC as the dissimilarity
loss with λ = 1.0. ConvexAdam and SAMConvex also use λ = 1.0, employing MIND and
segmentation feature maps, respectively, to compute the dissimilarity. All these methods
adopt scaling-and-squaring with 7 steps for the diffeomorphic transformation model.

• For TextSCF, we follow its original implementation with λ = 0.1 and without the diffeo-
morphic transformation model. The λ = 0.1 version with integration is also presented in
Fig. 7.

• Both LKUNet and LapIRN results in Table 2 use λ = 1.0 with the diffeomorphic transfor-
mation model.

D DISPLACEMENT FIELD MANIPULATION

This section mainly develops for application of keypoints-based lung CT registration. We briefly
review deformable image registration (DIR), followed by derivation of displacement field manipula-
tion via a bilateral grid. DIR aligns a moving image Im with a fixed image If using spatial mapping
ϕ(x) = x+ u(x), where u(x) is the displacement at x in domain Ω ⊂ RH×W×D. This warps Im
for voxel correspondence with If , using linear interpolation for non-grid positions. Unsupervised
learning estimates deformation field ϕ through a network Fθ, optimizing weights θ via a composite
loss function L. This combines dissimilarity between Im and If , and deformation field smoothness:

L = Lsim(If , Im ◦ ϕ) + Lsim(Gr
f ,G

r
m ◦ ϕ) + λLreg(ϕ), (8)

where Gr
f and Gr

m are derived from If and Im via guidance mapping. For cardiac registration, we
use the loss function defined in Eq. (8). In lung registration, this is augmented with an additional
Dice loss using segmentation masks and target registration loss based on keypoints.

D.1 DISPLACEMENT FIELD MANIPULATION.

Using a bilateral grid, we can create a complete displacement field solely from keypoints. Given
moving keypoint pm ∈ RN×3 and corresponding fixed keypoints pf ∈ RN×3, a sparse displacement
field is formed by setting u[pf (i)] = pm(i)− pf (i) for each i ∈ {1, 2, ..., N}, where p∗(i) denotes
the ith point in the set. For all other points u(x) is a zero vector. Given the guidance map Gr

derived from either a guidance map generator or the raw image, the sparse displacement field u can
be projected onto a bilateral grid as Γ = D(u,G;K). Here, G includes mesh grids and Gr, and K is
a linear sampling kernel. The task then is to minimize the equation argminΓ̃

∑
||grad(Γ̃)||2, subject

to the constraint Γ̃(x) = Γ(x), for every x that Γ(x) ̸= 0. This is used to fill up the zero values in
the grid. The optimization outlined in the equation can be efficiently executed through convolution
and seamlessly integrated into neural network training.

D.2 ZERO-SHOT CAPABILITY

In this section, we demonstrate that AdaWarp retains the functionality of traditional bilateral grids
while being implemented in a more user-friendly PyTorch framework. We evaluate AdaWarp’s zero-
shot inference in propagating sparse displacement vectors to fill the entire image based on intensity,
using the L2R-NLST dataset [82, 83], which contains paired low-dose helical lung CT images at
inhale and exhale phases, along with sparse auto-generated keypoints. Details on propagation of
sparse displacement vectors can be found in §D of the appendix, with more background details on
bilateral grids in [36].

Among the evaluated methods, FourierNet+ and LKU-Net are specifically trained and fine-tuned
for this task, whereas uniGradICON has been trained on various medical image datasets spanning
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Figure 9: The first row presents lesion masks of varying sizes and a vessel mask. The second row
displays the corresponding DFT magnitude spectra, normalized to the range (0,1) and resized to
32× 32 to improve visualization clarity.

different anatomical regions and contrasts. Although uniGradICON’s training data includes lung CT
images, these were sourced from different studies. Unlike the benchmarks, our Ada-KPs model has
not been trained on any lung CT dataset.

For quantitative evaluation, the Learn2Reg leaderboard [84] measures Target Registration Error (TRE)
using anatomical landmarks (LM) manually labeled by experts and auto-generated keypoints (KPs).
All results are obtained from the Learn2Reg leaderboard for the NLST task. As shown in Table 3,
networks specifically trained on this dataset exhibit slightly better/lower TRE (LM) compared to
untrained ones. However, AdaWarp achieves the lowest TRE (KP) due to the bilateral grid propagating
from these KPs. The higher TRE (LM) may be due to the sparse nature of auto-generated KPs and
the limited accuracy of keypoint correspondence between moving and fixed images. A denser, more
accurate set of keypoints would likely reduce TRE (LM). As a result, AdaWarp allows for improved
lung CT image registration by solely enhancing the precision of auto-generated keypoints, effectively
transforming the deformable registration problem into a keypoint detection task.

Model TRE (LM) ↓ TRE (KP) ↓
FourierNet+ [13] 1.55±0.24 0.82±0.13

LKU-Net [11] 1.55±0.26 0.75±0.13
uniGradICON [52] 2.07±0.43 1.26±0.28

uniGradICON (IO) [52] 1.77±0.29 0.98±0.18
Ada-KPs (Ours) 1.79±0.54 0.08±0.18

Table 3: Quantitative evaluation of different mod-
els on the L2R-NLST dataset, highlighting top
scores in bold. Metrics include TRE (LM) (mm)
and TRE (KP) (mm), with a ↓ indicating that
lower values are better.

Model Dice (%)↑ HD95↓
Swin Encoder Upsample [50] 84.73 17.98

Swin-UNet [85] 88.35 17.95
PVT-CASCADE [86] 88.51 16.55

Trans-UNet [87] 88.93 16.60
Ada-Swin (Ours) 90.02 15.16

Table 4: Quantitative evaluation of different mod-
els on the test set of ISIC2018 dataset, highlight-
ing top scores in bold. Metrics include Average
Dice (%) and HD95 (in pixels), with a down ar-
row indicating that lower values are better.

E EXTENDING ADAWARP TO IMAGE SEGMENTATION

Similar to approximating deformation fields in the low-frequency range of the Fourier domain,
segmentation masks exhibit piece-wise constant structures. As shown in Fig. 9, larger masks
concentrate in the low-frequency range, while smaller masks spread their frequency components. For
vessel masks, frequency components, except for the 0 component, are distributed more uniformly.
This suggests that bilinear upsampling may suffice for segmenting large masks, but smaller masks
require more careful handling.

We use skin lesion segmentation to validate our hypothesis, leveraging the ISIC2018 challenge dataset
[88, 89] with 2,594 training images, 100 for validation, and 1,000 for testing. The model’s ability
to segment piece-wise constant masks aligns with its core design. During training, raw images
are input with corresponding masks as output, without architectural modifications. We evaluate
segmentation accuracy using Dice and HD95 (in pixels). For this task, we use Swin Transformer
[50] as the encoder, with one model performing direct upsampling ("Swin Encoder Upsample")
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Figure 10: Qualitative results on the ACDC dataset. The first row shows the original fixed image
and the warped moving images produced by each method. The second row displays the original
moving image and the deformation fields in grid format for each method. The third row presents
zoomed-in 2D vector fields projected onto the axial plane. Color contours indicate objects of interest,
with different organs represented in distinct colors.
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Figure 11: Effective Receptive Field (ERF) visualizations [26] across architectures: VoxelMorph
(a, b, c), Swin-Unet [50, 85] (d), Ada-Swin (e). Darker and more widely spread regions indicate
larger ERFs. Swin-Unet and Swin-Slicer feature maps are presented pre-softmax, while Unet utilizes
encoder feature maps, with L3 to L1 showing increased spatial sizes via upsampling.

and another using AdaWarp for upsampling ("Ada-Swin"). Other baselines include Trans-UNet
[87], Swin-UNet [85], and PVT-CASCADE [86]. Ada-Swin achieves the highest Dice (%) and
lowest HD95 compared to state-of-the-art methods, demonstrating AdaWarp’s versatility for medical
imaging tasks. Additionally, Swin Encoder Upsample, while achieving the lowest Dice (%) at 84.73%,
still maintains a reasonable score, supporting our spectrum analysis assumptions.
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F QUALITATIVE RESULTS AND EFFECTIVE RECEPTIVE FIELD

F.1 EFFECTIVE RECEPTIVE FIELDS (ERFS)

The low-resolution feature maps from deeper layers of neural networks inherently possess larger
effective receptive fields (ERFs) than shallower layers. Please refer to the ERF visualization available
via Fig. 11. Darker and more widely spread regions indicate larger ERFs. The details of ERF
computation can be found in the seminal work[26]. Our key observations are as follows:

F.1.1 LEVERAGING LARGE RECEPTIVE FIELDS

Subfigures (a), (b), and (c) illustrate feature maps from different encoder levels (L1: full resolution,
L2: 1/2 downsampled, L3: 1/4 downsampled) from VoxelMorph. Deeper layers (e.g., L3) have larger
ERFs, confirming that low-resolution features from deeper layers capture broader context. AdaWarp
leverages the deepest encoder layer for the largest possible ERF. As shown in Table 4 (first row vs.
last row), maintaining object boundaries (via AdaWarp) is essential for accuracy, as large ERFs alone
are insufficient.

F.1.2 EFFECTIVENESS OF ADAWARP OVER SWIN-UNET

We compared ERF heatmaps of Swin-Unet and Ada-Swin (pre-softmax feature maps of models used
in Table 4). Both share identical encoders, differing only in the decoder (Swin-Unet uses a U-Net
structure, while Ada-Swin uses AdaWarp). Ada-Swin shows larger ERF regions and achieves 1.89%
higher accuracy than Swin-Unet.
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