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Abstract

Bayesian optimization (BO) is a popular approach to optimizing costly, black-
box functions that rely on a statistical surrogate model of the function, typically a
Gaussian process (GP) and the so-called acquisition function (AF). Although the
choices of the GP kernel and the AF can strongly affect the results, there does
not exist an automatic way of selecting them. Ensembling, namely, using several,
different kernels (Multi-Model) or AFs (Multi-AF) is one possibility for deriving a
BO algorithm that is robust and safer. These ideas have been considered separately
in the past. In this work, we consider ensembles of both kernels and AFs (Multi-
Model-Multi-AF) and perform an empirical comparison to show their superiority
with respect to single-ensemble algorithms.

1 Introduction

Bayesian optimization (BO) has become an important tool for black-box optimization and is widely
used in fields such as machine learning, automated design, and complex system optimization [1; 2;
3]. It predicts the behavior of the objective function by positing a proxy model, usually a Gaussian
process (GP) [4] and uses these predictions to guide the optimization process, greatly improving the
efficiency of the algorithm. However, in BO, the choice of kernel function and acquisition function
(AF) is crucial to the final optimization result. The choice of the kernel affects the smoothness and
complexity of the model. The AF guides how to select new points for evaluation. If the AF cannot
effectively explore-exploit the search space, it may fall into a local optimum or waste computing
resources. Different choices will directly determine the performance and efficacy of the optimization
process. Therefore, how to select and optimize these components has become an important issue in
current research [2; 1].

Ensembling is a popular strategy in machine learning for leveraging multiple learning algorithms and
improving the performance [5]. Indeed, the advantages of ensembling in BO are well-recognized,
appearing in the majority of the best-performing algorithms that took part in the recent competition
[6]. Ensembling is part of a recent federated BO [7], which can be interpreted as using a mixture
of GP models. Ensemble models have also gained popularity in transfer learning extensions to BO,
where information from base tasks are combined via weighted rankings of individual predictions
or via weighted combination of AFs [8; 9; 10]. Still, as noted in [6], more studies are needed to
understand ensembling in BO.

In this work, we focus on ensembles of two important components in GP-based BO: kernels and
AFs. The ensembling strategy that we consider consists of sampling one representative from
a pool of candidates. Existing works have been limited to either different kernel functions or
different AFs. For example, the GP-hedge algorithm [11] improves optimization performance by
integrating several acquisition functions, but still uses a single pre-selected kernel. This algorithm
is an instance of a Multi-AF (MA) method. At the same time, Bayesian Model Averaging (BMA)
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Figure 1: Simple regret in log-scale. The lines represents the median results across 25 simulations,
with the bands representing the 0.75 and 0.25 quantiles.

improves optimization results by integrating different kernel functions [12], but does not adopt
an ensembling strategy for AFs. This algorithm is an instance of a Multi-Model (MM) method.
Although these methods have proved to be useful, their interaction has not been explored in the
literature. To address these issues, we propose an MMMA (Multi-Model-Multi-AF) approach to
BO. This approach fills the gaps in existing methods by integrating kernel functions and AFs at
the same time. We conducted experiments on 16 benchmarks and showed empirical evidence that
MMMA-BO provides a more robust approach to BO.

Related Work. Some previous works that have considered using ensembles of AFs are
[2; 11; 13; 14; 15; 16; 17]. “Ensembling” is a very broad term that can interpreted as (i) individually
optimizing a portfolio of AFs and choosing one of the maximizers according to some criteria
[11; 13]; (ii) selecting and optimizing one AF from the portfolio [14; 15]; (iii) jointly optimizing
several AFs in a multi-objective fashion [16; 17]; or (iv) integrating out the AF using an approx-
imate fully Bayesian GP [2]. The use of an ensemble of models (kernels) can be also interpreted
differently [2; 12; 18].

The fully Bayesian treatment of GP hyperparameters naturally leads to an ensemble of kernels,
each one with a hyperparameter sample, drawn approximately from the posterior; this model in
conjunction with, e.g., the expected improvement (EI) AF, leads to the “integrated” AF mentioned
above [2]. On the other hand, a series of different kernels can be weighted according to their marginal
likelihoods (i.e., the probability of the data given the model/kernel) using BMA weights; then, at
each iteration, a kernel is selected according to its BMA weight [12; 18].

2 Multi-Model Multi-Acquisition function Bayesian optimization

Background. We aim to solve maxx f(x) by sequentially acquiring a dataset Dt = {Xt,yt} =
{(xi, yi)}ti=1, where yi = f(xi) + ui, ui ∼ N(0, σ2). The function f(x) is assumed to be sampled
from a GP, f(x) ∼ GP(µ(x), κ(x,x′)), where µ(x) = 0 and κ(x,x′) is the kernel function. At
each iteration, the function is queried at xt+1 = argmaxx α(x;Dt), collecting yt+1 = f(xt+1)+ut

and updating Dt+1 = Dt∪{(xt, yt)}. The criterion α(x;Dt) is the AF which is computed using the
posterior GP, f |Dt ∼ GP(mt(x), s

2
t (x)), where mt(x) and s2t (x) are the posterior predictive mean

and variance of f(x) at x [4]. Although the particular choices of κ and α determine the performance
of the algorithm, they are usually kept fixed throughout the algorithm.

Motivation. Consider a scenario where we want to implement a BO algorithm but have limited
prior knowledge about the target function and insufficient expertise in selecting a suitable AF. The
standard recommendations for the kernel κ and AF α are often the Matérn 5/2 kernel and Expected
Improvement (EI), respectively. However, these defaults may not be “optimal” for our specific prob-
lem. Ideally, if we could experiment with different combinations of (κ, α), we would identify the
best pair in hindsight. Furthermore, when applying BO across various problems, different combi-
nations may yield better results. Unless one combination is clearly dominant, selecting the “best”
pair remains challenging—even in hindsight. For example, Figure 1 illustrates the regret for several
combinations of κ ∈ {Matérn-5/2, RBF} and α ∈ {EI, PI, UCB} for two different test functions.
For either function, the simple regret after 100 iterations varies by roughly one order of magnitude
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depending on the choice of (κ, α). Notably, the best-performing configuration for the Rastrigin
function, (RBF, UCB), is not among the top two configurations for the DixonPrice function.

MMMA-BO. Let us consider M different kernels {κm}Mm=1 and N different AFs {αn}Nn=1. Our
goal is to ensemble both kernels and AFs using two sets of normalized weights {wκ

m}Mm=1 and
{wα

n}Nn=1 such that wκ
m ≥ 0 and wα

n ≥ 0 represent respectively the probability of choosing kernel
κm and AF αn at each iteration. By using multiple kernels and AFs simultaneously, we avoid
making a potentially suboptimal choice at the outset. The MMMA-BO algorithm in 1 is essentially
the same as standard BO but it involves sampling a pair—one kernel and one AF—at each iteration,
rather than committing to a single combination throughout the optimization process.

The sampling probabilities for each kernel and AF can either be fixed in advance or adaptively
adjusted based on performance during the optimization process. A straightforward and effective
fixed choice is to assign uniform weights, wκ

m = 1
M and wα

n = 1
N , corresponding to the random

selection of a different BO algorithm at each iteration. However, a performance-guided approach
offers a more dynamic alternative, where “rewards” are assigned to kernels and AFs based on their
contribution to the optimization process. For kernels, setting the weights with BMA [12], wκ

m ∝
p(yt|κm), where p(yt|κm) is the GP marginal likelihood with optimized hyperparameters, makes
sense from a theoretical perspective. This method allows for kernel selection based on their fit to the
observed data. Nevertheless, in low-data regimes—typical in BO—this approach may not always be
appropriate. For AFs, the wα

n can be adjusted based on rewards reflecting each αn’s contribution to
the optimization. For instance, we reward αn if it identifies a candidate with a function value greater
than the current best [15]. A particular case of this strategy is the Hedge algorithm [11] (“Bandit”
in the experiments).

Algorithm 1 Bayesian Optimization with Multiple Kernels and Acquisition Functions

1: Input: Set of kernels {κm}Mm=1, set of acquisition functions {αn}Nn=1, initial dataset D0,
2: Kernel weights {wκ

m}Mm=1, acquisition function weights {wα
n}Nn=1

3: Initialize: D = D0

4: for t = 1 to T do
5: (i) Sample a kernel κ∗ from {κm}Mm=1 using the weights {wκ

m}Mm=1
6: (ii) Fit the Gaussian Process (GP) with kernel κ∗ to the dataset D
7: (iii) Sample an acquisition function α∗ from {αn}Nn=1 using the weights {wα

n}Nn=1
8: (iv) Optimize the acquisition function α∗ to find the next query point xt+1

9: (v) Evaluate yt+1 = f(xt+1) + ut+1 and update the dataset: D = D ∪ {(xt+1, yt+1)}
10: if weight update then
11: (vi) Update the kernel weights {wκ

m}Mm=1 and/or acquisition function weights {wα
n}Nn=1

12: end if
13: end for
14: Return: The best found point xbest

3 Experiments

The importance of ensembling can be demonstrated by contrasting MMMA against algorithms of
varying degrees of ensembling at different levels (kernel or AF) and different strategies of ensem-
bling. In this study, we considered a pool of kernels including RBF, Matérn 5/2, and Matérn 3/2,
along with the set of AFs, EI, PI and UCB. These design choices were guided by their popularity and
general applicability. For more details, see Table 2 in the appendix. The algorithms were evaluated
on 16 test functions from Botorch’s suite [19] (see Table 1 in the appendix). We ran 25 independent
simulations where, at each simulation, we ran BO for 100 iterations.

We consider 3 metrics to evaluate the algorithms: (1) the gap metric, (2) simple regret, and (3)
cumulative regret. Each metric focuses on a different aspect of the optimizer’s behavior. The gap
metric measures improvement relative to the starting condition, simple regret quantifies the distance
between the best-observed value and the global optimum at each iteration, and cumulative regret
quantifies the rate at which regret accumulates over time.

The gap metric. Figure 2-(a) presents boxplots of the final gap metric, illustrating that increased
ensembling leads to better results. This improvement is due to the optimizer having access to a
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Figure 2: (a) Final gap metric accumulated across all test functions. (b) Heat map of relative differ-
ences in the order of polynomial. The methods are categorized into three groups: Baseline (Standard
BO), Single Ensemble (MultiModel, MultiAF), and Multi-level Ensemble (MMMA variants).

broader selection of kernels and AFs. Notably, the baseline performs similarly to kernel-level en-
sembling, which can be attributed to the similarity among the kernels used in our study. However,
when ensembling is extended to include AFs, there is a significant improvement due to the greater
diversity among the AFs. Importantly, the results of MMMA are more concentrated to the right,
indicating less variability and greater robustness in performance compared to other methods.

Regret growth. Given a function class F , a common objective is to find an optimizer π which
achieves sublinear rate of regret for all functions f ∈ F . Formally, ∀f ∈ F , the objective is to have
limt→∞

Rt(π,f)
t = 0, where Rt is the cumulative regret at iteration t. We can make this objective

stricter by imposing a functional form on the rate of regret. For example, ∀f ∈ F , Rt(π, f) ≤ Ctb,
C > 0 and b < 1. A good optimizer has b ≪ 1. To determine the value of b, we fit a polynomial
to the median cumulative regret using non-linear least squares. Figure 2-(b) shows the relative
difference in b values of each optimizer πi to the best optimizer π∗ for every function, namely, the
lightest cell is the optimizer with the smallest b. We can see that MMMA (especially random-bandit
and random-random) usually have the lowest b values or they are quite close to the best optimizer.
It is again interesting to note that ensembling at the AF level yields significant improvement, while
ensembling at the kernel level provides marginal improvement.

Random v/s Adaptive weights. We observe that random weights (in both AF and kernel space
) tend to perform better than adaptive weight selection. When the adaptive strategy is employed,
the ”best” performing AF/ kernel will dominate the other candidates and cause the ensemble to
collapse to a single choice (see Figs. 3-4). Indeed, with these strategies, the ensemble collapses to
an exploitative choice: in BMA, the rewards are assigned to kernels that fit better the current data;
in bandit, an AF that suggests points with large function values will be preferred. Hence, these
strategies do not reward exploration.

4 Conclusions

In this work, we described MMMA-BO, a framework for combining multiple kernels and acquisition
functions in BO. The MMMA-BO algorithm involves sampling one kernel and one acquisition func-
tion at each iteration, rather than committing to a single combination throughout the optimization
process. We conducted experiments on 16 benchmark functions and systematically compared them
with existing baseline methods. The experimental results confirm that the MMMA approach pro-
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vides more robust performance. In future work, we aim to explore better procedures for determining
the ensemble weights and deriving theoretical bounds on the cumulative regret of MMMA-BO.
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search portfolio for Bayesian optimization,” arXiv preprint arXiv:1406.4625, 2014.

[14] C. Benjamins, E. Raponi, A. Jankovic, K. van der Blom, M. L. Santoni, M. Lindauer, and
C. Doerr, “Pi is back! switching acquisition functions in Bayesian optimization,” arXiv
preprint: 2211.01455, 2022.

[15] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider, B. Poc-
zos, and E. P. Xing, “Tuning hyperparameters without grad students: Scalable and robust
Bayesian optimisation with dragonfly,” Journal of Machine Learning Research, vol. 21, no. 81,
pp. 1–27, 2020.

[16] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Batch Bayesian optimization via multi-
objective acquisition ensemble for automated analog circuit design,” in International confer-
ence on machine learning, pp. 3306–3314, PMLR, 2018.

5



[17] A. I. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R. R. Griffiths, H. Jianye,
J. Wang, and H. B. Ammar, “An empirical study of assumptions in Bayesian optimisation,”
arXiv preprint: 2012.03826, vol. 445, 2020.

[18] K. D. Polyzos, Q. Lu, and G. B. Giannakis, “Bayesian optimization with ensemble learning
models and adaptive expected improvement,” in ICASSP 2023-2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, IEEE, 2023.

[19] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy,
“BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization,” in Advances in
Neural Information Processing Systems 33, 2020.

6



(a) AF selection (b) Kernel selection

Figure 3: AF and kernel selection for different ensemble levels and strategies for the Ackley function

(a) AF selection (b) Kernel selection

Figure 4: AF and kernel selection for different ensemble levels and strategies for the Hartmann
function

A Additional details of numerical experiments

All the experiments were conducted using Botorch’s open-sourced codebase [19] on an Apple M2
chip with 10 CPU cores and 16GB of memory. The code is hosted at this Github repository: Github.
Instructions regarding the code execution can be found in a README file inside the directory
”./MMMA”. In each algorithm, we use type-II maximum likelihood to fit the kernel hyperparame-
ters. For the optimization of the AF, we use 20 raw samples and 2 random restarts. All the kernels
have automatic relevance determination (ARD). For estimating the degree of the polynomial fitted
to the median cumulative regret we use the Levenberg–Marquardt algorithm. Plots for cumulative
regret, simple regret and gap metric for all 16 functions are shown in Figures 5-8.

B Limitations

Design choices like AF and kernel candidates, the weighing parameter of UCB, number of restarts
or raw samples of the optimizer, the test functions, are standard limitations of a BO problem. Addi-
tionally, as noted by [11], when employing a bandit (or BMA) strategy, the selection often converges
eventually to an exploitative strategy. This convergence behaviour can be seen in Figures 3 and 4.
There might be scenarios where converging to exploitative strategies is not beneficial, especially if
majority of the function’s landscape is not explored and the optimizer is stuck in a local minima.
Furthermore, the current MMMA setup only support single-objective test functions and analytical
AFs. Future work will primarily be geared towards exploring better selection strategies and degree
of ensembling. We will also include a larger array of test functions, support for multi-objective test
functions and Monte-Carlo base AFs. Providing theoretical bounds for the gap metric and rate of
regret will also be explored.
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Function Dimension Function Dimension
Ackley 4 Hartmann 6
Beale 2 Levy 3
Branin 2 Michalewicz 2
Bukin 2 Rastrigin 3

Cosine8 8 Rosenbrock 2
DixonPrice 3 SixHumpCamel 2
DropWave 2 ThreeHumpCamel 2
Griewank 5 Shekel 4

Table 1: Optimization Test Functions with Equations

Ensemble
Level

Method Ensemble Strategy Kernel Pool AF Pool

No Ensemble Standard
BO

Traditional Bayesian
Optimization

Matern52 LogEI

Single-level
Ensemble

MM-BMA Multi-model with
BMA

[RBF, Matern52,
Matern32]

LogEI

MM-Rand Multi-model with
random model
selection

[RBF, Matern52,
Matern32]

LogEI

MA-Bandit GP-Hedge with
bandit-based AF
selection

Matern52 [LogPI, LogEI,
UCB]

MA-Rand GP-Hedge with
random AF selection

Matern52 [LogPI, LogEI,
UCB]

Two-level
Ensemble

MMMA-
BMA-Rand

Multi-model BMA,
multi-acquisition with
random AF selection

[RBF, Matern52,
Matern32]

[LogPI, LogEI,
UCB]

MMMA-
BMA-B

Multi-model BMA,
multi-acquisition with
bandit-based AF
selection

[RBF, Matern52,
Matern32]

[LogPI, LogEI,
UCB]

MMMA-
Rand-B

Multi-model with
random model
selection,
multi-acquisition with
bandit-based AF
selection

[RBF, Matern52,
Matern32]

[LogPI, LogEI,
UCB]

MMMA-
Rand-Rand

Multi-model with
random model
selection,
multi-acquisition with
random AF selection

[RBF, Matern52,
Matern32]

[LogPI, LogEI,
UCB]

Table 2: Description of Bayesian Optimization Methods Grouped by Ensemble Levels
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(a) Cumulative Regret Ackley (b) Simple Regret Ackley (c) Gap Metric Ackley

(d) Cumulative Regret Beale (e) Simple Regret Beale (f) Gap Metric Beale

(g) Cumulative Regret Branin (h) Simple Regret Branin (i) Gap Metric Branin

(j) Cumulative Regret Bukin (k) Simple Regret Bukin (l) Gap Metric Bukin

Figure 5: Cumulative Regret, Simple Regret and Gap metric
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(a) Cumulative Regret Cosine8 (b) Simple Regret Cosine8 (c) Gap Metric Cosine8

(d) Cumulative Regret DixonPrice (e) Simple Regret DixonPrice (f) Gap Metric DixonPrice

(g) Cumulative Regret DropWave (h) Simple Regret DropWave (i) Gap Metric DropWave

(j) Cumulative Regret Griewank (k) Simple Regret Griewank (l) Gap Metric Griewank

Figure 6: Cumulative Regret, Simple Regret and Gap metric
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(a) Cumulative Regret Hartmann (b) Simple Regret Hartmann (c) Gap Metric Hartmann

(d) Cumulative Regret Levy (e) Simple Regret Levy (f) Gap Metric Levy

(g) Cumulative Regret Michalewicz (h) Simple Regret Michalewicz (i) Gap Metric Michalewicz

(j) Cumulative Regret Rastrigin (k) Simple Regret Rastrigin (l) Gap Metric Rastrigin

Figure 7: Cumulative Regret, Simple Regret and Gap metric
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(a) Cumulative Regret Rosenbrock (b) Simple Regret Rosenbrock (c) Gap Metric Rosenbrock

(d) Cumulative Regret SixHump-
Camel

(e) Simple Regret SixHumpCamel (f) Gap Metric SixHumpCamel

(g) Cumulative Regret ThreeHump-
Camel

(h) Simple Regret ThreeHump-
Camel

(i) Gap Metric ThreeHumpCamel

(j) Cumulative Regret Shekel (k) Simple Regret Shekel (l) Gap Metric Shekel

Figure 8: Cumulative Regret, Simple Regret and Gap metric
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