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Policy gradient methods are widely used in reinforcement learning. Yet, the nonconvexity of policy optimiza-

tion imposes significant challenges in understanding the global convergence of policy gradient methods. For

a class of finite-horizon Markov Decision Processes (MDPs) with general state and action spaces, we develop

a framework that provides a set of easily verifiable assumptions to ensure the Kurdyka- Lojasiewicz (K L)

condition of the policy optimization. Leveraging the K L condition, policy gradient methods converge to the

globally optimal policy with a non-asymptomatic rate despite nonconvexity. Our results find applications

in various control and operations models, including entropy-regularized tabular MDPs, Linear Quadratic

Regulator (LQR) problems, stochastic inventory models, and stochastic cash balance problems, for which

we show an ǫ-optimal policy can be obtained using a sample size in Õ(ǫ−1) and polynomial in terms of the

planning horizon by stochastic policy gradient methods. Our result establishes the first sample complexity

for multi-period inventory systems with Markov-modulated demands and stochastic cash balance problems

in the literature.

Key words : finite-horizon Markov Decision Processes (MDPs), Kurdyka- Lojasiewicz (K L) condition, policy
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1. Introduction

Reinforcement Learning (RL) has achieved remarkable success in various real-world applications,

including the game of Go (Silver et al. 2016) and robotics (Hwangbo et al. 2019). An important

class of algorithms for solving these RL problems is policy gradient methods, which search over a

parameterized policy space by applying (stochastic) gradient methods on the total expected cost

of a Markov Decision Process (MDP). Despite wide applicability, our understanding of the global

convergence and non-asymptotic convergence behavior of policy gradient methods remains limited

due to the nonconvex landscape of the policy gradient optimization problem (Agarwal et al. 2021,

Bhandari and Russo 2024).
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This paper seeks to understand the nonconvex landscape of the policy gradient optimization

problem and establish non-asymptotic convergence rates for policy gradient methods in solving a

class of finite-horizon MDPs with general state and action spaces. Specifically, we aim to identify

structural properties shared by a host of applications such that policy gradient optimization prob-

lems would satisfy the Kurdyka- Lojasiewicz (K L) condition (Kurdyka 1998, Lojasiewicz 1963).

Informally, the K L condition states that the norm of the gradient dominates the suboptimality gap.

It is a relaxation of the strong convexity while maintaining a key property that any point satisfy-

ing the first-order necessary optimality condition (Nocedal and Wright 1999) is globally optimal.

Policy gradient methods are designed to find these points and thus converge globally on nonconvex

MDP problems.

For this purpose, we introduce a framework with several easily verifiable assumptions to establish

the K L condition of the policy gradient optimization problem in finite-horizon MDPs with general

state and action spaces. More specifically, we demonstrate that the policy gradient optimization

problem satisfies the K L condition when (i) the objective function has bounded gradients, (ii)

expected optimal Q-value functions satisfy the K L condition, and (iii) sequential decomposition

inequalities hold. Roughly speaking, for any given period t and a policy π, sequential decomposition

inequalities bound the difference between policy gradients at one policy using π for the period 1

to period t and switching to optimal policy parameters after period t and a neighboring policy

using π for the period 1 to period t− 1 and switching to optimal policy parameters from period t

onwards, by the suboptimality gap of the expected optimal Q-value functions of the policy π.

Leveraging the K L condition, we demonstrate that any point satisfying the first-order necessary

optimality condition of the policy gradient optimization problem is globally optimal. Moreover, we

show that exact policy gradient methods exhibit a linear convergence rate and stochastic policy

gradient methods achieve an Õ(ǫ−1) sample complexity to find an ǫ-optimal policy. We remark

that the K L constant admits a polynomial dependence on the time horizon, and correspondingly,

the non-asymptotic convergence rate of policy gradient methods scales polynomially with the time

horizon.

Our framework applies to a variety of control and operations models, including (i) entropy-

regularized tabular MDPs with the class of all stochastic policies, (ii) Linear Quadratic Regulator

(LQR) problems with the class of affine policies, (iii) multi-period inventory systems with Markov-

modulated demands that use state-dependent base-stock policies, and (iv) stochastic cash balance

problems with the class of two-sided base-stock policies. Notably, (i)-(iii) are commonly seen in

dynamic programming textbooks (Bertsekas 1995, Puterman 2014).

For entropy-regularized tabular MDPs and LQR problems, we establish a linear convergence rate

for exact policy gradient methods to achieve an ǫ-optimal policy, consistent with existing results in
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the literature (Bhandari and Russo 2024, Hambly et al. 2021). In the case of multi-period inventory

systems with Markov-modulated demands and stochastic cash balance problems, we demonstrate

an Õ(ǫ−1) sample complexity for stochastic policy gradient methods to achieve an ǫ-optimal policy,

which gives the first sample complexity results in the literature. It is worth noting that all these

sample complexities exhibit a polynomial dependence on the time horizon.

1.1. Related Literature

This study intersects with three streams of literature: (i) nonconvex landscape conditions that

ensure global convergence for algorithms, (ii) global optimality guarantees for policy gradient meth-

ods, and (iii) data-driven operations management.

Nonconvex Landscape Conditions In nonconvex optimization, several landscape condi-

tions guarantee convergence to global optimality for algorithms, including the hidden convex-

ity (Stern and Wolkowicz 1995, Ben-Tal and Teboulle 1996), i.e., the problem admits a convex

reformulation, the Polyak- Lojasiewicz (P L) condition (Polyak et al. 1963, Lojasiewicz 1963), the

Kurdyka- Lojasiewicz (K L) condition (Kurdyka 1998, Bolte et al. 2007), and others as summarized

in Karimi et al. (2016).

Hidden convexity has emerged in numerous modern applications, such as policy optimiza-

tion in convex RL (Zhang et al. 2020, Sun and Fazel 2021), supply chain and revenue man-

agement (Feng and Shanthikumar 2018, Chen et al. 2018, Chen and Gao 2019, Miao and Wang

2021, Chen and Shi 2023). In the optimization society, Stern and Wolkowicz (1995) and

Ben-Tal and Teboulle (1996) studied hidden convexity in quadratic programming. Since

then, several works have developed tools to identify hidden convexity (Ben-Tal et al. 2011,

Ben-Tal and Den Hertog 2014) and studied the landscape of hidden convex functions (Levin et al.

2024). Subsequently, research focuses on algorithm design and non-asymptotic convergence guar-

antees under hidden convexity. For instance, Chen et al. (2024) addressed a specific prob-

lem arising from network revenue management. Building on a convex reformulation presented

by Feng and Shanthikumar (2018), Chen et al. (2024) developed Mirror Stochastic Gradient

Descent which achieves global convergence with a sample complexity of order Õ(ǫ−2). Moreover,

Fatkhullin et al. (2023b) extended the results to general-purpose stochastic optimization under

hidden convexity, demonstrating an O(ǫ−3) sample complexity for project Stochastic Gradient

Descent (SGD).

Recently, several works have investigated the Polyak- Lojasiewicz (P L) condition, first introduced

by Polyak et al. (1963) and Lojasiewicz (1963). The P L condition ensures a linear convergence rate

for Gradient Descent (Karimi et al. 2016) and an O(ǫ−1) sample complexity for SGD (Hu et al.
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2024) to achieve an ǫ-optimal solution. Additionally, Karimi et al. (2016) and Liao et al. (2024)

explored the connection between the P L condition and other nonconvex landscape conditions,

such as the error bounds (Luo and Tseng 1993), the quadratic growth (Anitescu 2000), the weak

strong convexity (Necoara et al. 2019), and the proximal P L condition (gradient dominance). These

conditions ensure that any first-order stationary point is globally optimal, leading to a global

convergence of first-order methods despite nonconvexity.

Our study builds on the Kurdyka- Lojasiewicz (K L) condition (Kurdyka 1998, Bolte et al. 2007),

which extends the P L condition to handle more general settings, particularly for non-smooth func-

tions and constrained optimization problems. Assuming the optimization problem satisfies the K L

condition, Attouch and Bolte (2009) demonstrated the global convergence of the classic proximal-

point algorithm. Furthermore, Attouch et al. (2013) proved a convergence result for descent meth-

ods satisfying several conditions, which includes the forward-backward splitting algorithm.

Global Convergence for Policy Gradient Methods Several works have analyzed the

global convergence of policy gradient methods for MDPs with finite state and action spaces. Among

these, Agarwal et al. (2021) provided a comprehensive analysis of policy gradient methods solving

discounted infinite-horizon MDPs. They demonstrated iteration complexities of O(ǫ−2) for exact

policy gradient methods and O(ǫ−1) for exact Natural Policy Gradient (NPG) methods with soft-

max parameterization. Cen et al. (2022) studied entropy-regularized NPG methods in conjunction

with softmax parameterization. They established a linear convergence rate for exact entropy-

regularized NPG methods solving entropy-regularized MDPs and further proved an Õ(ǫ−2) sample

complexity for approximate entropy-regularized NPG methods. Lan (2023) introduced stochastic

Policy Mirror Descent (PMD) approaches and demonstrated O(ǫ−1) (resp., O(ǫ−2)) sample com-

plexity for solving RL problems with strongly convex (resp., convex) regularizers. Following these

works, Klein et al. (2023) investigated the policy gradient methods with a softmax parameteriza-

tion for finite-horizon MDPs. They established a weak P L condition of the policy gradient objective

function and proved an O(ǫ−1) iteration complexity for exact policy gradient methods. For more

references, we refer the readers to Mei et al. (2020), Xiao (2022), and Fatkhullin et al. (2023a).

When solving MDPs with general state and action spaces, it is impractical to extend existing

results directly as the complexity for policy gradient methods solving tabular MDPs depends on

the cardinalities of state and action sets (Lan 2023, Klein et al. 2023). To address this issue, many

works impose additional assumptions to ensure the global convergence of policy gradient methods.

For instance, when dealing with discounted infinite-horizon MDPs, Lan (2022) demonstrated a lin-

ear convergence rate of PMD when the advantage function is convex and the regularizer is strongly

convex. Bhandari and Russo (2024, Theorem 2) identified certain structural characteristics shared
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by several discounted infinite-horizon control problems, which guarantee that the policy gradient

objective function satisfies the so-called (c,µ)-gradient dominance condition (Bhandari and Russo

2024, Definition 2), a condition equivalent to the K L condition under some mild assumptions

(Karimi et al. 2016). They established iteration complexities of O(ǫ−2) and O(log(ǫ−1)) for exact

policy gradient methods to achieve an ǫ-optimal policy under the (c,0)-gradient dominance condi-

tion and (c,µ)-gradient dominance condition with µ> 0, respectively.

For finite-horizon MDPs, Bhandari and Russo (2024, Theorem 3) established conditions for a

class of finite-horizon MDPs under which first-order stationary points are globally optimal, leading

to an asymptotic convergence rate for policy gradient methods (Bhandari and Russo 2024, Lemma

2). Yet, they “leave the study of a gradient dominance condition for finite-horizon problems as

future work”. Our work bridges this gap by establishing the K L condition of the policy gradient

optimization for such problems.

In addition to the results for general MDPs, Fazel et al. (2018) established the gradient domi-

nation of the policy gradient objective function for the infinite-horizon discounted LQR problem.

They demonstrated a linear convergence rate for exact policy gradient methods to achieve an opti-

mal policy. Han et al. (2023) extended results to infinite horizon nearly linear quadratic regulators,

where the dynamic system integrates linear and nonlinear components. They established a linear

convergence rate of policy gradient methods using the linear policy class to achieve globally optimal

policies. More closely related to our work, Hambly et al. (2021) studied policy gradient methods for

solving the finite-horizon LQR problem. Their complexity admits a polynomial dependence on the

time horizon. However, the applicability of their analysis is limited due to the specific structures

inherent to LQR problems, making it challenging to generalize to other applications. Compared

to Hambly et al. (2021), one can check that our framework works for general strongly convex per

period costs, going beyond a quadratic form in the LQR problem.

Data-driven Operations Management Most of the literature studying multi-period

operations models relies on the Sample Average Approximation (SAA) approach, which con-

structs an empirical objective using samples and then solves the corresponding empirical prob-

lem (Kleywegt et al. 2002). For instance, Levi et al. (2007) established the sample complexity

required for SAA to find an ǫ-optimal base-stock policy of the multi-period inventory system.

Cheung and Simchi-Levi (2019) applied the SAA method for multi-period capacitated stochastic

inventory control problems and derived a sample complexity required to achieve a near-optimal

expected cost. They further proposed a polynomial-time approximation scheme that also uses

polynomially many samples to solve the empirical counterpart. Qin et al. (2022) investigated multi-

period joint pricing and inventory control models and established the sample complexity for the
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SAA approach. They applied a sparsification technique and proposed a polynomial-time approx-

imation algorithm for the empirical problem. Zhang et al. (2022) applied the SAA method for

managing inventories in an infinite-horizon series system with multiple stages and derived sample

complexities. Xie et al. (2024) investigated uniform generalization errors of the SAA approach for

different inventory policy classes and established a sample complexity non-dependent on the time

horizon length for learning a base-stock policy which incurs an averaged cost no more than the

optimal averaged cost plus ǫ.

In addition to SAA methods, some works apply value-based methods to solve multi-period

operations problems. For example, Qin et al. (2023) introduced a variance-reduced value iteration

algorithm for multi-period stochastic inventory control with independent demands, establishing

matching upper and lower bounds on the sample complexity. Gong and Simchi-Levi (2023) devel-

oped online Q-learning methods for stochastic inventory models with cyclic demands. They con-

sidered two scenarios: the episodic model where inventory is discarded at the end of each cycle

and the non-discarding case. We remark that the SAA approach and value-based methods usually

rely on solving the empirical counterpart through dynamic programming, whereas policy gradient

methods directly optimize a single objective.

Similar to policy gradient methods, some studies apply stochastic gradient methods to

solve data-driven operations models. For instance, Kunnumkal and Topaloglu (2008) proposed

a biased stochastic gradient method to solve finite-horizon inventory systems with independent

demands and established an asymptotic convergence rate to achieve optimal base-stock levels.

Huh and Rusmevichientong (2014) applied the same biased stochastic gradient method for a class

of multistage stochastic optimization problems, where the objective satisfies a generalized convex

condition called the sequentially convex condition.

Though our sequential decomposition inequalities are inspired by one of the conditions in sequen-

tial convexity Huh and Rusmevichientong (2014), our work is fundamentally different from theirs.

First, Huh and Rusmevichientong (2014) (and Kunnumkal and Topaloglu (2008)) applied biased

gradient methods to minimize cost-to-go functions, which differs from standard policy gradient

methods that optimize the objective function directly as studied in the literature and this work.

Second, the sequential convexity proposed in Huh and Rusmevichientong (2014) cannot be directly

applied to the inventory system with Markov-modulated demands and stochastic cash balance

problems. For example, the minimizers of cost-to-go functions differ from the optimal policy param-

eters of stochastic cash balance problems. On the other hand, our framework is readily applicable

to the operations applications in Huh and Rusmevichientong (2014), including inventory control,

capacity allocation, and lifetime buy decision problems. Third, Huh and Rusmevichientong (2014),
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leveraging the sequential convexity, proved that biased stochastic gradient methods achieve a sam-

ple complexity with an exponential dependence on the planning horizon. In contrast, we show

that policy gradient optimization satisfies the KL condition and policy gradient methods admit a

sample complexity that scales polynomially with the planning horizon.

1.2. Organizations

The rest of this paper is structured as follows. Section 2 presents the MDP formulation and the

policy gradient optimization problem. Section 3 outlines the definition and properties of the K L

condition and identifies several easily verifiable conditions required to ensure the K L condition of

the policy gradient optimization problem. In Section 4 and 5, we validate the K L condition for

the policy gradient optimization problem of the entropy-regularized tabular MDPs and the LQR

problem, respectively. Sections 6 and 7 establish the K L condition for policy gradient optimization

problems of the inventory system with Markov-modulated demands and the stochastic cash balance

problem, respectively. Utilizing the K L condition, we provide the first sample complexity results

for these settings in the literature.

1.3. Notations and Definitions

We use the following notations throughout the paper. Let R̄ = R∪ {+∞}. N+ denotes the set of

all natural numbers. For n ∈N+, denote [n] as the set {1, . . . , n}. ‖x‖2 =
√∑n

i=1 |xi|2 denotes the

l2-norm of a vector x ∈R
n. We use ‖A‖2 to denote the spectral norm of a matrix A ∈ R

m×n, the

largest singular value of A. Let ‖A‖F =
√
∑m

i=1

∑n

j=1 |aij |2 denote the Frobenius norm of a matrix

A ∈ R
m×n. We use λmax(A) to denote the spectral radius of a square matrix A ∈ R

n×n, which is

the largest eigenvalue of A. Let e denote exp(1). We use ⌊x⌋ to denote the greatest integer less

than or equal to x. For D ∈ R
n, define D[j,k] :=

∑k

i=jDi for 1 ≤ j ≤ k ≤ n. We say a point x ∈ X
satisfies the first-order necessary optimality condition of the optimization problem minx∈X f(x) if

〈∇f(x), x′ − x〉 ≥ 0,∀x′ ∈ X for a differentiable function f . A point x̄ is an ǫ-optimal solution of

minx f(x) if f(x̄) − minx f(x) ≤ ǫ. Throughout the paper, we assume that the desired accuracy

ǫ > 0 is small enough so that ǫ−1 ≫ log(ǫ−1) ≥ 1. We use O(·) to denote the order in terms of ǫ−1

and Õ(·) to denote the order hiding the logarithmic dependency on ǫ−1.

2. Problem Formulation

We specify a finite horizon MDP M = (S,A, P,C,T, ρ) defined in Puterman (2014): the time

horizon T ; the state space S = S1 ∪ · · · ∪ ST , where St ⊆ R
m is the feasible region for a state s

at period t; the action space A = ∪s∈SAs, where As ⊆ R
n is the set of feasible actions for state

s ∈S ⊆R
m; the transition kernel P : S ×A× [T ] →S, where P (s′|s, a, t) is the probability density



8

function (or probability mass function in the discrete setting) of transitioning into s′ when taking

action a in state s at period t; the cost function C : S × A × [T ] → R, where C(s, a, t) is the

immediate cost after taking action a in state s at period t; and the initial state distribution ρ. For

simplicity, we use Pt(·|s, a) := P (·|s, a, t), and Ct(s, a) := C(s, a, t) for all s ∈ S, a ∈ A, t ∈ [T ]. The

agent starts at state s1 ∈ S1, which follows the initial state distribution ρ. At period t, the agent

first observes the current state st ∈ St and then takes an action at ∈Ast . Afterwards, it receives an

immediate cost Ct(st, at) and proceeds to the next period with state st+1 ∼ Pt(·|st, at).
A non-stationary policy π : S × [T ]→A is a function that maps the current state s to a feasible

action a at period t, e.g., a= π(s, t). Similarly, we use πt(·) to denote the policy at period t and

πt(s) := π(s, t) for all s ∈ S, t ∈ [T ]. Let Π denote the set of feasible policies and Πt denote the set

of feasible policies at period t. For any π ∈Π, the total expected cost starting from state s is

Jπ(s) = E

[ T∑

t=1

Ct

(
st, πt(st)

)
∣
∣
∣
∣
s1 = s,π

]

.

We take the expectation over a Markovian sequence (s1, . . . , sT ), where s1 is the initial state and

st+1 ∼ Pt(·|st, πt(st)) for all t= 1, . . . , T −1. A policy π∗ is optimal if it minimizes the total expected

cost J(π) with the initial distribution ρ:

J(π) = Es∼ρ

[
Jπ(s)

]
= E

[ T∑

t=1

Ct

(
st, πt(st)

)
∣
∣
∣
∣
s1 ∼ ρ,π

]

.

2.1. Bellman Equation

We introduce several terminologies commonly used in the literature of MDPs. Let π be a given

policy. We define ρt(·|π) as the cumulative distribution function of st incurred by policy π starting

with the initial distribution ρ. By definition, we have ρ1(·|π) = ρ. Furthermore, we define the value

function V π
t : S → R, which represents the total expected cost at time t starting with the initial

state s and policy π:

V π
t (s) = E

[ T∑

k=t

Ck

(
sk, πk(sk)

)
∣
∣
∣
∣
st = s,π

]

.

In the same manner, we define the function Qπ
t : S × A → R as the action-value (or Q-value)

function:

Qπ
t (s, a) =Ct(s, a) +E

[ T∑

k=t+1

Ck

(
sk, πk(sk)

)
∣
∣
∣
∣
st = s, at = a,π

]

.

By definition, the value function V π and action-value function Qπ have the following relationships:

{
V π
t (s) =Qπ

t

(
s,πt(s)

)
,

Qπ
t (s, a) =Ct(s, a) +E

[
V π
t+1(s

′)|s′ ∼ Pt(·|s, a)
]
,

(1)
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for all s ∈ S, a ∈ A, t ∈ [T ] and the boundary condition is V π
T+1(·) = 0 for all π ∈ Π. These are

commonly known as the Bellman equations in the literature (Bellman 1952). By the principle of

optimality (Puterman 2014), an optimal policy π∗ solves the following Bellman equations:

{
V ∗
t (s) = min

πt∈Πt

Q∗
t

(
s,πt(s)

)
,

Q∗
t (s, a) =Ct(s, a) +E

[
V ∗
t+1(s

′)|s′ ∼ Pt(·|s, a)
]
,

(2)

for all s ∈ S, a ∈A, t ∈ [T ] and the boundary condition is V ∗
T+1(·) = 0. Here V ∗

t and Q∗
t denote the

value function and the Q-value function corresponding with the optimal policy π∗, respectively.

2.2. Policy Gradient Formulation

Policy gradient methods apply first-order algorithms to minimize the total expected cost J(π). Note

that general policy optimization falls into functional optimization as we search over the function

class Π, which is computationally intractable. To avoid functional optimization, it is common to

parameterize the policy through finite-dimensional parameters θ= (θ1, . . . , θT ) (Sutton et al. 1999).

At time t, the parameterized policy is πt(·|θt) and θt belongs to a convex and compact set Θt ⊆R
d.

The feasible region of θ is a product set Θ = Θ1 × · · · ×ΘT , which is also convex and compact. In

such a case, the parameterized policy class is ΠΘ = {π(s, t|θ) : S × [T ]×Θ →A}⊆ Π and we use πθ

to denote π(·|θ) for simplicity.

For a given parameterized policy πθ, we represent the total expected cost by l(θ) := J(πθ), called

the policy gradient objective function. We define a policy πθ to be ǫ-optimal if θ is an ǫ-optimal

solution of l(θ). We denote ∇tl(θ) = ∂l(θ)

∂θt
as the partial derivative of l(θ) with respect to the t-th

coordinate θt. We further denote the gradient ∇l(θ) =
(
∇1l(θ), . . . ,∇T l(θ)

)
.

Let θ∗ denote one of the minimizers of minθ∈Θ l(θ) and πθ∗ as the corresponding policy. We define

V
πθ∗

t and Q
πθ∗

t as its corresponding value and Q-value function, respectively. It’s worth noting

that V ∗
t (resp., Q∗

t ) and V
πθ∗

t (resp., Q
πθ∗

t ) are identical when the parameterized policy class ΠΘ

contains the optimal policy π∗. This often occurs when the optimal policy class is known, e.g.,

affine policies in the Linear Quadratic Regulator (LQR) problem and base-stock policies in the

multi-period inventory control model.

3. Landscape Characterization

In this section, we first formally define the K L condition and discuss its properties. Next, we present

the non-asymptotic convergence rate of algorithms for optimization problems satisfying the K L

condition. Lastly, we provide a set of verifiable assumptions for the policy gradient optimization

in Section 2.2 to satisfy the K L condition, enabling a non-asymptotic convergence rate for policy

gradient methods to achieve globally optimal solutions.
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3.1. Definition and Properties of K L Condition

Before formally introducing the K L condition, we provide some basic definitions from variational

analysis.

Definition 1 (Fréchet Subdifferential (Rockafellar and Wets 2009)). Let f : Rn →
R̄ be a proper lower semicontinuous function. For each x ∈ domf , the Fréchet subdifferential of f

at x∈R
n, written as ∂̂f(x), is the set of v ∈R

n such that

lim inf
y 6=x,y→x

f(y)− f(x)−〈v, y−x〉
‖x− y‖2

≥ 0.

We set ∂̂f(x) = ∅ if x /∈ domf .

Definition 2 (Limiting Subdifferential (Mordukhovich 1976)). The limiting subdiffer-

ential of f at x∈R
n is the set ∂f(x) := {v ∈R

n : ∃ xn → x, f(xn) → f(x), vn ∈ ∂̂f(xn), vn → v}.

Definitions 1 and 2 imply that ∂̂f(x)⊆ ∂f(x). The limiting subdifferential ∂f(x) reduces to the

gradient ∇f(x) when f is continuously differentiable and reduces to the classic subdifferential when

f is convex.

Although the K L condition usually describes the landscape of unconstrained problems, we can use

it for constrained smooth optimization problems. In fact, for a constrained optimization problem

minx∈X f(x) over a closed set X , one can write it as an unconstrained optimization problem minx f+

δX over R
n, where δX (x) represents the indicator function for X and is defined as follows:

δX (x) =

{

0 x∈X ,
+∞ x /∈X .

To characterize the landscape of constrained smooth optimization problems, we utilize a specific

form of the K L condition (Karimi et al. 2016, Appendix G). For more general definitions, we refer

the readers to (Attouch et al. 2013, Definition 2.4).

Definition 3 (K L Condition). Consider a convex and compact set X ⊆R
n and a differentiable

function f . Denote f ∗ as the optimal function value with f ∗ := minx∈X f(x). The function f satisfies

the K L condition on X if there exists µ> 0 such that

f(x)− f ∗ ≤ 1

2µ
min

g∈∂δX (x)

∥
∥∇f(x) + g

∥
∥
2

2
∀x∈X ,

where µ refers to the K L constant.

Remark 1. When the decision variable x is a matrix, e.g., parameters in the LQR problem, we

replace the l2-norm with the Frobenius norm.
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The subdifferential of δX (x) is the normal cone of X at x. When X = R
n, the K L Condition

reduces to the P L condition. Similar to the P L condition, the K L condition is a generalization of

the strong convexity (Corollary 1 in Appendix A). It’s well known that strongly convex functions

exclude all suboptimal stationary or local optimal points. Optimization problems with the K L

condition exhibit the same structural property.

Proposition 1 (Karimi et al. (2016)). Consider a convex and compact set X ⊆ R
n. Suppose

a function f :X →R satisfies the K L condition with a K L constant µ> 0 over X . Then, any point

satisfying the first-order necessary optimality condition of the optimization problem minx∈X f(x) is

globally optimal.

3.2. Convergence Rate under K L Condition

This subsection presents the global convergence results of the projected (stochastic) gradient

descent for solving the stochastic optimization problem over a convex and compact set X under

the K L condition:

min
x∈X

f(x) := Eξ∼P(ξ)

[

F (x, ξ)
]

, (3)

where x is the decision variable and ξ is the random variable with a cumulative distribution function

P(ξ). Furthermore, we analyze the algorithm’s sample complexity, which refers to the number of

samples required to obtain an ǫ-optimal solution.

We assume f is differentiable and L-smooth to establish the convergence result. These

assumptions are standard in the stochastic approximation literature (Nemirovski et al. 2009,

Ghadimi and Lan 2013).

Assumption 1. For the function f : X →R, we assume that it is differentiable and is L-smooth,

i.e., its gradient is L-Lipschitz:

∥
∥∇f(x)−∇f(y)

∥
∥
2
≤L‖x− y‖2, ∀x, y ∈X .

It is sometimes impractical to compute the gradient in stochastic optimization problems. We

use the stochastic gradients instead of computing the true expectation in such settings. In the rest

of this subsection, we will denote ∇F (xk, ξk) as the stochastic gradient with one sample ξk drawn

from P(ξ) and ∇f̂(xk) as the stochastic gradient with an empirical distribution constructed by N

i.i.d samples {ξ(i)k }Ni=1:

∇f̂(xk) :=
1

N

N∑

i=1

∇F (xk, ξk).

Assumption 2. For the gradient information, assume one of the two options holds:

1. At each iteration k, the gradient ∇f(xk) is accessible.
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2. At each iteration k, only the stochastic gradient ∇F (xk, ξk) is accessible. In addition, given xk,

the stochastic gradient ∇F (xk, ξk) is unbiased and the variance is bounded by σ2,

Eξk

[

∇F (xk, ξk)
]

=∇f(xk),

Eξk

[

‖∇F (xk, ξk)−∇f(xk)‖22
]

≤ σ2.
(4)

From Assumption 2.2, the stochastic gradient ∇f̂(xk) is unbiased Eξk [∇f̂(xk)] = ∇f(xk). Fur-

thermore, its variance is bounded by Eξk [‖∇f̂(xk)−∇f(xk)‖22]≤ σ2/N .

Extensive research has studied the convergence of first-order methods for optimization problems

satisfying the K L condition. Attouch et al. (2013) presented a general framework for analyzing the

convergence of a class of descent methods, in which the projected gradient descent is a special

case. Following the same framework, one can easily extend the convergence results to the stochastic

setting. We state the results for completeness and leave the proof in Appendix A.

Lemma 1. Consider a constrained optimization problem minx∈X f(x) over a convex and compact

set X . Assume f satisfies the K L condition on X with a parameter µ> 0, and Assumptions 1 and

2 hold. Denote f ∗ = infx∈X f(x).

1. (Attouch et al. 2013) The sequence of projected gradient descent xk+1 = ProjX (xk − γk∇f(xk))

with stepsizes γk = 1
L

achieves a linear convergence rate, i.e.,

f(xk)− f ∗ ≤
(

1− µ

4L+µ

)k(
f(x0)− f ∗).

2. The sequence of projected stochastic gradient descent xk+1 = ProjX (xk−γk∇f̂(xk)) with stepsizes

γk = 1
L

admits a sublinear convergence rate, i.e.,

E[f(xk)]− f ∗ ≤
(

1− µ

16L+µ

)k(

E[f(x0)]− f ∗
)

+
17σ2

µN
.

Remark 2. From Lemma 1.2, we need to set N = O(ǫ−1) and k = O(log(ǫ−1)) to obtain an ǫ-

optimal solution. As a result, the sample complexity of projected stochastic gradient descent is

Õ(ǫ−1).

3.3. K L Condition in Policy Gradient Formulation

Leveraging the K L condition, we can establish the global convergence of first-order methods for

nonconvex smooth optimization problems. However, verifying the K L condition for the policy

gradient optimization is challenging. To address this difficulty, we develop a general framework to

validate the K L condition for a class of MDPs in the following theorem. To maintain consistency

in notation, we present the theorem using the same terminology in Section 2.
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Theorem 1. Consider a Markov Decision Process M = (S,A, P,C,T, ρ) and a policy class ΠΘ

with a convex and compact set Θ. Suppose the following conditions hold.

1. (Bounded Gradients) For any t ∈ [T ], the expected Q-value function

Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

is continuously differentiable on Θt with the 2-norm of its

gradient upper bounded by G.

2. (K L Condition of Expected Optimal Q-value Functions) For any t ∈ [T ], the expected

optimal Q-value function Est∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θt)

)]

satisfies the K L condition with a K L

constant µQ on Θt.

3. (Sequential Decomposition Inequality) For any θ ∈Θ and 1≤ t < k≤ T , there exists Mg >

0: ∥
∥
∥∇θt l(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1 . . . , θ

∗
T

)
∥
∥
∥
2

≤ Mg

(

Esk∼ρk(·|πθ)

[

Q
πθ∗

k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q
πθ∗

k

(
sk, πk(sk|θ∗k)

)]
)

.
(5)

Then the policy gradient objective function l(θ) satisfies the K L condition on Θ. Furthermore, the

corresponding K L constant is µl =
µ3
Q

eM2
gG

2T2 , i.e.,

l(θ)− l(θ∗)≤ eM 2
gG

2T 2

2µ3
Q

min
g∈∂δΘ(θ)

∥
∥
∥∇l(θ) + g

∥
∥
∥

2

2
, ∀θ ∈ Θ.

Remark 3. The parameters G, µQ, and Mg may depend on the time horizon T . The following

sections show these parameters exhibit polynomial dependence on T for different applications.

Theorem 1 provides a set of assumptions to validate the K L condition of the policy gradient

optimization problem in finite-horizon MDPs with general state and action spaces. Compared to

Bhandari and Russo (2024, Theorem 3), which showed that l(θ) has no suboptimal stationary

points, Theorem 1 characterizes a stronger landscape condition by demonstrating the K L condition.

Therefore, we can obtain an Õ(ǫ−1) sample complexity for stochastic policy gradient methods to

attain an ǫ-optimal policy, which is an improvement upon the asymptotic convergence rate in

Bhandari and Russo (2024).

We provide some intuitions as to why the conditions in Theorem 1 hold for a broad class of

MDPs. The bounded gradients condition is standard and is likely to hold for many applications.

For the K L condition of expected optimal Q-value functions, one can verify it using convex cost-

to-go functions and strongly convex costs. We discuss more intuitions in the following sections for

different cases. The less intuitive condition is the sequential decomposition inequality. A weaker

result using standard assumptions can be easily derived. Suppose l(θ) is Sl-smooth, and expected

optimal Q-value functions satisfy the K L condition. We have
∥
∥
∥∇θtl(θ1, . . . , θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θk−1, θ

∗
k, . . . , θ

∗
T

)
∥
∥
∥
2
≤ Sl‖θk − θ∗k‖2

≤ Sl

√
µ

2

√

Esk∼ρk(·|πθ)

[

Q
πθ∗

k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q
πθ∗

k

(
sk, πk(sk|θ∗k)

)]

.
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The last inequality holds as the K L condition implies the quadratic growth condition (Karimi et al.

2016). In our analysis, this weaker condition leads to a suboptimal characterization of the K L

constant with an exponential dependence on the time horizon T (see discussions in Appendix A.5).

To remove such an exponential dependence, we instead use the stronger sequential decomposition

inequalities. Interestingly, we demonstrate that sequential decomposition inequalities indeed hold

for the control and operations models analyzed in the following sections.

Proof Sketch: To understand the high-level idea of Theorem 1, we illustrate the role of each

condition. First, the differentiability of l(θ) is essential to establish the K L condition in Definition 3.

Deterministic Policy Gradient Theorem (Silver et al. 2014) requires the differentiability condition

of the expected Q-value function to ensure the differentiability of l(θ) and provides the expression

of ∇l(θ):

∇θt l(θ) =∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

. (6)

Based on the policy gradient formulation, our goal is to establish the relationship between the

suboptimality gap l(θ) − l(θ∗) and ∇l(θ). However, l(θ) = J(πθ) = E

[
∑T

t=1Ct

(
st, πt(st|θt)

)
|s1 ∼

ρ,πθ

]

has a nested formulation and is difficult for one to check the K L condition directly. Thanks

to the Performance Difference Lemma (Kakade and Langford 2002), we have

l(θ)− l(θ∗) =

T∑

t=1

(

Est∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θt)

)]

−Est∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θ∗t )

)]
)

.

The suboptimality gap l(θ) − l(θ∗) can be decomposed as the differences of expected optimal

Q-value functions under two different single-stage policies at each period t. Therefore, we only

need to check the K L condition of expected optimal Q-value functions for different applications.

Leveraging the K L condition of expected optimal Q-value functions, we have

l(θ)− l(θ∗)≤
T∑

t=1

1

2µQ

min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥

2

2

. (7)

The right-hand side of (7) differs from the gradient formulation ∇θt l(θ) presented in (6). To

establish the K L condition of l(θ), we need to prove a bounded gradient mismatch inequality:

T∑

t=1

min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥

2

2

≤ M
T∑

t=1

min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥

2

2

.

(8)
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This inequality captures the relationship of Q-value functions’ gradients under two policies. To

prove it, we note that
∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

−
∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗

t

(
st, πt(st|θt)

)]

−∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]
∥
∥
∥
∥
2

=
∥
∥
∥∇θt l(θ1, . . . , θt, θ

∗
t+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θt, θt+1, . . . , θT

)
∥
∥
∥
2
.

Applying the sequential decomposition inequality and the K L condition of expected optimal Q-

value functions, we end up with the following inequalities:
∥
∥
∥∇θt l(θ1, . . . , θt, θ

∗
t+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θt, θt+1, . . . , θT

)
∥
∥
∥
2

≤
T∑

k=t+1

∥
∥
∥∇θt l(θ1, . . . , θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θk−1, θ

∗
k, . . . , θ

∗
T

)
∥
∥
∥
2

≤
T∑

k=t+1

Mg

(

Esk∼ρk(·|πθ)

[

Q
πθ∗

k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q
πθ∗

k

(
sk, πk(sk|θ∗k)

)]
)

≤
T∑

k=t+1

Mg

2µQ

min
gk∈∂δΘk

(θk)

∥
∥
∥
∥
∇θkEsk∼ρk(·|πθ)

[

Q
π∗

θ
k

(
sk, πk(sk|θk)

)]

+ gk

∥
∥
∥
∥

2

2

.

The following technical lemma is essential for us to prove the bounded gradient mismatch inequal-

ity.

Lemma 2. Assume that the nonnegative sequences {Xt}Tt=1 and {Yt}Tt=1 satisfy

|Xt −Yt| ≤Mg

T∑

k=t+1

X2
k , (9)

with some positive constant Mg. If XT = YT and Xt, Yt ≤G for all t= 1, . . . , T , then

T∑

t=1

X2
t ≤ max{e,4eM 2

gG
2T 2}

T∑

t=1

Y 2
t .

Without loss of generality, we focus on the case with e < 4eM 2
gG

2T 2. Employing Lemma 2, we

prove the bounded gradient mismatch inequality (8), thereby demonstrating how (6) relates to (7).

This completes the proof of the K L condition. We refer readers to Appendix A.4 for a more rigorous

proof.

Theorem 1 allows us to verify the K L condition for policy gradient optimization problems by

verifying several more manageable conditions. In the following sections, we demonstrate the K L

condition using Theorem 1 for several control and operations models, e.g., the entropy-regularized

tabular MDPs, the LQR problem, the inventory systems with Markov-modulated demand, and

the stochastic cash-balance problem. Leveraging the K L condition, we demonstrate the global

convergence of exact and stochastic policy gradient methods for solving these problems and provide

their sample complexities to achieve ǫ-optimal solutions.
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4. Entropy-Regularized Tabular MDPs

Tabular MDP is one of the most popular models in Reinforcement Learning (RL) and many papers

focus on this setting (Agarwal et al. 2021, Lan 2023, Klein et al. 2023). This section considers

a finite horizon version of this problem with an entropy regularization to the per-period cost

functions, a variant of infinite horizon regularized tabular MDPs analyzed in Bhandari and Russo

(2024). The regularization smooths the objective function such that optimal policies are stochastic.

See Geist et al. (2019) for a more detailed discussion about the regularized MDPs.

4.1. Problem Formulation

Consider an MDP M = (S,A, P,C,T, ρ) with a finite state space S = {1, . . . ,m}. We assume

a finite set of actions N = {1, . . . , n} to choose and take A = ∆(N ) as the set of probability

distributions over these actions. For the tabular setting, it is natural to work directly with a

randomized policy πt(st|θt) = θt(st, ·) ∈A, instead of using any parameterization as the functional

optimization reduces to a finite-dimensional optimization problem. Therefore, the per-period costs

and transition functions of πθ are

Ct

(
st, πt(st|θt)

)
=
∑

i∈N
θt(st, i)Ct(st, i), Pt

(
st+1|st, πt(st|θt)

)
=
∑

i∈N
θt(st, i)Pt(st+1|st, i).

We assume that per-period costs are non-negative and uniformly bounded by C̄ for any st ∈S and

i∈N .

Define R(p) :=DKL(U ||p) =
∑n

i=1
1
n

log( 1/n

pi
) as the Kullback-Leibler (KL) divergence between a

uniform distribution and p∈∆(N ). R(p) is a strongly convex function with dom(R) = {p∈ ∆(A) :

R(p)<+∞} = {p∈∆(A) : mini pi > 0}. The entropy-regularized per-period cost of π is

Cr
t

(
st, πt(st|θt)

)
=Ct

(
st, πt(st|θt)

)
+λR

(
πt(st|θt)

)
.

Since θt(st, ·) denotes a probability vector, it automatically falls into the constraints
∑n

i=1 θt(s, i) = 1, θt(s, i) ≥ 0, ∀s ∈ S, ∀i ∈N . Adding regularizations requires that θt(s, i)> 0,∀s ∈
S,∀i ∈ N . We can further restrict the feasible region by analyzing the property of θ∗. From the

Bellman equation (2), θ∗t minimizes the following function:

ft(θt) :=Ct

(
st, πt(st|θt)

)
+λR

(
πt(st|θt)

)
+

∑

st+1∈S
Pt+1

(
st+1|st, πt(st|θt)

)
V ∗
t+1(st+1)

= λR
(
θt(s, ·)

)
+
∑

i∈N
θt(s, i)

(

Ct(s, i) +
∑

st+1∈S
Pt+1(st+1|s, i)V ∗

t+1(st+1)
)

.

From the first-order optimality condition, we have ∇ft(θ∗t ) = 0, which implies

∇θt(s,i)ft(θ
∗
t ) =− λ

nθ∗t (s, i)
+Ct(st, i) +

∑

st+1∈S
Pt+1(st+1|st, i)V ∗

t+1(st+1) = 0, ∀s∈ S, i∈N .
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Therefore

θ∗t (s, i)≥ λ

n
(
Ct(st, i) +

∑

st+1∈S Pt+1(st+1|st, i)V ∗
t+1(st+1)

) ≥ λ

nC̄T
.

The last inequality holds as the accumulated cost is upper bounded by TC̄. Thus, we can add

θt(s, i) ≥ λ/(nC̄T ) into the feasible region without cutting off optimal solutions. We use p :=

λ/(nC̄T ). The feasible set of policy parameters is Θt = {θt ∈ R
m×n :

∑n

i=1 θt(s, i) = 1, θt(s, i) ≥
p,∀s∈ S,∀i∈N}.

4.2. K L condition of Policy Gradient Objectives

Let π∗ denote the optimal policy that minimizes the total expected cost and Q∗ denote the cor-

responding Q-value function. For any π ∈ Π, the expected Q-value function satisfies the Bellman

equation (1):

Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

=
∑

st∈S
ρt(st|πθ)

(

Ct

(
st, πt(st|θt)

)
+λR

(
πt(st|θt)

)
+

∑

st+1∈S
Pt+1

(
st+1|st, πt(st|θt)

)
V

πθ
t+1(st+1)

)

=
∑

st∈S
ρt(st|πθ)

(

λR
(
θt(st, ·)

)

︸ ︷︷ ︸

(I)

+
∑

i∈N
θt(st, i)

(

Ct(st, i) +
∑

st+1∈S
Pt+1(st+1|st, i)V πθ

t+1(st+1)
)

︸ ︷︷ ︸

(II)

)

.

Term (I) is (λ/n)-strongly convex in θt (Bhandari and Russo 2024) and (II) is linear in θt. The

differentiability condition holds as the linear function and entropy regularization are smooth. If we

replace V
πθ
t+1 with V ∗

t+1 in (II), we get the expression of expected optimal Q-value function at period

t, which is (λ/n)-strongly convex in θt. From Corollary 1, expected optimal Q-value functions

satisfy the K L condition.

Lemma 3. The expected Q-value function Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

is continuously differen-

tiable on Θt. Furthermore, the expected optimal Q-value function Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θt)

)]

sat-

isfies the K L condition with constant λ/n over Θt.

To verify the gradient mismatch condition, we apply the Policy Gradient Theorem (Sutton et al.

1999, Theorem 1) and get

∇θt(st,i)l(θ) = ∇θt(st,i)Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

= ρt(st|πθ)
(

− λ

nθt(st, i)
︸ ︷︷ ︸

(I)

+Ct(st, i)
︸ ︷︷ ︸

(II)

+
∑

st+1∈S
Pt+1(st+1|st, i)V πθ

t+1(st+1)
)

.

The absolute value of (I) is upper bounded by λ/(np). (II) is uniformly bounded by C̄. The

regularized per-period costs are bounded as well. Therefore, l(θ) has bounded gradients by math-

ematical induction.
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Lemma 4. The policy gradient objective function l(θ) has bounded gradients

∥
∥∇θt l(θ)

∥
∥
F
≤ TC̄ +

λ

np
+λT log

( 1

np

)

, ∀t∈ [T ].

According to Theorem 1, the last condition we need to verify is sequential decomposition inequal-

ities. This inequality characterizes how far the gradients under the two policies

πα :=
(
π1(·|θ1), . . . , πk−1(·|θk−1), πk(·|θk), πk+1(·|θ∗k+1), . . . , πT (·|θ∗T )

)

and

πβ :=
(
π1(·|θ1), . . . , πk−1(·|θk−1), πk(·|θ∗k), πk+1(·|θ∗k+1), . . . , πT (·|θ∗T )

)
.

The structure of tabular MDPs naturally builds the connection between the difference in gradi-

ents and the difference in optimal Q-value functions for t < k:

∥
∥
∥∇θtl(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l(θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T )
∥
∥
∥
F

≤
∑

st∈S,it∈N

∣
∣
∣∇θt(st,it)l(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt(st,it)l(θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T )
∣
∣
∣

=
∑

st∈S,it∈N

∣
∣
∣ρt(st|πθ)

∑

st+1∈S
Pt(st+1|st, it)

(

Qπα
t+1

(
st+1, πt+1(st+1|θt+1)

)
−Q

πβ

t+1

(
st+1, πt+1(st+1|θt+1)

))
∣
∣
∣

. . .

=
∑

st∈S,it∈N

∣
∣
∣
∣
ρt(st|πθ)

∑

st+1∈S
Pt(st+1|st, it)

∑

it+1∈N
θt+1(st+1, it+1)

∑

st+2∈S
Pt(st+2|st+1, it+1) . . .

∑

ik−1∈N
θk−1(sk−1, ik−1)

∑

sk∈S
Pk−1(sk|sk−1, ik−1)

(

Q∗
k

(
sk, πk(sk|θk)

)
−Q∗

k

(
sk, πk(sk|θ∗k)

))

︸ ︷︷ ︸

(I)

∣
∣
∣
∣
.

Term (I) is exactly the difference in optimal Q-value functions at period k > t. From the assump-

tion that θt(s, i)≥ p for any s ∈S, i ∈N , and t∈ [T ], sequential decomposition inequalities hold.

Lemma 5. Sequential decomposition inequalities hold with Mg = 1/p.

We have checked all the required conditions in Theorem 1. The following theorem establishes the

K L condition of the policy gradient optimization problem for entropy-regularized tabular MDPs.

Theorem 2. Consider the entropy-regularized tabular MDPs. The policy gradient opti-

mization problem satisfies the K L condition with the corresponding K L constant µl =
λ3p2

en3T2
(
TC̄+ λ

np+Tλ log( 1
np )

)2 :

l(θ)− l(θ∗)≤ 1

2µl

min
g∈∂δΠ(π)

∥
∥
∥∇l(θ) + g

∥
∥
∥

2

F
, ∀π ∈Π.
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Proof of Theorem 2 Plugging Lemma 3, 4, and 5 into Theorem 1 can get the results. �

Leveraging the K L condition, one can establish a linear convergence rate for exact policy gra-

dient methods and Õ(ǫ−1) sample complexity for stochastic policy gradient methods to achieve

an optimal policy by Lemma 1. This is essentially the same as the result in Bhandari and Russo

(2024), which demonstrated the gradient domination of l(θ), implying a linear convergence rate for

exact policy gradient methods.

5. Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is one of the fundamental problems in the optimal control

theory. It seeks an optimal control for a linear dynamic system, in which the state’s dynamic is

a linear function of the current state and action while incurring a quadratic cost. We present the

problem following most of the terminologies in Fazel et al. (2018) and Hambly et al. (2021), while

keeping some differences to maintain consistency in Section 2.

5.1. Problem Formulation

Consider an MDP with M= (S,A, P,C,T, ρ). We aim to solve the following optimization problem

over a finite time horizon T :

min
{at}T−1

t=0

E

[T−1∑

t=0

(s⊤t Qtst + a⊤t Rtat) + s⊤TQT sT

∣
∣
∣
∣
s0 ∼ ρ

]

, (10)

such that for all t= 0, . . . , T − 1,

st+1 =Ast +Bat +wt. (11)

Here st ∈ R
m is the state of the system with an initial distribution ρ, at ∈ R

n is the action at

period t, and {wt}T−1
t=0 are independent and identical distributed random variables with zero mean

that are independent from the initial distribution. Dynamic (11) captures the transition kernel Pt

and the cost function is

Ct(st, at) = s⊤t Qtst + a⊤t Rtat, ∀t= 0, . . . , T − 1.

Our analysis can deal with time-dependent parameters in (11), i.e., At and Bt. For simplicity, we

assume that these parameters are time-independent. To ensure the problem is well-defined, we

make the following assumptions:

Assumption 3. Assume that the following assumptions hold.

1. (Cost Parameters) Assume that Qt ∈R
m×m and Rt ∈R

n×n are positive definite matrices for

all t= 0, . . . , T − 1. Furthermore, define σQ and σR as the smallest eigenvalue of {Qt}T−1
t=0 and

{Rt}T−1
t=0 respectively:

σQ = min
t=0,...,T−1

σmin(Qt)> 0,

σR = min
t=0,...,T−1

σmin(Rt)> 0.
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2. (Randomness) Assume that the second moments of x0 and {wt}T−1
t=0 are finite. Furthermore,

we assume that E[x0x
⊤
0 ] and E[wtw

⊤
t ] are positive definite matrices for all t= 0, . . . , T − 1.

Similarly, define σX as the smallest eigenvalue of E[sts
⊤
t ]:

σX = min
t=0,...,T

σmin

(
Est∼ρt(·|πθ)[sts

⊤
t ]
)
.

Then, we have the following result that shows the well-definedness of the state covariance matrix.

Lemma 6 (Hambly et al. (2021), Lemma 3.2). Suppose that Assumption 3 holds, the second

moment of st is positive definite for any t= 0, . . . , T under any policy π ∈ Π. Therefore, we have

σX > 0.

This lemma is essential for the landscape characterization and the global convergence of policy

gradient methods. In this setting, it’s well-known that the linear policy πt(st|θt) = θtst is optimal

for some unknown parameters θt ∈R
n×m (Bertsekas 1995). The policy gradient objective function

using linear policies is

l(θ) =E

[T−1∑

t=0

(
s⊤t Qtst + (θtst)

⊤Rt(θtst)
)

+ s⊤TQT sT

∣
∣
∣
∣
s0 ∼ ρ

]

with st+1 = (A + Bθt)st + wt. When the linear system is unstable, complexity in Hambly et al.

(2021) has an exponential dependence on T . To stabilize the system, one needs to restrict to the set

{θ : λmax(A+Bθt)≤ 1, ∀t= 0, . . . , T −1}. However, this set is unbounded and non-convex, making

the analysis difficult.

In the following, we only consider the landscape of l(θ) within a convex and compact set Θ such

that λmax(A+Bθt)≤ ‖A+Bθt‖2 ≤ 1 for all θt ∈ Θt and 0≤ t≤ T − 1. Furthermore, we denote σ̄Θ

as the largest spectral norm of θt ∈ Θt for all 0 ≤ t≤ T − 1, i.e.,

σ̄Θ = max
t=0,...,T−1

{
max{‖θt‖2 : θt ∈ Θt}

}
.

For the positive definite matrices Qt,Rt,E[x0x
⊤
0 ],E[wtw

⊤
t ], we define σ̄Q, σ̄R, σ̄X , σ̄W as the upper

bound on their eigenvalues for all t= 0, . . . , T −1, respectively. In addition, we assume λmax(QT )≤
σ̄Q as well.

5.2. K L Condition of Policy Gradient Objectives

To establish the K L condition of l(θ), we aim to verify all the conditions in Theorem 1. The

differentiability condition and the K L condition of expected optimal Q-value functions come from

the definition of Q-value functions. Given any policy πθ ∈ ΠΘ, Q-value functions satisfy (1):

Q
πθ
t

(
st, πt(st|θt)

)
= s⊤t Qtst + s⊤t θ

⊤
t Rtθtst

︸ ︷︷ ︸

(I)

+Ewt

[

V
πθ
t+1

(
(A+Bθt)st +wt

)]

︸ ︷︷ ︸

(II)

.
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(I) is a quadratic function with a positive definite matrix Rt, thereby is continuously differen-

tiable. For (II), the value function is continuously differentiable by mathematical induction. Since

the composition of a continuously differentiable function and a linear function is continuously dif-

ferentiable, we have the continuous differentiability of (II). If we plug π∗ into (II), we get an explicit

expression of the optimal Q-value function Q∗
t . Bertsekas (1995) demonstrated the convexity of V ∗

t

by mathematical induction. Therefore, (II) is a convex function of θt, which implies the strong con-

vexity (and the K L condition) of the optimal Q-value function combined with the strong convexity

of (I).

Lemma 7. Suppose that Assumption 3 holds. The expected Q-value function is continuously dif-

ferentiable on Θt. Furthermore, the expected optimal Q-value function Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θt)

)]

satisfies the K L condition on Θt with K L constant 2σXσR.

To validate other conditions in Theorem 1, we need an explicit expression of the policy gra-

dient ∇l(θ). Hambly et al. (2021) established the formulation of the Q-value function and the

policy gradient ∇l(θ) through a recursive form. First, let us define Pt(θ) by the following recursive

equations:

Pt(θ) :=Qt + θ⊤t Rtθt + (A+Bθt)
⊤Pt+1(θ)(A+Bθt), ∀t= 0, . . . , T − 1, (12)

The boundary condition is PT (θ) =QT . In addition, define

Lt(θ) :=Lt+1(θ) +E[w⊤
t Pt+1(θ)wt], ∀t= 0, . . . , T − 1,

with LT (θ) = 0, and

Et(θ) :=
(
Rt +B⊤Pt+1(θ)B

)
θt +B⊤Pt+1(θ)A, ∀t= 0, . . . , T − 1. (13)

The subsequent proposition presents an explicit formulation of the Q-value function and ∇l(θ).

Proposition 2 (Hambly et al. (2021), Lemma 3.5). The Q-value function has an explicit

expression:

Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

= Est∼ρt(·|πθ)

[
s⊤t Pt(θ)st

]
+Lt.

Furthermore, the policy gradient objective function l(θ) has the following gradient form:

∇tl(θ) = 2Et(θ)Est∼ρt(·|πθ)[sts
⊤
t ].

From the expression of the policy gradient ∇l(θ), we verify the bounded gradients condition by

showing the boundedness of Pt. It utilizes the stability of the linear system and the compactness

of the feasible region Θt. The following lemma establishes a formal result.
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Lemma 8. Suppose that Assumption 3 holds. The policy gradient objective function has bounded

gradients, i.e., ‖∇tl(θ)‖F ≤ G for any 0 ≤ t≤ T − 1. Furthermore, G is polynomial in the model

parameters (m,n,T, σ̄Q, σ̄R, σ̄Θ, σ̄X , σ̄W ,‖B‖2).

Sequential decomposition inequalities are more complicated to verify. However, the structure of

the LQR problem helps to construct the relationship between the difference in gradients and the

difference in optimal Q-value functions. To see this, define Π[j1:j2] := (A+Bθj2)(A+Bθj2−1) . . . (A+

Bθj1+1)(A+Bθj1) for j1 ≤ j2. Recall the gradient formulation in Proposition 2, for any 1≤ t < k≤
T :

∇tl(θ[0:k−1], θk, θ
∗
[k+1:T−1])−∇tl(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

= 2B⊤(Pt+1(θ[0:k−1], θk, θ
∗
[k+1:T−1])−Pt+1(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
(A+Bθt)Est∼ρt(·|πθ)[sts

⊤
t ]

= 2B⊤(A+Bθt+1)
⊤(Pt+2(θ[0:k−1], θk, θ

∗
[k+1:T−1])

−Pt+2(θ[0:k−1], θ
∗
k, θ

∗
[k+1:T−1])

)
(A+Bθt+1)(A+Bθt)Est∼ρt(·|πθ)[sts

⊤
t ]

. . .

= 2B⊤Π⊤
[t+1:k−1]

(

Pk(θ[0:k−1], θk, θ
∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)

Π[t:k−1]Est∼ρt(·|πθ)[sts
⊤
t ].

The second equation uses the update (12). Next, we proceed to the difference in optimal Q-value

functions. Utilizing the explicit expression of the Q-value function in Proposition 2, we conclude

that
Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θ∗k)

)]

= Esk∼ρk(·|πθ)

[

s⊤k
(
Pk(θ[0:k−1], θk, θ

∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
sk

]

= Tr
((
Pk(θ[0:k−1], θk, θ

∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
Esk∼ρk(·|πθ)[sks

⊤
k ]
)

.

Both the difference in gradients of l(θ) and the difference in expected optimal Q-value functions

have the component Pk(θ[0:k−1], θk, θ
∗
[k+1:T−1]) − Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1]). Leveraging this, we can

prove the Sequential Decomposition condition under some mild assumptions.

Lemma 9. Suppose that Assumption 3 holds. The Sequential Decomposition condition holds with

Mg > 0. Furthermore, Mg is polynomial in the model parameters (m,n,T, σ̄Q, σ̄R, σ̄Θ, σ̄X , σ̄W ,‖B‖2).

With the Differentiability condition (Lemma 7), K L Condition of Optimal Q-value Function

(Lemma 7), Bounded Gradient condition (Lemma 8), and Sequential Decomposition condition

(Lemma 9), we are ready to demonstrate the K L condition of the policy gradient optimization

problem.

Theorem 3. Consider the LQR problem. Suppose that Assumption 3 holds. The policy gradient

objective function l(θ) satisfies the K L condition on Θ:

l(θ)− l(θ∗)≤ 1

2µl

min
g∈∂δΘ(θ)

T−1∑

t=0

‖∇tl(θ) + gt‖2F , ∀θ ∈ Θ,
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where g = (g0, . . . , gT−1). In addition, the reciprocal of K L constant µl is polynomial in the model

parameters (m,n,T, σ̄Q, σ̄R, σ
−1
R , σ̄Θ, σ̄X , σ

−1
X , σ̄W ,‖B‖2).

Proof of Theorem 3 Plugging Lemma 7, 8, and 9 into Theorem 1 can get the results. �

Following the proof of Hambly et al. (2021, Theorem 3.3), we can establish a linear convergence

rate of exact policy gradient methods. It’s worth noting that the K L constant in Theorem 3 is

different from that in Hambly et al. (2021, Lemma 3.6). They fully explored the special structure

of the LQR problem and used an important fact that expected Q-value functions induced by any

policy πθ is quadratic. To illustrate the general applicability of our unified framework, we instead

utilize the K L condition of expected optimal Q-value functions, as this is a less restrictive condition

shared with other operations problems. Interestingly, through our framework, one can easily extend

the same results to the setting with general strongly convex cost functions, linear transition kernels,

and linear policy classes.

6. Inventory Models

This section demonstrates how to validate the assumptions in Theorem 1 to establish the K L

condition for the policy gradient optimization problem of the multi-period inventory system with

Markov-modulated demands, where unsatisfied demands are backlogged. One can extend the result

to the lost sales model and derive a sample complexity with the same order as the objectives in

the two settings, which exhibit the same landscape but with a constant difference.

Many works in inventory control assume that random demands are independent across time.

However, this assumption is often unrealistic in the real world, and the underlying demand process

might be correlated, i.e., economic conditions and seasons affect the random demands of different

periods. To capture correlations, some literature models the underlying demand process by an

exogenous discrete-time, discrete-state Markov chain (Song and Zipkin 1993). We briefly state the

problem formulation and validate the K L condition of the policy gradient optimization problem

using a state-dependent base-stock policy class.

6.1. Problem Formulation

Consider a MDP framework with M= (S,A, P,C,T, ρ). At the beginning of period t, the decision-

maker observes state st = (xt, it) and determines the order quantity at ≥ 0, where xt represents

the current inventory level and it is the state of the world. The inventory level x1 follows an

initial distribution ρ. The replenishment immediately raises the inventory level to yt = xt +at ≥ xt.

Subsequently, the decision-maker observes a random demand Dt whose distribution depends on

the current state of the world it. Finally, the inventory level at the beginning of the next period
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follows the linear transition kernel xt+1 = yt−Dt = xt +at−Dt, where the negative inventory level

represents backlogged demands.

Suppose the exogenous Markov chain has a finite state space I. In state it ∈ I, the random

demand Dt follows a cumulative distribution function PD(·|it). State i moves to the next state j

with probability p(j|i)∈ [0,1] and
∑

j∈I p(j|i) = 1 for any i∈ I. As a finite-state time-homogeneous

Markov Chain has at least one stationary distribution, let us pick ν ∈R
|I| as one of its stationary

distributions. Assume that initial state i1 follows the stationary distribution ν, e.g., it ∼ ν for any

t∈ [T ].

When the on-hand inventory level exceeds the realized demand Dt, it incurs a holding cost of

ht ≥ 0 per unit. Otherwise, insufficient inventory causes a backlogging cost of bt ≥ 0 per unit. Let

Lt denote the expected holding and backlogging cost for period t, which is a convex function of

the order-up-to level yt:

Lt(yt|it) =EDt∼PD(·|it)

[

ht

(
yt −Dt

)+
+ bt

(
yt −Dt

)−]
.

For simplicity, we omit the ordering cost. Our analysis can easily accommodate positive linear

ordering costs, which can be subsumed in holding and backlogging costs. The per-period cost in the

MDP framework is Ct(st, at) =Lt(xt +at|it). We aim to identify an ordering policy that minimizes

the total expected cost over T periods:

min
{at}Tt=1

E

[ T∑

t=1

Lt(xt + at|it)
∣
∣
∣x1 ∼ ρ, i1 ∼ ν

]

, (14)

where xt+1 = xt + at −Dt, Dt ∼ PD(·|it), and it+1 ∼ p(·|it). One can use dynamic programming to

reformulate (14). Let V ∗
t denote the cost-to-go function, which starts at the beginning of period t.

It satisfies the Bellman optimality equation (2):

V ∗
t (xt, it) = min

at≥0

{

Lt

(
xt + at|it

)
+Eit+1∼p(·|it),Dt∼PD(·|it)

[

V ∗
t+1

(
xt + at −Dt, it+1

)]
}

= min
yt≥xt

{

Lt

(
yt|it

)
+Eit+1∼p(·|it),Dt∼PD(·|it)

[

V ∗
t+1

(
yt −Dt, it+1

)]
}

,

with V ∗
T+1(·) = 0. Let us define

ft(yt|it) :=Lt

(
yt|it

)
+Eit+1∼p(·|it),Dt∼PD(·|it)

[

V ∗
t+1

(
yt −Dt, it+1

)]

. (15)

Song and Zipkin (1993) demonstrated the convexity of V ∗
t (xt, it) with respect to xt and the con-

vexity of ft(yt|it) with respect to yt for any it ∈ I by mathematical induction. Given the convexity

of ft(yt|it), they proved that a state-dependent base-stock policy is optimal.

Thus, in the following, we focus on the state-dependent base-stock policy class. Specifically, for

each state of the exogenous Markov Chain and period t, we define the corresponding base-stock
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level θt,i ∈R. Let θt ∈R
|I| to denote the vector of all the base-stock levels in period t with θt,i as

its i-th component. Given the current inventory level xt and the state of the world it, the decision-

maker orders πt(xt, it|θt) = (θt,it − xt)
+. For the optimal base-stock levels θ∗t , its i-th component

θ∗t,i is a minimizer of ft(·|i).
Given the state-dependent base-stock policy class, we can express the policy gradient objective

function of all the base-stock levels θ= (θ1, . . . , θT )∈R
T×|I| by

l(θ) = E

[ T∑

t=1

Lt

(
xt ∨ θt,it |it

)
∣
∣
∣x1 ∼ ρ, i1 ∼ ν

]

,

with xt+1 = xt ∨ θt,it −Dt, Dt ∼ PD(·|it), and it+1 ∼ p(·|it). Here ∨ denotes a component-wise max

operator. In the remaining part of this section, we focus on the landscape of l(θ) over a compact

convex set Θ = Θ1 × · · · × ΘT with Θt = {θt : θt,i ∈ [0,B],∀i ∈ I}. This is reasonable in practice

since one can treat B ≥ 0 as the capacity of the warehouse. The policy class is ΠΘ := {π(x, i, t|θ) =

x∨ θt,i : θt,i ∈ [0,B]}.

6.2. Nonconvex Landscape

In this subsection, we demonstrate the K L condition of the policy gradient objective function l(θ)

by verifying the conditions in Theorem 1. To establish the K L condition, we rely on the following

assumptions.

Assumption 4. Assume that all the following assumptions hold.

1. The initial inventory level x1 is independent of the exogenous Markov chain. In addition, x1 is

independent of the random demands.

2. The initial cumulative distribution function of x1 is Lρ-Lipschitz continuous. Furthermore, the

cumulative distribution function PD(·|i) is LD-Lipschitz continuous for all i∈ I.

3. There exists a positive constant αD such that PD(B|i)≤ 1−αD for any i∈ I.

4. The probability density functions of random demands at each period are uniformly bounded below

by µD > 0 on [0,B].

Assumption 4.1 is standard in the setting of Markov modulated demands (Song and Zipkin 1993,

Chen and Song 2001). It allows the correlation of random demands across different periods through

the exogenous Markov Chain, which is less restrictive than the standard independent assumption in

the literature (Huh and Rusmevichientong 2014, Cheung and Simchi-Levi 2019). Assumption 4.2

ensures the differentiability condition, which is valid for many commonly used distributions, e.g.,

uniform, exponential, and Erlang distributions. Assumption 4.3 is crucial for demonstrating the

K L condition of expected optimal Q-value functions as it excludes suboptimal stationary points
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(see the proof of Lemma 10). Assumption 4.4 leads to strongly convex costs Lt(·|it) and holds for

numerous distributions, such as uniform, exponential, and Erland distributions.

For any policy πθ ∈ ΠΘ, the expected Q-value functions satisfy the Bellman equation (1):

E(xt,it)∼ρt(·|πθ)

[

Q
πθ
t

(
xt, it, πt(xt, it|θt)

)]

= E(xt,it)∼ρt(·|πθ)

[

Lt(xt ∨ θt,it |it) +Eit+1∼p(·|it),Dt∼PD(·|it)

[

V
πθ
t+1

(
xt ∨ θt,it −Dt, it+1

)]
]

.
(16)

We express the expected Q-value function by E(xt,it)∼ρt(·|πθ)

[
h(xt∨ θt,it |it)

]
, where

h(yt,it|it) =Lt(y|it) +Eit+1∼p(·|it),Dt∼PD(·|it)

[

V
πθ
t+1

(
y−Dt, it+1

)]

.

Clearly, h(·|it) is continuously differentiable by backward mathematical induction. The cumulative

distribution function ρt(·|πθ) is continuous. Thus, the expected Q-value function is also continuously

differentiable. Furthermore, replacing πθ with π∗ in (16) gives the expression of expected optimal

Q-value functions:

Ft(θt) :=E(xt,it)∼ρt(·|πθ)

[

Q∗
t

(
xt, it, πt(xt, it|θt)

)]

= E(xt,it)∼ρt(·|πθ)

[

ft(xt ∨ θt,it |it)
]

. (17)

It’s not straightforward to verify the K L condition of Ft(θt), and we present a proof sketch

to understand why this condition holds. From (17), the suboptimality gap of Ft(·) can be upper

bounded using the suboptimality gap of ft(·|it). Since ft(·|it) is strongly convex, its suboptimality

gap is dominated by its gradient norm. Applying (17) again, we establish the connection between

the gradients of Ft(·) and ft(·|it) and prove the K L condition of Ft(θt). For more rigorous proof,

we refer readers to Appendix D.

Lemma 10. Suppose that Assumption 4 holds. The expected Q-value function is continuously differ-

entiable on Θt. Furthermore, the expected optimal Q-value function Ft(θt) satisfies the K L condition

on Θt with K L constant µQ = µDα
2
D mini∈I{νi}.

Similar to previous applications, verifying remaining conditions requires a gradient expression

of the policy gradient objective function. Let V
πθ
t denote the value function, which starts at the

beginning of period t and follows policy πθ. It satisfies the Bellman equation (1):

V
πθ
t (xt, it) =Lt

(
xt ∨ θt,it |it

)
+Eit+1∼p(·|it),Dt∼PD(·|it)

[

V
πθ
t+1

(
xt ∨ θt,it −Dt, it+1

)]

,

with V
πθ
T+1(·) = 0. The subsequent proposition presents the result in a recursive form.

Proposition 3 (Policy Gradient Expression). For any θ ∈ Θ and t ∈ [T ], the partial deriva-

tives of value functions satisfy the following recursive form:

∇xV
πθ
t (xt, it) = 1

(
xt ≥ θt,it

)
×
(

L′
t(xt|it)+

∑

it+1∈I
p(it+1|it)EDt∼PD(·|it)

[
∇xV

πθ
t+1(xt−Dt, it+1)

])

, (18)
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where ∇xV
πθ
T+1(·, ·) = 0 and ∇xV

πθ
t (xt, it) represent the partial derivative of xt. Additionally, the

policy gradient objective function l(θ) has the following gradient form for any t∈ [T ] and i∈ I:

∂

∂θt,i
l(θ) = E(xt,it)∼ρt(·|πθ)

[

1
(
it = i, θt,i ≥ xt

)

×
(

L′
t

(
θt,i|i

)
+

∑

it+1∈I
p(it+1|i)EDt∼PD(·|i)

[

∇xV
πθ
t+1

(
θt,i −Dt, it+1

)]
)]

.

Given the gradient formulation in Proposition 3, one can easily construct a stochastic policy

gradient estimator using samples from trajectories and verify that Assumptions 1 and 2 holds with

all parameters scaling polynomially in the planning horizon. Due to the page limits, we omit the

proof. Leveraging Proposition 3, the following two lemmas verify the bounded gradient condition

and the sequential decomposition inequality.

Lemma 11. Suppose that Assumption 4 holds. The policy gradient objective function l(θ) has

bounded gradients for any θ ∈Θ and t∈ [T ]:

∥
∥∇θt l(θ)

∥
∥
2
≤ max

t∈{1,...,T}

{
max{ht, bt}

}
T.

Lemma 12. Suppose that Assumption 4 holds. The sequential decomposition inequality holds for

any θ ∈ Θ and 1≤ t < k≤ T , i.e.,

∥
∥
∥∇θt l(θ[1:k−1], θk, θ

∗
[k+1:T ])−∇θtl(θ[1:k−1], θ

∗
k, θ

∗
[k+1:T ])

∥
∥
∥≤ LD

αD

(
Fk(θk)−Fk(θ∗k)

)
.

Plugging Lemmas 10, 11, and 12, we have the main result of this section.

Theorem 4. Suppose that Assumption 4 holds. The policy gradient objective function l(θ) of the

multi-period inventory system with Markov-modulated demand satisfies the K L condition on Θ with

K L constant

µl =
µ3
Dα

8
D mini∈I{vi}3

eL2
D maxt∈{1,...,T}

{
max{ht, bt}

}2
T 4
.

More specifically, we have

l(θ)− l(θ∗)≤ 1

2µl

min
g∈∂δΘ(θ)

‖∇l(θ) + g‖22, ∀θ ∈ Θ.

Remark 4. The K L constant in Theorem 4 has a dependence on mini∈I{vi}. Since
∑

i∈I νi = 1,

the smallest probability is at most the order of 1/|I|.

Leveraging the K L condition, we establish the global convergence of stochastic policy gradient

methods by Lemma 1. The sample complexity required for achieving an ǫ-optimal state-dependent

base-stock policy is Õ
(
ǫ−1poly(T )

)
. This is the first sample complexity result for the multi-period
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inventory system with Markov-modulated demands in the literature. As a byproduct, we improve

the sample complexity for stochastic gradient methods to solve the inventory system with inde-

pendent demands, which is a special case with no exogenous Markov chain (|I| = 1). Our sam-

ple complexity admits a polynomial dependence on the time horizon, representing a significant

improvement compared to the exponential dependence in Huh and Rusmevichientong (2014) for

a biased stochastic gradient method. We remark that Huh and Rusmevichientong (2014) assumes

the convexity of cost-go-functions, whereas Theorem 1 assumes the K L Condition of expected

optimal Q-value functions (which is a generalization of strong convexity). While the analysis in

Huh and Rusmevichientong (2014) can be extended to the case with strongly convex cost-to-go

functions, it remains unclear whether the exponential dependence on T can be improved.

7. Stochastic Cash Balance Problem

The cash balance problem originally refers to a cost minimization problem when a firm has to decide

how much cash to hold to meet the transaction requirements over a finite planning horizon. It can

also model inventory management with rented equipment (Whisler 1967, Chen and Simchi-Levi

2009). In this section, we will briefly describe the problem formulation under the inventory setting

and validate the K L condition of the objectives for policy gradient methods using a two-sided

base-stock policy class.

7.1. Problem Formulation

The problem formulation of the stochastic cash balance problem is similar to the multi-period

inventory system. We use the same notations in Section 6. Unlike the class inventory system where

the decision-maker can only raise the inventory level, the stochastic cash balance problem allows

the decision-maker to reduce the inventory level. Let at = yt − xt denote the ordering (at > 0) or

return (at< 0) quantity. The transaction cost is a piecewise linear function:

c(y,x) =

{
k(y−x), y≥ x,

q(x− y), y < x,

with k+ q ≥ 0. The assumption for k+ q≥ 0 implies that the unit refund can not exceed the unit

ordering cost. Therefore, the transaction cost function is jointly convex in (x, y).

Additionally, the random demand Dt can be positive or negative. Negative demand means the

decision-maker receives more returns from customers than their purchase. For simplicity, we assume

that demands among different periods are independent and identically distributed. One can easily

extend our results to the setting when random demands are not identically distributed. Let FD

represent the cumulative distribution function of random demands. All other settings are the same

as the inventory model in Section 6.
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For convenience, we recall some useful notations. Let Lt denote the expected cost for the period

t as a function of the inventory level yt after the ordering and return decisions:

Lt(yt) = EDt

[

ht(yt −Dt)
+ + bt(yt −Dt)

−
]

.

Then the per-period cost in the MDP framework is Ct(st, at) = c(st + at, st) + Lt(st + at). The

objective of the decision-maker is to minimize the total expected costs over the finite horizon T :

min
{at}Tt=1

E

[ T∑

t=1

(
c(st + at, st) +Lt(st + at)

)
∣
∣
∣
∣
s1 ∼ ρ

]

, (19)

with st+1 = st +at−Dt. Like the classic stochastic inventory system, one can present the optimiza-

tion problem (19) by a dynamic program. Let V ∗
t be the cost-to-go function which starts at the

beginning of period t, it satisfies the Bellman equation (2):

V ∗
t (st) = min

yt

{

c(yt, st) +Lt(yt) +EDt

[
V ∗
t+1(yt −Dt)

]}

,

with V ∗
T+1(·) = 0. By mathematical induction, we can easily show the convexity of cost-to-go func-

tions since the transaction cost function is jointly convex in (x, y) and Lt(yt) is a convex function.

Define ft(x) =Lt(x) +EDt

[
V ∗
t+1(x−Dt)

]
, we can rewrite the dynamic programming recursion:

V ∗
t (st) = min

{

min
yt≥st

{
k(yt− st) + ft(yt)

}
, min
yt≤st

{
q(st − yt) + ft(yt)

}}

.

Whisler (1967) and Eppen and Fama (1969) studied the stochastic cash balance problem and

proved the optimality of the two-sided base-stock policy. That is, at period t there exists two

parameters θt and θ̄t with θt ≤ θ̄t, such that the optimal inventory level yt(st) satisfies:

yt(st) =







θt, st ≤ θt,

st, θt < st < θ̄t,

θ̄t, st ≥ θ̄t.

Based on the convexity of the cost-to-go functions, if we let
{
f
t
(yt) = kyt + ft(yt) = kyt +Lt(yt) +EDt

[
V ∗
t+1(yt −Dt)

]
,

f̄t(yt) = −qyt + ft(yt) = −qyt +Lt(yt) +EDt

[
V ∗
t+1(yt −Dt)

]
,

then both f
t
(yt) and f̄t(yt) are convex functions with minimizers θ∗t and θ̄∗t . It is well known

that the optimal parameters for the two-sided base-stock policy are θ∗t and θ̄∗t (Whisler 1967,

Eppen and Fama 1969).

Let θt = (θt, θ̄t) denote the parameters at period t. Then we can rewrite the two-sided base-stock

policy by at = πt(st|θt) = (st ∨ θt)∧ θ̄t − st. Thus the policy gradient objective function is

l(θ) = E

[ T∑

t=1

(

c
(
(st∨ θt)∧ θ̄t, st

)
+Lt

(
(st∨ θt)∧ θ̄t

))
∣
∣
∣
∣
s1 ∼ ρ

]

,
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with st+1 = (st∨ θt)∧ θ̄t−Dt. In the remaining part of this section, we only analyze the nonconvex

landscape of l(θ) over a convex set Θ = Θ1×, . . . ,×ΘT with Θt = {(θt, θ̄t) :B ≤ θt ≤ θ̄t ≤ B̄}. This

is reasonable in practice since one can treat B̄ as the capacity of the warehouse, and the lower

bound B ensures the firms will never hold too many backlogged demands.

7.2. Nonconvex Landscape

Like Section 6, we establish the K L condition for the policy gradient objective function by verifying

the conditions in Theorem 1. Before showing the main results, we make some assumptions.

Assumption 5. Assume that all the following assumptions hold.

1. The initial state s1 and random demands Dt in different periods t are independent of each other.

2. The initial distribution ρ is Lρ-Lipschitz continuous. Furthermore, the cumulative distribution

function FD of random demands is LD-Lipschitz continuous.

3. There exists a positive constant αD such that P(Dt ≥ B̄) ≥ αD and P(Dt ≤ B) ≥ αD for any

t∈ [T ].

4. The probability density function of the random demand Dt is bounded below by µD > 0 on [B, B̄].

Assumption 5 is very similar to Assumption 4 except that Assumption 5.3 further requires

P(Dt ≤B)≥ αD, which plays the same role for excluding suboptimal stationary points.

For any policy πθ ∈ ΠΘ, the expected Q-value functions satisfy the Bellman equation (1):

Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

= Est∼ρt(·|πθ)

[

c
(
(st ∨ θt)∧ θ̄t, st

)
+Lt

(
(st ∨ θt)∧ θ̄t

)
+EDt

[

V
πθ
t+1

(
(st∨ θt)∧ θ̄t −Dt

)]
]

.

Same as Section 6, the continuous differentiability of the expected Q-value function comes from

the continuity of the cumulative distribution function of st, which holds under Assumption 5.2.

Recall the definition ft(x) =Lt(x) +EDt

[
V ∗
t+1(x−Dt)

]
. We get the expression of expected optimal

Q-value functions by replacing πθ with π∗:

Ft(θt) := Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θt)

)]

=Est∼ρt(·|πθ)

[

c
(
(st∨ θt)∧ θ̄t, st

)
+ ft

(
(st ∨ θt)∧ θ̄t

)]

.

The structure of the expected optimal Q-value function is close to that for the inventory system

in Section 6. The following lemma establishes the K L condition for the expected optimal Q-value

function by a similar proof.

Lemma 13. Suppose that Assumption 5 holds. The expected Q-value function is continuously dif-

ferentiable on Θt for any t∈ [T ]. In addition, the expected optimal Q-value function Ft(θt) satisfies

the K L condition on Θt with K L constant µDα
2
D for any t∈ [T ].



31

Again, we need an explicit expression of the gradient ∇l(θ) to validate the remaining conditions.

Let V
πθ
t be the value function that starts at the beginning of period t. It satisfies the Bellman

equation (1):

V
πθ
t (st) = c

(
πt(st|θt), st

)
+Lt

(
πt(st|θt)

)
+EDt

[

V
πθ
t+1

(
πt(st|θt)−Dt

)]

= c
(
(st ∨ θt)∧ θ̄t, st

)
+Lt

(
(st ∨ θt)∧ θ̄t

)
+EDt

[

V
πθ
t+1

(
(st∨ θt)∧ θ̄t −Dt

)]

,

with V
πθ
T+1(·) = 0. The subsequent proposition presents a gradient formulation for l(θ).

Proposition 4 (Policy Gradient Expression). For any θ ∈ Θ and t ∈ [T ], the derivatives of

value functions satisfy the following recursive form:

(V
πθ
t )′(st) = k1(st ≤ θt)− q1(st ≥ θ̄t) + 1(θt <st < θ̄t)×

(

L′
t(st) +EDt

[
(V

πθ
t+1)

′(st−Dt)
])

(20)

with (V
πθ
T+1)(·) = 0. Additionally, the policy gradient objective function l(θ) has the following gradient

form for any t∈ [T ]:






∂

∂θt
l(θ) =Est∼ρt(·|πθ)

[

1(θt ≥ st)×
(

k+L′
t(θt) +EDt

[
(V

πθ
t+1)

′(θt −Dt)
])

]

,

∂

∂θ̄t
l(θ) =Est∼ρt(·|πθ)

[

1(θ̄t ≤ st)×
(

−q+L′
t(θ̄t) +EDt

[
(V

πθ
t+1)

′(θ̄t −Dt)
])

]

.

With the explicit expression of the gradient, we can verify the bounded Gradient condition and

the sequential Decomposition Inequality by the following two lemmas.

Lemma 14. Suppose that Assumption 5 holds. It follows that the policy gradient objective function

l(θ) has bounded gradients for any θ ∈ Θ and t∈ [T ]:

∥
∥∇θtl(θ)

∥
∥
2
≤ 2

(
k+ |q|+ max

t∈{1,...,T}

{
max{ht, bt}

})
T.

Lemma 15. Suppose that Assumption 5 holds. For any θ ∈ Θ and 1≤ t < k≤ T , sequential decom-

position inequalities hold, i.e.,
∥
∥
∥∇θt l(θ[1:k−1], θk, θ

∗
[k+1:T ])−∇θtl(θ[1:k−1], θ

∗
k, θ

∗
[k+1:T ])

∥
∥
∥
2

≤ LD

αD

(

Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θt)

)]

−Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θ∗t )

)]
)

.

Equipped with K L condition of Optimal Q-value Function (Lemma 13), Bounded Gradient con-

dition (Lemma 14), and Sequential Decomposition inequality (Lemma 15), we can demonstrate the

K L condition of the policy gradient objective function l(θ) by applying Theorem 1.

Theorem 5. Suppose that Assumption 5 holds. The policy gradient objective function l(θ) of the

stochastic cash balance problem satisfies the K L condition on Θ with K L constant

µl =
µ3
Dα

8
D

16eL2
D

(
k+ |q|+ maxt∈{1,...,T}

{
max{ht, bt}

})2
T 4
.
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Proof of Theorem 5 Plugging Lemmas 14, 13, and 15 into Theorem 1 can get the result. �

Similar to the inventory system in Section 6, we establish an Õ
(
ǫ−1poly(T )

)
sample complexity

of stochastic policy gradient methods converging to globally optimal policies by Lemma 1. To the

best of our knowledge, this is the first sample complexity result for data-driven methods solving

the stochastic cash balance problem. Additionally, one can check that K L condition holds for the

stochastic cash balance problem with Markov-modulated demands as well.

8. Conclusion

This work provides a framework with several easily verified conditions to establish the K L condition

for policy gradient optimization problems of finite-horizon MDPs with general state and action

spaces. Despite nonconvexity, the K L condition guarantees a linear convergence rate for exact policy

gradient methods and an Õ(ǫ−1) sample complexity for stochastic policy gradient methods. Our

framework covers a broad range of control and operations models, including entropy-regularized

tabular MDPs, LQR problems, multi-period inventory systems with Markov-modulated demands,

and stochastic cash balance problems. Furthermore, we establish the first sample complexity solving

the stochastic cash balance problem and multi-period inventory system with Markov-modulated

demand allowing backorders, and an extension to the lost sales model. The complexity has a

polynomial instead of an exponential dependence on the planning horizon.

Our work opens up several directions for future research. Firstly, in many of the applications

discussed, one can further explore the structural properties to build a more precise characteriza-

tion of the K L constant and reduce the dependence on T . Secondly, our results build upon the

K L condition of expected optimal Q-value functions, requiring strongly convex per-period costs. It

remains interesting to further generalize the results to general convex per-period costs for appli-

cations like inventory models. Adding regularization could be one potential solution, yet it might

deteriorate the dependence on accuracy ǫ. Finally, it is interesting to explore the applicability of

our developed framework to other applications.
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Sara Klein, Simon Weissmann, and Leif Döring. Beyond stationarity: Convergence analysis of stochastic

softmax policy gradient methods. arXiv preprint arXiv:2310.02671, 2023. (Cited on pages 4 and 16.)

Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average approximation

method for stochastic discrete optimization. SIAM Journal on optimization, 12(2):479–502, 2002. (Cited

on page 5.)

Sumit Kunnumkal and Huseyin Topaloglu. Using stochastic approximation methods to compute optimal

base-stock levels in inventory control problems. Operations Research, 56(3):646–664, 2008. (Cited on

page 6.)

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. In Annales de l’institut

Fourier, volume 48, pages 769–783, 1998. (Cited on pages 2, 3, and 4.)

Guanghui Lan. Policy optimization over general state and action spaces. arXiv preprint arXiv:2211.16715,

2022. (Cited on page 4.)

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling com-

plexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106, 2023. (Cited

on pages 4 and 16.)

Retsef Levi, Robin O Roundy, and David B Shmoys. Provably near-optimal sampling-based policies for

stochastic inventory control models. Mathematics of Operations Research, 32(4):821–839, 2007. (Cited

on page 5.)

Eitan Levin, Joe Kileel, and Nicolas Boumal. The effect of smooth parametrizations on nonconvex optimiza-

tion landscapes. Mathematical Programming, pages 1–49, 2024. (Cited on page 3.)

Feng-Yi Liao, Lijun Ding, and Yang Zheng. Error bounds, pl condition, and quadratic growth for weakly

convex functions, and linear convergences of proximal point methods. In 6th Annual Learning for

Dynamics & Control Conference, pages 993–1005. PMLR, 2024. (Cited on page 4.)



36

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations aux
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Online Appendices

Appendix A: Omitted Proofs in Section 3

A.1. Strong Convexity, Gradient Dominance, and K L condition

Definition 4 (Gradient Dominance). Consider a convex and compact set X ⊆R
d and a dif-

ferentiable function f . Suppose that f ∗ is the optimal objective value f ∗ := minx∈X f(x). The

function f is said to be (α,µ)-gradient dominated over X if there exists constants α> 0 and µ≥ 0

such that

f(x)− f ∗ ≤ max
x′∈X

{

α〈∇f(x), x−x′〉− µ

2
‖x−x′‖22

}

, ∀x∈X . (21)

One important property is that the (α,0)-gradient dominance (for µ> 0) and (α,µ)-gradient dom-

inance are generalizations of convexity and µ-strong convexity, respectively. In particular, if f is

convex (or µ-strongly convex), then f is (1,0)-gradient dominated (or (1, µ)-gradient dominated)

by definition.

Lemma 16 (Karimi et al. (2016)). Consider a convex and compact set X ⊆ R
n. If a function

f : X → R is (α,µ)-gradient dominated over X , then f satisfies the K L condition with constant

µ/α2 over X .

Remark 5. Karimi et al. (2016, Appendix G) analyzed the equivalence between the proximal-P L

condition and the K L condition. Since the proximal-P L condition differs from the (α,µ)-gradient

dominance slightly, one can apply the same proof to prove Lemma 16.

Corollary 1. Consider a convex and compact set X ⊆R
n. If the function f :X →R is µ-strongly

convex over X , then f satisfies the K L condition over X with constant µ.

Proof of Corollary 1 From the µ-strong convexity of f , we have

f(x)− f ∗ ≤ 〈∇f(x), x−x∗〉− µ

2
‖x−x∗‖22 ≤ max

x′∈X

{

〈∇f(x), x−x′〉− µ

2
‖x−x′‖22

}

Here the last inequality uses the fact that x∗ ∈X . Then applying Lemma 16 completes the proof.

�

A.2. No Suboptimal Stationary Points

Proof of Proposition 1 Suppose x̄ ∈ X satisfies the first-order necessary optimality condition.

We have:

〈∇f(x̄), x̄−x〉 ≤ 0, ∀x∈X .

Recall that the subdifferential of δX (x̄) is the normal cone of X at x̄, i.e.,

∂δX (x̄) = {g|〈g,x− x̄〉 ≤ 0, ∀x∈X}.
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Therefore, we have −∇f(x̄)∈ ∂δX (x̄), which implies

f(x̄)− f ∗ ≤ 1

2µ
min

g∈∂δX (x)

∥
∥∇f(x) + g

∥
∥
2

2

(a)

≤ 1

2µ

∥
∥∇f(x)−∇f(x)

∥
∥
2

2
= 0, ∀x∈X .

Here inequality (a) holds because −∇f(x̄) ∈ ∂δX (x̄). Since f(x̄) ≥ f ∗ by definition, it follows that

f(x̄) = f ∗ and x̄ is a global optimal point. �

A.3. Convergence Rate under the K L Condition

Proof of Lemma 1 The non-asymptotic convergence result of projected gradient descent can

be found in Attouch et al. (2013). As for the projected stochastic gradient descent, the proof

follows the framework in Attouch et al. (2013) with an extension to the stochastic setting. From

the optimality condition of xk+1 = arg minx∈X ‖x− γk∇f̂(xk)‖22, we have

‖xk+1 −xk‖22 + 〈xk+1 −xk, γk∇f̂(xk)〉 ≤ 0. (22)

From the smoothness of f , we conclude that

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 −xk〉+
L

2
‖xk+1 −xk‖22

= 〈∇f̂(xk), xk+1 −xk〉+ 〈∇f(xk)−∇f̂(xk), xk+1 −xk〉+
L

2
‖xk+1 −xk‖22

(a)

≤ 〈∇f(xk)−∇f̂(xk), xk+1 −xk〉−
L

2
‖xk+1 −xk‖22

(b)

≤ 1

L
‖∇f(xk)−∇f̂(xk)‖22 +

L

4
‖xk+1 −xk‖22 −

L

2
‖xk+1 −xk‖22

=
1

L
‖∇f(xk)−∇f̂(xk)‖22 −

L

4
‖xk+1 −xk‖22.

(23)

Here inequality (a) uses (22) and γk = 1
L

, and (b) uses the inequality 2〈a, b〉 ≤ ‖a‖22 + ‖b‖22. From

the optimality condition of the optimization problem that defines the projection operator,

xk − γk∇f̂(xk)−xk+1 ∈ ∂δX (xk+1).

Since the subdifferentials of δX is a normal cone, we have

xk −xk+1

γk
−∇f̂(xk)∈ ∂δX (xk+1).

Thus, we get

min
g∈∂δX (xk+1)

∥
∥∇f(xk+1) + g

∥
∥
2
≤
∥
∥
∥
xk −xk+1

γk
+∇f(xk+1)−∇f̂(xk)

∥
∥
∥
2

(a)

≤
∥
∥
∥
xk −xk+1

γk

∥
∥
∥
2

+ ‖∇f(xk+1)−∇f(xk)‖2 + ‖∇f(xk)−∇f̂(xk)‖2
(b)

≤ 2L‖xk+1 −xk‖2 + ‖∇f(xk)−∇f̂(xk)‖2.
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Inequality (a) uses the triangle inequality, and inequality (b) uses the smoothness of f and γk = 1
L

.

By the K L Condition, we have

f(xk+1)− f ∗ ≤ 1

2µ
min

g∈∂δX (xk+1)

∥
∥∇f(xk+1) + g

∥
∥
2

2

≤ 1

2µ

(

2L‖xk+1 −xk‖2 + ‖∇f(xk)−∇f̂(xk)‖2
)2

(a)

≤ 1

2µ

(

8L2‖xk+1 −xk‖22 + 2‖∇f(xk)−∇f̂(xk)‖22
)

(b)

≤ 16L

µ

(
f(xk)− f(xk+1)

)
+

17

µ
‖∇f(xk)−∇f̂(xk)‖22.

Here (a) uses the inequality (a+ b)2 ≤ 2a2 + 2b2, and inequality (b) uses (23). Notice that xk =

xk(ξ[k−1]) is a function of the ξ[k−1] = (ξ1, . . . , ξk−1). For simplicity, we will use E[f(xk+1)] and

E[f(xk)] to denote Eξ[k]
[f(xk+1)] and Eξ[k−1]

[f(xk)] respectively. Then, taking the expectation on

both sides and using the assumption that Eξk
‖∇f̂(xk)−∇f(xk)‖22 ≤ σ2/N , we have

E[f(xk+1)]− f ∗ ≤ 16L

µ

(

E[f(xk)]−E[f(xk+1)]
)

+
17σ2

µN
.

Rearranging the terms, we have

E[f(xk+1)]− f ∗ ≤
(

1− µ

16L+µ

)(

E[f(xk)]− f ∗
)

+
17σ2

(16L+µ)N
.

Taking the telescoping sum, we have

E[f(xk)]− f ∗ ≤
(

1− µ

16L+µ

)k(

E[f(x0)]− f ∗
)

+
17σ2

(16L+µ)N

k−1∑

l=0

(

1− µ

16L+µ

)l

≤
(

1− µ

16L+µ

)k(

E[f(x0)]− f ∗
)

+
17σ2

µN
.

Here the last inequality holds because
∑k−1

l=0 (1− q)l ≤ 1/q for any q ∈ (0,1). �

A.4. K L Condition in Policy Gradient Formulation

We first prove a technical lemma (Lemma 2), which is useful for our main results in Theorem 1.

Proof of Lemma 2 Let us define u2
t :=

∑T

l=tX
2
l , v2t :=

∑T

l=t Y
2
l . Without loss of generality, we

assume that vt > 0 for any t∈ [T ]. Otherwise, there exists t∈ [T ] such that Yl = 0 for any t≤ l≤ T ,

which implies Xl = Yl = 0 for any t≤ l≤ T by (9). Therefore, discarding these terms will not affect

the final result.

Furthermore, we define ft := u2
t/v

2
t and a series {δt}Tt=1 where

δt := (1 + 2YtMg +M 2
g δt+1v

2
t+1)δt+1,

and δT = 1. We use backward mathematical induction to show that ft ≤ δt for any t∈ [T ].
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Induction Base: Since fT = u2
T/v

2
T =X2

T/Y
2
T = 1, we have fT = δT = 1.

Induction Step: Suppose that ft+1 ≤ δt+1 holds. We have

ft =
u2
t

v2t
=
u2
t+1 +X2

t

v2t+1 +Y 2
t

(a)

≤ u2
t+1 + (Mgu

2
t+1 +Yt)

2

v2t+1 +Y 2
t

=
u2
t+1 +Y 2

t +M 2
gu

4
t+1 + 2YtMgu

2
t+1

v2t+1 +Y 2
t

(b)
=

(1 + 2YtMg +M 2
g ft+1v

2
t+1)ft+1v

2
t+1 +Y 2

t

v2t+1 +Y 2
t

(c)

≤ (1 + 2YtMg +M 2
g δt+1v

2
t+1)δt+1

= δt.

Here inequality (a) uses (9), equation (b) comes from the definition ft+1 = u2
t+1/v

2
t+1, and inequal-

ity (c) utilizes the induction assumption ft+1 ≤ δt+1 and the fact that δt is non-increasing in t with

δt ≥ δT = 1. Therefore, by mathematical induction, we can conclude that ft ≤ δt for any t∈ [T ]. By

definition, we have the following inequalities,

δt =

T−1∏

l=t

(1 + 2YlMg +M 2
g δl+1v

2
l+1)

(a)

≤
T−1∏

l=t

(1 + 2YlMg +M 2
g δt+1v

2
t ), ∀t∈ [T − 1].

Inequality (a) holds because δt and v2t are non-increasing in t. Consider the following optimization

problem:

max
Yt,...,YT−1

T−1∏

l=t

(1 + 2YlMg +M 2
g δt+1v

2
t ),

s.t.
T−1∑

l=t

Y 2
l ≤ v2t ,

Yl ≥ 0, ∀t≤ l≤ T − 1.

Since all the terms are non-negative, the optimal solution satisfies the equation
∑T−1

l=t Y
2
l = v2t . Oth-

erwise, we can increase one of Yl for a larger objective. By the KKT condition (Nocedal and Wright

1999), the optimal solution has an explicit form (Y ∗
l )2 = 1

T−t
v2t for any t≤ l≤ T − 1. This implies

δt ≤ (1 + 2Mg

1√
T − t

vt +M 2
g δt+1v

2
t )T−t, ∀t∈ [T − 1]. (24)

Next, we consider the following two cases:

1. Suppose that there exists t̃ ∈ [T − 1] such that 2Mgvt̃
1√
T−t̃

+M 2
g v

2
t̃
e > 1

T−t̃
. Since vt ≥ 0 for all

t∈ [T − 1], we can conclude that

vt̃ >
1

√

T − t̃Mg

×
√
e+ 1− 1

e
.

Since vt is non-increasing and v1 ≥ vt̃, it holds that

f1 =
u2
1

v21
≤ TG2

v2
t̃

≤ 4eM 2
gG

2T 2.

The first inequality holds as u2
1 =

∑T

t=1X
2
t ≤

∑T

t=1G
2 = TG2.
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2. Suppose that for any t∈ [T − 1], we have 2Mgvt
1√
T−t

+M 2
g v

2
t e≤ 1

T−t
. We use backward mathe-

matical induction to show δt ≤ e for all t∈ [T ].

Induction Base: We have δT = 1< e.

Induction Step: Suppose that δt+1 ≤ e holds. From (24), we have

δt ≤ (1 + 2Mg

1√
T − t

vt +M 2
g δt+1v

2
t )T−t ≤ (1 + 2Mg

1√
T − t

vt +M 2
g v

2
t e)

T−t ≤ (1 +
1

T − t
)T−t ≤ e.

Therefore, we have δt ≤ e,∀t∈ [T ] by mathematical induction, which implies f1 ≤ δ1 ≤ e.

Combining these two cases, we conclude that f1 ≤ max{e,4eM 2
gG

2T 2}. Since f1 = u2
1/v

2
1, we have

∑T

t=1X
2
t ≤ max{e,4eM 2

gG
2T 2}∑T

t=1 Y
2
t . This completes the proof. �

The bound in Lemma 2 depends crucially on Mg, G, and T . This dependence could influence the

KL constant in Theorem 1. In what follows, we demonstrate the tightness of the dependence on

Mg, G, and T in Lemma 2. Without loss of generality, we consider the case when Mg > 1, G> 1,

and MgG≥ 4.

We first construct two sequences {Xt}Tt=1 and {Yt}Tt=1 such that f1 is order of M 2
gG

2T 2 up to

some logarithmic factors. In particular, let us define Z := log2(MgG) and

Xt =

{
2Z+1−t

Mg
t < ⌊Z⌋,

Z
tMg

t≥ ⌊Z⌋, Yt =

{

0 t < T,
Z

tMg
t= T.

With the sequences {Xt}Tt=1 and {Yt}Tt=1, we first verify the inequality (9). Since Yt = 0 for any

t < T , the inequality (9) simplifies toXt ≤Mg

∑T

k=t+1X
2
k . Introducing a transformation X̄t =MgXt,

it is sufficient to check that if the sequence {X̄t}Tt=1 satisfies

X̄t ≤
T∑

k=t+1

X̄2
k , (25)

with 0≤ X̄t ≤MgG for any t∈ [T ]. To validate (25), it is sufficient to verify that X̄t ≤ X̄t+1 + X̄2
t+1

by mathematical induction. We consider the following three cases:

1. For any t≥ ⌊Z⌋, we have

X̄t+1 + X̄2
t+1 − X̄t =Z

(
1

t+ 1
− 1

t
+

Z

(t+ 1)2

)

=Z
Zt− t− 1

t(t+ 1)2

(a)

≥ Z
t− 1

t(t+ 1)2

(b)

≥ 0.

Here inequality (a) holds because Z = log2(MgG)≥ 2, and inequality (b) follows since t≥ 1.

2. For t= ⌊Z⌋− 1, we have

X̄t+1 + X̄2
t+1 − X̄t =

Z

⌊Z⌋ +

(
Z

⌊Z⌋

)2

− 2Z−⌊Z⌋ ≥ 1 + 1− 2 = 0.

The inequality applies 0≤Z −⌊Z⌋ ≤ 1.



43

3. For any t < ⌊Z⌋− 1, we obtain

X̄t+1 + X̄2
t+1 − X̄t

(a)

≥ X̄2
t+1 − X̄t = (2Z−t)2 − 2Z+1−t

(b)

≥ 0.

Here inequality (a) holds as Xt ≥ 0 for any t∈ [T ], and inequality (b) applies Z ≥ ⌊Z⌋> t+ 1.

Therefore, the sequences {Xt}Tt=1 and {Yt}Tt=1 satisfy (9). Additionally, we have

f1 =
u2
1

v21
≥ X2

1

Y 2
T

=
M 2

gG
2T 2

Z2
=

M 2
gG

2T 2

log2(MgG)2
.

This example establishes a lower bound of f1, indicating that the dependence on Mg, G, and T

is tight up to some logarithmic factors and the bound in Lemma 2 is sharp. Next, we prove the

main result (Theorem 1).

Proof of Theorem 1 The proof mainly follows the proof sketch in Section 3.3. For readers’

convenience, we divide the proof into several parts.

Step 1: Bounded Gradient Mismatch Inequality. For any gt ∈ ∂δΘt
(θt), we have

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

−
∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)]

+ gt −∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

− gt

∥
∥
∥
∥
2

(a)
=

∥
∥
∥∇θt l(θ[1:t], θ

∗
[t+1:T ])−∇θt l(θ[1:t], θ[t+1:T ])

∥
∥
∥
2

≤
T∑

k=t+1

∥
∥
∥∇θt l(θ1, . . . , θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θk−1, θ

∗
k, . . . , θ

∗
T

)
∥
∥
∥
2

(b)

≤
T∑

k=t+1

Mg

(

Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θ∗k)

)]
)

(c)

≤
T∑

k=t+1

Mg

2µQ

min
gk∈∂δΘk

(θk)

∥
∥
∥
∥
∇θk

Esk∼ρk(·|πθ)

[

Q
π∗

θ
k

(
sk, πk(sk|θk)

)]

+ gk

∥
∥
∥
∥

2

2

.

(26)

Here (a) comes from the deterministic policy gradient theorem (Silver et al. 2014), (b) relies on

sequential decomposition inequalities, and (c) uses the K L condition of expected optimal Q-value

functions. Define

Xt := min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

,

Yt := min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

.
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We have

Xt −Yt

(a)

≤ max
gt∈∂δΘt

(θt)

{∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

−
∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥
2

}

(b)

≤ Mg

2µQ

T∑

k=t+1

min
gk∈∂δΘk

(θk)

∥
∥
∥
∥
∇θk

Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θk)

)]

+ gk

∥
∥
∥
∥

2

2

=
Mg

2µQ

T∑

k=t+1

X2
t .

Inequality (a) utilizes the fact that minx∈X f(x)−minx∈X h(x)≤maxx∈X{f(x)−h(x)}. Inequality

(b) comes from (26). Similarly, we have Yt−Xt ≤ Mg

2µQ

∑T

k=t+1X
2
t . Given the fact that XT = YT and

Xt, Yt ≤G for all t= 1, . . . , T , applying Lemma 2, we have that the bounded gradient mismatch

condition holds:
T∑

t=1

X2
t ≤

eM 2
gG

2T 2

µ2
Q

T∑

t=1

Y 2
t .

Step 2: K L Condition of l(θ). Although Kakade and Langford (2002) only derived the Per-

formance Difference Lemma for infinite-horizon discounted MDPs, one can use the same trick to

get a similar result for finite-horizon MDPs. Therefore, we have

l(θ)− l(θ∗) =
T∑

t=1

Est∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)
−V

πθ∗
t (st)

]

=
T∑

t=1

Est∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)
−Q

πθ∗
t

(
st, πt(st|θ∗t )

)]

(a)

≤
T∑

t=1

1

2µQ

min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ∗
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥

2

2

(b)

≤ eM 2
gG

2T 2

2µ3
Q

T∑

t=1

min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥

2

2

.

Inequality (a) utilizes the K L condition of optimal Q-value functions, and inequality (b) comes from

the bounded gradient mismatch inequality. Employing the deterministic policy gradient theorem

in Silver et al. (2014), we have

∇θt l(θ) = ∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

. (27)

Therefore, we obtain

l(θ)− l(θ∗)≤ eM 2
gG

2T 2

2µ3
Q

T∑

t=1

min
gt∈∂δΘt

(θt)

∥
∥
∥
∥
∇θtEst∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

+ gt

∥
∥
∥
∥

2

2

(a)
=
eM 2

gG
2T 2

2µ3
Q

min
g∈∂δΘ(θ)

∥
∥
∥∇l(θ) + g

∥
∥
∥

2

2
.



45

The equality (a) comes from (27) and the fact that

∇l(θ) =













∇θ1Es1∼ρ

[

Q
πθ
1

(
s1, π1(s1|θ1)

)]

∇θ2Es2∼ρ2(·|πθ)

[

Q
πθ
2

(
s2, π2(s2|θ2)

)]

...

∇θT
EsT∼ρT (·|πθ)

[

Q
πθ
T

(
sT , πT (sT |θT )

)]













, g=











g1

g2

...

gT











.

Therefore, l(θ) satisfies the K L condition. This completes the proof. �

A.5. K L Constant under Weaker Assumptions

In section 3.3, we provide a standard approach that can establish a slightly weaker condition than

sequential decomposition inequalities in Theorem 1:
∥
∥
∥∇θt l(θ1, . . . , θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θk−1, θ

∗
k, . . . , θ

∗
T

)
∥
∥
∥
2

≤ Mg

√

Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θ∗k)

)]

.
(28)

In what follows, we show that if relying on the weaker condition (28), our analysis leads to a

suboptimal characterization of the K L constant, resulting in an exponential dependence on T .

We proceed with the same proof sketch in Theorem 1. In step 1, we aim to establish the bounded

gradient mismatch inequality (8). Using the definition of Xt and Yt and the weaker condition (28),

we have

Xt −Yt

(a)

≤
T∑

k=t+1

max
gt∈∂δΘt

(θt)

∥
∥
∥∇θt l(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l

(
θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T

)
∥
∥
∥
2

(b)

≤ Mg

T∑

k=t+1

√

Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θ∗k)

)]

(c)

≤ Mg
√

2µQ

T∑

k=t+1

min
gk∈∂δΘk

(θk)

∥
∥
∥
∥
∇θk

Esk∼ρk(·|πθ)

[

Q
πθ∗
k

(
sk, πk(sk|θk)

)]

+ gk

∥
∥
∥
∥
2

=
Mg

√
2µQ

T∑

k=t+1

Xt.

Inequality (a) uses the first three steps in (26). (b) comes from the assumption (28). (c) uses the

K L condition of optimal expected Q-value functions. To proceed, we establish a hard instance when

Mg > 1 and G> 1.

Lemma 17. Assume that the nonnegative sequences {Xt}Tt=1 and {Yt}Tt=1 satisfy

|Xt −Yt| ≤Mg

T∑

k=t+1

Xk, XT = YT , Xt, Yt ≤G, ∀t∈ [T ], (29)

with constants Mg > 1 and G> 1. Then the best M with
∑T

t=1X
2
t ≤M

∑T

t=1 Y
2
t for all sequences

{Xt}Tt=1 and {Yt}Tt=1 satisfying (29) cannot be smaller than M 2(T−1)
g .



46

Proof of Lemma 17 The analysis is through construction of a hard instance. Let Xt =GM 1−t
g

for any t∈ [T ]. Set YT =GM 1−T
g and Yt = 0 for 1≤ t < T . The two sequences satisfy (29) because

|Xt −Yt|= |Xt|=GM 1−t
g =Mg ×GM−t

g =MgXt+1 ≤Mg

T∑

k=t+1

Xk, ∀t < T,

and |XT −YT |= 0. Therefore, we have

∑T

t=1X
2
t

∑T

t=1 Y
2
t

=

∑T

t=1X
2
t

Y 2
T

≥ X2
1

Y 2
T

=M 2(T−1)
g .

This concludes the proof. �

Lemma 17 implies that the constant of the bounded gradient mismatch inequality (8) depends

at least exponentially on T . Following the same steps in the proof of Theorem 1, the K L constant

admits an exponential dependence on T . It remains clear whether the dependence can be improved

under (28) through alternative analysis. To remove the exponential dependence, we apply the

stronger sequential decomposition inequalities in Theorem 1 that hold in various applications.

Appendix B: Omitted Proofs in Section 4

B.1. Bounded Gradient

Proof of Lemma 4 From the Policy Gradient Theorem (Sutton et al. 1999, Theorem 1), we

have
∇θt(st,i)l(θ) = ∇θt(st,i)Est∼ρt(·|πθ)

[

Q
πθ
t

(
st, πt(st|θt)

)]

= ρt(st|πθ)
(

− λ

nθt(st, i)
︸ ︷︷ ︸

(I)

+Ct(st, i)
︸ ︷︷ ︸

(II)

+
∑

st+1∈S
Pt(st+1|st, i)V πθ

t+1(st+1)
︸ ︷︷ ︸

(III)

)

.

Utilizing the assumption that θt(st, i) ≥ p, we have |(I)| ≤ λ/(np). The second term admits

|(II)| ≤ C̄. Lastly, we have the recursive form for (III) using the Bellman equation (1):

V
πθ
t (st) =Cr

t

(
st, πt(st|θt)

)
+
∑

st+1

Pt

(
st+1|st, πt(st|θt)

)
V

πθ
t+1(st+1).

By definition, we have
∣
∣
∣Cr

t

(
st, πt(st|θt)

)
∣
∣
∣=

∣
∣
∣Ct

(
st, πt(st|θt)

)
+λR

(
πt(st|θt)

)
∣
∣
∣

≤
∑

i∈N
θt(st, i)

∣
∣Ct(st, i)

∣
∣+

∣
∣
∣λR

(
πt(st|θt)

)
∣
∣
∣

≤ C̄ +λ log
(
1/(np)

)
.

The last inequality uses the assumption that πt(at|st) ≥ p. Therefore, by mathematical induction,

we have
∣
∣V

πθ
t (st)

∣
∣≤ (T − t)C̄+λ(T − t) log

(
1/(np)

)
, ∀st ∈S.
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Combining all the results, we have

‖∇θtl(θ)‖F ≤
∑

st∈S,i∈N

∣
∣∇θt(st,i)l(θ)

∣
∣

≤
∑

st∈S,i∈N

∣
∣
∣
∣
ρt(st|πθ)

(

− λ

nθt(st, i)
+Ct(st, i) +

∑

st+1∈S
Pt(st+1|st, i)V πθ

t+1(st+1)
)
∣
∣
∣
∣

≤
∑

st∈S,i∈N
ρt(st|πθ)

(
λ

np
+ C̄ +

∑

st+1

Pt(st+1|st, i)
(

(T − t)C̄ +λ(T − t) log
( 1

np

))
)

≤ TC̄ +
λ

np
+λT log(

1

np
).

This completes the proof. �

B.2. Sequential Decomposition Inequality

Proof of Lemma 5 Let θα = (θ1, . . . , θk−1, θk, θ
∗
k+1, . . . , θ

∗
T ) and θβ =

(θ1, . . . , θk−1, θ
∗
k, θ

∗
k+1, . . . , θ

∗
T ), then we have the following inequalities:

∥
∥
∥∇θt l(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l(θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T )
∥
∥
∥
F

≤
∑

st∈S,i∈N

∣
∣
∣∇θt(st,i)l(θ1, θk−1, . . . , θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt(st,i)l(θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T )
∣
∣
∣

=
∑

st∈S,i∈N

∣
∣
∣ρt(st|πθ)

∑

st+1∈S
Pt(st+1|st, i)

(

Qπα
t+1

(
st+1, πt+1(st+1|θt+1)

)
−Q

πβ
t+1

(
st+1, πt+1(st+1|θt+1)

))
∣
∣
∣.

Similarly, we have

Qπα
t+1

(
st+1, πt+1(st+1|θt+1)

)
−Q

πβ
t+1

(
st+1, πt+1(st+1|θt+1)

)

=
∑

it+1∈N
θt+1(st+1, it+1)

∑

st+2∈S
Pt(st+2|st+1, it+1)

(

Qπα
t+2

(
st+2, πt+2(st+2|θt+2)

)
−Qπα

t+2

(
st+2, πt+2(st+2|θt+2)

))

.

(30)

Applying (30) recursively, we conclude that

∥
∥
∥∇θtl(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l(θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T )
∥
∥
∥
F

≤
∑

st∈S,i∈N

∣
∣
∣
∣
ρt(st|πθ)

∑

st+1∈S
Pt(st+1|st, i)

∑

it+1∈N
θt+1(st+1, it+1)

∑

st+2∈S
Pt(st+2|st+1, it+1) . . .

∑

ik−1∈N
θk−1(sk−1, ik−1)

∑

sk∈S
Pk−1(sk|sk−1, ik−1)

(

Q∗
k

(
sk, πk(sk|θk)

)
−Q∗

k

(
sk, πk(sk|θ∗k)

))
∣
∣
∣
∣
.



48

Since Q∗
k

(
sk, πk(sk|θk)

)
≥Q∗

k

(
sk, πk(sk|θ∗k)

)
, the absolute function can be removed. Then we have

∥
∥
∥∇θt l(θ1, . . . , θk−1, θk, θ

∗
k+1, . . . , θ

∗
T )−∇θt l(θ1, . . . , θk−1, θ

∗
k, θ

∗
k+1, . . . , θ

∗
T )
∥
∥
∥
F

≤
∑

st∈S,i∈N
ρt(st|πθ)

∑

st+1∈S
Pt(st+1|st, i)

∑

it+1∈N
θt+1(st+1, it+1) . . .

(

Q∗
k

(
sk, πk(sk)

)
−Q∗

k

(
sk, π

∗
k(sk)

))

(a)

≤ 1

p

∑

st∈S
ρt(st|πθ)

∑

i∈N
θt(st, i)

∑

st+1∈S
Pt(st+1|st, i)

∑

it+1∈N
θt+1(st+1, it+1)

∑

st+2∈S
Pt(st+2|st+1, it+1) . . .

∑

ik−1∈N
θk−1(sk−1, ik−1)

∑

sk∈S
Pk−1(sk|sk−1, ik−1)

(

Q∗
k

(
sk, πk(sk|θk)

)
−Q∗

k

(
sk, πk(sk|θ∗k)

))

=
1

p

(

Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, π

∗
k(sk|θk)

)]
)

.

Inequality (a) uses the assumption that θt(st, i) ≥ p for any i∈N . This completes the proof. �

Appendix C: Omitted Proofs in Section 5

C.1. K L Condition of Optimal Q-value Function

Proof of Lemma 7 From (1), the Q-value function has the following expression:

V
πθ
t (st) =Q

πθ
t

(
st, πt(st|θt)

)
= s⊤t Qtst + s⊤t θ

⊤
t Rtθtst

︸ ︷︷ ︸

(I)

+Ewt

[

V
πθ
t+1

(
(A+Bθt)st +wt

)]

︸ ︷︷ ︸

(II)

.

Suppose that V
πθ
t+1(st+1) is continuously differentiable in st+1. Term (I) is a quadratic function

of θt and, therefore, is continuously differentiable. Term (II) is continuously differentiable since

the composition of a continuously differentiable function and a linear function is continuously

differentiable. From the induction base V
πθ
T (sT ) = s⊤TQT sT that is continuously differentiable, we

can prove that the Q-value function is continuously differentiable by mathematical induction, which

implies the continuous differentiability of the expected Q-value function.

If we plug π∗ into (II), we get the explicit expression of the optimal Q-value function. Bertsekas

(1995) demonstrated the convexity of V ∗
t by mathematical induction. Therefore, its composition

with linear function Ast +B(θtst) +wt is still convex, which implies the convexity of the term (II).

From Assumption 3 and Lemma 6, we know that matrices Rt and Est∼ρt(·|πθ)[sts
⊤
t ] are positive

definite. Taking the expectation on the term (I) gives a 2σXσR-strongly convex function in θt

(Bhandari and Russo 2024). Combining these, we conclude that the expected optimal Q-value

function is 2σXσR-strongly convex. Leveraging Corollary 1, we establish the K L condition of the

expected optimal Q-value function with K L constant 2σXσR for all t= 0, . . . , T − 1. �

C.2. Bounded Gradient

Proof of Lemma 8 For any θ ∈Θ, we derive the following inequality using (12):

‖Pt‖2 ≤ ‖Qt‖2 + ‖θtRtθt‖2 + ‖(A+Bθ)⊤Pt+1(A+Bθ)‖2
(a)

≤ σ̄Q + ‖θt‖22‖Rt‖2 + ‖A+Bθ‖22‖Pt+1‖2
(b)

≤ σ̄Q + σ̄2
Θσ̄R + ‖Pt+1‖2.
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Here inequality (a) uses the assumption that σmax(Qt) ≤ σ̄Q for all 0 ≤ t≤ T , and inequality (b)

uses the assumption that ‖θt‖2 ≤ σ̄Θ and ‖A+Bθt‖2 ≤ 1 for all 0 ≤ t≤ T − 1. Since PT =QT , we

conclude that

‖Pt‖2 ≤ (T − t+ 1)σ̄Q + (T − t)σ̄2
Θσ̄R, ∀t= 0, . . . , T. (31)

Next, we have the following inequality from (13) for all t= 0, . . . , T − 1:

‖Et‖2 = ‖Rtθt +B⊤Pt+1(A+Bθt)‖2
≤ ‖Rtθt‖2 + ‖B⊤Pt+1(A+Bθt)‖2
(a)

≤ σ̄Θσ̄R + ‖B‖2‖Pt+1‖2‖A+Bθt‖2
(b)

≤ σ̄Θσ̄R + (T − t+ 1)σ̄Q‖B‖2 + (T − t)σ̄2
Θσ̄R‖B‖2,

(32)

where inequality (a) comes from σmax(Rt) ≤ σ̄R for any 0 ≤ t ≤ T − 1 and ‖θt‖2 ≤ σ̄Θ for any

θt ∈ Θt,0 ≤ t≤ T − 1. Inequality (b) uses (31) and ‖A+Bθt‖2 ≤ 1 for any θt ∈ Θt,0 ≤ t≤ T − 1.

Recall the linear dynamic function st+1 =Ast +Bat +wt, we have the following result:

E[st+1s
⊤
t+1] = (A+Bθt)E[sts

⊤
t ](A+Bθt)

⊤ +E[wtw
⊤
t ].

Therefore, we can derive the following inequality for all t= 0, . . . , T − 1:

‖E[st+1s
⊤
t+1]‖2 ≤ ‖A+Bθt‖22‖E[sts

⊤
t ]‖2 + ‖E[wtw

⊤
t ]‖2

(a)

≤ ‖E[sts
⊤
t ]‖2 + ‖E[wtw

⊤
t ]‖2

(b)

≤ ‖E[sts
⊤
t ]‖2 + σ̄W .

Here inequality (a) uses ‖A+Bθt‖2 ≤ 1 for any θt ∈ Θt,0≤ t≤ T −1 and inequality (b) comes from

σmax(E[wtw
⊤
t ]) ≤ σ̄W . Taking the telescoping sum, for any t= 0, . . . , T − 1,, we have

‖E[st+1s
⊤
t+1]‖2 ≤ σmax(E[s0s

⊤
0 ]) + (t+ 1)σ̄W

≤ σ̄X + (t+ 1)σ̄W .
(33)

Thus, combining (32) and (33), we conclude that

‖∇tl(θ)‖F
(a)

≤
√

min{m,n}‖∇tl(θ)‖2
≤ 2

√

min{m,n}‖Et‖2‖E[sts
T
t ]‖2

≤ 2
√

min{m,n}(σ̄Θσ̄R + (T − t+ 1)σ̄Q‖B‖2 + (T − t)σ̄2
Θσ̄R‖B‖2)(σ̄X + tσ̄W ),

where (a) uses ‖A‖F ≤√
r‖A‖2 with r= rank(A) (Golub and Van Loan 2013). The right-hand side

of the inequality is polynomial in the model parameters (m,n,T, σ̄Q, σ̄R, σ̄Θ, σ̄X , σ̄W ,‖B‖2). �
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C.3. Sequential Decomposition Inequality

Proof of Lemma 9 First define

Π[j1:j2] := (A+Bθj2)(A+Bθj2−1) . . . (A+Bθj1+1)(A+Bθj1),

for j1 ≤ j2. Therefore, we have ‖Π[j1:j2]‖2 ≤ 1 for any 0 ≤ j1 ≤ j2 ≤ T − 1 since ‖A+Bθt‖2 ≤ 1 for

any θt ∈ Θt,0 ≤ t≤ T − 1. Recall the gradient formulation in Proposition 2, we can derive

∇tl(θ[0:k−1], θk, θ
∗
[k+1:T−1])−∇tl(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

= 2B⊤(Pt+1(θ[0:k−1], θk, θ
∗
[k+1:T−1])−Pt+1(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
(A+Bθt)Est∼ρt(·|πθ)[sts

⊤
t ]

(a)
= 2B⊤(A+Bθt+1)

⊤(Pt+2(θ[0:k−1], θk, θ
∗
[k+1:T−1])

−Pt+2(θ[0:k−1], θ
∗
k, θ

∗
[k+1:T−1])

)
(A+Bθt+1)(A+Bθt)Est∼ρt(·|πθ)[sts

⊤
t ]

. . .

= 2B⊤Π⊤
[t+1:k−1]

(

Pk(θ[0:k−1], θk, θ
∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)

Π[t:k−1]Est∼ρt(·|πθ)[sts
⊤
t ].

Equation (a) uses the update (12). Utilizing the explicit expression of the Q-value function in

Proposition 2, we conclude that

Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θ∗k)

)]

= Esk∼ρk(·|πθ)

[

s⊤k
(
Pk(θ[0:k−1], θk, θ

∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
sk

]

= Tr
((
Pk(θ[0:k−1], θk, θ

∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
Esk∼ρk(·|πθ)[sks

⊤
k ]
)

.

Therefore, we have
∥
∥∇tl(θ[0:k−1], θk, θ

∗
[k+1:T−1])−∇tl(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

∥
∥
2

F

= 4

∥
∥
∥
∥
B⊤Π⊤

[t+1:k−1]

(

Pk(θ[0:k−1], θk, θ
∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)

Π[t:k−1]Est∼ρt(·|πθ)[sts
⊤
t ]

∥
∥
∥
∥

2

F

(a)

≤
4‖B‖22

∥
∥Est∼ρt(·|πθ)[sts

⊤
t ]
∥
∥
2

2

σ2
X

∥
∥
∥

(
Pk(θ[0:k−1], θk, θ

∗
[k+1:T−1])−Pk(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])

)
Esk∼ρk(·|πθ)[sks

⊤
k ]
∥
∥
∥

2

F

(b)

≤
4‖B‖22

∥
∥Est∼ρt(·|πθ)[sts

⊤
t ]
∥
∥
2

2

σ2
X

∣
∣
∣
∣
Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θ∗k)

)]
∣
∣
∣
∣

2

.

Inequality (a) comes from ‖Π[j1:j2]‖2 ≤ 1 for any 0 ≤ j1 ≤ j2 ≤ T − 1 and uses the assumption

σX = mint=0,...,T σmin

(
Est∼ρt(·|πθ)[sts

⊤
t ]
)
. Inequality (b) utilizes ‖A‖2F = Tr(ATA) ≤ Tr(A)2 when A

is positive semi-definite. Since θ∗k is the optimal solution, we have

Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θk)

)]

≥Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θ∗k)

)]

, ∀θk ∈ Θk.

Therefore, we conclude that

‖∇tl(θ[0:k−1], θk, θ
∗
[k+1:T−1])−∇tl(θ[0:k−1], θ

∗
k, θ

∗
[k+1:T−1])‖F

≤
2‖B‖2

∥
∥Est∼ρt(·|πθ)[sts

⊤
t ]
∥
∥
2

σX

(

Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θk)

)]

−Esk∼ρk(·|πθ)

[

Q∗
k

(
sk, πk(sk|θ∗k)

)]
)

.
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From the proof of Lemma 8, we know that
∥
∥Est∼ρt(·|πθ)[sts

⊤
t ]
∥
∥
2

is polynomial in model parameters.

This concludes the proof. �

Appendix D: Omitted Proofs in Section 6

In Appendix D and E, we frequently use the following argument. Let f :X →R be a continuously

differentiable function. Assume that ξ is a random variable whose cumulative distribution function

P is Lipschitz continuous. Consider a function F (x) := Eξ∼P[f(x ∧ ξ)]. Chen et al. (2024) proved

that:

1. ∂
∂x
f(x∧ ξ) a.s.

= 1(x≤ ξ)× f ′(x∧ ξ) = 1(x≤ ξ)× f ′(x).

2. F ′(x) = ∂
∂x
Eξ∼P[f(x∧ ξ)] = Eξ∼P[ ∂

∂x
f(x∧ ξ)] = Eξ∼P[1(x≤ ξ)× f ′(x)] = P(x≤ ξ)× f ′(x).

Similar arguments hold when F (x) := Eξ∼P[f(x∨ ξ)]. In the following sections, we directly use the

results.

D.1. K L Condition of Expected Optimal Q-value Functions

Proof of Lemma 10 We use three parts to complete the proof. First, we demonstrate the rela-

tionships between suboptimality gaps Ft(θt) − Ft(θ
∗
t ) and ft(θt,i|i) − ft(θt,i|i). Next, we show the

connections of their gradients. Finally, we prove the K L property of Ft.

Step 1: Relationship between suboptimality gaps. Applying the Bellman equation (2), it

holds that

E(xt,it)∼ρt(·|πθ)

[

Q∗
t

(
xt, it, πt(xt, it|θt)

)]

= E(xt,it)∼ρt(·|πθ)

[

Lt

(
xt ∨ θt,it |it

)
+Eit+1∼p(·|it),Dt∼PD(·|it)

[
V ∗
t+1

(
xt ∨ θt,it −Dt, it+1

)]
]

.

Recalling the definition (15), we express expected optimal Q-value functions as

Ft(θt) = E(xt,it)∼ρt(·|πθ)

[

Q∗
t

(
xt, it, πt(xt, it|θt)

)]

= E(xt,it)∼ρt(·|πθ)

[

ft
(
xt ∨ θt,it |it

)]

.

By the law of total expectation, we rewrite the suboptimality gap:

Ft(θt)−Ft(θ
∗
t ) =E(xt,it)∼ρt(·|πθ)

[

ft
(
xt ∨ θt,it |it

)
− ft

(
xt ∨ θ∗t,it |it

)]

=Eit∼ν

[

Ext

[

ft
(
xt ∨ θt,it |it

)
− ft

(
xt ∨ θ∗t,it |it

)
∣
∣
∣it

]]

=
∑

i∈I
νi ×Ext

[

ft
(
xt ∨ θt,i|i

)
− ft

(
xt ∨ θ∗t,i|i

)
∣
∣
∣it = i

]

.
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Without loss of generality, we assume that θt,i ≤ θ∗t,i. For any random variable ξ and its corre-

sponding cumulative distribution function P (ξ), we have

Eξ∼P (ξ)

[

ft
(
ξ ∨ θt,i|i

)
− ft

(
ξ ∨ θ∗t,i|i

)]

=

∫ θt,i

−∞

(

ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

))

dP (ξ) +

∫ θ∗t,i

θt,i

(

ft(ξ|i)− ft
(
θ∗t,i|i

))

dP (ξ)

(a)

≤
∫ θt,i

−∞

(

ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

))

dP (ξ) +

∫ θ∗t,i

θt,i

(

ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

))

dP (ξ)

(b)

≤ ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

)
.

Inequality (a) holds as θ∗t,i is a minimizer of ft(·|i), which implies that ft(·|i) is non-increasing

on the interval [θt,i, θ
∗
t,i] duo to its convexity. Inequality (b) comes from the fact that ft

(
θt,i|i

)
−

ft
(
θ∗t,i|i

)
≥ 0. The same result hold when θt,i > θ

∗
t,i. Therefore, we have

Ft(θt)−Ft(θ
∗
t ) =

∑

i∈I
νi ×Ext

[

ft
(
xt ∨ θt,i|i

)
− ft

(
xt ∨ θ∗t,i|i

)
∣
∣
∣it = i

]

≤
∑

i∈I
νi ×

[

ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

)]

.

Step 2: Relationship between gradients. By definition, we calculate the partial gradient of

Ft:

∇θt,i
Ft(θt) = ∇θt,i

E(xt,it)∼ρt(·|πθ)

[

ft
(
xt ∨ θt,it |it

)]

(a)
= E(xt,it)∼ρt(·|πθ)

[

1(it = i)×1(θt,i ≥ xt)× f ′
t

(
θt,i|i

)]

= P
(
it = i, θt,i ≥ xt

)
× f ′

t

(
θt,i|i

)
.

Here equation (a) utilizes the chain rule. Next, we analyze the property of P(it = i, θt,i ≥ xt):

P
(
it = i, θt,i ≥ xt

) (a)
= Eit−1

[

P
(
it = i, θt,i ≥ xt|it−1

)]

(b)
= Eit−1

[

P
(
it = i|it−1

)
×P

(
θt,i ≥ xt|it−1

)]

= Eit−1

[

p(i|it−1)×P
(
θt,i ≥ xt|it−1

)]

.

Equation (a) uses the law of total expectation. Equation (b) holds because xt and it are indepen-

dent conditioned on it−1. For simplicity, we use ρxt−1(·|it−1) to denote the CDF of xt−1 conditioned

on it−1. From the transition kernel xt = xt−1∨ θt−1,it−1
−Dt−1, we derive the following inequalities:

P
(
θt,i ≥ xt|it−1

)
= P

(
θt,i ≥ xt−1 ∨ θt−1,it−1

−Dt−1|it−1

)

= P
(
θt,i ≥ xt−1 −Dt−1, θt,i ≥ θt−1,it−1

−Dt−1|it−1

)

=

∫ θt−1,it−1
−θt,i

0

P
(
θt,i ≥ xt−1 −D,θt,i ≥ θt−1,it−1

−D|it−1

)
dPD(D|it−1)

+

∫ ∞

θt−1,it−1
−θt,i

P
(
θt,i ≥ xt−1 −D,θt,i ≥ θt−1,it−1

−D|it−1

)
dPD(D|it−1)

=

∫ ∞

θt−1,it−1
−θt,i

ρxt−1

(
D+ θt,i|it−1

)
dPD(D|it−1).
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The last inequality holds as 1(θt,i ≥ θt−1,it−1
− D) = 0 for any D ∈ [0, θt−1,it−1

− θt,i). Since

ρxt−1

(
·|it−1

)
is non-decreasing and non-negative, we have

∫ ∞

θt−1,it−1
−θt,i

ρxt−1

(
D+ θt,i|it−1

)
dPD(D|it−1) ≥

∫ ∞

B−θt,i

ρxt−1

(
D+ θt,i|it−1

)
dPD(D|it−1).

From the transition kernel, we know that xt+1 = xt ∨ θt,it −Dt. Since x1 ∈ (−∞,B], θt,i ∈ [0,B],

and Dt ∈ [0,+∞), we have xt ≤B for any t∈ [T ]. Therefore, ρxt−1

(
B|it−1

)
= 1, which implies that

P
(
θt,i ≥ xt|it−1

)
≥
∫ ∞

B−θt,i

ρxt−1

(
D+ θt,i|it−1

)
dPD(D|it−1)≥

∫ ∞

B−θt,i

dPD(D|it−1).

Therefore, we have

P
(
θt,i ≥ xt|it−1

)
≥
∫ ∞

B−θt,i

dPD(D|it−1)
(a)

≥ 1−PD(B|it−1)≥ αD > 0.

Inequality (a) holds because θt,i ≥ 0. Thus, we have

P
(
it = i, θt,i ≥ xt

)
= Eit−1

[

p(i|it−1)×P
(
θt,i ≥ xt|it−1

)]

≥ αDEit−1

[
p(i|it−1)

]
= αDνi.

Step 3: K L condition of Ft. First from step 1, we have

Ft(θt)−Ft(θ
∗
t )≤

∑

i∈I
νi ×

[

ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

)]

.

Based on Assumption 4.4, we know that the per-period cost Lt(·|i) exhibits µD-strong convexity.

Combining this with the convexity of the cost-to-go function V ∗
t+1(·, i), we conclude that ft(·|i) also

possesses µD-strong convexity for any i∈ I. By Corollary 1, we know that strong convexity implies

K L condition. Therefore,

Ft(θt)−Ft(θ
∗
t )

(a)

≤
∑

i∈I

νi
2µD

× min
gt,i∈∂δ[0,B](θt,i)

∣
∣
∣f ′

t

(
θt,i|i

)
+ gt,i

∣
∣
∣

2

(b)
=

∑

i∈I

νi
2µD

min
gt,i∈∂δ[0,B](θt,i)

∣
∣
∣
∣

∇θt,i
Ft(θt)

P(it = i, θt,i ≥ xt)
+ gt,i

∣
∣
∣
∣

2

(c)
=

∑

i∈I

νi
2µDP(it = i, θt,i ≥ xt)2

min
gt,i∈∂δ[0,B](θt,i)

∣
∣
∣∇θt,iFt(θt) + gt,i

∣
∣
∣

2

(d)

≤
∑

i∈I

1

2µDνiα2
D

min
gt,i∈∂δ[0,B](θt,i)

∣
∣
∣∇θt,i

Ft(θt) + gt,i

∣
∣
∣

2

(e)

≤ 1

2µDα
2
D mini∈I{vi}

min
gt∈∂δΘt

(θt)

∥
∥∇Ft(θt) + gt

∥
∥
2

2
.

Here inequality (a) utilizes the K L condition of ft(·|i). Equation (b) uses the relationship between

different gradients in step 2. Equation (c) holds because ∂δ[0,B](θt,i) is a cone. Inequality (d) holds

because P
(
it = i, θt,i ≥ xt

)
≥ αDνi. Equation (e) is true since ν−1

i ≤ mini∈I{νi}−1. This completes

the proof. �
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D.2. Gradient Formulation

Proof of Proposition 3 We first prove the recursive form for partial derivatives of value func-

tions. From the Bellman equation (1), we have:

∇xV
πθ
t (xt, it) =

∂

∂xt

Q
πθ
t

(
xt, it, πt(xt, it|θt)

)

=
∂

∂xt

(

Lt

(
xt ∨ θt,it |it

)
+

∑

it+1∈I
p(it+1|it)EDt∼PD(·|it)

[

V
πθ
t+1

(
xt ∨ θt,it −Dt, it+1

)]
)

= 1
(
xt ≥ θt,it

)
×
(

L′
t(xt|it) +

∑

it+1∈I
p(it+1|it)EDt∼PD(·|it)

[
∇xV

πθ
t+1(xt −Dt, it+1)

])

,

where ∇xV
πθ
T+1(·, ·) = 0. The last equation uses the chain rule. Then for the policy gradient objective

function l(θ), we calculate its partial derivative by:

∂

∂θt,i
l(θ)

(a)
= E(xt,it)∼ρt(·|πθ)

[
∂

∂θt,i
Q

πθ
t

(

xt, it, πt(xt, it|θt)
)]

(b)
= E(xt,it)∼ρt(·|πθ)

[
∂

∂θt,i
πt(xt, it|θt)×

∂

∂at
Q

πθ
t (xt, it, at)

∣
∣
∣
at=πt(xt,it|θt)

]

(c)
= E(xt,it)∼ρt(·|πθ)

[

1
(
it = i, θt,i ≥ xt

)

×
(

L′
t

(
θt,i|i

)
+

∑

it+1∈I
p(it+1|i)EDt∼PD(·|i)

[

∇xV
πθ
t+1

(
θt,i −Dt, it+1

)]
)]

.

Here equation (a) utilizes the Deterministic Policy Gradient Theorem (Silver et al. 2014). Equation

(b) applies the chain rule. Equation (c) uses the explicit expression of πt(xt, it|θt) = (θt,it − xt)
+

and the Bellman equation (16). This concludes the proof. �

D.3. Bounded Gradient

Proof of Lemma 11 From Proposition 3, we bound the partial derivative as follows:

∣
∣
∣
∣

∂

∂θt,i
l(θ)

∣
∣
∣
∣
=

∣
∣
∣
∣
P(it = i, θt,i ≥ xt)×

(

L′
t,i(θt,i) +

∑

it+1∈I
p(it+1|i)EDt∼PD(·|i)

[
∇xV

πθ
t+1(θt,i−Dt, it+1)

])
∣
∣
∣
∣

≤ P(it = i)×
∣
∣
∣
∣

(

L′
t,i(θt,i) +

∑

it+1∈I
p(it+1|i)EDt∼PD(·|i)

[
∇xV

πθ
t+1(θt,i−Dt, it+1)

])
∣
∣
∣
∣

(a)

≤ νi

(
∣
∣L′

t,i(θt,i)
∣
∣+

∑

it+1∈I
p(it+1|i)

∣
∣
∣EDt∼PD(·|i)

[
∇xV

πθ
t+1(θt,i−Dt, it+1)

]
∣
∣
∣

)

(b)

≤ νi

(

max
t∈{1,...,T}

{
max{ht, bt}

}
+

∑

it+1∈I
p(it+1|i)

∣
∣
∣EDt∼PD(·|i)

[
∇xV

πθ
t+1(θt,i−Dt, it+1)

]
∣
∣
∣

)

.
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Here inequality (a) employs the triangle inequality and inequality (b) holds because |L′
t,i(θt,i)| ≤

maxt∈{1,...,T}
{

max{ht, bt}
}

for any θ ∈Θ, t∈ [T ] and i∈ I. From (18), we have

∣
∣∇xV

πθ
t (xt, it)

∣
∣=

∣
∣
∣
∣
1(xt ≥ θt,i)×

(

L′
t,i(xt) +

∑

it+1∈I
p(it+1|it)EDt∼PD(·|it)

[
∇xV

πθ
t+1(xt −Dt, it+1)

])
∣
∣
∣
∣

≤
∣
∣L′

t,i(xt)
∣
∣+

∑

it+1∈I
p(it+1|it)

∣
∣
∣EDt∼PD(·|it)

[
∇xV

πθ
t+1(xt −Dt, it+1)

]
∣
∣
∣

≤ max
t∈{1,...,T}

{
max{ht, bt}

}
+

∑

it+1∈I
p(it+1|it)

∣
∣
∣EDt∼PD(·|it)

[
∇xV

πθ
t+1(xt −Dt, it+1)

]
∣
∣
∣.

(34)

We use mathematical induction to prove |∇xV
πθ
t (xt, it)| ≤ (T − t+ 1) maxt∈{1,...,T}{max{ht, bt}}

for any θ ∈ Θ, t∈ [T ], xt ∈ (−∞,B], and it ∈ I.

Induction Base: As ∇xV
πθ
T+1(·, ·) = 0, it’s obvious that

∣
∣∇xV

πθ
T (xt, it)

∣
∣≤ max

t∈{1,...,T}

{
max{ht, bt}

}
.

Induction Step: Suppose we have |∇xV
πθ
t+1(xt+1, it+1)| ≤ (T − t) maxt∈{1,...,T}{max{ht, bt}} for

any θ ∈Θ, t∈ [T ], xt+1 ∈ (−∞,B], and it+1 ∈ I, applying (34) recursively, we have

∣
∣∇xV

πθ
t (xt, it)

∣
∣≤ max

t∈{1,...,T}

{
max{ht, bt}

}
+

∑

it+1∈I
p(it+1|it)

∣
∣
∣EDt∼PD(·|it)

[
∇xV

πθ
t+1(xt −Dt, it+1)

]
∣
∣
∣

≤ max
t∈{1,...,T}

{
max{ht, bt}

}
+

∑

it+1∈I
p(it+1|it)(T − t) max

t∈{1,...,T}

{
max{ht, bt}

}

= (T − t+ 1) max
t∈{1,...,T}

{
max{ht, bt}

}
.

By mathematical induction, we have |∇xV
πθ
t (xt, it)| ≤ (T − t+ 1) maxt∈{1,...,T}{max{ht, bt}} for

any θ ∈Θ, t∈ [T ], xt ∈ (−∞,B], and it ∈ I. Therefore, we conclude that

∣
∣
∣
∣

∂

∂θt,i
l(θ)

∣
∣
∣
∣
≤ νi

(

max
t∈{1,...,T}

{
max{ht, bt}

}
+

∑

it+1∈I
p(it+1|i)

∣
∣
∣EDt∼PD(·|i)

[
∇xV

πθ
t+1(θt,i−Dt, it+1)

]
∣
∣
∣

)

≤ νi(T − t+ 1) max
t∈{1,...,T}

{
max{ht, bt}

}

≤ νiT max
t∈{1,...,T}

{
max{ht, bt}

}

Thus, we obtain

∥
∥∇θt l(θ)

∥
∥
2
≤
∥
∥∇θtl(θ)

∥
∥
1
≤
∑

i∈I
νiT max

t∈{1,...,T}

{
max{ht, bt}

}
= T max

t∈{1,...,T}

{
max{ht, bt}

}
.

This completes the proof. �
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D.4. Sequential Decomposition Inequality

Proof of Lemma 12 For simplicity, we define θα = (θ[1:k], θ
∗
[k+1:T ]) and θβ = (θ[1:k−1], θ

∗
[k:T ]). Fur-

thermore, we denote πα and πβ as the policies deploying parameters θα and θβ, respectively. Similar

to the previous discussion, let πθ denote the policy using parameters θ= (θ1, . . . , θT ). Then

∥
∥∇θt l(θα)−∇θt l(θβ)

∥
∥
2
≤
∥
∥∇θt l(θα)−∇θtl(θβ)

∥
∥
1

=
∑

i∈I

∣
∣
∣
∣

∂

∂θt,i
l(θα)− ∂

∂θt,i
l(θβ)

∣
∣
∣
∣
.

For any i∈ I, we can derive the following inequalities by Proposition 4:

∣
∣
∣
∣

∂

∂θt,i
l(θα)− ∂

∂θt,i
l(θβ)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
E(xt,it)∼ρt(·|πθ)

[

1(it = i, θt,i ≥ xt)

×
∑

it+1∈I
p(it+1|i)

(

EDt∼PD(·|i)
[
∇xV

πα
t+1(θt,i−Dt, it+1)

]
−EDt∼PD(·|i)

[
∇xV

πβ
t+1(θt,i−Dt, it+1)

])
]
∣
∣
∣
∣
∣

≤ νi
∑

it+1∈I
p(it+1|i)

∣
∣
∣EDt∼PD(·|i)

[
∇xV

πα
t+1(θt,i−Dt, it+1)

]
−EDt∼PD(·|i)

[
∇xV

πβ
t+1(θt,i−Dt, it+1)

]
∣
∣
∣

(a)

≤ νi
∑

it+1∈I
p(it+1|i)

∑

it+2∈I
p(it+2|it+1)

×
∣
∣
∣ED[t:t+1]

[
∇xV

πα
t+2(θt,i−D[t:t+1], it+2)

]
−ED[t:t+2]

[
∇xV

πβ
t+2(θt,i−D[t:t+1], it+2)

]
∣
∣
∣

≤ νi
∑

it+1∈I
p(it+1|i)

∑

it+2∈I
p(it+2|it+1)

∑

it+3∈I
p(it+3|it+2)

×
∣
∣
∣ED[t:t+2]

[
∇xV

πα
t+3(θt,i−D[t:t+2], it+3)

]
−ED[t:t+3]

[
∇xV

πβ
t+3(θt,i−D[t:t+2], it+3)

]
∣
∣
∣

. . .
(b)

≤ νi
∑

it+1∈I
p(it+1|i)

∑

it+2∈I
p(it+2|it+1) · · ·

∑

ik∈I
p(ik|ik−1)

×
∣
∣
∣ED[t:k−1]

[
∇xV

πα
k (θt,i−D[t:k−1], ik)

]
−ED[t:k−1]

[
∇xV

πβ
k (θt,i−D[t:k−1], ik)

]
∣
∣
∣.

Here inequality (a) applies (18) and utilizes 1(θt,i − Dt ≥ θt+1,it+1
) ≤ 1. Inequality (b) holds

by applying (18) recursively. Recall the definition of θα = (θ[1:k], θ
∗
[k+1:T ]), θβ = (θ[1:k−1], θ

∗
[k:T ]), and

ft(·|i). For any sample path (i, it+1, . . . , ik), we have

{∇xV
πα
k (θt,i−D[t:k−1], ik) = 1(θt,i−D[t:k−1] ≥ θk,ik)× f ′

k(θt,i−D[t:k−1]|ik),

∇xV
πβ
k (θt,i−D[t:k−1], ik) = 1(θt,i−D[t:k−1] ≥ θ∗k,ik)× f ′

k(θt,i−D[t:k−1]|ik).
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Without loss of generality, we assume that θk,ik ≤ θ∗k,ik . Then for any sample path (i, it+1, . . . , ik),

Dt ∼FD(·|i), and Dj ∼ FD(·|ij),∀t+ 1≤ j ≤ k− 1, we have
∣
∣
∣ED[t:k−1]

[
∇xV

πα
k (θt,i−D[t:k−1], ik)

]
−ED[t:k−1]

[
∇xV

πβ
k (θt,i −D[t:k−1], ik)

]
∣
∣
∣

≤ ED[t:k−1]

[∣
∣
∣1(θk,ik ≤ θt,i −D[t:k−1] ≤ θ∗k,ik)× f ′

k(θt,i−D[t:k−1]|ik)
∣
∣
∣

]

(a)
=

∫ θ∗k,ik

θk,ik

−f ′
k(x|ik)ψ(x)dx,

where ψ is the probability density function of x := θt,i−D[t:k−1]. Equation (a) holds because fk(·|ik)

is convex, therefore f ′
k(·|ik)≤ 0 within the interval [θk,ik , θ

∗
k,ik

]. From Assumption 4.2, the cumula-

tive distribution function of the random demand Dt is LD-Lipschitz continuous. Then the proba-

bility density function of Dt is upper bounded by LD. Suppose ψD1
(·) and ψD2

(·) are probability

density functions of D1 and D2, we have the following inequalities:

ψD1+D2
(ω) =

∫ ω

0

ψD1
(ν)ψD2

(ω− ν)dν ≤LD

∫ ω

0

ψD1
(ν)dν ≤LD,

which implies that the probability density function of cumulative demands is upper bounded by

LD and thus ψ(·) ≤LD. Hence,

∫ θ∗k,ik

θk,ik

−f ′
k(x|ik)ψ(x)dx≤ LD

∫ θ∗k,ik

θk,ik

−f ′
k(x|ik)dx=LD

(

fk(θk,ik |ik)− fk(θ∗k,ik |ik)
)

.

The same result holds when θk > θ
∗
k following a similar derivation. Therefore,

∥
∥∇θt l(θα)−∇θt l(θβ)

∥
∥
2
≤
∑

i∈I

∣
∣
∣
∣

∂

∂θt,i
l(θα)− ∂

∂θt,i
l(θβ)

∣
∣
∣
∣

≤LD

∑

i∈I
νi

∑

it+1∈I
p(it+1|i) · · ·

∑

ik∈I
p(ik|ik−1)

(

fk(θk,ik |ik)− fk(θ∗k,ik |ik)
)

=LD

∑

i∈I
νi

(

fk(θk,i|i)− fk(θ∗k,i|i)
)

.

The last equation is true as ν is a stationary distribution of the exogenous Markov chain. Recalling

the definition of Fk(θk), we have

Fk(θk)−Fk(θ∗k) =
∑

i∈I
νi ×Exk

[

fk
(
xk ∨ θk,i|i

)
− fk

(
xk ∨ θ∗k,i|i

)
∣
∣
∣ik = i

]

.

Without loss of generality, we assume that θk,i ≤ θ∗k,i. For any random variable ξ and its corre-

sponding cumulative distribution function P (ξ), we have

Eξ∼P (ξ)

[

fk
(
ξ ∨ θk,i|i

)
− fk

(
ξ ∨ θ∗k,i|i

)]

=

∫ θk,i

−∞

(

fk
(
θk,i|i

)
− fk

(
θ∗k,i|i

))

dP (ξ) +

∫ θ∗k,i

θk,i

(

fk(ξ|i)− fk
(
θ∗k,i|i

))

dP (ξ)

≥
∫ θk,i

−∞

(

fk
(
θk,i|i

)
− fk

(
θ∗k,i|i

))

dP (ξ).
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The last inequality holds as fk(ξ|i) ≥ fk(θk,i|i) for any ξ ∈ [θk,i, θ
∗
k,i]. Therefore, we have

Fk(θk)−Fk(θ∗k) ≥
∑

i∈I
νi

∫ θk,i

−∞
dP (xk|ik = i)

(

ft
(
θt,i|i

)
− ft

(
θ∗t,i|i

))

=
∑

i∈I
P(xk ≤ θk,i, ik = i)

(

fk
(
θk,i|i

)
− fk

(
θ∗k,i|i

))

.

Similar results hold when θk,i > θ∗k,i. Following the same procedure in the proof of Lemma 10

step 2, we have P(xk ≤ θk,i, ik = i)≥ αDνi. Thus, we conclude that

∥
∥∇θtl(θα)−∇θt l(θβ)

∥
∥
2
≤LD

∑

i∈I
νi

(

fk(θk,i|i)− fk(θ∗k,i|i)
)

≤ LD

αD

∑

i∈I
P(xk ≤ θk,i, ik = i)

(

fk
(
θk,i|i

)
− fk

(
θ∗k,i|i

))

≤ LD

αD

(
Fk(θk)−Fk(θ∗k)

)
.

This completes the proof. �

Appendix E: Omitted Proofs in Section 7

The proof for the stochastic cash balance problem in Section 7 shares some similarities with the

inventory system in Section 6 yet the per-period decision is a two-dimensional vector. We demon-

strate the full proof for completeness.

E.1. K L Condition of Optimal Q-value Function

Proof of Lemma 13 We divide the proof into three parts. First, we demonstrate the relationship

between three suboptimality gaps Ft(θt)−Ft(θ
∗
t ), f

t
(θt)−f t

(θ∗t ), and f̄t(θ̄t)− f̄(θ̄∗t ). Next, we show

how their gradients relate to each other. Finally, we prove the K L property of Ft.

Step 1: Relationship between suboptimality gaps. In the feasible region Θt, we have

θt ≤ θ̄t. For function ft, the following equations hold:

ft
(
(st ∨ θt)∧ θ̄t

)
= ft(st ∨ θt) + ft(st ∧ θ̄t)− ft(st). (35)

It further holds that

Ft(θt)−Ft(θ
∗
t )

= Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θt)

)
−Q∗

t

(
st, πt(st|θ∗t )

)]

= Est∼ρt(·|πθ)

[

c
(
(st ∨ θt)∧ θ̄t, st

)
+ ft

(
(st ∨ θt)∧ θ̄t

)
− c

(
(st∨ θ∗t )∧ θ̄∗t , st

)
− ft

(
(st∨ θ∗t )∧ θ̄∗t

)]

= Est∼ρt(·|πθ)

[

c(st∨ θt, st) + ft(st ∨ θt)− c(st∨ θ∗t , st)− ft(st∨ θ∗t )
]

︸ ︷︷ ︸

(I)

+Est∼ρt(·|πθ)

[

c(st∧ θ̄t, st) + ft(st ∧ θ̄t)− c(st ∧ θ̄∗t , st)− ft(st ∧ θ̄∗t )
]

︸ ︷︷ ︸

(II)

,
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where the last equation comes from (35). We analyze the first term (I). Without loss of generality,

we assume that θt ≤ θ∗t . With the expression of c, it holds that

(I) =

∫ θt

−∞

(
f
t
(θt)− kst

)
dρt(st|πθ) +

∫ +∞

θt

ft(st)dρt(st|πθ)

−
∫ θ∗t

−∞

(
f
t
(θ∗t )− kst

)
dρt(st|πθ)−

∫ +∞

θ∗t

ft(st)dρt(st|πθ)

=

∫ θt

−∞

(
f
t
(θt)− f

t
(θ∗t )

)
dρt(st|πθ) +

∫ θ∗t

θt

(
ft(st) + kst − f

t
(θ∗t )

)
dρt(st|πθ).

For the right-hand-side, we have the following inequalities:

∫ θ∗t

θt

(
ft(st) + kst− f

t
(θ∗t )

)
dρt(st|πθ)

(a)
=

∫ θ∗t

θt

(
f
t
(st)− f

t
(θ∗t )

)
dρt(st|πθ)

(b)

≤
∫ θ∗t

θt

(
f
t
(θt)− f

t
(θ∗t )

)
dρt(st|πθ),

where Equation (a) uses the definition of f
t

and ft, and inequality (b) holds because f
t

is non-

increasing on the interval [θt, θ
∗
t ]. Therefore, we conclude that (I)≤ f

t
(θt)−f t

(θ∗t ). The same result

holds when θt > θ
∗
t .

For the second term (II), we apply the same technique. Without loss of generality, we assume

that θ̄t ≤ θ̄∗t :

(II) =

∫ θ̄t

−∞
ft(st)dρt(st|πθ) +

∫ +∞

θ̄t

(
f̄t(θ̄t) + qst

)
dρt(st|πθ)

−
∫ θ̄∗t

−∞
ft(st)dρt(st|πθ)−

∫ +∞

θ̄∗t

(
f̄t(θ̄

∗
t ) + qst

)
dρt(st|πθ)

=

∫ θ̄∗t

θ̄t

(
f̄t(θ̄t) + qst − ft(st)

)
dρt(st|πθ) +

∫ +∞

θ̄∗
t

(
f̄t(θ̄t)− f̄t(θ̄

∗
t )
)
dρt(st|πθ).

Similarly, it holds that

∫ θ̄∗t

θ̄t

(
f̄t(θ̄t) + qst − ft(st)

)
dρt(st|πθ)

(a)
=

∫ θ̄∗t

θ̄t

(
f̄t(st)− f̄t(θ̄

∗
t )
)
dρt(st|πθ)

(b)

≤
∫ θ̄∗t

θ̄t

(
f̄t(θ̄t)− f̄t(θ̄

∗
t )
)
dρt(st|πθ),

where Equation (a) uses the definition of f̄t and ft, and Inequality (b) holds because f̄t is non-

increasing on the interval [θ̄t, θ̄
∗
t ]. We thus have (II) ≤ f̄t(θ̄t)− f̄t(θ̄

∗
t ). The same result holds when

θ̄t > θ̄
∗
t . Combining all the results, we conclude that

Ft(θt)−Ft(θ
∗
t )≤ (I) + (II)≤ f

t
(θt)− f

t
(θ∗t ) + f̄t(θ̄t)− f̄t(θ̄

∗
t )
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Step 2: Relationship between gradients. By definition, we calculate the gradient of Ft. We

first show the partial derivative for θ using the definition of Ft, ft, f t
, and f̄t.

∇θt
Ft(θt) =∇θt

Est∼ρt(·|πθ)

[

Q∗
t

(
st, πt(st|θt)

)]

=∇θt

[
∫ θt

B

(
f
t
(θt)− kst

)
dρt(st|πθ) +

∫ θ̄t

θt

ft(st)dρt(st|πθ) +

∫ B̄

θ̄t

(
f̄t(θ̄t) + qst

)
dρt(st|πθ)

]

(a)
= f

t
(θt)− kθt +

∫ θt

B

f ′
t
(θt)dρt(st|πθ)− ft(θt)

= P(st ≤ θt)f
′
t
(θt).

Equation (a) uses the Leibniz rule. Similarly, we derive ∇θ̄t
Ft(θt) = P(st ≥ θ̄t)f̄

′
t(θ̄t).

Step 3: K L Condition of Ft. By Assumption 5.4, the per-period holding or backlogging cost

is µD-strongly convex over [B, B̄]. By the convexity of cost-to-go functions, we have that f
t

and f̄t

are both µD-strongly convex over [B, B̄]. Therefore, we can derive

Ft(θt)−Ft(θ
∗
t ) ≤ f

t
(θt)− f

t
(θ∗t ) + f̄t(θ̄t)− f̄t(θ̄

∗
t )

(a)

≤ f ′
t
(θt)(θt − θ∗t )−

µD

2
‖θt − θ∗t‖22 + f̄ ′

t(θ̄t)(θ̄t − θ̄∗t )− µD

2
‖θ̄t − θ̄∗t ‖22

=
∇θt

Ft(θt)

P(st ≤ θt)
(θt − θ∗t )−

µD

2
‖θt − θ∗t‖22 +

∇θ̄t
Ft(θt)

P(st ≥ θ̄t)
(θ̄t − θ̄∗t )− µD

2
‖θ̄t − θ̄∗t ‖22

(b)

≤ α−1
D

〈

∇θtFt(θt),

[
θt
θ̄t

]

−
[
θ∗t
θ̄∗t

]〉

− µD

2

∥
∥
∥
∥

[
θt
θ̄t

]

−
[
θ∗t
θ̄∗t

]∥
∥
∥
∥

2

2

(c)

≤ max
θ′t∈Θt

{

α−1
D 〈∇θtFt(θt), θt− θ′t〉−

µD

2
‖θt − θ′t‖22

}

.

Inequality (a) uses the strong convexity of f
t

and f̄t. The equality holds by the explicit expres-

sion derived in Step 2. Inequality (b) holds because P(st ≤ θt) ≥ αD > 0 and P(st ≥ θ̄t) ≥ αD > 0.

Inequality (c) utilizes the fact that θ∗ ∈ Θt. Therefore, Ft(θt) satisfies the (α−1
D , µD) gradient dom-

inance condition, and thus the K L condition with constant µDα
2
D by Lemma 16. This completes

the proof. �

E.2. Gradient Formulation

Proof of Proposition 4 By the Bellman equation (1), we derive the recursive form of (V
πθ
t )′(st)

for any t∈ [T ]:

(V
πθ
t )′(st) =

∂

∂st
Q

πθ
t

(
st, πt(st|θt)

)

=
∂

∂st

(

c
(
(st∨ θt)∧ θ̄t, st

)
+Lt

(
(st ∨ θt)∧ θ̄t

)
+EDt

[

(V
πθ
t+1)

′((st∨ θt)∧ θ̄t −Dt

)]
)

= −k1(st ≤ θt) + q1(st ≥ θ̄t) + 1(θt < st < θ̄t)×
(

L′
t(st) +EDt

[
(V

πθ
t+1)

′(st −Dt)
])
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with (V
πθ
T+1)

′(·) = 0. For the policy gradient objective function l(θ), we calculate the partial deriva-

tive

∂

∂θt
l(θ)

(a)
= Est∼ρt(·|πθ)

[ ∂

∂θt
Q

πθ
t

(
st, πt(st|θt)

)]

(b)
= Est∼ρt(·|πθ)

[ ∂

∂θt
πt(st|θt)×

∂

∂at
Q

πθ
t (st, at)

∣
∣
∣
at=πt(st|θt)

]

(c)
= Est∼ρt(·|πθ)

[

1(θt ≥ st)×
∂

∂at

(

Ct(st, at) +EDt

[
V

πθ
t+1(st + at −Dt)

])
∣
∣
∣
∣
at=πt(st|θt)

]

(d)
= Est∼ρt(·|πθ)

[

1(θt ≥ st)×
(

k+L′
t(θt) +EDt

[
(V

πθ
t+1)

′(θt −Dt)
])

]

.

Equation (a) utilizes the Deterministic Policy Gradient Theorem (Silver et al. 2014). Equation

(b) applies the chain rule. Equation (c) uses the Bellman equation (1). Lastly, equation (d) holds

because 1(θt ≥ st). Similarly, we can calculate the partial derivative

∂

∂θ̄t
l(θ) = Est∼ρt(·|πθ)

[

1(θ̄t ≤ st)×
(

−q+L′
t(θ̄t) +EDt

[
(V

πθ
t+1)

′(θ̄t −Dt)
])

]

.

This concludes the proof. �

E.3. Bounded Gradient

Proof of Lemma 14 Following Proposition 4, we can bound the partial derivative as follows:

∣
∣
∣
∂

∂θt
l(θ)

∣
∣
∣=

∣
∣
∣
∣
Est∼ρt(·|πθ)

[

1(θt ≥ st)×
(

k+L′
t(θt) +EDt

[
(V

πθ
t+1)

′(θt −Dt)
])

]∣
∣
∣
∣

(a)

≤ k+ |L′
t(θt)|+

∣
∣EDt

[
(V

πθ
t+1)

′(θt −Dt)
]∣
∣

(b)

≤ k+ max
t∈{1,...,T}

{
max{ht, bt}

}
+
∣
∣EDt

[
(V

πθ
t+1)

′(θt −Dt)
]∣
∣.

Inequality (a) employs the triangle inequality and utilizes the fact that 1(θt ≥ st) ≤ 1. Inequality

(b) holds because |L′
t(θt)| ≤ maxt∈{1,...,T}

{
max{ht, bt}

}
for any θt and t∈ [T ]. From (20), we have

∣
∣(V

πθ
t )′(st)

∣
∣=

∣
∣
∣−k1(st ≤ θt) + q1(st ≥ θ̄t) + 1(θt < st < θ̄t)×

(

L′
t(st) +EDt

[
(V

πθ
t+1)

′(st −Dt)
])

∣
∣
∣

≤ k+ |q|+ |L′
t(st)|+

∣
∣EDt

[
(V

πθ
t+1)

′(θt −Dt)
]∣
∣

≤ k+ |q|+ max
t∈{1,...,T}

{
max{ht, bt}

}
+
∣
∣EDt

[
(V

πθ
t+1)

′(θt −Dt)
]∣
∣.

(36)

Applying (36) recursively, we derive

∣
∣
∣
∂

∂θt
l(θ)

∣
∣
∣≤ k+ max

t∈{1,...,T}

{
max{ht, bt}

}
+
∣
∣EDt

[
(V

πθ
t+1)

′(θt −Dt)
]∣
∣

≤
(
k+ |q|+ max

t∈{1,...,T}

{
max{ht, bt}

})
T.

Similarly, we have
∣
∣
∣
∂

∂θ̄t
l(θ)

∣
∣
∣≤

(
k+ |q|+ max

t∈{1,...,T}

{
max{ht, bt}

})
T.
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Thus, we obtain

‖∇θtl(θ)‖2 ≤ ‖∇θt l(θ)‖1 ≤ 2
(
k+ |q|+ max

t∈{1,...,T}

{
max{ht, bt}

})
T.

This completes the proof. �

E.4. Sequential Decomposition Inequality

Proof of Lemma 15 For simplicity, we define θα = (θ[1:k], θ
∗
[k+1:T ]) and θβ = (θ[1:k−1], θ

∗
[k:T ]). Fur-

thermore, we denote πα and πβ as the policies deploying parameters θα and θβ, respectively. Let

πθ denote the policy using parameters θ= (θ1, . . . , θT ). Then

∥
∥∇θt l(θα)−∇θtl(θβ)

∥
∥
2
≤
∥
∥∇θt l(θα)−∇θt l(θβ)

∥
∥
1

=

∣
∣
∣
∣

∂

∂θt
l(θα)− ∂

∂θt
l(θβ)

∣
∣
∣
∣

︸ ︷︷ ︸

(I)

+

∣
∣
∣
∣

∂

∂θ̄t
l(θα)− ∂

∂θ̄t
l(θβ)

∣
∣
∣
∣

︸ ︷︷ ︸

(II)

.

For the first part (I), we can derive the following inequality by Proposition 4,

(I) =

∣
∣
∣
∣
Est∼ρt(·|πθ)

[

1(θt ≥ st)×
(

EDt

[
(V πα

t+1)
′(θt −Dt)

]
−EDt

[
(V

πβ
t+1)

′(θt −Dt)
])

]∣
∣
∣
∣

≤
∣
∣
∣EDt

[
(V πα

t+1)
′(θt −Dt)

]
−EDt

[
(V

πβ
t+1)

′(θt −Dt)
]
∣
∣
∣.

Applying (20) recursively, we have

(I)≤
∣
∣
∣EDt

[
(V πα

t+1)
′(θt −Dt)

]
−EDt

[
(V

πβ
t+1)

′(θt −Dt)
]
∣
∣
∣

=

∣
∣
∣
∣
∣
EDt

[

k1(θt −Dt ≤ θt+1)− q1(θt −Dt ≥ θ̄t+1)

+ 1(θt+1 <θt −Dt < θ̄t+1)×
(

L′
t+1(θt −Dt) +EDt+1

[
(V πα

t+2)
′(θt −D[t:t+1])

])
]

−EDt

[

k1(θt −Dt ≤ θt+1)− q1(θt −Dt ≥ θ̄t+1)

+ 1(θt+1 <θt −Dt < θ̄t+1)×
(

L′
t+1(θt −Dt) +EDt+1

[
(V

πβ
t+2)

′(θt −D[t:t+1])
])

]

≤ED[t:t+1]

[∣
∣(V πα

t+2)
′(θt −D[t:t+1])− (V

πβ
t+2)

′(θt −D[t:t+1])
∣
∣

]

. . .

≤ED[t:k−1]

[∣
∣(V πα

k )′(θt −D[t:k−1])− (V
πβ
k )′(θt −D[t:k−1])

∣
∣

]

.

(37)

Therefore, we can derive the following inequality using (20):

(V πα
k )′(θt −D[t:k−1]) = −k1(θt −D[t:k−1] ≤ θk) + q1(θt −D[t:k−1] ≥ θ̄k)

+ 1(θk < θt −D[t:k−1] < θ̄k)×
(

L′
k(θt −D[t:k−1]) +EDk

[
(V πα

k+1)
′(θt −D[t:k])

])

(a)
= −k1(θt −D[t:k−1] ≤ θk) + q1(θt −D[t:k−1] ≥ θ̄k)

+ 1(θk < θt −D[t:k−1] < θ̄k)×
(

L′
k(θt −D[t:k−1]) +EDk

[
(V ∗

k+1)
′(θt −D[t:k])

])

(b)
= −k1(θt −D[t:k−1] ≤ θk) + q1(θt −D[t:k−1] ≥ θ̄k)

+ 1(θk < θt −D[t:k−1] < θ̄k)×
(
f ′
k(θt −D[t:k−1])

)
.
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Here Equation (a) holds because πα uses optimal θ∗[k+1:T ] starting from period k+ 1, and Equation

(b) comes from the definition of fk. Again, by definitions of f
k

and f̄k, we have

(V πα
k )′(θt −D[t:k−1]) = −k1(θt −D[t:k−1] ≤ θk) + q1(θt −D[t:k−1] ≥ θ̄k)

+ 1(θk < θt −D[t:k−1] < θ̄k)×
(
f ′
k(θt −D[t:k−1])

)

= f ′
k(θt −D[t:k−1])−1(θt −D[t:k−1] ≤ θk)× f ′

k
(θt −D[t:k−1])

−1(θt −D[t:k−1] ≥ θ̄k)× f̄ ′
k(θt −D[t:k−1]).

(38)

Similarly, we can derive that

(V
πβ
k )′(θt −D[t:k−1]) = f ′

k(θt −D[t:k−1])−1(θt −D[t:k−1] ≤ θ∗k)× f ′
k
(θt −D[t:k−1])

−1(θt −D[t:k−1] ≥ θ̄∗k)× f̄ ′
k(θt −D[t:k−1]).

(39)

Plugging the results of (38) and (39) into (37), we have

(I)≤ED[t:k−1]

[∣
∣(V πα

k )′(θt −D[t:k−1])− (V
πβ
k )′(θt −D[t:k−1])

∣
∣

]

= ED[t:k−1]

[∣
∣
∣f

′
k
(θt −D[t:k−1])×

(
1(θt −D[t:k−1] ≤ θk)−1(θt −D[t:k−1] ≤ θ∗k)

)

+ f̄ ′
k(θt −D[t:k−1])×

(
1(θt −D[t:k−1] ≥ θ̄k)−1(θt −D[t:k−1] ≥ θ̄∗k)

)
∣
∣
∣

]

≤ED[t:k−1]

[∣
∣
∣f

′
k
(θt −D[t:k−1])×

(
1(θt −D[t:k−1] ≤ θk)−1(θt −D[t:k−1] ≤ θ∗k)

)
∣
∣
∣

]

︸ ︷︷ ︸

(III)

+ED[t:k−1]

[∣
∣
∣f̄ ′

k(θt −D[t:k−1])×
(
1(θt −D[t:k−1] ≥ θ̄k)−1(θt −D[t:k−1] ≥ θ̄∗k)

)
∣
∣
∣

]

︸ ︷︷ ︸

(IV)

.

For part (III), without loss of generality, we assume θk ≤ θ∗k. Then

(III) = ED[t:k−1]

[∣
∣
∣f

′
k
(θt −D[t:k−1])×1(θk < θt −D[t:k−1] ≤ θ∗k)

∣
∣
∣

]
(a)
=

∫ θ∗k

θk

−f ′
k
(x)ψ(x)dx,

where ψ is the probability density function of θt −D[t:k−1]. Equation (a) holds because f
k
(·) is

convex, θ∗k is its minimizer, and it uses the variable change x= θt−D[t:k−1]. From Assumption 5.4,

the cumulative distribution function of the random demand Dt is LD-Lipschitz continuous. Then

the probability density function of Dt is upper bounded by LD. Using a similar derivation in

Section 6, the probability density function of cumulative demands is upper bounded by LD and

thus ψ(·) ≤LD. Hence,

(III) ≤ LD

∫ θ∗k

θk

−f ′
k
(x)dx=LD

(

f
k
(θk)− f

k
(θ∗k)

)

.

The same result holds when θk > θ
∗
k. As for part (IV), we can derive a similar bound

(IV)≤LD

(

f̄k(θ̄k)− f̄k(θ̄∗k)
)

.
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As a result, we have

(I)≤ (III) + (IV)≤LD

(

f
k
(θk)− f

k
(θ∗k)

)

+LD

(

f̄k(θ̄k)− f̄k(θ̄∗k)
)

.

For the second part (II), we can derive a similar bound using the same technique.

(II)≤LD

(

f
k
(θk)− f

k
(θ∗k)

)

+LD

(

f̄k(θ̄k)− f̄k(θ̄∗k)
)

.

This implies that

∥
∥∇θt l(θα)−∇θt l(θβ)

∥
∥
2
≤ (I) + (II) ≤ 2LD

(

f
k
(θk)− f

k
(θ∗k) + f̄k(θ̄k)− f̄k(θ̄∗k)

)

. (40)

Recalling the definition of Fk(θk), we have

Fk(θk)−Fk(θ∗k) = Est∼ρt(·|πθ)

[

c(st∨ θt, st) + ft(st ∨ θt)− c(st∨ θ∗t , st)− ft(st∨ θ∗t )
]

︸ ︷︷ ︸

(I)

+Est∼ρt(·|πθ)

[

c(st∧ θ̄t, st) + ft(st ∧ θ̄t)− c(st ∧ θ̄∗t , st)− ft(st ∧ θ̄∗t )
]

︸ ︷︷ ︸

(II)

.

(41)

Without loss of generality, we assume that θt ≤ θ∗t . Then we have

(I) =

∫ θt

−∞

(
f
t
(θt)− f

t
(θ∗t )

)
dρt(st|πθ) +

∫ θ∗t

θt

(
ft(st) + kst − f

t
(θ∗t )

)
dρt(st|πθ)

≥
∫ θt

−∞

(
f
t
(θt)− f

t
(θ∗t )

)
dρt(st|πθ).

The last inequality holds as f
t
(st)≥ f

t
(θ∗t ) for any st ∈ [θt, θ

∗
t ]. Therefore, we have

(I)≥ P(st ≤ θt)
(
f
t
(θt)− f

t
(θ∗t )

)
≥ αD

(
f
t
(θt)− f

t
(θ∗t )

)
. (42)

Similar results hold when θk,i > θ
∗
k,i. For term (II), we apply the same technique and derive that

(II)≥ αD

(
f̄t(θ̄t)− f̄t(θ̄

∗
t )
)
. (43)

Combining (40), (41), (42), and (43), we conclude that

∥
∥∇θt l(θα)−∇θt l(θβ)

∥
∥
2
≤ 2LD

(

f
k
(θk)− f

k
(θ∗k) + f̄k(θ̄k)− f̄k(θ̄∗k)

)

≤ LD

αD

(
Fk(θk)−Fk(θ∗k)

)
.

This concludes the proof. �
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