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Abstract

Continual pre-training (CPT) has been an im-001
portant approach for adapting language mod-002
els to specific domains or tasks. In this paper,003
we comprehensively study its key designs to004
balance the new abilities while retaining the005
original abilities, and present an effective CPT006
method that can greatly improve the Chinese007
language ability and scientific reasoning ability008
of LLMs. To achieve it, we design specific data009
mixture and curriculum strategies based on ex-010
isting datasets and synthetic high-quality data.011
Concretely, we synthesize multidisciplinary sci-012
entific QA pairs based on related web pages to013
guarantee the data quality, and also devise the014
performance tracking and data mixture adjust-015
ment strategy to ensure the training stability.016
For the detailed designs, we conduct prelimi-017
nary studies on a relatively small model, and018
summarize the findings to help optimize our019
CPT method. Extensive experiments on a num-020
ber of evaluation benchmarks show that our ap-021
proach can largely improve the performance of022
Llama-3 (8B), including both the general abili-023
ties (+8.81 on C-Eval and +6.31 on CMMLU)024
and the scientific reasoning abilities (+12.00 on025
MATH and +4.13 on SciEval).026

1 Introduction027

Recently, large language models (LLMs) (Zhao028

et al., 2023; AI@Meta, 2024; Yang et al., 2024;029

DeepSeek-AI et al., 2024) have achieved great030

progress in accelerating the development of artifi-031

cial intelligence. Unlike traditional machine learn-032

ing methods, LLMs basically undergo large-scale033

pre-training on unsupervised corpora, e.g., trillions034

of training tokens. Through pre-training, LLMs035

can learn extensive knowledge from unsupervised036

data and acquire the capability of solving various037

downstream tasks via prompting (Touvron et al.,038

2023a; OpenAI, 2023; Team et al., 2024).039

Despite the success, LLMs still struggle in some040

specific scenarios, due to the large knowledge gap041

between pre-training data and downstream tasks. 042

For example, Llama-3 (AI@Meta, 2024), primarily 043

trained on English general corpora, performs not 044

well on the tasks based on other languages (e.g., 045

Chinese (Cui et al., 2023)) or requiring multidis- 046

ciplinary scientific knowledge, e.g., physics and 047

biology. To address these issues, a widely-used ap- 048

proach is to conduct continual pre-training (CPT) 049

for LLMs on specially-curated data related to the 050

expected abilities (Ke et al., 2023; Gupta et al., 051

2023; Ibrahim et al., 2024). However, catastrophic 052

forgetting (Luo et al., 2023) has become a common 053

technical issue for existing CPT methods, where 054

new capabilities are improved but original capa- 055

bilities are substantially hurt. Although CPT has 056

been widely used in existing work, the key training 057

details (e.g., data selection, mixture, and curricu- 058

lum) to develop new abilities and maintain existing 059

abilities have not been well discussed, especially 060

how to boost the comprehensive capacities of a 061

well-trained model under a limited training budget. 062

In this paper, we present a completely trans- 063

parent procedure for continually pre-training the 064

open-sourced LLM—Llama-3 (8B), with all exper- 065

imental data, model checkpoints, and training code 066

released. Our focus is to enhance the model’s ca- 067

pacities from two major aspects: Chinese language 068

ability and scientific reasoning ability, while retain- 069

ing its original capabilities. To achieve this, we 070

design specific data curation strategies to improve 071

the backbone models. For Chinese language ability, 072

we collect and select extensive Chinese text data 073

from diverse sources for effective bilingual adap- 074

tation. For scientific reasoning ability, we draw 075

inspiration from the exercises in textbooks and em- 076

ploy LLMs to synthesize scientific question and 077

answer (QA) pairs based on the content of web 078

pages in the pre-training corpus. Furthermore, we 079

also incorporate large-scale text data from various 080

sources (e.g., websites, books, and examinations) 081

and different formats (e.g., natural language and 082
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code) into the CPT data, to preserve the general083

capabilities. We carefully filter and select training084

data, following the approach used in Yulan-3 (Zhu085

et al., 2024).086

During the CPT process, it is key to explore087

various potential strategies for data collection, mix-088

ture, and curriculum design, akin to those used in089

standard pre-training (Hu et al., 2024; Abdin et al.,090

2024). However, considering the huge experimen-091

tal cost on Llama-3 (8B), we perform surrogate092

experiments using a relatively small model, TinyL-093

lama (Zhang et al., 2024). Based on TinyLlama,094

we extensively examine the effect of different data095

curation strategies, and further verify the findings096

in training Llama-3 (8B). To follow the nomencla-097

ture for Llama models, we refer to the continually098

pre-trained model in this work as Llama-3-SynE099

(Synthetic data Enhanced Llama-3).100

To evaluate the effectiveness of our approach,101

we conduct comprehensive experiments comparing102

Llama-3-SynE with other competitive LLMs across103

various evaluation benchmarks, including general104

and scientific scenarios. Experimental results have105

shown that our data strategies significantly enhance106

the overall capabilities of Llama-3 (8B), particu-107

larly in Chinese language understanding and scien-108

tific knowledge reasoning. In summary, our contri-109

butions are as follows:110

• We present the complete training procedure111

for continually pre-training Llama-3 (8B), includ-112

ing data selection, mixture, and curriculum. Ex-113

tensive experiments show that our CPT approach114

is very effective (yielding large improvements on115

Chinese and scientific benchmarks without hurting116

the performance on English benchmarks) and ef-117

ficient (consuming only about 100B tokens). The118

proposed methods and derived findings would be119

useful for future studies exploring various adapta-120

tion scenarios of well trained LLMs.121

• We extensively explore the data synthesis tech-122

nique, and generate high-quality scientific and code123

data. We show that these synthetic data can largely124

improve the corresponding capabilities of LLMs.125

• We release the whole dataset utilized to contin-126

ually pre-train Llama-3-SynE, including the gen-127

eral corpus comprising 98.5 billion tokens and128

synthetic data comprising 1.5 billion tokens focus-129

ing on scientific reasoning and coding tasks. Our130

dataset would be highly useful for training capa-131

ble LLMs, which has been also evidenced by the132

surrogate model TinyLlama in our experiments.133

2 Related Work 134

In this section, we review the related work in the 135

following three aspects. 136

Synthetic Data The available high-quality data 137

may not be enough for models to acquire the nec- 138

essary knowledge. To address this issue, syn- 139

thetic data has been widely used in the training 140

of LLMs including general document data for pre- 141

training (Maini et al., 2024), instruction data for 142

supervised fine-tuning (Xu et al., 2023), and other 143

applications. There exist two primary methods 144

for automatic data synthesis: directly prompting 145

LLM APIs (Xu et al., 2023; Ding et al., 2023) 146

and training customized synthetic models (Yue 147

et al., 2024; Zhou et al., 2024). By prompting with 148

task instructions and suitable examplar data, capa- 149

ble LLMs (e.g., GPT-4) can generate high-quality 150

data, potentially injecting the knowledge that they 151

have acquired during training. In addition, exist- 152

ing works also explore training relatively smaller 153

customized models to synthesize more domain- 154

specific data with much less API cost (Zhou et al., 155

2024). 156

Continual Pre-training Continual pre-training, 157

also called domain adaptive pre-training (Ke et al., 158

2023; Jang et al., 2022; Lesort et al., 2021), has 159

been widely used to enhance the domain-specific 160

abilities of a pre-trained model with new do- 161

main data. It has been a long-standing research 162

challenge to adapt models to new domains and 163

meanwhile prevent catastrophic forgetting (French, 164

1999; Nguyen et al., 2019). Existing works have 165

extensively studied fine-grained factors in mitigat- 166

ing catastrophic forgetting during continual pre- 167

training, including warm-up method (Gupta et al., 168

2023), data distribution (Ibrahim et al., 2024; Par- 169

mar et al., 2024), and learning rate (Winata et al., 170

2023; Scialom et al., 2022). 171

Scientific Large Language Models The remark- 172

able capabilities of LLMs have led to an increasing 173

inclination towards their utilization in scientific ap- 174

plication scenarios. To enhance the capacity of 175

LLMs to comprehend and resolve scientific prob- 176

lems, extensive efforts have been devoted to train- 177

ing scientific-oriented large language models, such 178

as mathematics LLMs (Yue et al., 2024; Shao et al., 179

2024; Zhou et al., 2024), biological LLMs (Jr. and 180

Bepler, 2023; Zhang et al., 2023) and chemical 181

LLMs (Bagal et al., 2022; Bran et al., 2024). 182
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Stage I: Bilingual Adaptation

Stage II: Synthetic Enhancement

Please gain inspiration from the following {Discipline 

Placeholder} content to create a high-quality {Discipline 

Placeholder} problem and solution. Present …

Prompt

Synthetic Data

Computer Science and Engineering
History and Geography

Psychology and Sociology

...

Web Page w/ Topic Label

Performance Tracking
1.26 → 1.32
1.82 → 1.45

1.54 → 1.60

...

Ratio_1
Ratio_2

Ratio_3 

...

Data Mixture Adjustment

Book

Math

Code

…

PPL Ascending

Adjusted web Page
Backbone Model

Llama-3-SynE

Scientific Web Page

LeetCode Dataset

The CPT Process

Figure 1: The overall pipeline of the CPT process.

3 Preliminary183

In this section, we provide the preliminary setup184

for our CPT approach, focusing on two key aspects:185

the backbone model and the data source.186

Backbone Model To conduct the research on187

CPT, we adopt Llama-3 (8B) (AI@Meta, 2024)188

as the backbone model, which has excelled in189

various downstream tasks such as text genera-190

tion, translation, summarization, and question-191

answering. However, Llama-3 has been primarily192

pre-trained on English text data, which is inade-193

quate in Chinese-oriented tasks. In addition, since194

Llama-3 was developed as a general-purpose LLM,195

it may also lack sufficient scientific knowledge.196

Considering these two limitations, we aim to im-197

prove Llama-3’s Chinese capacities as well as to198

enhance its performance in multidisciplinary scien-199

tific tasks. It is worth noting that the proposed ap-200

proach can be generally applied to other backbone201

models, as evidenced by our experiments on the202

relatively smaller model TinyLlama (Section 5.2).203

Data Source The selection of data sources is key204

to the capacities of LLMs. To prepare the pre-205

training data, we mainly refer to the data configu-206

ration of Yulan-3 (Zhu et al., 2024), which collects207

a diverse set of data, including web pages, encyclo-208

pedias, books, question-answering (QA) forums,209

academic papers, mathematical corpora, code, and210

synthetic data. We provide detailed information211

about the composition of our training data in Ap-212

pendix C.213

4 The Proposed CPT Approach 214

In this section, we present the proposed continual 215

pre-training (CPT) approach for enhancing the Chi- 216

nese and scientific capabilities of LLMs. Overall, 217

our training procedure consists of two main stages, 218

namely bilingual adaptation stage and synthetic en- 219

hancement stage, which focus on improving Llama- 220

3’s Chinese and scientific capacities, respectively. 221

In the CPT process, it is important to retain the 222

original capability of Llama-3 by alleviating the 223

effect of catastrophic forgetting. For this purpose, 224

we design different data strategies to balance new 225

and old abilities, which will be detailed in the fol- 226

lowing sections. The overall pipeline is shown in 227

Figure 1. 228

4.1 Bilingual Adaptation Stage 229

We first introduce the training approach for improv- 230

ing the Chinese capacities of Llama-3. Following 231

the prior work (Zhu et al., 2024), we set the ratio of 232

Chinese and English corpora as 1:4, to balance the 233

Chinese and English capabilities. For pre-training, 234

effective data mixture and schedule strategies are 235

key to improving the capacities of LLMs. Based on 236

the overall English-Chinese ratio, we further design 237

two strategies to enhance knowledge learning from 238

diverse domains or sources, namely topic-based 239

data mixture and perplexity-based data curriculum. 240

Next, we introduce the two techniques in detail. 241
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4.1.1 Topic-based Data Mixture242

In prior work (Xie et al., 2023), data mixture is243

usually conducted based on datasets or data types,244

e.g., setting a sampling distribution to sample data245

instances from available datasets. In our approach,246

we aim to explore a more fine-grained adjustment247

on data mixture. To achieve this goal, we consider248

establishing a topic taxonomy and conducting the249

data mixture at the topic level. Next, we present250

the topic-based data mixture method.251

Topic Identification We train a classifier based252

on language models to identify the topic label253

(see the pre-defined topics in Appendix E) for254

each web page. These topics are intentionally de-255

signed to be in alignment with the subjects of the256

MMLU (Hendrycks et al., 2021a) and CMMLU (Li257

et al., 2023) benchmarks, which can also be ex-258

tended to other topic taxonomies. Furthermore,259

we employ GPT-4 to annotate a small number of260

web pages as training data for our topic classifiers.261

Concretely, we adopt the zero-shot setting and con-262

struct the prompt by concatenating the topics and263

an unlabelled web page (see the prompt detail in264

Appendix B). Then, we utilize the instructions to265

guide GPT-4 to annotate the unlabelled web page266

by these pre-determined topic labels. In order to267

conduct topic classification on both Chinese and268

English text, we train TinyBERT1 and BERT-Tiny-269

Chinese2 as the classifiers to identify the topic la-270

bels for English and Chinese web pages, respec-271

tively. With the utilization of these classifiers, the272

web pages can be assigned with specific topic la-273

bels.274

Performance Change Tracking To track the275

LLM’s capabilities on different topic categories276

during the training process, we evaluate the change277

of the perplexity (PPL) score in each topic on278

the validation set. A reduction in the PPL score279

for a particular topic indicates an improvement in280

the model’s capability regarding that topic. Con-281

cretely, supposing there are n topics, the perfor-282

mance change on the i-th topic is:283

∆pi = p
(t)
i − p

(t−1)
i , i = 1, . . . , n,284

1https://huggingface.co/huawei-noah/TinyBERT_
General_4L_312D

2https://huggingface.co/ckiplab/
bert-tiny-chinese

where p
(t)
i and p

(t−1)
i are the PPL on the i-th topic 285

of LLM after the t-th and (t−1)-th rounds3 of CPT 286

process, respectively. The normalized performance 287

change is then computed as: 288

δpi =
∆pi

max
j

(|∆pj |)
, i = 1, . . . , n. 289

Data Mixture Adjustment Based on the perfor- 290

mance change, we calculate the weight adjustment 291

coefficient fi for training data proportions: 292

fi = 1 + α · δpi , 293

where α is a coefficient that controls the magnitude 294

of the adjustment. After obtaining the adjustment 295

coefficients (i.e., f1, f2, . . . , fn), we can update 296

the data proportions for each topic based on these 297

coefficients. During training, let r(t−1)
i be the pro- 298

portion of the i-th topic for the (t − 1)-th round, 299

then the proportion of data for the t-th round can 300

be calculated as follows: 301

r
(t)
i =

r
(t−1)
i · fi∑n

j=1 r
(t−1)
j · fj

. 302

By using the topic-based mixture strategy, we 303

can easily monitor the PPL change trend in a fine- 304

grained way, and thus can better balance the abili- 305

ties of LLMs across different topics or domains. 306

4.1.2 Perplexity-based Data Curriculum 307

In addition to adjusting the data mixture ratio, we 308

also design a data curriculum strategy that orga- 309

nizes the training instances in a simple-to-complex 310

manner. Curriculum learning has been demon- 311

strated to be effective in many tasks (Bengio et al., 312

2009). Its primary principle is to gradually increase 313

the difficulty (or complexity) of the training data. 314

This strategy allows the model to establish a robust 315

foundational knowledge base before learning more 316

complex knowledge and skills. 317

Following this idea, we use the PPL score gen- 318

erated by the model to measure the difficulty level 319

of the training data. Training the model on Chi- 320

nese text data with a progressively increasing PPL 321

score can provide a gradual and smooth transition 322

in training complexity. This is particularly cru- 323

cial since Llama-3 is primarily trained on a large 324

scale of English corpora with very little Chinese 325

3A round consists of several training steps, corresponding
to the training of about 40B tokens.
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data. Based on our preliminary experiments, start-326

ing with “simpler” Chinese data is beneficial to327

alleviate the performance loss (i.e., catastrophic328

forgetting) of Llama-3 in English tasks.329

4.2 Synthetic Enhancement Stage330

After bilingual adaptation training, the LLM’s per-331

formance on Chinese tasks can be significantly332

improved. In this stage, we further incorporate333

synthetic data to improve the multidisciplinary sci-334

entific capacities of Llama-3, inspired by prior335

work (Zhou et al., 2024; Jiang et al., 2024), the336

data ratio is correspondingly adjusted to 1:7:2 for337

Chinese, English, and synthetic data, respectively.338

Note that both the topic-based mixture strategy339

and perplexity-based data curriculum are no longer340

used in this training stage, and we randomly sam-341

ple the data following the mixture proportion from342

the training corpus. Next, we describe our method343

for synthesizing data for CPT.344

4.2.1 Synthesizing the Scientific QA Data345

Synthetic data has been demonstrated to be effec-346

tive and efficient for enhancing the capabilities of347

LLMs (Yu et al., 2023; Yue et al., 2023; Zhou et al.,348

2024). Following prior work (Zhou et al., 2024),349

we generate synthetic data in the format of the ques-350

tion and answer (QA) pair, to cover a broad spec-351

trum of multidisciplinary scientific knowledge. The352

synthetic questions and answers are concatenated353

into text and added to the CPT training corpora.354

Specifically, we consider nine scientific dis-355

ciplines, i.e., mathematics, physics, chemistry,356

biology, astronomy, earth science, medical sci-357

ence, computer science, and general education.358

For each discipline, we manually collect a list359

of domain names relevant to the respective360

fields, such as math.stackexchange.com and361

physicsforums.com, allowing for the expansion362

of this list as needed to enhance the coverage. To363

construct a science-related seed corpus, we collect364

scientific web pages from Dolma’s CC (Soldaini365

et al., 2024) and C4 (Dodge et al., 2021) subsets366

that belong to the collected domain names.367

Based on the above corpus, we further extract368

the content snippets and fill in our designed prompt369

template. Then, we utilize Mistral-7B-Instruct-370

v0.34 to generate relevant QA pairs that align with371

the targeted scientific discipline. These synthetic372

data are crafted to precisely mimic the structure373

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

and complexity of real-world scientific problems, 374

which can enhance the model’s capability for sci- 375

entific problem understanding and reasoning. 376

4.2.2 Synthesizing the Code QA Data 377

During the preliminary experiments, we find that 378

the coding capacities of Llama-3 are severely af- 379

fected in the CPT process: sharp performance 380

degradation is observed on the code evaluation 381

benchmarks (i.e., HumanEval and MBPP). 382

To retain the coding capacities of Llama-3, we 383

adopt a similar data synthesis approach for gener- 384

ating high-quality code QA data. Specifically, we 385

expand the LeetCode dataset5 using the in-context 386

learning (ICL) method. We randomly select prob- 387

lems from the LeetCode dataset as demonstrations, 388

synthesize new coding problems, and generate an- 389

swers for these problems. In implementation, we 390

use Magicoder-S-DS-6.7B (Wei et al., 2023) for 391

both problems and solutions synthesis. 392

The details of synthesis cases and the statistical 393

information of all synthetic data for both scientific 394

and code are provided in Appendix A and D. 395

Prompt for QA Synthesis

Instruction
Please gain inspiration from the following {Discipline Placeholder}
content to create a high-quality {Discipline Placeholder} problem
and solution. Present your output in two distinct sections: [Problem]
and [Solution].

{Discipline Placeholder} Content
{Seed Snippet Placeholder}

Guidelines
[Problem]: This should be **completely self-contained**, providing
all the contextual information one needs to understand and solve the
problem.

[Solution]: Present a comprehensive, step-by-step solution that solves
the problem **correctly** and educates the student, around 250-350
words long. Clearly articulate the reasoning and methods used at
each step, providing insight into the problem-solving process. Take
care to format any equations properly using LaTeX or appropriate
notation.

396

5 Experiment 397

In this section, we introduce the details of experi- 398

ments for evaluating our approach. 399

5.1 Evaluation Benchmark 400

To ensure a comprehensive capacity assessment, 401

we evaluate the performance of LLMs from the fol- 402

lowing aspects. Evaluation benchmarks are divided 403

into two groups: major benchmarks for overall ca- 404

pacity evaluation, and scientific benchmarks for 405

assessing the effectiveness of our data synthesis 406

5https://huggingface.co/datasets/greengerong/
leetcode
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technique. Details of the benchmarks and evalua-407

tion settings are in Appendix F.408

We evaluate language understanding using409

MMLU (Hendrycks et al., 2021a) for English and410

CMMLU (Li et al., 2023) and C-Eval (Huang411

et al., 2023) for Chinese. Coding proficiency is412

assessed using HumanEval (Chen et al., 2021) and413

MBPP (Austin et al., 2021). Scientific reasoning414

is evaluated on SciQ (Welbl et al., 2017), Sci-415

Eval (Sun et al., 2024), and ARC (Clark et al.,416

2018) for English science, SAT-Math (Zhong417

et al., 2023), MATH (Hendrycks et al., 2021b),418

GSM8K (Cobbe et al., 2021), AQUA-RAT (Ling419

et al., 2017), MAWPS (Koncel-Kedziorski et al.,420

2016), ASDiv (Miao et al., 2021) for English math,421

and GaoKao (Zhong et al., 2023) for Chinese phys-422

ical, chemical, and mathematical reasoning.423

5.2 Surrogate Experiments with TinyLlama424

Due to the significant costs involved in tuning ex-425

periments on Llama-3 (8B), we use a relatively426

small model TinyLlama (Zhang et al., 2024) as a427

surrogate model for extensive exploratory experi-428

ments, and the derived findings can be employed429

to guide the training of Llama-3 (8B). Specifically,430

TinyLlama is a language model with 1.1 billion431

parameters, and it is pre-trained on three trillion432

tokens using the same architecture and tokenizer as433

Llama-2 (Touvron et al., 2023b), which is suitable434

for exploring the CPT strategies in our experiments.435

The implementation details of TinyLlama are simi-436

lar to Llama-3 in Appendix I, with the differences437

being TinyLlama’s fixed learning rate of 1.0×10−4438

and a maximum context length of 2, 048 tokens.439

In this part, to avoid large performance discrep-440

ancies across benchmarks, for major benchmarks,441

we mainly select C-Eval, CMMLU, and MMLU442

for computing the average performance; for sci-443

entific benchmarks, we select SciEval, SciQ, and444

ARC for computing the average performance. We445

also report all benchmark results in Appendix J.446

Next, we introduce the detailed experiments with447

TinyLlama, including the impact of synthetic data448

quality, synthetic data curriculum and comparison449

with open-source datasets. We also examine the450

effectiveness of synthetic data and the impact of451

synthetic data ratio in Appendix G.452

Impact of Synthetic Data Quality Intuitively, the453

quality (or accuracy) of synthetic data would influ-454

ence the learning of domain knowledge for LLMs.455

However, it is difficult to guarantee the accuracy456

(a) Major Benchmark (b) Scientific Benchmark

Figure 2: Performance of TinyLlama continually pre-
trained on varying corruption levels of synthetic data.

of the automatically generated synthetic data. To 457

examine the impact of the synthetic data quality, 458

we consider simulating multiple synthetic datasets 459

with varied data quality. Concretely, we corrupt 460

the original synthetic data by applying three types 461

of transformation, including randomly replacing 462

a number, substituting frequently occurring nouns 463

with random hyponyms, and replacing frequently 464

occurring adjectives with their antonyms (see Ap- 465

pendix H). Based on the above transformation 466

method, we sample one billion tokens from the 467

synthetic data and vary the level of corruption 468

ratios at the range of {0.0, 0.3, 0.4, 0.5, 0.6, 0.7}. 469

Then, we integrate 4B normal tokens6 with these 470

six synthetic datasets as the CPT dataset, and train 471

TinyLlama for performance comparison. Figure 2 472

presents the average performance of TinyLlama 473

after training with varying corruption levels. As 474

can be seen from this figure, a low corruption level 475

(i.e., 0.3) has very little impact on the model perfor- 476

mance, suggesting that LLMs can tolerate a certain 477

degree of inaccuracy in synthetic data. However, it 478

would still lead to large performance degradation 479

with a high corruption level (i.e., > 0.5). 480

Impact of Synthetic Data Curriculum In addi- 481

tion to the mixture ratio, we can also set different 482

data curriculum methods (i.e., reordering the in- 483

stances) for synthetic data, since it mixes data from 484

multiple disciplines. To explore the impact of data 485

curriculum, we consider two data instance reorder- 486

ing methods, either by discipline or difficulty, and 487

compare these strategies with the random mixing 488

strategy. For discipline, we design three kinds of 489

curriculum methods by considering two disciplines, 490

including physics → biochemistry, biochemistry 491

→ physics and physics → biochemistry → physics. 492

6In this work, “Normal token” corresponds to the non-
synthetic data in the training dataset.
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(a) Major Benchmark (b) Scientific Benchmark

Figure 3: Performance of TinyLlama with different data
curriculum methods. “RM” refers to the random mixing
strategy. “P”, “B”, “H”, and “L” stand for “physics”,
“biochemistry”, “high”, and “low”, respectively.

(a) Major Benchmark (b) Scientific Benchmark

Figure 4: Performance of TinyLlama continually pre-
trained on different open-source datasets.

For difficulty, we utilize the PPL score to assess the493

difficulty level (ten groups in total) and consider the494

reordering schedules of low → high and high →495

low. Each data curriculum is with the same training496

instances but a different instance organization order.497

The results of the data curriculum are presented in498

Figure 3. Overall, we can have two major obser-499

vations. Firstly, the deliberate separation of data500

by discipline can not bring performance improve-501

ment, even hurting the model performance. Sec-502

ondly, the easy-to-difficult curriculum can lead to503

more performance improvement than the contrary504

difficult-to-easy one and random sampling, since505

it can help models gradually acquire more com-506

plex knowledge information. This demonstrates507

the effectiveness of the proposed data curriculum508

strategy based on PPL.509

Comparison with Open-source Datasets To fur-510

ther examine the effectiveness of our synthetic data,511

we select WebInstruct (instruction data mined from512

the web in the math and science domains) (Yue513

et al., 2024) and Cosmopedia (synthetic data from514

the scientific subset automathtext) (Ben Allal et al.,515

2024), two large-scale open-source datasets that516

have been widely used for improving LLMs. For517

the fair comparison, we consider comparing four 518

variants based on TinyLlama, including TinyLlama 519

(the original model), w/ 5B (1B Webins.) (CPT with 520

4B normal tokens and 1B WebInstruct tokens), w/ 521

5B (1B Cosm.) (CPT with 4B normal tokens and 522

1B Cosmopedia tokens), and w/ 5B (1B Syn.) (CPT 523

with 4B normal tokens and 1B tokens from our 524

synthetic data). Figure 4 presents the performance 525

of TinyLlama after training with different open- 526

source datasets. The results show that our synthetic 527

data leads to more improvements in both major 528

and scientific benchmarks, which demonstrates the 529

effectiveness of our data synthesis method. 530

5.3 Main Experiments with Llama-3 531

Based on the above findings from TinyLlama, we 532

adopt the best-performing strategies or configura- 533

tions for continual pre-training Llama-3. The im- 534

plementation details are presented in Appendix I. 535

Baselines To conduct the comprehensive evalua- 536

tion, we adopt both general LLMs and scientific 537

LLMs as baselines in our experiment. We con- 538

sider three kinds of LLMs as baselines, including 539

general-purpose LLM, scientific LLM (enhanced 540

by the science-related corpus or instructions), and 541

continual pre-training LLM. For general-purpose 542

LLMs, we adopt DCLM-7B (Li et al., 2024) and 543

Mistral-7B-v0.3 (Jiang et al., 2023) as the baseline 544

in the evaluation. For scientific LLMs, we adopt 545

MAmmoTH2-8B (Yue et al., 2024) and Galactica- 546

6.7B (Taylor et al., 2022) as the baseline LLMs. In 547

addition, we also report the evaluation results of 548

Llama-3-Chinese-8B7, which has also been contin- 549

ually pre-trained based on Llama-3. 550

Results on Major Benchmarks As presented in 551

Table 1, we can observe that Llama-3-SynE out- 552

performs its backbone model Llama-3 (8B) by a 553

large margin on Chinese evaluation benchmarks 554

(e.g., C-Eval and CMMLU). It shows that our ap- 555

proach is very effective for enhancing the Chinese 556

language capacity of Llama-3. We carefully collect 557

and clean the Chinese text data, and also design 558

suitable data mixture and curriculum to adaptively 559

retrain these models, which is the key to perfor- 560

mance improvement on Chinese benchmarks. Sec- 561

ond, for English evaluation benchmarks, our ap- 562

proach slightly underperforms Llama-3 (8B) on 563

MMLU, while achieving improved or comparable 564

performance on the rest math and code benchmarks. 565

7https://huggingface.co/hfl/
llama-3-chinese-8b
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Models
Bilingual Math Code

Avg.
MMLU C-Eval CMMLU MATH GSM8K ASDiv MAWPS SAT-Math HumanEval MBPP

Llama-3-8B 66.60 49.43 51.03 16.20 54.40 72.10 89.30 38.64 36.59 47.00 52.13
DCLM-7B 64.01 41.24 40.89 14.10 39.20 67.10 83.40 41.36 21.95 32.60 44.58
Mistral-7B-v0.3 63.54 42.74 43.72 12.30 40.50 67.50 87.50 40.45 25.61 36.00 45.99
Llama-3-Chinese-8B 64.10 50.14 51.20 3.60 0.80 1.90 0.60 36.82 9.76 14.80 23.37
MAmmoTH2-8B 64.89 46.56 45.90 34.10 61.70 82.80 91.50 41.36 17.68 38.80 52.53
Galactica-6.7B 37.13 26.72 25.53 5.30 9.60 40.90 51.70 23.18 7.31 2.00 22.94
Llama-3-SynE (ours) 65.19 58.24 57.34 28.20 60.80 81.00 94.10 43.64 42.07 45.60 57.62

Table 1: Few-shot performance comparison on major benchmarks (i.e., bilingual tasks, code synthesis tasks and
mathematical reasoning tasks). The best and second best are in bold and underlined, respectively.

Models
SciEval SciQ GaoKao ARC AQUA-RAT

Avg.
PHY CHE BIO Avg. Avg. MathQA CHE BIO Easy Challenge Avg. Avg.

Llama-3-8B 46.95 63.45 74.53 65.47 90.90 27.92 32.85 43.81 91.37 77.73 84.51 27.95 53.34
DCLM-7B 56.71 64.39 72.03 66.25 92.50 29.06 31.40 37.14 89.52 76.37 82.94 20.08 51.34
Mistral-7B-v0.3 48.17 59.41 68.89 61.51 89.40 30.48 30.92 41.43 87.33 74.74 81.04 23.23 51.14
Llama-3-Chinese-8B 48.17 67.34 73.90 67.34 89.20 27.64 30.43 38.57 88.22 70.48 79.35 27.56 51.44
MAmmoTH2-8B 49.39 69.36 76.83 69.60 90.20 32.19 36.23 49.05 92.85 84.30 88.57 27.17 56.14
Galactica-6.7B 34.76 43.39 54.07 46.27 71.50 23.65 27.05 24.76 65.91 46.76 56.33 20.87 38.63
Llama-3-SynE (ours) 53.66 67.81 77.45 69.60 91.20 31.05 51.21 69.52 91.58 80.97 86.28 28.74 61.09

Table 2: Few-shot performance comparison on scientific benchmarks. “PHY”, “CHE”, and “BIO” denote the
physics, chemistry, and biology sub-tasks of the corresponding benchmarks.

It demonstrates that our approach can well address566

the catastrophic forgetting issue of the original ca-567

pabilities of LLMs. Actually, based on our pre-568

liminary experiments (also evidenced by baseline569

models), Chinese-adaptive CPT models are diffi-570

cult to retain the original performance on English-571

oriented benchmarks (e.g., MMLU) due to the data572

distribution discrepancy between pre-training and573

CPT. These results indicate that our approach can574

effectively balance the original and new capacities.575

Results on Scientific Benchmarks As shown in576

Table 2, Llama-3-SynE performs very well on the577

scientific benchmarks, which is consistently better578

than the backbone model Llama-3. It indicates that579

our synthetic data is very effective in improving580

the scientific reasoning capability of LLMs. In par-581

ticular, compared to the English datasets, Llama-3-582

SynE achieves a significantly larger improvement583

on the Chinese datasets, i.e., GaoKao BIO bench-584

mark (25.71 points improvement over Llama-3),585

since our CPT model can effectively balance the586

English and Chinese reasoning abilities on scien-587

tific tasks. Among all the baselines, MAmmoTH2-588

8B achieves very good performance on English589

scientific benchmarks, while it suffers from perfor-590

mance degradation on general Chinese benchmarks,591

e.g., C-Eval and CMMLU.592

By combining the results on major and scien-593

tific benchmarks, we can see that Llama-3-SynE 594

achieves very competitive performance in various 595

abilities, and it can effectively alleviate the catas- 596

trophic forgetting issue in the CPT process. Our 597

CPT approach only consumes about 100B tokens, 598

which is relatively efficient in training compute. 599

6 Conclusion 600

In this work, we studied how to perform effective 601

continual pre-training (CPT) for LLMs under a lim- 602

ited training budget. Our focus is to develop new 603

capabilities and meanwhile avoid catastrophic for- 604

getting of original capabilities. Specifically, we 605

extensively explored the data synthesis technique, 606

and generated high-quality scientific and code data, 607

which can largely improve the corresponding abili- 608

ties of LLMs. In order to reduce the tuning cost, we 609

conducted extensive experiments on TinyLlama by 610

examining various data curation strategies, includ- 611

ing data selection, mixture, and curriculum. The 612

derived findings were further employed to guide 613

the training of Llama-3 (8B). Experimental results 614

have shown that our CPT approach can largely 615

boost the Chinese and scientific reasoning abilities 616

of the backbone model, and meanwhile effectively 617

retain its original abilities. 618

8



7 Limitations619

Despite the promising results achieved in this study,620

there are several limitations that should be acknowl-621

edged. Firstly, our current efforts in developing an622

open recipe for continual pre-training have primar-623

ily focused on the Llama-3 (8B). To fully eval-624

uate the applicability of our proposed continual625

pre-training methodology, it is crucial to extend626

experiments to include more LLMs and target do-627

mains. Secondly, our methodology focuses specif-628

ically on bilingual (Chinese and English) and sci-629

entific knowledge adaptation. It remains to be seen630

whether the proposed CPT approach can be trans-631

ferred to other domains, such as law, healthcare,632

or arts, where domain-specific knowledge might633

require different strategies or datasets. Lastly, our634

methodology was primarily designed to augment635

the base model. It would be advantageous to exam-636

ine the performance of the final chat model. This637

investigation should incorporate a more compre-638

hensive view, considering both chat capability and639

human alignment.640
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A Case Study for Synthesis QA 1102

Good Case 1
Scientific Seed Snippet Texts:
Given a system of oppositely charged layers, such as a double layer
of ions in an electrolyte solution, explain why these layers do not
combine (neutralize) with each other.
Synthesis QA:
[Problem] Given a system of oppositely charged layers, such as a
double layer of ions in an electrolyte solution, explain why these
layers do not combine (neutralize) with each other.

[Solution] In a system of oppositely charged layers, such as a double
layer of ions in an electrolyte solution, the layers do not combine
(neutralize) due to the electrostatic repulsion between the ions. This
repulsion arises from the Coulombic force, which is a fundamental
force in nature that acts between charged particles.

To understand this, let’s consider a simple example of a positively
charged cation (e.g., Na+) and a negatively charged anion (e.g.,
Cl-). When these ions are brought close together, they experience
an electrostatic force that pushes them apart. This force can be
calculated using Coulomb’s law, which states that the electrostatic
force (F) between two point charges (q1 and q2) separated by a
distance (r) is given by:F = k ∗ (q1 ∗ q2)/r2, where k is the
Coulomb constant (approximately 8.99 × 109Nm2C−2).

In the case of an electrolyte solution, the ions are surrounded by a
cloud of counter-ions (ions of opposite charge) that neutralize their
charge locally. This cloud of counter-ions creates an electric double
layer around each ion, which prevents the oppositely charged ions
from coming too close to each other and neutralizing. The repulsion
between these double layers is known as the electrostatic double
layer repulsion.

The thickness of the double layer is typically on the order of a few
angstroms (Å), and the strength of the repulsion decreases rapidly
as the distance between the layers increases. This repulsion is
responsible for the stability of colloidal suspensions, the behavior
of charged surfaces in contact with electrolyte solutions, and many
other phenomena in surface chemistry and electrochemistry.

In summary, the electrostatic repulsion between oppositely charged
layers in a system, such as the double layer of ions in an electrolyte
solution, prevents the layers from combining (neutralizing) with each
other due to the Coulombic force. This repulsion arises from the
electric double layer around each ion, which is created by the counter-
ions that neutralize the charge locally. The thickness of the double
layer and the strength of the repulsion depend on factors such as the
ionic strength of the solution, the surface charge density, and the
dielectric constant of the medium.

1103

Good Case 2
Synthesis QA:
[Problem] Given a list of n numbers nums and an integer s, return the
minimum length of a subarray which when elements of the subarray
are summed together is equal to or greater than s. If no such subarray
exists return 0.
Constraints:
1 ≤ nums.length ≤ 105

1 ≤ nums[i] ≤ 105

1 ≤ s ≤ 109

All the integers in nums list sum up to less than or equal to 109.
[Solution]

def minSubArrayLen(s, nums):
# Initialize pointers and variables
start = 0
current_sum = 0
min_length = float('inf')

# Traverse the array with 'end' pointer
for end in range(len(nums)):

current_sum += nums[end]
while current_sum >= s:

min_length = min(min_length, end - start + 1)
current_sum -= nums[start]
start += 1

# If min_length was updated, return it
return min_length if min_length != float('inf') else 0

1104
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B Prompt1105

Prompt for Topic Labeling

I am categorizing a series of articles according to the following 11
topics. Next, I will give you an article, please select only one topic
that the article is the most related to:

[Topics]: {Topic List Placeholder}

[Article]: {Web Page Content Placeholder}

Please only return the most related topic:

1106

C Detailed Information of Training Data1107

Dataset English Chinese Volume

Web Pages ✓ ✓ 45.18B
Encyclopedia ✓ ✓ 4.92B
Books ✓ ✓ 15.74B
QA Forums ✓ ✓ 4.92B
Academic Papers ✓ × 7.93B
Mathematical Corpora ✓ × 7.93B
Code ✓ × 11.88B
Synthetic Data ✓ × 1.50B

Total - - 100.00B

Table 3: Statistical information of the training corpus
for training Llama-3-SynE.

D Statistical Information of Synthetic1108

Data1109

Category Discipline Num. Synthetic Data

Scientific

Mathematics 207,448
Physics 241,516
Chemistry 30,838
Biology 25,103
Astronomy 24,060
Earth Science 7,936
Medical Science 8,199
Computer Science 475,566
General Education 572,478

Code - 1,385,696

Table 4: The statistical information of the synthetic data
of each discipline (in the form of QA pairs).

E Pre-defined Topics for Web Pages1110

F Benchmark Details and Settings1111

Here we introduce the details of the benchmarks1112

and evaluation settings.1113

• Language Understanding: We evaluate the1114

English language understanding capability using1115

the MMLU (Hendrycks et al., 2021a), and select1116

CMMLU (Li et al., 2023) and C-Eval (Huang et al.,1117

2023) for evaluating Chinese language understand-1118

ing capability.1119

Language Topic

English

Mathematics and Physics
Computer Science and Engineering
Biology and Chemistry
History and Geography
Law and Policy
Philosophy and Logic
Economics and Business
Psychology and Sociology
Security and International Relations
Medicine and Health
Others

Chinese

Biology and Chemistry
Computer Science and Engineering
Economics and Business
History and Geography
Law and Policy
Mathematics and Physics
Medicine and Health
Philosophy Arts and Culture
Project and Practical Management
Psychology Sociology and Education
Others

Table 5: The pre-defined topics (category labels) for
English and Chinese web pages, based on MMLU and
CMMLU respectively.

• Coding Proficiency: We evaluate the coding 1120

proficiency using the HumanEval (Chen et al., 1121

2021) and MBPP (Austin et al., 2021) benchmarks, 1122

which measure the ability to generate correct code 1123

snippets based on given problems. 1124

• Scientific Reasoning: We evaluate it using sev- 1125

eral English and Chinese datasets from science and 1126

math domains, where SciQ (Welbl et al., 2017), 1127

SciEval (Sun et al., 2024), ARC (Clark et al., 1128

2018) are English science reasoning datasets; SAT- 1129

Math (Zhong et al., 2023), MATH (Hendrycks 1130

et al., 2021b), GSM8K (Cobbe et al., 2021), 1131

AQUA-RAT (Ling et al., 2017), MAWPS (Koncel- 1132

Kedziorski et al., 2016), ASDiv (Miao et al., 1133

2021) are English math reasoning datasets; 1134

GaoKao (Zhong et al., 2023) is a Chinese bench- 1135

mark including physical, chemical and mathemati- 1136

cal reasoning subtasks. 1137

In order to better organize the evaluation re- 1138

sults, we divide the evaluation benchmarks into 1139

two groups. The first group is major benchmarks, 1140

which aim to evaluate the comprehensive capaci- 1141

ties of LLMs. The second group is scientific bench- 1142

marks. These benchmarks have a broader coverage 1143

of multidisciplinary scientific knowledge, and they 1144

are used for evaluating the effectiveness of our data 1145

synthesis technique. 1146

The major benchmarks contain MMLU, C-Eval, 1147

14



(a) Major Benchmark (b) Scientific Benchmark

Figure 5: Performance of TinyLlama continually pre-
trained on different corpora.

CMMLU, MATH, GSM8K, ASDiv, MAWPS, SAT-1148

Math, HumanEval, and MBPP. Note that we in-1149

clude commonly used math and code benchmarks1150

in this group because it is standard practice to use1151

these benchmarks for evaluating various general-1152

purpose LLMs. The scientific benchmarks contain1153

SciEval, SciQ, GaoKao, ARC, and AQUA-RAT.1154

For all the above evaluation benchmarks, we1155

evaluate all the models using the few-shot or zero-1156

shot settings. Specifically, we report the eight-shot1157

performance on GSM8K, ASDiv, and MAWPS,1158

five-shot for C-Eval, CMMLU, MMLU, MATH,1159

GaoKao, SciQ, SciEval, SAT-Math, and AQUA-1160

RAT, three-shot for MBPP. For HumanEval and1161

ARC, we report the zero-shot evaluation perfor-1162

mance.1163

G Additions to Surrogate Experiments1164

with TinyLlama1165

We introduce the additions to surrogate experi-1166

ments with TinyLlama, including the effectiveness1167

of synthetic data and synthetic data ratio.1168

Effectiveness of Synthetic Data To analyze the1169

effectiveness of our CPT approach with synthetic1170

data, we consider comparing three variants based1171

on TinyLlama, including TinyLlama (the original1172

model), w/ 5B (Norm.) (CPT with 5B normal to-1173

kens), and w/ 5B (1B Syn.) (CPT with 4B normal to-1174

kens and 1B synthetic tokens). In our surrogate ex-1175

periments, normal training tokens are constructed1176

by using the strategies presented in Section 4.1.1177

The results are presented in Figure 5. First, by com-1178

paring with the base TinyLlama, the two variants1179

achieve much better average performance on both1180

major and scientific benchmarks, indicating the ef-1181

fectiveness our CPT data (both the collected and1182

synthetic data). Furthermore, TinyLlama w/ 5B (1B1183

Syn.) outperforms TinyLlama w/ 5B (Norm), which1184

can demonstrate the effectiveness of our synthetic1185

(a) Major Benchmark (b) Scientific Benchmark

Figure 6: Performance of TinyLlama after training with
different ratios of synthetic data.

data. Since the synthetic data is derived based on 1186

the original content of web pages, it can better 1187

extract the key knowledge of text documents and 1188

reduce the influence of irrelevant contents. Further- 1189

more, these synthetic data are presented in the form 1190

of QA pairs, having a more similar data format with 1191

downstream tasks, which is also an important factor 1192

for performance improvement. 1193

Impact of Synthetic Data Ratio For construct- 1194

ing the CPT dataset, we need to determine the 1195

proportion of synthetic data in the overall data 1196

distribution. To investigate the effect of the mix- 1197

ture ratio, we vary the proportion of synthetic data 1198

in the training corpus, considering four choices 1199

in {0.1, 0.2, 0.3, 0.4}, and construct a 5B-token 1200

dataset to train TinyLlama. The relative ratios 1201

of the rest data sources are kept as that in Sec- 1202

tion 4.1. Figure 6 presents the average performance 1203

of TinyLlama after training with different ratios of 1204

synthetic data. We can see that the model’s perfor- 1205

mance initially improves with the increasing of syn- 1206

thetic data proportions, then declines once the pro- 1207

portion reaches a relatively high value (e.g.,40%). 1208

Overall, a mixture ratio of 20% is a good choice 1209

for integrating synthetic data and normal data. 1210

H Example for Accuracy Degradation 1211

Transformations 1212

## Before Transformations: In the given chemi- 1213

cal reaction, we have sodium (Na) reacting with 1214

chlorine (Cl2) to form sodium chloride (NaCl). To 1215

determine the number of atoms of chlorine before 1216

and after the reaction, we will first count the num- 1217

ber of chlorine atoms. . . adjust the coefficients of 1218

the reactants to make the number of chlorine atoms 1219

equal before and after the reaction:2Na + Cl2 == 1220

2NaCl. 1221

## After Transformations: In the given chem- 1222

ical reaction, we have sodium (Na) reacting with 1223
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oxygen (Cl2) to form sodium chloride (NaCl). To1224

determine the number of atoms of oxygen before1225

and after the reaction, we will first count the num-1226

ber of oxygen atoms. . . adjust the coefficients of the1227

reactants to make the number of oxygen atoms un-1228

equal before and after the reaction:6Na + Cl3 ==1229

8NaCl1230

In this example, "chlorine" is replaced with a1231

random hyponym (oxygen, hydrogen, neon, etc.)1232

of its hypernym (chemical element), the numbers in1233

the chemical formulas are randomly replaced, and1234

the adjective "equal" is replaced with "unequal."1235

I Implementation Details of the CPT1236

Process for Llama-31237

In the topic-based data mixture strategy, we anno-1238

tated 5, 000 web pages, which is enough to train a1239

traditional classifier. n is set to 11 and α is set to1240

0.4. r(0)i is set to the original ratio of the i-th topic.1241

We utilize the huggingface Transformers (Wolf1242

et al., 2019) to implement our experiments, using1243

Flash Attention (Dao et al., 2022) and DeepSpeed1244

ZeRO Stage 2 to optimize the training efficiency.1245

We employ AdamW optimizer (Loshchilov and1246

Hutter, 2019) with β1 = 0.9 and β2 = 0.95, and1247

use the Warmup-Stable-Decay (WSD) learning rate1248

scheduler (Hu et al., 2024) in the CPT process of1249

Llama-3. For model warmup, we linearly increase1250

the learning rate from 1.0×10−7 to 1.0×10−5 with1251

10B tokens. In the remaining training procedure,1252

the learning rate remains constant at 1.0× 10−5.1253

We conduct the CPT process using BFloat161254

mixed precision, with a gradient clipping of 1.0 to1255

ensure training stability. To enhance computational1256

efficiency, we apply gradient checkpointing strat-1257

egy (Chen et al., 2016). During training, the maxi-1258

mum context length is 8, 192 tokens for Llama-3.1259

J Detailed Surrogate Experiment Results1260

When introducing surrogate experiments with1261

TinyLlama in Section 5.2, we select several rep-1262

resentative benchmarks for computing the aver-1263

age performance to avoid large performance dis-1264

crepancies across benchmarks. Here we report all1265

benchmark results from Table 6 to 15. “PHY”,1266

“CHE”, and “BIO” denote the physics, chemistry,1267

and biology sub-tasks of the corresponding bench-1268

marks. The best and second best are in bold and1269

underlined, respectively.1270
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Models
Bilingual Math Code

MMLU C-Eval CMMLU MATH GSM8K ASDiv MAWPS SAT-Math HumanEval MBPP

TinyLlama 25.70 25.11 25.09 2.80 3.00 18.00 20.30 23.64 10.37 13.40
w/ 5B (1B Norm.) 28.35 30.02 29.10 2.90 2.00 21.00 31.40 24.09 4.88 4.60
w/ 5B (1B Syn.) 31.89 34.60 35.09 5.30 14.90 48.10 66.40 23.65 9.15 6.80

Table 6: Few-shot performance of TinyLlama continually pre-trained on different corpora on major benchmarks.

Models
SciEval SciQ GaoKao ARC AQUA-RAT

PHY CHE BIO Avg. Avg. MathQA CHE BIO Easy Challenge Avg. Avg.

TinyLlama 26.22 27.22 31.94 28.85 24.60 22.79 27.05 20.00 24.87 26.19 25.53 22.05
w/ 5B (1B Norm.) 28.32 35.64 45.62 38.64 56.10 26.50 27.05 30.48 37.75 30.55 34.15 24.02
w/ 5B (1B Syn.) 31.10 38.26 47.81 40.90 60.30 27.35 27.05 29.52 45.45 34.13 39.79 20.87

Table 7: Few-shot performance of TinyLlama continually pre-trained on different corpora on scientific benchmarks.

Models
Bilingual Math Code

MMLU C-Eval CMMLU MATH GSM8K ASDiv MAWPS SAT-Math HumanEval MBPP

TinyLlama 25.70 25.11 25.09 2.80 3.00 18.00 20.30 23.64 10.37 13.40
w/ 0.0 31.89 34.60 35.09 5.30 14.90 48.10 66.40 23.64 9.15 6.80
w/ 0.3 31.28 31.94 34.08 5.30 15.50 49.00 65.60 24.55 10.98 7.60
w/ 0.4 32.54 31.67 33.79 4.60 10.50 37.50 57.50 23.64 9.15 8.60
w/ 0.5 30.23 31.27 33.44 4.90 15.80 47.60 64.90 22.73 10.98 8.60
w/ 0.6 28.22 29.87 33.00 4.60 16.90 47.90 67.40 23.18 8.54 9.60
w/ 0.7 27.65 27.73 32.30 4.80 1.00 4.50 3.70 24.09 9.76 8.80

Table 8: Few-shot performance of TinyLlama continually pre-trained on varying corruption levels of synthetic data
on major benchmarks.

Models
SciEval SciQ GaoKao ARC AQUA-RAT

PHY CHE BIO Avg. Avg. MathQA CHE BIO Easy Challenge Avg. Avg.

TinyLlama 26.22 27.22 31.94 28.85 24.60 22.79 27.05 20.00 24.87 26.19 25.53 22.05
w/ 0.0 31.10 38.26 47.81 40.90 60.30 27.35 27.05 29.52 45.45 34.13 39.79 20.87
w/ 0.3 36.59 37.64 48.23 41.45 60.80 22.79 27.05 21.43 43.06 32.94 38.00 21.26
w/ 0.4 38.41 39.19 46.76 41.91 57.20 23.36 22.22 27.14 45.37 36.43 40.90 19.69
w/ 0.5 34.15 37.79 43.01 39.27 58.10 23.36 27.54 32.86 44.95 35.41 40.18 20.47
w/ 0.6 34.15 35.46 44.26 38.57 50.10 22.51 26.09 26.67 40.91 31.23 36.07 17.32
w/ 0.7 33.54 31.88 43.63 36.47 50.50 22.51 26.57 24.29 40.57 30.38 35.47 18.11

Table 9: Few-shot performance of TinyLlama continually pre-trained on varying corruption levels of synthetic data
on scientific benchmarks.

Models
Bilingual Math Code

MMLU C-Eval CMMLU MATH GSM8K ASDiv MAWPS SAT-Math HumanEval MBPP

TinyLlama 25.70 25.11 25.09 2.80 3.00 18.00 20.30 23.64 10.37 13.40
w/ 1:10 25.73 28.58 32.94 4.90 5.20 9.40 16.10 27.27 8.54 8.20
w/ 2:10 31.89 34.60 35.09 5.30 14.90 48.10 66.40 23.64 9.15 6.80
w/ 3:10 27.62 32.25 33.31 6.60 2.20 20.90 30.10 22.73 10.98 8.60
w/ 4:10 30.25 29.43 34.36 5.60 15.50 50.40 64.90 22.60 7.32 8.40

Table 10: Few-shot performance of TinyLlama after training with different ratios of synthetic data on major
benchmarks.
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Models
SciEval SciQ GaoKao ARC AQUA-RAT

PHY CHE BIO Avg. Avg. MathQA CHE BIO Easy Challenge Avg. Avg.

TinyLlama 26.22 27.22 31.94 28.85 24.60 22.79 27.05 20.00 24.87 26.19 25.53 22.05
w/ 1:10 36.59 34.53 42.17 37.64 50.10 22.79 27.05 24.76 39.69 32.59 36.14 19.69
w/ 2:10 31.10 38.26 47.81 40.90 60.30 27.35 27.05 29.52 45.45 34.13 39.79 20.87
w/ 3:10 27.80 37.79 46.35 37.98 58.00 22.79 26.57 21.43 44.57 33.70 39.14 21.65
w/ 4:10 29.88 36.39 43.84 38.34 57.20 22.79 27.05 20.00 48.57 36.86 39.71 19.04

Table 11: Few-shot performance of TinyLlama after training with different ratios of synthetic data on scientific
benchmarks.

Models
Bilingual Math Code

MMLU C-Eval CMMLU MATH GSM8K ASDiv MAWPS SAT-Math HumanEval MBPP

TinyLlama 25.70 25.11 25.09 2.80 3.00 18.00 20.30 23.64 10.37 13.40
w/ RM 31.89 34.60 35.09 5.30 14.90 48.10 66.40 23.65 9.15 6.80
w/ PB 26.78 23.73 27.58 3.50 6.10 36.60 45.50 24.09 6.71 7.80
w/ BP 26.98 24.14 28.63 3.80 5.00 32.20 43.40 23.18 6.71 8.00
w/ PBP 26.86 24.15 27.59 2.90 7.00 36.30 46.20 24.55 6.10 6.20
w/ HL 27.78 30.49 32.24 4.10 10.50 38.80 58.30 25.91 8.54 11.20
w/ LH 32.16 36.89 37.27 6.10 20.60 53.90 70.80 26.36 12.80 8.80

Table 12: Few-shot performance of TinyLlama with different data curriculum methods on major benchmarks.

Models
SciEval SciQ GaoKao ARC AQUA-RAT

PHY CHE BIO Avg. Avg. MathQA CHE BIO Easy Challenge Avg. Avg.

TinyLlama 26.22 27.22 31.94 28.85 24.60 22.79 27.05 20.00 24.87 26.19 25.53 22.05
w/ RM 31.10 38.26 47.81 40.90 60.30 27.35 27.05 29.52 45.45 34.13 39.79 20.87
w/ PB 32.32 32.04 41.54 35.61 35.10 29.34 26.57 31.90 36.74 28.75 32.75 25.20
w/ BP 31.10 33.90 42.59 36.78 46.90 22.51 23.19 29.52 36.15 30.29 33.22 24.02
w/ PBP 30.49 34.53 41.96 36.78 49.60 27.35 24.64 32.86 45.88 32.68 39.28 20.08
w/ HL 32.93 34.06 43.84 37.56 55.20 22.51 26.57 31.43 50.72 38.14 44.43 23.23
w/ LH 37.20 41.84 51.15 44.71 65.50 25.07 26.09 22.38 57.62 41.81 49.71 18.50

Table 13: Few-shot performance of TinyLlama with different data curriculum methods on scientific benchmarks.

Models
Bilingual Math Code

MMLU C-Eval CMMLU MATH GSM8K ASDiv MAWPS SAT-Math HumanEval MBPP

TinyLlama 25.70 25.11 25.09 2.80 3.00 18.00 20.30 23.64 10.37 13.40
w/ 5B (1B WebIns.) 26.85 32.73 33.22 7.50 0.80 1.80 2.40 25.00 6.71 5.20
w/ 5B (1B Cosm.) 27.51 28.08 31.51 6.90 19.90 49.70 68.20 23.18 9.15 7.40
w/ 5B (1B Syn.) 31.89 34.60 35.09 5.30 14.90 48.10 66.40 23.64 9.15 6.80

Table 14: Few-shot performance of TinyLlama continually pre-trained on different open-source datasets on major
benchmarks.

Models
SciEval SciQ GaoKao ARC AQUA-RAT

PHY CHE BIO Avg. Avg. MathQA CHE BIO Easy Challenge Avg. Avg.

TinyLlama 26.22 27.22 31.94 28.85 24.60 22.79 27.05 20.00 24.87 26.19 25.53 22.05
w/ 5B (1B WebIns.) 32.32 34.21 44.26 37.71 47.70 23.36 27.05 31.90 36.36 32.94 34.65 20.87
w/ 5B (1B Cosm.) 34.76 35.77 44.26 38.80 41.30 26.21 25.60 27.62 43.81 36.95 40.38 22.83
w/ 5B (1B Syn.) 31.10 38.26 47.81 40.90 60.30 27.35 27.05 29.52 45.45 34.13 39.79 20.87

Table 15: Few-shot performance of TinyLlama continually pre-trained on different open-source datasets on scientific
benchmarks.

18


	Introduction
	Related Work
	Preliminary
	The Proposed CPT Approach
	Bilingual Adaptation Stage
	Topic-based Data Mixture
	Perplexity-based Data Curriculum

	Synthetic Enhancement Stage
	Synthesizing the Scientific QA Data
	Synthesizing the Code QA Data


	Experiment
	Evaluation Benchmark
	Surrogate Experiments with TinyLlama
	Main Experiments with Llama-3

	Conclusion
	Limitations
	Case Study for Synthesis QA
	Prompt
	Detailed Information of Training Data
	Statistical Information of Synthetic Data
	Pre-defined Topics for Web Pages
	Benchmark Details and Settings
	Additions to Surrogate Experiments with TinyLlama
	Example for Accuracy Degradation Transformations
	Implementation Details of the CPT Process for Llama-3
	Detailed Surrogate Experiment Results

