
The Road Less Scheduled

Aaron Defazio1
Fundamental AI Research Team, Meta

Xingyu (Alice) Yang2
Fundamental AI Research Team, Meta

Harsh Mehta
Google Research

Konstantin Mishchenko
Samsung AI Center

Ahmed Khaled
Princeton University

Ashok Cutkosky3
Boston University

1Research Co-lead 2 Engineering Co-lead 3 Senior Author

Abstract

Existing learning rate schedules that do not require specification of the optimization
stopping step T are greatly out-performed by learning rate schedules that depend
on T . We propose an approach that avoids the need for this stopping time by es-
chewing the use of schedules entirely, while exhibiting state-of-the-art performance
compared to schedules across a wide family of problems ranging from convex
problems to large-scale deep learning problems. Our Schedule-Free approach
introduces no additional hyper-parameters over standard optimizers with momen-
tum. Our method is a direct consequence of a new theory we develop that unifies
scheduling and iterate averaging. An open source implementation of our method is
available1. Schedule-Free AdamW is the core algorithm behind our winning entry
to the MLCommons 2024 AlgoPerf Algorithmic Efficiency Challenge Self-Tuning
track.

1 Introduction
The theory of optimization, as applied in machine learning, has been successful at providing precise,
prescriptive results for many problems. However, even in the simplest setting of stochastic gradient
descent (SGD) applied to convex Lipschitz functions, there are glaring gaps between what our current
theory prescribes and the methods used in practice.

Consider the stochastic gradient descent (SGD) step with step size γ > 0, zt+1 = zt − γgt where gt
is the stochastic (sub-)gradient at time t, computed at the point zt (formally defined in Section 1.1) of
a convex Lipschitz function f . Although standard practice for many classes of problems, classical
convergence theory suggests that the expected loss of this z sequence is suboptimal, and that the
Polyak-Ruppert (PR) average x of the sequence should be returned instead (Polyak, 1990; Ruppert,
1988):

zt+1 = zt − γgt (1)
xt+1 = (1− ct+1)xt + ct+1zt+1, (2)

where using ct+1 = 1/(t+ 1) results in xt =
1
T

∑T
t=1 zt. Despite their theoretical optimality, PR

averages give much worse results in practice than using the last-iterate of SGD (Figures 2a,8) — a
folk-law result in the field of optimization, and a large theory-practice gap that is often attributed to
the mismatch between this simplified problem class and the complexity of problems addressed in
practice.

1https://github.com/facebookresearch/schedule_free

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/facebookresearch/schedule_free

0 20 40 60 80 100
Epoch

20

40

60
Te

st
 A

cc
ur

ac
y

(%
)

ILSVRC 2012 ImageNet (ResNet-50)

0 200000 400000 600000
Step

2.8

2.9

3.0

3.1

3.2

Te
st

 L
os

s

OpenWebText (GPT-2 124M)

Figure 1: Schedule-Free methods (black) closely track the Pareto frontier of loss v.s. training time in
a single run. Both Schedule-Free SGD (left) and AdamW (right) match or exceed the performance of
cosine learning rate schedules of varying lengths (red).

Recently, Zamani and Glineur (2023) and Defazio et al. (2023) showed that the exact worst-case
optimal rates can be achieved via carefully chosen learning rate sequences (also known as schedules)
alone, without the use of averaging. This result suggests that schedules have, in some sense, the same
role to play as PR averaging in optimization. However, schedules have a critical disadvantage: they
require setting the optimization stopping time T in advance.

Motivated by the theory-practice gap for Polyak-Ruppert averaging, we ask the following question:

Do there exist iterate averaging approaches that match the empirical performance
of learning rate schedules, without sacrificing theoretical guarantees?

By developing a new link between averaging and learning rate sequences, we introduce a new
approach to averaging that maintains the worst-case convergence rate theory of PR averaging, while
matching and often exceeding the performance of schedule-based approaches – firmly answering this
question in the affirmative.

Summary of Results

• Our approach does not require the stopping time T to be known or set in advance. It closely
tracks the Pareto frontier of loss versus training time during a single training run (Figure 1),
while requiring no additional hyper-parameters over the base SGD (with momentum) or
Adam optimizer.

• Our approach uses an alternative form of momentum that replaces traditional momentum.
This form has appealing theoretical properties: it is worst case optimal for any choice of
the momentum parameter in the convex Lipschitz setting, a property that does not hold
for traditional momentum.

• Our key theoretical result is a new online-to-batch conversion theorem, which establishes
the optimality of our method while also unifying several existing online-to-batch theorems.

• We perform, to our knowledge, one of the largest machine learning optimization algo-
rithm evaluations to date, consisting of 28 problems, ranging from logistic regression to
large-scale deep learning problems. This evaluation contains more distinct and diverse large-
scale machine-learning problems than any other optimizer evaluation we are aware of in the
literature. Schedule-Free methods show strong performance, matching or out-performing
heavily-tuned cosine schedules.

• Schedule-Free AdamW won the MLCommons 2024 AlgoPerf Algorithmic Efficiency
Challenge Self-Tuning (Adaptive Algorithm) Track, providing independent verification of
its SOTA performance against other optimization algorithms in cases where hyperparameter-
tuning is limited. We provide details of our entry and plots comparing it to the competition
baseline.

1.1 Notation
Consider the stochastic convex minimization minx∈Rd f(x) = Eζ [f(x, ζ)], where each f(x, ζ) is
Lipschitz and convex in x, and the expectation is taken over the random variable ζ. With a slight
abuse of notation, we assume we are given, at time step t and any point y that we choose, an arbitrary
sub-gradient ∇f(y, ζt) from the sub-differential of f .

2

0 10000 20000 30000 40000 50000 60000
Step

4.0

4.5

5.0

5.5
Te

st
 L

os
s

IWSLT14 (LSTM)

Polyak Averaging (4.35 SE 0.004)
Primal Averaging (4.44 SE 0.001)
Schedule-Free (4.18 SE 0.001)
Cosine Schedule (4.23 SE 0.003)

(a) Schedule-Free learning converges faster than classical av-
eraging approaches, often out-performing tuned schedules.

0.0
1

25
.13

50
.26

75
.38

0.700

0.775

0.851

0.926

Minimal Loss for Different and values.

25

50

75

100

125

150

175

200

M
in

im
al

 L
os

s

(b) Incorporating the momentum parameter
β allows for convergence despite using larger
learning rates γ on quadratic problems.

2 Method
We propose the following method, which we call Schedule-Free SGD:

yt = (1− β)zt + βxt, (3)
zt+1 = zt − γ∇f(yt, ζt), (4)
xt+1 = (1− ct+1)xt + ct+1zt+1, (5)

where ct+1 = 1/(t+1) and z1 = x1 is the initial point. Note that, with this weighting, the x sequence
is just a running average of the z sequence. The y sequence is the gradient location sequence (on
which gradients are evaluated at each step). The z sequence is the base sequence, which is where the
base optimizer’s update is performed (in this case SGD). The x sequence is the evaluation sequence,
our best estimate of the weights so far.

This method has a momentum parameter β that interpolates between Polyak-Ruppert averaging
(β = 0) and Primal averaging (β = 1). Primal averaging (Nesterov and Shikhman, 2015; Tao et al.,
2018; Cutkosky, 2019; Kavis et al., 2019; Sebbouh et al., 2021; Defazio and Gower, 2021; Defazio
and Jelassi, 2022), is an approach where the gradient is evaluated at the averaged point x, instead of
z:

zt+1 = zt − γ∇f(xt, ζt) (6)
xt+1 = (1− ct+1)xt + ct+1zt+1, (7)

this approach maintains the worst-case optimality of PR averaging but is generally considered to
converge too slowly to be practical (Figures 2a,8). The advantage of our interpolation is that we get
the best of both worlds. We can achieve the fast convergence of Polyak-Ruppert averaging (since the
z sequence moves much quicker than the x sequence), while still keeping some coupling between
the returned sequence x and the gradient-evaluation locations y, which increases stability. Values of
β similar to standard momentum values β ≈ 0.9 appear to work well in practice. We will use the
notation α = 1− β when convenient.

In this formulation, β = 0.9 gives the practical advantages of momentum, dampening the immediate
impact of large gradients, resulting in more stable training. To see this, notice that the immediate
effect of the gradient gt at step t is to introduce (1− β)gt = 0.1gt into the iterate sequence y. This
is similar to exponential-moving-average (EMA) momentum, where also (1 − β)gt is added into
the iterate sequence on step t. However, here the remainder of gt is very slowly added into y over
time, via its place in the average x, whereas with an EMA with β = 0.9, the majority of the gradient
is incorporated within the next 10 steps. So from this viewpoint, the Schedule-Free updates can
be seen as a version of momentum that has the same immediate effect, but with a greater delay
for adding in the remainder of the gradient. This form of momentum (by interpolation) also has a
striking advantage: it does not result in any theoretical slowdown; it gives the optimal worst case
(Nesterov, 2013) convergence for the non-smooth convex setting (including constants), for any choice
of momentum β between 0 and 1 inclusive:

Theorem 1. Suppose F is a convex function, and ζ1, . . . , ζT is an i.i.d. sequence of random variables
such that F = E[f(x, ζ)] for some function f that is G-Lipschitz in x. For any minimizer x⋆, define

3

D = ∥x1 − x⋆∥ and γ = D/(G
√
T). Then for any β ∈ [0, 1], Schedule-Free SGD ensures:

E[F (xT)− F (x⋆)] ≤
DG√
T

(8)

In contrast, exponential-moving-average momentum in the non-smooth setting actually hurts the
theoretical worst-case convergence rate. The Schedule-Free approach maintains the advantages of
momentum (Sutskever et al., 2013) without the potential worst-case slow-down.

2.1 General Theory

The method analyzed in Theorem 1 is actually a special-case of a more general result that incorporates
arbitrary online optimization algorithms rather than only SGD, as well as arbitrary time-varying
sequences of βt. The proof is provided in Appendix A.
Theorem 2. Let F be a convex function. Let ζ1, . . . , ζT be an iid sequence such that F (x) =
Eζ [f(x, ζ)]. Let z1, . . . , zT be arbitrary vectors and let w1, . . . , wT and β1, . . . , βT be arbitrary
numbers in [0, 1] such that zt, wt and βt are independent of ζt, . . . , ζT . Set:

xt =

∑t
i=1 wizi∑t
i=1 wi

= xt−1

(
1− wt∑t

i=1 wi

)
︸ ︷︷ ︸

≜1−ct

+
wt∑t
i=1 wi︸ ︷︷ ︸
≜ct

zt (9)

yt = βtxt + (1− βt)zt (10)
gt = ∇f(yt, ζt). (11)

Then we have for all x⋆:

E[F (xT)− F (x⋆)] ≤
E[
∑T

t=1 wt⟨gt, zt − x⋆⟩]∑T
i=1 wi

. (12)

To recover Theorem 1 from the above result, notice that the algorithm analyzed by Theorem 1 is
captured by Theorem 2 with wt = 1, βt a constant β and zt+1 = zt − γgt for all t. Next, observe
that the sequence z1, . . . , zT is performing online gradient descent (Zinkevich, 2003), for which it is
well-known that the regret

∑T
t=1⟨gt, zt − x⋆⟩ (appearing in the numerator of our result) is bounded

by DG
√
T and so the result of Theorem 1 immediately follows.

The regret is the principle object of study in online convex optimization (Hazan, 2022; Orabona, 2019).
Viewed in this light, Theorem 2 provides a way to convert an online convex optimization algorithm
into a stochastic optimization algorithm: it is a form of online-to-batch conversion (Cesa-Bianchi
et al., 2004). Classical online-to-batch conversions are a standard technique for obtaining convergence
bounds for many stochastic optimization algorithms, including stochastic gradient descent (Zinkevich,
2003), AdaGrad (Duchi et al., 2011), AMSGrad (Reddi et al., 2018), and Adam (Kingma and Ba,
2014). All of these algorithms can be analyzed as online convex optimization algorithms: they
provide bounds on the regret

∑T
t=1⟨gt, zt − x⋆⟩ rather than direct convergence guarantees. It is

then necessary (although sometimes left unstated) to convert these regret bounds into stochastic
convergence guarantees via an online-to-batch conversion. Our result provides a more versatile
method for effecting this conversion.

Theorem 2 actually provides a “grand unification” of a number of different online-to-batch conversions
that have been proposed over the years. Most of these conversion methods were first developed
specifically to provide convergence analysis for SGD (or some variant such as dual averaging or
mirror descent), and then generalized into techniques that apply to any online convex optimization
algorithm. For example, the classical Polyak averaging method can be generalized to form the
“standard” online-to-batch conversion of Cesa-Bianchi et al. (2004), and is immediately recovered
from Theorem 2 by setting wt = 1 and βt = 0 for all t. More recently Nesterov and Shikhman
(2015); Tao et al. (2018) derived an alternative to Polyak averaging that was later generalized to work
with arbitrarily online convex optimization algorithms by Cutkosky (2019); Kavis et al. (2019), and
then observed to actually be equivalent to the heavy-ball momentum by Defazio (2020); Defazio and
Gower (2021); Defazio and Jelassi (2022). This method is recovered by our Theorem 2 by setting

4

wt = 1 and βt = 1 for all t. Finally, very recently Zamani and Glineur (2023) discovered that
gradient descent with a linear decay stepsize provides a last-iterate convergence guarantee, which
was again generalized to an online-to-batch conversion by Defazio et al. (2023). This final result is
also recovered by Theorem 2 by setting wt = 1 and βt =

t
T (see Appendix B).

In Appendix C, we give a further tightening of Theorem 2 – it can be improved to an equality by
precisely tracking additional terms that appear on the right-hand-side. This tightened version can
be used to show convergence rate results for smooth losses, both with and without strong-convexity.
As an example application, we show that schedule-free optimistic-gradient methods (Rakhlin and
Sridharan, 2013) converge with accelerated rates:

E[F (xT)− F (x⋆)] = O

(
D2L

T 2
+

Dσ√
T

)
. (13)

2.2 On Large Learning Rates

Under classical worst-case convergence theory, the optimal choice of γ for a fixed duration training
time T is γ = D/(G

√
T). This is the rate used in our bounds for Theorem 1 above. For any-time

convergence (i.e. when stopping is allowed at any timestep), our proposed method can, in theory, be
used with the standard learning rate sequence:

γt =
D

G
√
t
. (14)

However, learning rate sequences of this form have poor practical performance (Defazio et al., 2023).
Instead, much larger steps of the form D/G give far better performance across virtually all problems
in applications (Defazio and Mishchenko, 2023) — another theory-practice mismatch that is virtually
undiscussed in the literature. Existing theory suggests that this step-size is too large to give O(1/

√
T)

convergence, however, as we show below, there is an important special case where such large step
sizes also give optimal rates up to constant factors.

Theorem 3. Consider the online learning setting with bounded gradients gt. Let zt+1 = zt − γgt.
Let D = ∥z1 − z∗∥ for arbitrary reference point z∗ and define G = maxt≤T ∥gt∥. Suppose that the
chosen step-size is γ = D/G, then if it holds that:

T∑
t=1

⟨gt, zt − z1⟩ ≤ D

√√√√ T∑
t=1

∥gt∥2, (15)

then:

1

T

T∑
t=1

⟨gt, zt − z∗⟩ = O

D

T

√√√√ T∑
t=1

∥gt∥2
 . (16)

This regret bound for SGD implies a convergence rate bound for Schedule-Free SGD by application
of our online-to-batch conversion. Condition 31 can be checked during a training run (Using reference
point z∗ = xT , and so D = ∥x1 − xT ∥), and we find that it holds for every problem we consider
in our experiments in Section 4. More generally, the full conditions under which large learning
rates can be used are not yet fully understood for stochastic problems. In the quadratic case, Bach
and Moulines (2013) established that large fixed step-sizes give optimal convergence rates, and we
conjecture that the success of large learning rates may be attributed to asymptotic quadratic behavior
of the learning process.

Empirically, we find that Schedule-Free momentum enables the use of larger learning rates γ > 0
even in quadratic minimization problems f(x) = 1

2x
⊤Ax − b⊤x. We generate 10 different such

20-dimensional problems with eigenvalues drawn log-uniformly in [10−6, 1]. We plot the average
minimal loss achieved as a function of the two parameters β and γ in Figure 2b. We can see that
when the learning rate we use is small, what value of β we choose has little to no effect on the
convergence of the algorithm. However, when γ is large, choosing β < 1 becomes crucial to
achieving convergence.

5

3 Related Work

The proposed method has a striking resemblance to Nesterov’s accelerated method (Nesterov, 1983,
2013) for L-smooth functions, which can be written in the AC-SA form (Lan, 2012):

yt = (1− ct+1)xt + ct+1zt (17)

zt+1 = zt −
k + 1

2L
∇f(yt) (18)

xt+1 = (1− ct+1)xt + ct+1zt+1, (19)

where ct+1 = 2/(t+ 2). The averaging constant, and more generally

ct+1 =
r + 1

t+ r + 1
, (20)

for any real r > −1 is equivalent to the weighted average (Shamir and Zhang, 2013; Defazio and
Gower, 2021) xt ∝

∑T
t=1 t

r̄zt, where tr̄ represents the rth factorial power of t. Our framework is
compatible with factorial power averages without sacrificing theoretical guarantees.

Our approach differs from conventional accelerated methods by using a different weight for the yt
and xt interpolations. We use a constant weight for yt and a decreasing weight for xt. Accelerated
methods for strongly-convex problems use a constant weight for both, and those for non-strongly
convex use an decreasing weight for both, so our approach doesn’t directly correspond to either class
of accelerated method. Accelerated methods also use a much larger step size for the zt sequence than
our approach.

The use of equal-weighted averages is less common than the use of exponential weighting in the
practical deep learning optimization literature. Exponential moving averages (EMA) of the iterate
sequence are used in the popular Lookahead optimizer (Zhang et al., 2019). In the case of SGD, it
performs i = 1 . . . k inner steps:

zt,i = zt,i−1 − γ∇f(zt,i−1) (21)

followed by an outer step:

xt = xt−1 + α (zt,k − xt−1) . (22)

The inner optimizer then starts at zt+1,0 = xt−1. The Lookahead method can be seen as the
EMA version of primal averaging, just as exponential weight averaging is the EMA version of
Polyak-Ruppert averaging.

Tail averaging, either using an exponential moving average or an equal-weighted average, is a
common ‘folk-law’ technique that often yields a practical improvement. For instance, this kind of
averaging is used without citation by the influential work of Szegedy et al. (2016): “Model evaluations
are performed using a running average of the parameters computed over time.”, and by Vaswani et al.
(2017): “...averaged the last 20 checkpoints”. Tail averages are typically “Polyak-Ruppert” style
averaging as the average is not used for gradient evaluations during training.

More sophisticated tail averaging approaches such as Stochastic Weight Averaging (Izmailov et al.,
2018) and LAtest Weight Averaging (Kaddour, 2022; Sanyal et al., 2023) combine averaging with
large or cyclic learning rates. They are not a replacement for scheduling, instead they aim to improve
final test metrics. They generally introduce additional hyper-parameters to tune, and require additional
memory. It is possible to use SWA and LAWA on top of our approach, potentially giving further
gains.

Sandler et al. (2023) show via a stochastic quadratic analysis framework that averaging and learning
rate decreases achieve the same effective learning rate. For instance, and average of two points along
the training trajectory can give almost identical results to using a learning rate two times smaller.
Stochastic quadratic problems are particularly special, Bach and Moulines (2013) have shown that
Polyak averaging gives optimal O(1/T) rates without the use of decreasing time-dependent step size
sequences in this setting.

Within optimization theory, tail averages can be used to improve the convergence rate for stochastic
non-smooth SGD in the strongly convex setting from O(log(T)/T) to O(1/T) (Rakhlin et al., 2012),

6

although at the expense of worse constants compared to using weighted averages of the whole
sequence (Lacoste-Julien et al., 2012).

Portes et al. (2022) use cyclic learning rate schedules with increasing cycle periods to give a method
that explores multiple points along the Pareto frontier of training time vs eval performance. Each
point at the end of a cycle is an approximation to the model from a tuned schedule ending at that
time. Our method gives the entire frontier, rather than just a few points along the path. In addition,
our method matches or improves upon best known schedules, whereas the “... cyclic trade-off curve
underestimated the standard trade-off curve by a margin of 0.5% validation accuracy” (Portes et al.,
2022).

4 Experiments
For our deep learning experiments, we evaluated Schedule-Free learning on a set benchmark tasks
that are commonly used in the optimization research literature:
CIFAR10 A Wide ResNet (16-8) architecture (Zagoruyko and Komodakis, 2016) on the CIFAR10

image classification dataset.
CIFAR100 A DenseNet (Huang et al., 2017) architecture on the CIFAR-100 (100-class) classification

dataset.
SVHN A deep ResNet architecture (3-96) on the Street View House Numbers (SVHN) dataset.
ImageNet A standard ResNet-50 architecture (He et al., 2016) on the ILSVRC 2012 ImageNet

(Russakovsky et al., 2015) classification dataset.
IWSLT14 A LSTM architecture (Wiseman and Rush, 2016) on the IWSLT14 German-English

translation dataset (Cettolo et al., 2014).
DLRM The DLRM (Naumov et al., 2019) architecture on the Criteo Kaggle Display Advertising

dataset (Jean-Baptiste Tien, 2014).
MRI A stacked U-Net architecture (Sriram et al., 2020) on the fastMRI dataset (Zbontar et al., 2018).
MAE Fine-tuning a pretrained Masked Autoencoder (He et al., 2021) ViT (patch16-512d-8b) on the

ILSVRC 2012 ImageNet dataset.
NanoGPT A 124M parameter GPT-2 (Radford et al., 2019) style decoder-only transformer on the

OpenWebText dataset (Gokaslan and Cohen, 2019).
For each problem, both the baseline and the Schedule-Free method were tuned by sweeping both
the weight decay and learning rate on a grid. We also swept β over two values, 0.9 and 0.98. Final
hyper-parameters are listed in the Appendix. Schedule-Free SGD was used for CIFAR10, CIFAR100,
SVHN and ImageNet, and Schedule-Free AdamW (Loshchilov and Hutter, 2019) was used for
the remaining tasks. We further include a step-wise schedule as a comparison on problems where
step-wise schedules are customary. Further results for Polyak and Primal averaging are in Appendix I.

Our approach shows very strong performance (Figure 3) out-performing existing state-of-the-art
cosine schedules on CIFAR-10, CIFAR-100, SVHN, IWSLT-14 (Figure 2a) and OpenWebText GPT-2
problems, as well as the state-of-the-art Linear Decay schedules on the fastMRI and Criteo DLRM
tasks. On the remaining two problems, MAE fine-tuning and ImageNet ResNet-50 training, it ties
with the existing best schedules.

In general, the optimal learning rates for the Schedule-Free variants were larger than the optimal
values for the base optimizers. The ability to use larger learning rates without diverging may be a
contributing factor to the faster convergence of Schedule-Free methods. The β parameter works well
at the default value of 0.9 for all problems except NanoGPT, where the loss started to increase rapidly
when 0.9 was used (similar to the Polyak Averaging results in Appendix I). The larger β = 0.98
value in our sweep was stable.

4.1 MLCommons Algorithmic Efficiency benchmark

The AlgoPerf challenge (Dahl et al., 2023) is designed to be a large-scale and comprehensive bench-
mark for deep learning optimization algorithms, covering major data domains and architectures.
It includes Transformers, ConvNets and U-Net models across image, language, graph and speech
domains, and contains 8 problems total. We evaluated Schedule-Free AdamW following the com-
petition guidelines, comparing against NAdamW, the competition reference Algorithm, running 10
seeds of each. As this is a time-to-target competition, traditional error bars are not appropriate so
we instead plot all 10 seeds separately. Note that we excluded one benchmark problem, ResNet-50
training, as neither AdamW nor NAdamW can hit the target accuracy on that task.

7

0 50 100 150 200 250 300
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10 (WRN-16-8)

Schedule-Free (96.03% SE 0.04)
Step-Wise Schedule (95.59% SE 0.03)
Cosine Schedule (95.73% SE 0.04)

0 50 100 150 200 250 300
Epoch

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100 (DenseNet)

Schedule-Free (78.71% SE 0.06)
Step-Wise Schedule (76.41% SE 0.14)
Cosine Schedule (77.41% SE 0.09)

0 50 100 150 200 250 300
Epoch

94

95

96

97

98

99

Te
st

 A
cc

ur
ac

y
(%

)

SVHN (ResNet-3-96)

Schedule-Free (98.40% SE 0.01)
Cosine Schedule (98.27% SE 0.02)
Step-Wise Schedule (98.20% SE 0.01)

0 20 40 60 80 100
Epoch

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

ILSVRC 2012 ImageNet (ResNet-50)

Schedule-Free (76.90% SE 0.03)
Cosine Schedule (76.90% SE 0.06)
Step-Wise Schedule (76.49% SE 0.07)

0 10 20 30 40 50
Epoch

0.906

0.908

0.910

0.912

Te
st

 S
SI

M

fastMRI Knee (VarNet 2.0)

Cosine Schedule (0.9110 SE 0.00016)
Schedule-Free (0.9112 SE 0.00012)

0 20 40 60 80 100
Epoch

0.780

0.785

0.790

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (DLRM)

LD Schedule (0.7906 SE 0.00006)
Schedule-Free (0.7915 SE 0.00003)

0 20 40 60 80 100
Epoch

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

MAE ImageNet Finetune (ViT)

Schedule-Free (83.54 SE 0.03)
Cosine Schedule (83.52 SE 0.02)

0 200000 400000 600000
Step

2.8

2.9

3.0

3.1

3.2

Te
st

 L
os

s

OpenWebText (GPT-2 124M)

Cosine Schedule (2.853 SE 0.004)
Schedule-Free (2.831 SE 0.008)

Figure 3: Deep Learning Experiments

The self-tuning track restricts participants to provide a single set of hyper-parameters to use for all
8 problems. Given the large number of problems, this gives performance representative of a good
default configuration.

Schedule-Free AdamW performs well across all considered tasks, out-performing the baseline on
the WMT, VIT, FASTMRI and OGBG training, while tying on the Conformer and Criteo workloads,
and marginally under-performing on the DeepSpeech workload. We attribute the performance on
the Conformer and DeepSpeech tasks to their use of batch-norm - the AlgoPerf setup doesn’t easily
allow us to update the BN running statistics on the x sequence, which is necessary with our method
to get the best performance (See Section 4.3).

4.2 Convex Problems
We validated the Schedule-Free learning approach on a set of standard logistic regression problems
from the LibSVM repository. For each problem, and each method separately, we performed a full
learning rate sweep on a power-of-two grid, and plotted mean and standard-error of the final train
accuracy from 10 seeds using the best learning rate found.

Schedule-Free learning out-performs both averaging approaches and the state-of-the-art linear decay
(LD) schedule baseline (Figure 7). It converges faster on all but 1 of 12 problems, has higher accuracy
on 6 of the problems, and ties the baseline on the remaining problems. This demonstrates that the
performance advantages of Schedule-Free methods are not limited to non-convex problems.

4.3 Implementation Concerns
The Schedule-Free variant of a method typically has the same memory requirements as the base
method. For instance, Schedule-Free SGD requires no extra memory over standard SGD with
momentum. Whereas SGDM tracks the current point x and the momentum buffer m, we can track x
and z. The quantity y can be computed directly from the latest values of x and z, and so doesn’t need

8

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
es

t M
et

ri
c WMT

NAdamW Baseline
Schedule-Free

0.0 0.2 0.4 0.6 0.8
Normalized Time

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
es

t M
et

ri
c ViT

NAdamW Baseline
Schedule-Free

0.0 0.1 0.2 0.3 0.4
Normalized Time

0.990

0.995

1.000

N
or

m
al

iz
ed

 T
es

t M
et

ri
c fastMRI

Schedule-Free
NAdamW Baseline

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized Time

0.97

0.98

0.99

1.00

N
or

m
al

iz
ed

 T
es

t M
et

ri
c Librispeech Conformer

Schedule-Free
NAdamW Baseline

0.0 0.1 0.2 0.3 0.4
Normalized Time

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
es

t M
et

ri
c OGBG

NAdamW Baseline
Schedule-Free

0.0 0.2 0.4 0.6 0.8
Normalized Time

0.996

0.998

1.000

N
or

m
al

iz
ed

 T
es

t M
et

ri
c Criteo1TB

Schedule-Free
NAdamW Baseline

0.0 0.2 0.4 0.6
Normalized Time

0.98

0.99

1.00

N
or

m
al

iz
ed

 T
es

t M
et

ri
c Librispeech Deepspeech

Schedule-Free
NAdamW Baseline

Figure 4: Schedule-Free Adam compared to target-setting baseline on the Algoperf competition
self-tuning track.

Algorithm 1 Schedule-Free AdamW
1: Input: x1, learning rate γ, decay λ,warmup steps Twarmup, β1, β2, ϵ
2: z1 = x1

3: v0 = 0
4: for t = 1 to T do
5: yt = (1− β1)zt + β1xt ▷ Momentum via interpolation
6: gt ∈ ∂f(yt, ζt) ▷ Gradient is evaluated at y
7: vt = β2vt−1 + (1− β2)g

2
t

8: γt = γ
√

1− βt
2 min(1, t/Twarmup) ▷ LR includes warmup and Adam bias-correction

9: zt+1 = zt − γtgt/(
√
vt + ϵ)− γtλyt

10: ct+1 =
γ2
t∑t

i=1 γ2
i

11: xt+1 = (1− ct+1)xt + ct+1zt+1 ▷ Update weighted iterate average
12: end for
13: Return xT

xx

to be explicitly stored. It’s also possible to instead store z and y, and then compute x when needed.
This low memory usage is the case for AdamW also, see Algorithm 1.

Our efficient PyTorch implementation actually uses one buffer to always store z and the primary
parameter buffer to store either x or y, with the stored quantity flipping between the two for training
and test/inference passes.

Our method requires extra code to handle models where batch norm is used. This is due to the fact
that BatchNorm layers maintain a running_mean and running_var to track batch statistics which is
calculated at y. For model evaluation, these buffers need to be updated to match the statistics on the
x sequence. This can be done by evaluating a small number of training batches using x right before
each eval. More sophisticated approaches such as PreciseBN (Wu and Johnson, 2021) can also be
used. This calculation is not needed for other normalization layers that do not use batch-statistics.

Learning rate warmup is still necessary for our method. We use a linear warmup for a fixed
duration, and fuse the Adam bias-correction term into the learning rate for simplicity (this po-
tentially impacts the effect of weight-decay during early iterations), giving a learning rate LR
γt = γ

√
1− βt

2 min(1, t/Twarmup) that approaches γ when the warmup and bias-correction period
ends. We found that performance was greatly improved by using a weighted ct sequence when

9

0 25 50 75 100 125 150 175 200
Epoch

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

ILSVRC 2012 ImageNet (ResNet-50) Learning Rate Sweep

Schedule-Free LR 5.0 (76.27% SE 0.03)
Schedule-Free LR 3.0 (77.39% SE 0.05)
Schedule-Free LR 1.5 (77.83% SE 0.03)
Schedule-Free LR 1.0 (77.42% SE 0.02)
Schedule-Free LR 0.5 (76.17% SE 0.07)

0 25 50 75 100 125 150 175 200
Epoch

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

ILSVRC 2012 ImageNet (ResNet-50) Learning Rate Sweep

SGD LR 0.5 (76.42% SE 0.05)
SGD LR 0.3 (77.05% SE 0.03)
SGD LR 0.15 (77.57% SE 0.02)
SGD LR 0.1 (77.68% SE 0.04)
SGD LR 0.05 (77.69% SE 0.04)

Figure 6: Comparison of the LR sensitivity of Schedule-Free training and cosine schedule training

warmup is used, weighted by the square of the γt used during warmup:

ct+1 =
γ2
t∑t

i=1 γ
2
i

. (23)

This sequence decreases at a 1/t rate after the learning rate warmup. It is shifted by one from
the indexing used in Theorem 2, which is done to simplify the implementation. This sequence is
motivated by Theorem 2’s weighting sequences, which suggest weights proportional to polynomials
of the learning rate. This sequence was used for both SGD and AdamW experiments.

Weight decay for Schedule-Free methods can be computed at either the y or z sequences. We used
decay at y for our experiments, as this matches the interpretation of weight-decay as the use of an
additional L2-regularizer term in the loss. We found that computing the regularization at y gives
significantly better performance on some problems including ImageNet and NanoGPT training.

5 Parameter Sensitivity

0 25 50 75 100 125 150 175 200
Epoch

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

ILSVRC 2012 ImageNet (ResNet-50) Momentum Sweep

Schedule-Free MOM 0.75 (76.60% SE 0.02)
Schedule-Free MOM 0.9 (77.78% SE 0.04)
Schedule-Free MOM 0.95 (76.99% SE 0.05)
Schedule-Free MOM 0.98 (75.37% SE 0.03)

Figure 5: Sensitivity to momentum values

For Schedule-Free learning to be truly schedule-
free, it’s important that the momentum hyper-
parameter doesn’t implicitly have a dependence
on the time-horizon. If tuning this parameter
gave different values depending on the train-
ing duration, then the problem of setting the
horizon has just been shifted to setting the mo-
mentum value. In Figure 5 we run ImageNet
training with Schedule-Free SGD for a longer-
then-standard 200 epochs with a variety of mo-
mentum values, with the LR fixed to 1.5. We
find that the best choice of momentum (β = 0.9) is the same for all durations of training.

Schedule-Free learning has a similar mild time-horizon dependency for the baseline learning rate
value as schedule-based approaches. Figure 6 shows that the optimal learning rate stays the same
for broad range of values, for both Schedule-Free and Schedule based training. For short duration
training (≤ 25 epochs), larger LR values begin to show the best performance. Appendix J shows the
sensitivity of the final test accuracy to the baseline learning rate for a selection of our test problems,
in comparison to the baseline optimizer with a cosine schedule. We see that the overall sensitivity is
similar to the baseline optimizer in each problem.

6 Conclusion

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference. - Robert Frost

We have presented Schedule-Free learning, an optimization approach that removes the need to specify
a learning rate schedule while matching or outperforming schedule-based learning. The primary
practical limitation is the need to sweep learning rate and weight decay, as the best values differ
from the those used with a schedule. We provide a preliminary theoretical exploration of the method,
establishing its worst-case optimal performance for non-smooth Lipschitz convex optimization.

10

Funding Acknowledgments

AC is supported by NSF grant number CCF-2211718.

References
Bach, F. and Moulines, E. (2013). Non-strongly-convex smooth stochastic approximation with

convergence rate O(1/n). In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger,
K., editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2004). On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057.

Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., and Federico, M. (2014). Report on the 11th
IWSLT evaluation campaign. In IWSLT.

Chiang, C.-K., Yang, T., Lee, C.-J., Mahdavi, M., Lu, C.-J., Jin, R., and Zhu, S. (2012). Online
optimization with gradual variations. In Conference on Learning Theory, pages 6–1. JMLR
Workshop and Conference Proceedings.

Cutkosky, A. (2019). Anytime online-to-batch, optimism and acceleration. In International conference
on machine learning, pages 1446–1454. PMLR.

Dahl, G. E., Schneider, F., Nado, Z., Agarwal, N., Sastry, C. S., Hennig, P., Medapati, S., Eschenhagen,
R., Kasimbeg, P., Suo, D., Bae, J., Gilmer, J., Peirson, A. L., Khan, B., Anil, R., Rabbat, M.,
Krishnan, S., Snider, D., Amid, E., Chen, K., Maddison, C. J., Vasudev, R., Badura, M., Garg, A.,
and Mattson, P. (2023). Benchmarking Neural Network Training Algorithms.

Defazio, A. (2020). Momentum via primal averaging: Theoretical insights and learning rate schedules
for non-convex optimization.

Defazio, A., Cutkosky, A., Mehta, H., and Mishchenko, K. (2023). When, why and how much?
adaptive learning rate scheduling by refinement.

Defazio, A. and Gower, R. M. (2021). The power of factorial powers: New parameter settings for
(stochastic) optimization. In Balasubramanian, V. N. and Tsang, I., editors, Proceedings of The
13th Asian Conference on Machine Learning, volume 157 of Proceedings of Machine Learning
Research, pages 49–64. PMLR.

Defazio, A. and Jelassi, S. (2022). Adaptivity without compromise: A momentumized, adaptive, dual
averaged gradient method for stochastic optimization. Journal of Machine Learning Research,
23:1–34.

Defazio, A. and Mishchenko, K. (2023). Learning-rate-free learning by D-adaptation. The 40th
International Conference on Machine Learning (ICML 2023).

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61).

Gokaslan, A. and Cohen, V. (2019). Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Hazan, E. (2022). Introduction to online convex optimization. MIT Press.

Hazan, E. and Kale, S. (2010). Extracting certainty from uncertainty: Regret bounded by variation in
costs. Machine learning, 80:165–188.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2021). Masked autoencoders are
scalable vision learners. arXiv:2111.06377.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

11

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolu-
tional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2261–2269.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2018). Averaging weights
leads to wider optima and better generalization. In Conference on Uncertainty in Artificial
Intelligence (UAI).

Jean-Baptiste Tien, joycenv, O. C. (2014). Display advertising challenge.

Joulani, P., György, A., and Szepesvári, C. (2017). A modular analysis of adaptive (non-) convex
optimization: Optimism, composite objectives, and variational bounds. In International Conference
on Algorithmic Learning Theory, pages 681–720. PMLR.

Joulani, P., Raj, A., Gyorgy, A., and Szepesvári, C. (2020). A simpler approach to accelerated
optimization: iterative averaging meets optimism. In International conference on machine learning,
pages 4984–4993. PMLR.

Kaddour, J. (2022). Stop wasting my time! saving days of ImageNet and BERT training with latest
weight averaging.

Kavis, A., Levy, K. Y., Bach, F., and Cevher, V. (2019). UniXGrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in neural information processing
systems, 32.

Kingma, D. P. and Ba, J. (2014). Adam: a method for stochastic optimization. In International
Conference on Learning Representations.

Lacoste-Julien, S., Schmidt, M., and Bach, F. (2012). A simpler approach to obtaining an o(1/t)
convergence rate for the projected stochastic subgradient method.

Lan, G. (2012). An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365–397.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In International
Conference on Learning Representations.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundaraman, N., Park, J., Wang, X., Gupta, U., Wu,
C., Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, I., Lu, Y., Krishnamoorthi, R., Yu,
A., Kondratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong, L., and Smelyanskiy,
M. (2019). Deep learning recommendation model for personalization and recommendation systems.
CoRR.

Nesterov, Y. (1983). A method for solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady.

Nesterov, Y. (2013). Lectures on Convex Optimization. Springer Nature.

Nesterov, Y. and Shikhman, V. (2015). Quasi-monotone subgradient methods for nonsmooth convex
minimization. Journal of Optimization Theory and Applications, 165(3):917–940.

Orabona, F. (2019). A modern introduction to online learning. arXiv preprint arXiv:1912.13213.

Polyak, B. (1990). New stochastic approximation type procedures. Avtomatica i Telemekhanika,
7:98–107.

Portes, J., Blalock, D., Stephenson, C., and Frankle, J. (2022). Fast benchmarking of accuracy vs.
training time with cyclic learning rates.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are
unsupervised multitask learners. Technical report, OpenAI.

Rakhlin, A., Shamir, O., and Sridharan, K. (2012). Making gradient descent optimal for strongly
convex stochastic optimization. In Proceedings of the 29th International Coference on International
Conference on Machine Learning.

12

Rakhlin, A. and Sridharan, K. (2013). Online learning with predictable sequences. In Conference on
Learning Theory, pages 993–1019. PMLR.

Reddi, S. J., Kale, S., and Kumar, S. (2018). On the convergence of Adam and beyond. In
International Conference on Learning Representations.

Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins-Monro process. Technical
Report, Cornell University.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3).

Sandler, M., Zhmoginov, A., Vladymyrov, M., and Miller, N. (2023). Training trajectories, mini-batch
losses and the curious role of the learning rate.

Sanyal, S., Neerkaje, A., Kaddour, J., Kumar, A., and Sanghavi, S. (2023). Early weight averaging
meets high learning rates for LLM pre-training.

Sebbouh, O., Gower, R. M., and Defazio, A. (2021). On the (asymptotic) convergence of stochastic
gradient descent and stochastic heavy ball. In Conference on Learning Theory, COLT 2021,
Proceedings of Machine Learning Research. PMLR.

Shamir, O. and Zhang, T. (2013). Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In Proceedings of the 30th International Conference
on Machine Learning.

Sriram, A., Zbontar, J., Murrell, T., Defazio, A., Zitnick, C. L., Yakubova, N., Knoll, F., and Johnson,
P. (2020). End-to-end variational networks for accelerated MRI reconstruction. In International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. E. (2013). On the importance of initialization and
momentum in deep learning. In Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28. JMLR.org.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826.

Tao, W., Pan, Z., Wu, G., and Tao, Q. (2018). Primal averaging: A new gradient evaluation step to
attain the optimal individual convergence. IEEE Transactions on Cybernetics, PP:1–11.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Wiseman, S. and Rush, A. M. (2016). Sequence-to-sequence learning as beam-search optimization.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Wu, Y. and Johnson, J. (2021). Rethinking "batch" in batchnorm.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Proceedings of the British
Machine Vision Conference (BMVC).

Zamani, M. and Glineur, F. (2023). Exact convergence rate of the last iterate in subgradient methods.

Zbontar, J., Knoll, F., Sriram, A., Muckley, M. J., Bruno, M., Defazio, A., Parente, M., Geras, K. J.,
Katsnelson, J., Chandarana, H., et al. (2018). fastMRI: An open dataset and benchmarks for
accelerated MRI. arXiv preprint arXiv:1811.08839.

Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. (2019). Lookahead optimizer: k steps forward, 1 step
back. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

13

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the Twentieth International Conference on International Conference on Machine
Learning, pages 928–935.

14

Contributions

Aaron Defazio discovered the method, led research experimentation and proved initial versions of
Theorems 1 and 7, with experimental/theoretical contributions by Alice Yang. Alice Yang led the
development of the research codebase. Ashok Cutkosky proved key results including Theorem 2
and led the theoretical investigation of the method. Ahmed Khaled developed preliminary theory for
obtaining accelerated rates which was later supplanted by Theorem 2, and investigated the utility of β
with large learning rates for quadratics. Additional derivations by Konstantin Mishchenko and Harsh
Mehta are included in appendix sections. Discussions between Aaron Defazio, Ashok Cutkosky,
Konstantin Mishchenko, Harsh Mehta, and Ahmed Khaled over the last year contributed to this
scientific discovery.

A Proof of Theorem 2

Theorem 2. Let F be a convex function. Let ζ1, . . . , ζT be an iid sequence such that F (x) =
Eζ [f(x, ζ)]. Let z1, . . . , zT be arbitrary vectors and let w1, . . . , wT and β1, . . . , βT be arbitrary
numbers in [0, 1] such that zt, wt and βt are independent of ζt, . . . , ζT . Set:

xt =

∑t
i=1 wizi∑t
i=1 wi

= xt−1

(
1− wt∑t

i=1 wi

)
︸ ︷︷ ︸

≜1−ct

+
wt∑t
i=1 wi︸ ︷︷ ︸
≜ct

zt (9)

yt = βtxt + (1− βt)zt (10)
gt = ∇f(yt, ζt). (11)

Then we have for all x⋆:

E[F (xT)− F (x⋆)] ≤
E[
∑T

t=1 wt⟨gt, zt − x⋆⟩]∑T
i=1 wi

. (12)

Proof. Throughout this proof, we will use the notation w1:t =
∑t

i=1 wi. The result is established by
showing the following identity:

w1:tF (xt)− w1:t−1F (xt−1)− wtF (x⋆) ≤ wt⟨∇F (yt), zt − x⋆⟩. (24)
Where here ∇F (yt) indicates a subgradient of F at yt with E[gt|zt] = ∇F (yt). Given the identity
(24), we sum over all t from 1 to T . Then the LHS will telescope to obtain:

w1:T (F (xT)− F (x⋆)) ≤
T∑

t=1

wt⟨∇F (yt), zt − x⋆⟩,

from which the conclusion immediately follows since E[gt|zt] = ∇F (yt). So, let us establish (24).
To do so, it will help to observe the following identities:

wtzt = w1:txt − w1:t−1xt−1

w1:t−1(xt − xt−1) = wt(zt − xt) (25)

zt − yt =
βt

1− βt
(yt − xt). (26)

Now, setting ∇F (xt) to be an arbitrary subgradient of F at xt, we have:
w1:tF (xt)− w1:t−1F (xt−1)− wtF (x⋆)

= w1:t−1(F (xt)− F (xt−1)) + wt(F (xt)− F (x⋆))

≤ w1:t−1⟨∇F (xt), xt − xt−1⟩+ wt(F (xt)− F (x⋆))

using (25):

= wt⟨∇F (xt), zt − xt⟩+ wt(F (xt)− F (x⋆))

= wt⟨∇F (xt), zt − xt⟩+ wt(F (xt)− F (yt)) + wt(F (yt)− F (x⋆))

≤ wt⟨∇F (xt), zt − xt⟩+ wt⟨∇F (xt), xt − yt⟩+ wt⟨∇F (yt), yt − x⋆⟩
= wt⟨∇F (xt)−∇F (yt), zt − yt⟩+ wt⟨∇F (yt), zt − x⋆⟩

15

using (26):

= wt
βt

1− βt
⟨∇F (xt)−∇F (yt), yt − xt⟩+ wt⟨∇F (yt), zt − x⋆⟩

Finally, recall that any convex function satisfies ⟨∇F (b) − ∇F (a), a − b⟩ ≤ 0 for all a, b. This
classical fact can be established by adding the following two subgradient identities:

F (a) ≥ F (b) + ⟨∇F (b), a− b⟩,
F (b) ≥ F (a) + ⟨∇F (a), b− a⟩.

Then, since βt ∈ [0, 1], we have wt
βt

1−βt
⟨∇F (xt) − ∇F (yt), yt − xt⟩ ≤ 0, which establishes the

desired identity (24).

B Recovering Prior Conversions, and Connections to Momentum

The following recursions provide an equivalent update to our main algorithm that casts the update in
a more “momentum-like” form.
Theorem 4. Under the same assumptions and notation as Theorem 2, set:

∆t = zt+1 − zt,

mt = xt+1 − xt,

ut = yt+1 − yt.

Then:

mt =
wt+1w1:t−1

wtw1:t+1
mt−1 +

wt+1

w1:t+1
∆t

ut =

(
βt + (βt − βt+1)

w1:t

wt+1

)
mt + (1− βt)∆t.

Here ut is playing the role of the “update vector”, as the sequence of points yt are where we will be
evaluating gradients. The ∆t value can be interpreted as a “base update” value: for the case that the
zt sequence is specified by SGD (as in Theorem 1), ∆t = −ηgt. Thus, the update can be interpreted
as a momentum term mt, plus an extra “push” in the direction of ∆t scaled by 1− βt.

Proof. Let’s solve for mt in terms of previous values:

mt = xt+1 − xt

=
wt+1

w1:t+1
(zt+1 − xt)

=
wt+1

w1:t+1
(∆t + zt − xt)

=
wt+1

w1:t+1
(∆t +

w1:t−1

wt
(xt − xt−1))

=
wt+1w1:t−1

wtw1:t+1
mt−1 +

wt+1

w1:t+1
∆t.

Now let’s solve for ut:

ut = βt+1xt+1 + (1− βt+1)zt+1 − βtxt − (1− βt)zt
= βtmt + (1− βt)∆t + (βt − βt+1)(zt+1 − xt+1)

= βtmt + (1− βt)∆t + (βt − βt+1)
w1:t

wt+1
(xt+1 − xt)

= βtmt + (1− βt)∆t + (βt − βt+1)
w1:t

wt+1
mt

=

(
βt + (βt − βt+1)

w1:t

wt+1

)
mt + (1− βt)∆t

16

In the special case that wt = 1 for all t, the updates simplify to:

mt =
t− 1

t+ 1
mt−1 +

1

t+ 1
∆t

ut = (βt + t(βt − βt+1))mt + (1− βt)∆t.

In the special case that βt = β for all t, the update for ut simplifies to:
ut = βmt + (1− β)∆t.

From this, it is clear that if β = 1 and wt = 1, then we recover the standard Polyak momentum with
a time-varying momentum factor mt =

t−1
t+1mt−1 +

1
t+1∆t, while if β = 0, then we have ordinary

SGD without momentum.

B.1 Recovering Linear Decay

Let’s take a look at the update for ut = yt+1 − yt in the special case that wt = 1 for all t:
ut = (βt + t(βt − βt+1))mt + (1− βt)∆t.

Let us define αt = 1− βt. Then we can re-write this update as:
ut = (1− αt + t(αt+1 − αt))mt + αt∆t.

It looks like we might be able to set αt such that the coefficient of mt vanishes. In this case, αt would
play the role of a “schedule” as the update would just be ut = αt∆t. Solving the recursion we get:

αt − 1 = t(αt+1 − αt),

αt+1 =
(t+ 1)αt − 1

t
.

Amazingly, this recursion is satisfied by αt =
T−t
T , which is the linear decay schedule! Notably, this

schedule has αT = 0, which in turn implies that yT = xT , so that the last iterate of our algorithm is
xT , for which Theorem 2 provides a convergence guarantee.

The recursion is also satisfied by αt = 1 for all t (which recovers standard Polyak-Ruppert averaging).
Notably, this recursion shows that α1 will determine all subsequent α values. The values will decease
linearly to zero, and then they will try to go negative, which is not allowed. So the linear decay
schedule is the value of α1 that is “just barely” allowed since it hits zero at αT .

In general with arbitrary wt, the recursion is:

1− αt + (αt+1 − αt)
w1:t

wt+1
= 0.

If we insist that αT = 0 (so that yT = xT and we get a “last iterate” guarantee), then solving the
recursion yields:

αt =
wt+1:T

w1:T
,

which exactly recovers the main result of Defazio et al. (2023).

C Generalizing Theorem 2 via Bregman Divergences

Here, we provide a generalized version of Theorem 2 in the style of Joulani et al. (2020). This result
employs Bregman divergences to tighten the inequality of Theorem 2 to an equality.
Theorem 5. Let F be a convex function. Let ζ1, . . . , ζT be a sequence of i.i.d. random variables,
and let g be a function such that E[g(x, ζt)] ∈ ∂F (x) for all x and t. Let z1, . . . , zT be arbitrary
vectors and let w1, . . . , wT and α1, . . . , αT be arbitrary non-negative real numbers with αt ≤ 1
such that zt, wt and αt are independent of ζt, . . . , ζT . Define the Bregman divergence of F as
BF (a, b) = F (a)− F (b)− ⟨∇F (b), a− b⟩2. Set:

xt =

∑t
i=1 wizi∑t
i=1 wi

= xt−1

(
1− wt∑t

i=1 wi

)
+

wi∑t
i=1 wi

zt

yt = (1− αt)xt + αtzt
gt = g(yt, ζt).

2if F is not differentiable, then by abuse of notation define ∇F (b) = E[g(b, ζ)], which is a particular choice
of subgradient of F .

17

Define the “compressed sum” notation: w1:t =
∑t

i=1 wi, with w1:0 = 0.

Then we have for all x⋆:

E[F (xT)− F (x⋆)] = E

[∑T
t=1 wt⟨gt, zt − x⋆⟩

w1:T

]

− E

[∑T
t=1

wt

αt
BF (yt, xt) +

wt(1−αt)
αt

BF (xt, yt)

w1:T

]

− E

[∑T
t=1 w1:t−1BF (xt−1, xt) + wtBF (x⋆, yt)

w1:T

]
.

Let’s take a minute to unpack this result since it is depressingly complicated. Recall that the Bregman
divergence for a convex function must be positive, and so all the subtracted Bregman divergence terms
can be dropped to make the bound only looser. This recovers Theorem 2. However, in Section D, we
show how to exploit the negative Bregman terms to achieve accelerated rates when F is smooth, and
in Section E we show how to exploit the negative Bregman terms to achieve faster rates when F is
strongly-convex.

Proof. The proof is nearly the same as that of Theorem 2. The only difference is that we keep track
of all the error terms in the inequalities via Bregman divergences.

Throughout this proof, we use ∇F (x) to indicate Eζ [g(x, ζ)]. When F is differentiable, this is simply
the ordinary gradient at x. When F is non-differentiable, this reprents a specific choice of subgradient
at x.

Recall that any convex function satisfies ⟨∇F (b)−∇F (a), a− b⟩ = −BF (a, b)−BF (b, a) for all
a, b. This classical fact can be established by adding the following two subgradient identities:

F (a) = F (b) + ⟨∇F (b), a− b⟩+BF (a, b)

F (b) = F (a) + ⟨∇F (a), b− a⟩+BF (b, a)

⟨∇F (b)−∇F (a), a− b⟩ = −BF (a, b)−BF (b, a). (27)

The Theorem is established by showing the following identity:

w1:tF (xt)− w1:t−1F (xt−1)− wtF (x⋆) = wt⟨∇F (yt), zt − x⋆⟩

− wt

αt
BF (yt, xt)−

wt(1− αt)

αt
BF (xt, yt)

− w1:t−1BF (xt−1, xt)− wtBF (x⋆, yt). (28)

Given the identity (28), we sum over all t from 1 to T . Then the LHS will telescope to obtain:

w1:T (F (xT)− F (x⋆)) =

T∑
t=1

wt⟨∇F (yt), zt − x⋆⟩

−
T∑

t=1

wt

αt
BF (yt, xt)−

wt(1− αt)

αt
BF (xt, yt)

−
T∑

t=1

w1:t−1BF (xt−1, xt)− wtBF (x⋆, yt),

from which the conclusion immediately follows since E[gt|g1, . . . , gt−1] = E[∇F (yt)|g1, . . . , gt−1].
So, let us establish (28). To do so, it will help to observe the following identities:

wtzt = w1:txt − w1:t−1xt−1

w1:t−1(xt − xt−1) = wt(zt − xt) (29)

zt − yt =
1− αt

αt
(yt − xt). (30)

18

So, we have:

w1:tF (xt)− w1:t−1F (xt−1)− wtF (x⋆)

= w1:t−1(F (xt)− F (xt−1) + wt(F (xt)− F (x⋆))

= w1:t−1⟨∇F (xt), xt − xt−1⟩+ wt(F (xt)− F (x⋆))

− w1:t−1BF (xt−1, xt)

using (29):

= wt⟨∇F (xt), zt − xt⟩+ wt(F (xt)− F (x⋆))− w1:t−1BF (xt−1, xt)

= wt⟨∇F (xt), zt − xt⟩+ wt(F (xt)− F (yt)) + wt(F (yt)− F (x⋆))

− w1:t−1BF (xt−1, xt)

= wt⟨∇F (xt), zt − xt⟩+ wt⟨∇F (xt), xt − yt⟩+ wt⟨∇F (yt), yt − x⋆⟩
− w1:t−1BF (xt−1, xt)− wtBF (yt, xt)− wtBF (x⋆, yt)

= wt⟨∇F (xt)−∇F (yt), zt − yt⟩+ wt⟨∇F (yt), zt − x⋆⟩
− w1:t−1BF (xt−1, xt)− wtBF (yt, xt)− wtBF (x⋆, yt)

using (30):

= wt
1− αt

αt
⟨∇F (xt)−∇F (yt), yt − xt⟩+ wt⟨∇F (yt), zt − x⋆⟩

− w1:t−1BF (xt−1, xt)− wtBF (yt, xt)− wtBF (x⋆, yt)

using (27):

= wt⟨∇F (yt), zt − x⋆⟩

− wt
1− αt

αt
(BF (xt, yt) +BF (yt, xt))

− w1:t−1BF (xt−1, xt)− wtBF (yt, xt)− wtBF (x⋆, yt)

= wt⟨∇F (yt), zt − x⋆⟩

− wt

αt
BF (yt, xt)−

wt(1− αt)

αt
BF (xt, yt)

− w1:t−1BF (xt−1, xt)− wtBF (x⋆, yt).

D Acceleration

In this section, we show that by instantiating our framework with an optimistic online learning
algorithm (Rakhlin and Sridharan, 2013), we achieve accelerated convergence guarantees. Our results
match those available in the prior literature (Kavis et al., 2019; Joulani et al., 2020). Our approach is
inspired by Joulani et al. (2020),: their method is based upon a version of Theorem 5 for the special
case that αt = 0. Our result simply extends their analysis to αt = O(1/t).

First, we establish an important technical Corollary that simplifies Theorem 5 in the case that F is
smooth and αt is sufficiently small.
Corollary 1. Under the same conditions as Theorem 5, suppose additionally that F is L-smooth and
suppose αt ≤ wt

10w1:t
for all t. Then we have for all x⋆:

E[F (xT)− F (x⋆)] ≤ E

[∑T
t=1 wt⟨gt, zt − x⋆⟩

w1:T

]

− E

[∑T
t=1 w1:t−1∥∇F (yt)−∇F (yt−1)∥2

6Lw1:T

]
,

where above the value of y0 is arbitrary (since the coefficient is w1:0 = 0).

19

Proof. The key thing is to observe that smoothness implies BF (a, b) ≥ 2L∥∇F (a)−∇F (b)∥2. The
rest of the argument is straightforward manipulation of the terms in Theorem 5:

−wt

αt
BF (yt, xt)−

wt(1− αt)

αt
BF (xt, yt) ≤ −wt(2− αt)

2Lαt
∥∇F (xt)−∇F (yt)∥2

−w1:t−1BF (xt−1, xt)− wtBF (x⋆, yt) ≤ −w1:t−1

2L
∥∇F (xt)−∇F (xt−1)∥2.

Next, observe that for any vectors a, b, c, for any λ > 0:

−∥a+ b+ c∥2 = −∥a∥2 − ∥b∥2 − ∥c∥2 − 2⟨a, b⟩ − 2⟨b, c⟩ − 2⟨a, c⟩
≤ −(1− 2/λ)∥a∥2 + (2λ− 1)(∥b∥2 + ∥c∥2),

where we have used Young’s inequality: |⟨v, w⟩| ≤ ∥v∥2

2λ + λ∥w∥2

2 . Therefore, setting λt = 3 we
obtain:

− w1:t−1BF (xt−1, xt)− wtBF (x⋆, yt)

≤ −w1:t−1

6L
∥∇F (yt)−∇F (yt−1)∥2

+
5w1:t−1

2L
(∥∇F (xt)−∇F (yt)∥2 + ∥∇F (xt−1)−∇F (yt−1)∥2).

Now, since αt ≤ wt

10w1:t
≤ 1, we obtain:

− wt

αt
BF (yt, xt)−

wt(1− αt)

αt
BF (xt, yt)− w1:t−1BF (xt−1, xt)− wtBF (x⋆, yt)

≤ −w1:t−1

6L
∥∇F (yt)−∇F (yt−1)∥2

− 5w1:t

2L
∥∇F (xt)−∇F (yt)∥2 +−5w1:t−1

2L
∥∇F (xt−1)−∇F (yt−1)∥2.

Now summing over t from 1 to T (and dropping one negative term), the sum telescopes to:

T∑
t=1

−w1:t−1

6L
∥∇F (yt)−∇F (yt−1)∥2.

The result now follows from Theorem 5.

Now, we consider the case that zt is given by an optimistic mirror descent algorithm:

Corollary 2. Suppose F is L-smooth. Define g0 = 0 and suppose also that for some D satisfying
D ≥ ∥y1 − x⋆∥:

T∑
t=1

wt⟨gt, zt − x⋆⟩ ≤ D

√√√√ T∑
t=1

w2
t ∥gt − gt−1∥2.

Finally, suppose E[∥gt − gt−1∥2] ≤ ∥∇F (yt)−∇F (yt−1)∥2 + σ2
t for some constants σ1, . . . , σT

(these are just variance bounds on the stochastic gradient oracle). Then with wt = t and αt ≤ 1
5(t−1) ,

we have:

E[F (xT)− F (x⋆)] ≤
14D2L

T (T + 1)
+

2D
√∑T

t=1 t
2σ2

t

T (T + 1)

= O

(
D2L

T 2
+

Dσ√
T

)
,

where σ is uniform upper-bound on σt. Note that the algorithm does not need to know L or σ.

Algorithms producing z sequences obtaining the guarantee stated here are called “optimistic online
learning algorithms”.

20

Proof. Applying Corollary 1, we obtain immediately:

T (T + 1)

2
E[F (xT)− F (x⋆)]

≤ E

D
√√√√ T∑

t=1

t2∥gt − gt−1∥2 −
T∑

t=1

(t− 1)t

12L
∥∇F (yt)−∇F (yt−1)∥2


≤ D

√√√√ T∑
t=1

t2E [∥∇F (yt)−∇F (yt−1)∥2] + t2σ2
t +

∥∇F (y1)∥2

24L

− 1

24L

T∑
t=1

t2E
[
∥∇F (yt)−∇F (yt−1)∥2

]

≤ D

√√√√ T∑
t=1

t2E [∥∇F (yt)−∇F (yt−1)∥2] +D

√√√√ T∑
t=1

t2σ2
t +

∥∇F (y1)∥2

24L

− 1

24L

T∑
t=1

t2E
[
∥∇F (yt)−∇F (yt−1)∥2

]
Using the identity A

√
C −BC ≤ A2

4B :

≤ 6D2L+
L∥y1 − x⋆∥2

24
+D

√√√√ T∑
t=1

t2σ2
t

≤ 7D2L+D

√√√√ T∑
t=1

t2σ2
t .

Divide by T (T+1)
2 to conclude the result.

D.1 An Optimistic Regret Bound

In this section we provide an algorithm that achieves the optimistic regret bound required for our
acceleration result Corollary 2. This algorithm is a mild variation on the established literature
(Rakhlin and Sridharan, 2013; Chiang et al., 2012; Hazan and Kale, 2010; Joulani et al., 2017) to
slightly improve a technical dependence on the maximum gradient value.

Lemma 1. For a sequence of vectors g1, . . . , gT , set ηt = D√
2
∑t

i=1 ∥gi−gi−1∥2
with g0 = 0, define

mt = maxi≤t ∥gi − gi−1∥ and define the sequence of vectors zt, z′t and g̃t by the recursions:

z1 = z′1 = 0

g̃t = gt−1 +min (mt−1, ∥gt − gt−1∥)
gt − gt−1

∥gt − gt−1∥

ηt =
D√

m2
t +

∑t
i=1 ∥g̃i − gi−1∥2

z′t+1 = Π∥z′
t+1∥≤Dz′t − ηtg̃t

zt+1 = Π∥zt+1∥≤Dz′t+1 − ηtgt.

Then:

T∑
t=1

⟨gt, zt − x⋆⟩ ≤ 7D

√√√√2

T∑
t=1

∥gt − gt−1∥2.

21

Proof. For purposes of notation, define g0 = 0 and z′0 = 0. Further, observe that:

∥g̃t − gt−1∥ ≤ mt−1

∥g̃t − gt−1∥ ≤ ∥gt − gt−1∥
∥g̃t − gt∥ = mt −mt−1

ηt ≤
D√∑t+1

i=1 ∥g̃i − gi−1∥2

1

ηT
≤

√
2
∑T

t=1 ∥gt − gt−1∥2

D
.

Next, notice that z′t+1 = argmin∥z∥≤D⟨g̃t, z⟩+ 1
2ηt

∥z − z′t∥2. Therefore since ∥x⋆∥ ≤ D, by first
order optimality conditions:〈

g̃t +
z′t+1 − z′t

ηt
, z′t+1 − x⋆

〉
≤ 0

⟨g̃t, z′t+1 − x⋆⟩ ≤
1

ηt
⟨z′t − z′t+1, z

′
t+1 − x⋆⟩

=
∥z′t − x⋆∥2

2ηt
−

∥z′t+1 − x⋆∥2

2ηt
−

∥z′t+1 − z′t∥2

2ηt
.

Similarly, we have zt = argmin∥z∥≤D⟨gt−1, z⟩+ 1
2ηt−1

∥z − z′t∥2. From this we have:

〈
gt−1 +

zt − z′t
ηt−1

, zt − z′t+1

〉
≤ 0

⟨gt−1, zt − z′t+1⟩ ≤
∥z′t − z′t+1∥2

2ηt−1
−

∥zt − z′t+1∥2

2ηt−1
− ∥zt − z′t∥2

2ηt−1

⟨g̃t, zt − z′t+1⟩ ≤
∥z′t − z′t+1∥2

2ηt−1
−

∥zt − z′t+1∥2

2ηt−1
− ∥zt − z′t∥2

2ηt−1

+ ⟨g̃t − gt−1, zt − z′t+1⟩

by Young’s inequality:

≤
∥z′t − z′t+1∥2

2ηt−1
−

∥zt − z′t+1∥2

2ηt−1
− ∥zt − z′t∥2

2ηt−1

+
ηt−1∥g̃t − gt−1∥2

2
+

∥zt − z′t+1∥2

2ηt−1

≤
∥z′t − z′t+1∥2

2ηt−1
+

ηt−1∥g̃t − gt−1∥2

2
.

So, combining these facts (and noticing that ηt−1 ≥ ηt:)

⟨g̃t, zt − x⋆⟩ ≤
∥z′t − x⋆∥2

2ηt
−

∥z′t+1 − x⋆∥2

2ηt
+

ηt−1∥g̃t − gt−1∥2

2

⟨gt, zt − x⋆⟩ ≤
∥z′t − x⋆∥2

2ηt
−

∥z′t+1 − x⋆∥2

2ηt
+

ηt−1∥g̃t − gt−1∥2

2
+ ⟨gt − g̃t, zt − x⋆⟩

≤ ∥z′t − x⋆∥2

2ηt
−

∥z′t+1 − x⋆∥2

2ηt
+

ηt−1∥g̃t − gt−1∥2

2
+ 2D(mt −mt−1).

22

So, we have:

T∑
t=1

⟨gt, zt − x⋆⟩ ≤ 2DmT +
∥z′1 − x⋆∥2

2η1
+

T∑
t=2

∥z′t − x⋆∥2

2

(
1

ηt
− 1

ηt−1

)

+

T∑
t=1

ηt−1∥g̃t − gt−1∥2

2

≤ 2DmT + 4D2/ηT +

T∑
t=1

ηt−1∥g̃t − gt−1∥2

2

≤ 6D2/ηT +

T∑
t=1

ηt−1∥g̃t − gt−1∥2

2

≤ 6D2/ηT +

T∑
t=1

D∥g̃t − gt−1∥2

2
√∑t

i=1 ∥g̃i − gi−1∥2

≤ 6D2/ηT +D

√√√√ T∑
t=1

∥g̃t − gt−1∥2

≤ 7D

√√√√2

T∑
t=1

∥gt − gt−1∥2.

E Strongly Convex Losses

Suppose that the expected loss F is actually known to be µ-strongly convex. Then we’d like to have
a convergence guarantee of O(1/µT). This is achieved in Theorem 6 below.
Theorem 6. Under the same assumptions as Theorem 5, define ℓt(z) = ⟨gt, z⟩+ µ

2 ∥yt− z∥2. Define
the “regret” of the sequence zt as:

Regretℓ(x⋆) =

T∑
t=1

wt(ℓt(zt)− ℓt(x⋆)).

Then we have for x⋆ = argmin F :

E[F (xT)− F (x⋆)] ≤ E

[
Regretℓ(x⋆)−

∑T
t=1

wtµ
2 ∥zt − yt∥2

w1:T

]
.

In particular, suppose ∥x⋆∥ ≤ D for some known bound D and ∥gt∥ ≤ G for all t for some G so
long as ∥yt∥ ≤ D. Then if we define wt = t for all t and set zt by:

zt+1 = Π∥z∥≤D

[
zt −

2(gt + µ(zt − yt))

µ(t+ 1)

]
.

then we have:

E[F (xT)− F (x⋆)] ≤
2(G+ 2µD)2

µ(T + 1)
.

Proof. From Theorem 5, we have:

E[F (xT)− F (x⋆)] ≤ E

[∑T
t=1 wt⟨gt, zt − x⋆⟩

w1:T
−
∑T

t=1 wtBF (x⋆, yt)

w1:T

]
.

23

Now, since F is µ-strongly convex, we have BF (x⋆, yt) ≥ µ
2 ∥yt − x⋆∥2. Further, we have:

T∑
t=1

wt⟨gt, zt − x⋆⟩ =
T∑

t=1

wt(ℓt(zt)− ℓt(x⋆))−
wtµ

2
∥zt − yt∥2 +

wtµ

2
∥x⋆ − yt∥2.

From this we obtain the desired result:

E[F (xT)− F (x⋆)] ≤ E

[
Regretℓ(x⋆)−

∑T
t=1

wtµ
2 ∥zt − yt∥2

w1:T

]
.

For the final statement, observe that with wt = t, wtℓt(z) = t⟨gt, z⟩+ tµ
2 ∥z − yt∥2 is tµ-strongly

convex. Therefore if we use learning rate ηt =
1

µw1:t
= 2

µt(t+1) , then standard analysis of projected
OGD yields:

T∑
t=1

t(ℓt(zt)− ℓt(x⋆)) ≤
T∑

t=1

t⟨∇ℓt(zt), zt − x⋆⟩ −
tµ

2
∥zt − x⋆∥2

≤ ∥z1 − x⋆∥2
(

1

2η1
− µ

2
∥zt − x⋆∥2

)
− ∥zT+1 − x⋆∥2

2ηT

+

T∑
t=2

∥zt − x⋆∥2
(

1

2ηt
− 1

2ηt−1
− tµ

2

)
+

T∑
t=1

ηtt
2∥∇ℓt(zt)∥2

2

≤
T∑

t=1

ηtt
2∥∇ℓt(zt)∥2

2

≤ 1

µ

T∑
t=1

∥∇ℓt(zt)∥2

=
1

µ

T∑
t=1

∥gt + µ(zt − yt)∥2

≤ T (G+ 2µD)2

µ
.

where in the last inequality we have observed that since ∥zt∥ ≤ D and yt is a linear combination of
past z values, ∥yt∥ ≤ D as well. Finally, observing that w1:T = T (T+1)

2 , the result follows.

F Large Step size convergence

Theorem 7. Consider the online learning setting with bounded gradients gt. Let zt+1 = zt − γgt.
Let D = ∥z1 − z∗∥ for arbitrary reference point z∗ and define G = maxt≤T ∥gt∥. Suppose that the
chosen step-size is γ = D/G, then if it holds that:

T∑
t=1

⟨gt, zt − z1⟩ ≤ D

√√√√ T∑
t=1

∥gt∥2, (31)

then:

1

T

T∑
t=1

⟨gt, zt − z∗⟩ = O

D

T

√√√√ T∑
t=1

∥gt∥2
 . (32)

Proof. Consider SGD with fixed step size γ:

zt+1 = zt − γgt.

Let

sT+1 =

T∑
t=1

γgt.

24

Recall from D-Adaptation (Defazio and Mishchenko, 2023) theory that:

T∑
t=1

γ ⟨gt, zt − z1⟩ =
1

2

T∑
t=1

γ2 ∥gt∥2 −
1

2
∥st+1∥2 (33)

and:
T∑

t=1

γ ⟨gt, zt − z∗⟩ ≤ ∥sT+1∥D +

T∑
t=1

γ ⟨gt, zt − z1⟩ . (34)

Now suppose that the regret at time T is negative. Then trivially the theorem holds:

1

T

T∑
t=1

⟨gt, zt − z∗⟩ ≤ 0 = O

D

T

√√√√ T∑
t=1

∥gt∥2
 ,

therefore, without loss of generality we may assume that
∑T

t=1 γ ⟨gt, zt − z∗⟩ ≥ 0. Then from
combining Equation 34 with Equation 33 we have:

0 ≤ −1

2
∥sT+1∥2 + ∥sT+1∥D +

1

2

T∑
t=1

γ2 ∥gt∥2 .

This is a quadratic equation in ∥sT+1∥ which we can solve explicitly via the quadratic formula, taking
the largest root:

∥sT+1∥ ≤ −b±
√
b2 − 4ac

2a
.

Plugging in the values a = − 1
2 , b = D, c = 1

2

∑T
t=1 γ

2 ∥gt∥2:

D ±

√√√√D2 +

T∑
t=1

γ2 ∥gt∥2 ≤ 2D +

√√√√ T∑
t=1

γ2 ∥gt∥2.

Therefore:

∥sT+1∥ ≤ 2D + γ

√√√√ T∑
t=1

∥gt∥2.

Substituting this into Equation 34:

T∑
t=1

γ ⟨gt, zt − z∗⟩ ≤ 2D2 + γD

√√√√ T∑
t=1

∥gt∥2 +
T∑

t=1

γ ⟨gt, zt − z1⟩ .

Therefore, if
∑T

t=1 ⟨gt, zt − z1⟩ ≤ D
√∑T

t=1 ∥gt∥
2 then:

T∑
t=1

γ ⟨gt, zt − z∗⟩ ≤ 2D2 + 2γD

√√√√ T∑
t=1

∥gt∥2.

Plugging in γ = D/G:

T∑
t=1

⟨gt, zt − z∗⟩ ≤ 2DG+ 2D

√√√√ T∑
t=1

∥gt∥2

≤ 4D

√√√√ T∑
t=1

∥gt∥2,

and the theorem follows.

25

G Experimental Setup

G.1 Convex experiments

Each dataset is obtained from the LIBSVM repository and used without modifications.

Hyper-parameter Value
GPUs 1×V100

Batch size 16
Epochs 100
Seeds 10

Schedule-Free β1 0.9

Hyper-parameter Value
Decay 0.0

Optimizer Adam
Baseline β1 0.9

β2 0.95

G.2 CIFAR-10

We used custom training code based on the PyTorch tutorial code for this problem. Following standard
data-augmentation practises, we appliyed random horizontal flips and random offset cropping down
to 32x32, using reflection padding of 4 pixels. Input pixel data was normalized by centering around
0.5.

Hyper-parameter Value
Architecture Wide ResNet 16-8

Epochs 300
GPUs 1×V100

Batch size per GPU 128
Cosine/Schedule-Free Warmup 5%

Baseline Stepwise LR 0.1

Hyper-parameter Value
Seeds 10
decay 0.0001

Baseline Momentum 0.9
Schedule-Free LR 10
Schedule-Free β 0.9

Baseline Cosine LR 0.2

G.3 CIFAR-100

We used the same codebase as for our CIFAR-10 experiments, with the same data augmentation.

We normalized each input image using fixed mean and standard error values derived from pre-
processing the data.

Hyper-parameter Value

Architecture DenseNet [6,12,24,16],
growth rate 12

Epochs 300
GPUs 1×V100

Schedule-Free β 0.9
Cosine/Schedule-Free Warmup 5%

Baseline Stepwise LR 0.05

Hyper-parameter Value
Batch size per GPU 64

Seeds 10
Decay 0.0002

Baseline Momentum 0.9
Schedule-Free LR 5

Baseline Cosine LR 0.05

G.4 SVHN

We used the same codebase as for our CIFAR experiments, and following the same data preprocessing.

Hyper-parameter Value
Batch size 32

Weight decay Cosine 0.0001
Weight decay Step Sched 5e-5

Seeds 10
Baseline Stepwise LR 0.1

Hyper-parameter Value
Cosine/Schedule-Free Warmup 5%

Schedule-Free decay 0.0002
Schedule-Free LR 1.0
Schedule-Free β 0.9

Baseline Cosine LR 0.1

26

G.5 ImageNet

We used the same code-base as for our CIFAR-10 experiments, and applied the same preprocess-
ing procedure. The data-augmentations consisted of PyTorch’s RandomResizedCrop, cropping to
224x224 followed by random horizontal flips. Test images used a fixed resize to 256x256 followed
by a center crop to 224x224.

Hyper-parameter Value
Architecture ResNet50

Epochs 100
GPUs 8×V100

Batch size per GPU 32
Schedule-Free Decay 0.00005
Baseline Stepwise LR 0.1
Baseline Cosine LR 0.05

Hyper-parameter Value
Seeds 5
Decay 0.0001

Baseline Momentum 0.9
Schedule-Free β 0.9

Cosine/Schedule-Free Warmup 5%
Schedule-Free LR 1.5

G.6 IWSLT14

We used the FairSeq framework 3 for our experiments. Rather than a vanilla LSTM we use the variant
from Wiseman and Rush (2016) provided in the FairSeq codebase.

Hyper-parameter Value
Architecture lstm_wiseman_iwslt_de_en
Max Epoch 55

GPUs 1×V100
Tokens per batch 4096

Warmup steps 4000
Dropout 0.3

Label smoothing 0.1
Schedule-Free LR 0.02

Schedule-Free warmup 5%
Baseline schedule Linear Decay

Hyper-parameter Value
Share decoder, input,

output embed True

Float16 True
Update Frequency 1

Seeds 10
Decay 0.05

Baseline β1 0.9
Schedule-Free β1 0.9

β2 0.98
Baseline LR 0.01

G.7 NanoGPT

We followed the NanoGPT codebase 4 as closely as possible, matching the default batch-size, training
length and schedule. Our runs replicate the stated 2.85 loss in the documentation. Disabling gradient
norm clipping is crucial for the Schedule-Free runs.

Hyper-parameter Value
Architecture transformer_lm_gpt

Batch size per gpu 12
Max Iters 600,000

GPUs 40×V100
Tokens per sample 512

Dropout 0.0
Baseline LR 0.0005

Warmup 2,000
Schedule-Free LR 0.005
Schedule-Free β 0.98

Schedule-Free decay 0.05

Hyper-parameter Value
Block Size 1024
Num layer 12
Num head 12
Num embd 768

Float16 True
Update Frequency 16

Seeds 5
Decay 0.1

Baseline β1, β2 0.9, 0.95
Gradient Clipping 0.0

3https://github.com/facebookresearch/fairseq
4https://github.com/karpathy/nanoGPT

27

https://github.com/facebookresearch/fairseq
https://github.com/karpathy/nanoGPT

G.8 MAE

Our implementation uses the offical code5, with hyper-parameters following examples given in the
repository.

Hyper-parameter Value
Model vit_base_patch16
Epochs 100
GPUs 32×V100

Batch Size 32
Baseline LR 5e-4
Layer Decay 0.65

Weight Decay 0.05
Baseline β1 0.9

Hyper-parameter Value
β2 0.999

Schedule-Free LR 0.002
Schedule-Free decay 0.05

Schedule-Free β1 0.9
Drop Path 0.1

Reprob 0.25
Mixup 0.8
Cutmix 1.0

G.9 DLRM

We used a custom implementation of the DLRM model based on the publicly available code. Our
optimizer uses dense gradients for implementation simplicity, although sparse-gradients using Ada-
Grad is a more common baseline on this problem, we consider AdaGrad variants of our scheduling
approach as future work.

Hyper-parameter Value
Iterations 300 000

Batch Size 128
Emb Dimension 16

GPUs 8×V100
Schedule-Free LR 0.0005
Schedule-Free β1 0.9

β2 0.999

Hyper-parameter Value
Seeds 5
Decay 0.0

Baseline β1 0.9
Warmup 0

Baseline LR 0.0002
Baseline schedule Linear Decay

G.10 MRI

We used the version of the the fastMRI code base at https://github.com/facebookresearch/
fastMRI/tree/main/banding_removal. Note that we found that training failed using PyTorch 2
or newer, and so we ran these experiments using PyTorch 1.9.

Hyper-parameter Value
Architecture 12 layer VarNet 2.0

Epochs 50
GPUs 8×V100

Batch size per GPU 1
Acceleration factor 4
Baseline Schedule Linear Decay

Baseline LR 0.005
β2 0.999

Hyper-parameter Value
Low frequency lines 16

Mask type Offset-1
Seeds 5
Decay 0.0

Baseline β1 0.9
Schedule-Free LR 0.005
Schedule-Free β 0.9

G.11 Algoperf

Our full algoperf entry is availiable at https://github.com/facebookresearch/schedule_
free/tree/main/schedulefree/algoperf. The hyper-parameters used for the self-tuning track
submission are listed below.

5https://github.com/fairinternal/mae

28

https://github.com/facebookresearch/fastMRI/tree/main/banding_removal
https://github.com/facebookresearch/fastMRI/tree/main/banding_removal
https://github.com/facebookresearch/schedule_free/tree/main/schedulefree/algoperf
https://github.com/facebookresearch/schedule_free/tree/main/schedulefree/algoperf
https://github.com/fairinternal/mae

Hyper-parameter Value
Learning Rate 0.0025

one-minus Beta1 0.1
Beta2 (default) 0.9955159689799007

Weight Decay (default) 0.08121616522670176

Hyper-parameter Value
Dropout Rate 0.1

Warmup Percentage 2%
Label Smoothing 0.2

Polynomial in ct average 0.75

29

H Convex Experiments

0 20 40 60 80 100
Epoch

40

60

80

Ac
cu

ra
cy

 (%
)

Sensorless

Polyak Averaging (85.5 SE 0.00)
Primal Averaging (83.0 SE 0.44)
Schedule-Free (89.7 SE 0.00)
LD Schedule (89.2 SE 0.01)

0 20 40 60 80 100
Epoch

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Aloi

Polyak Averaging (95.7 SE 0.01)
Primal Averaging (95.4 SE 0.02)
Schedule-Free (97.2 SE 0.01)
LD Schedule (95.8 SE 0.00)

0 20 40 60 80 100
Epoch

85

90

95

100

Ac
cu

ra
cy

 (%
)

DNA

Polyak Averaging (100.0 SE 0.01)
Primal Averaging (100.0 SE 0.00)
Schedule-Free (100.0 SE 0.00)
LD Schedule (100.0 SE 0.00)

0 20 40 60 80 100
Epoch

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

Glass

Polyak Averaging (68.8 SE 0.10)
Primal Averaging (65.0 SE 0.61)
Schedule-Free (72.1 SE 0.14)
LD Schedule (70.3 SE 0.14)

0 20 40 60 80 100
Epoch

87.5

90.0

92.5

95.0

97.5

Ac
cu

ra
cy

 (%
)

Iris

Polyak Averaging (98.3 SE 0.08)
Primal Averaging (98.5 SE 0.06)
Schedule-Free (98.6 SE 0.00)
LD Schedule (98.6 SE 0.00)

0 20 40 60 80 100
Epoch

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Letter

Polyak Averaging (77.8 SE 0.00)
Primal Averaging (77.8 SE 0.02)
Schedule-Free (77.8 SE 0.00)
LD Schedule (77.8 SE 0.01)

0 20 40 60 80 100
Epoch

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Pendigits

Polyak Averaging (95.8 SE 0.01)
Primal Averaging (94.0 SE 0.11)
Schedule-Free (96.0 SE 0.01)
LD Schedule (96.0 SE 0.02)

0 20 40 60 80 100
Epoch

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

smallNORB

Polyak Averaging (90.8 SE 0.01)
Primal Averaging (90.8 SE 0.64)
Schedule-Free (98.1 SE 0.00)
LD Schedule (96.5 SE 0.01)

0 20 40 60 80 100
Epoch

90

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

USPS

Polyak Averaging (98.0 SE 0.01)
Primal Averaging (98.1 SE 0.03)
Schedule-Free (99.5 SE 0.00)
LD Schedule (98.9 SE 0.01)

0 20 40 60 80 100
Epoch

60

70

80

Ac
cu

ra
cy

 (%
)

Vehicle

Polyak Averaging (80.8 SE 0.04)
Primal Averaging (81.2 SE 0.16)
Schedule-Free (83.4 SE 0.04)
LD Schedule (83.2 SE 0.14)

0 20 40 60 80 100
Epoch

50

60

70

80

Ac
cu

ra
cy

 (%
)

Vowel

Polyak Averaging (76.8 SE 0.10)
Primal Averaging (77.2 SE 0.18)
Schedule-Free (77.5 SE 0.03)
LD Schedule (77.6 SE 0.10)

0 20 40 60 80 100
Epoch

96

97

98

99

100

101

Ac
cu

ra
cy

 (%
)

Wine

Polyak Averaging (100.0 SE 0.00)
Primal Averaging (100.0 SE 0.00)
Schedule-Free (100.0 SE 0.00)
LD Schedule (100.0 SE 0.00)

Figure 7: Stochastic logistic regression experiments.

30

I Polyak and Primal Averaging Runs

These experiments follow the same tuning setup as Figure 3, where the learning rate and momentum
is tuned separately for each method. In each case the c weighting sequence used for Schedule-Free
training is also used to ensure a fair comparison. The Polyak averaging runs include momentum in
the base optimizer as we found this gave the best results. We ran the NanoGPT experiment for a
shorter 200,000 steps due to computational budget considerations. The NanoGPT Polyak averaging
runs show a divergence in test loss for Polyak averaging.

0 50 100 150 200 250 300
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10 (WRN-16-8)

Polyak Averaging (95.56% SE 0.05)
Primal Averaging (92.09% SE 0.07)
Schedule-Free Reference 96.03%

0 50 100 150 200 250 300
Epoch

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100 (DenseNet)

Polyak Averaging (76.99% SE 0.12)
Primal Averaging (70.20% SE 0.19)
Schedule-Free Reference 78.71%

0 50 100 150 200 250 300
Epoch

94

95

96

97

98

99

Te
st

 A
cc

ur
ac

y
(%

)

SVHN (ResNet-3-96)

Polyak Averaging (98.32% SE 0.01)
Primal Averaging (97.36% SE 0.03)
Schedule-Free Reference 98.40%

0 20 40 60 80 100
Epoch

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

ILSVRC 2012 ImageNet (ResNet-50)

Polyak Averaging (72.84% SE 0.02)
Primal Averaging (69.78% SE 0.09)
Schedule-Free Reference 76.90%

0 10 20 30 40 50
Epoch

0.906

0.908

0.910

0.912

Te
st

 S
SI

M

fastMRI Knee (VarNet 2.0)

Primal Averaging (0.9100 SE 0.00037)
Polyak Averaging (0.9088 SE 0.00141)
Schedule-Free Reference 0.9112

0 20 40 60 80 100
Epoch

0.780

0.785

0.790

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (DLRM)

Primal Averaging (0.7899 SE 0.00006)
Polyak Averaging (0.7901 SE 0.00004)
Schedule-Free Reference 0.7915

0 20 40 60 80 100
Epoch

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

MAE ImageNet Finetune (ViT)

Polyak Averaging (82.72 SE 0.03)
Primal Averaging (81.98 SE 0.03)
Schedule-Free Reference 83.54%

0 50000 100000 150000 200000
Step

3

4

5

6

7

Te
st

 L
os

s

OpenWebText (GPT-2 124M)

Polyak Averaging (5.588 SE 0.134)
Primal Averaging (3.063 SE 0.004)
Schedule-Free Reference @ 200k 2.878

Figure 8: Polyak and Primal Averaging Experiments

31

J Additional LR Sensitivity Plots

10 1 100 101

LR

94

95

96
Te

st
 A

cc
ur

ac
y

(%
)

CIFAR-10 (WRN-16-8) LR Sensitivity

Schedule-Free
Cosine Schedule

10 2 10 1 100 101

LR

70

72

74

76

78

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100 (DenseNet) LR Sensitivity

Schedule-Free
Cosine Schedule

10 2 10 1 100

LR

98.1

98.2

98.3

98.4
Te

st
 A

cc
ur

ac
y

(%
)

SVHN (ResNet-3-96) LR Sensitivity

Schedule-Free
Cosine Schedule

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper contains new theory as well as extensive experimental results for
our method.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We detail the limitations of our method in the conclusion section.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems stated in the paper are proven in the Appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed results concerning the experimental setup are provided in the ap-
pendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have already open sourced our method. Experiments can be replicated
using our open source PyTorch optimizer implementation together with existing open source
code bases implementing each method.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: To the best of our knowledge, we provide sufficient information about hyper-
parameter settings for all experiments to be reproducible.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments reported use multiple seeds, and error bars are included in all
plots.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

33

Answer: [No]
Justification: As our method has no runtime overhead compared to existing approaches, we
do not report computation times.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have abided by the code of ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: There is no foreseeable societal impact from our work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not Applicable

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [No]
Justification: We do not distribute any models or datasets with this work. Datasets used for
evaluation have license information available at the cited source.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: No new assets are being released.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Not Applicable

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Not Applicable

34

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Notation

	Method
	General Theory
	On Large Learning Rates

	Related Work
	Experiments
	MLCommons Algorithmic Efficiency benchmark
	Convex Problems
	Implementation Concerns

	Parameter Sensitivity
	Conclusion
	Proof of Theorem 2
	Recovering Prior Conversions, and Connections to Momentum
	Recovering Linear Decay

	Generalizing Theorem 2 via Bregman Divergences
	Acceleration
	An Optimistic Regret Bound

	Strongly Convex Losses
	Large Step size convergence
	Experimental Setup
	Convex experiments
	CIFAR-10
	CIFAR-100
	SVHN
	ImageNet
	IWSLT14
	NanoGPT
	MAE
	DLRM
	MRI
	Algoperf

	Convex Experiments
	Polyak and Primal Averaging Runs
	Additional LR Sensitivity Plots

