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Abstract

Traditional machine learning models focus on achieving good performance on the
overall training distribution, but they often underperform on minority groups. Exist-
ing methods can improve the worst-group performance, but they can have several
limitations: (i) they require group annotations, which are often expensive and some-
times infeasible to obtain, and/or (ii) they are sensitive to outliers. Most related
works fail to solve these two issues simultaneously as they focus on conflicting
perspectives of minority groups and outliers. We address the problem of learning
group annotations in the presence of outliers by clustering the data in the space
of gradients of classification loss w.r.t. the model parameters. We show that data
in the gradient space has a simpler structure while preserving information about
minority groups and outliers, making it suitable for standard clustering methods
like DBSCAN. Extensive experiments demonstrate that our method significantly
outperforms state-of-the-art both in terms of group identification and downstream
worst-group performance.

1 Introduction

# Samples (group- Waterbird Landbirdwise accuracy)

Water Background 1057 (93.98%) 184 (82.19%)
Land Background 56 (54.89%) 3498 (98.50%)

Table 1: Sample distribution and group-wise
accuracy in Waterbirds dataset, with groups
defined by background and bird type. Groups
in which bird types and backgrounds align, com-
prising most of the training samples, are catego-
rized as majority groups, while those with mis-
matched bird types and backgrounds, containing
only a small fraction of samples, are referred to
as minority groups. The numbers in parentheses
indicate group-wise ERM model accuracy.

Empirical Risk Minimization (ERM), i.e., the
minimization of average training loss over the
set of model parameters, is the standard train-
ing procedure in machine learning. It yields
models with strong in-distribution performance2

but does not guarantee satisfactory performance
on groups with fewer training samples (minority
groups) that contribute relatively few data points
to the training loss function (Sagawa et al., 2019;
Koh et al., 2021). For instance, consider Water-
birds dataset (Sagawa et al., 2019), where the
task is to predict the bird type in a given image
featuring a bird on either a water or land back-
ground. Note that groups with matched bird
types and backgrounds have significantly more
samples than groups with mismatched bird types
and backgrounds (see Table 1). Such data can lead to problematic and unfair spurious correlations
between the background and bird types. Consequently, ERM learns to associate bird types with
backgrounds (Creager et al., 2021; Sagawa et al., 2019), resulting in low accuracy on minority groups
with mismatched backgrounds and bird types. A related phenomenon is subpopulation shift (Koh
et al., 2021), i.e., when the test distribution differs from the train distribution in terms of group

∗Work performed while doing an internship at IBM research.
2I.e. low loss on test data drawn from the same distribution as the training dataset.

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: An illustration of learning group annotations in the presence of outliers. (a) A toy
dataset in two dimensions. There are four groups g = 1, 2, 3, 4 and an outlier. g = 1 and g = 3 are
the majority groups distributed as mixtures of three components each; g = 2 and g = 4 are unimodal
minority groups. y-axis is the decision boundary of a logistic regression classifier. Figures (b, c, d)
compare different data views for learning group annotations and detecting outliers via clustering of
samples with y = 0. (b) loss values can confuse outliers and minority samples which both can have
high loss; (c) in the original feature space it is difficult to distinguish one of the majority group modes
and the minority group; (d) gradient space (bias gradient omitted for visualization) simplifies the data
structure making it easier to identify the minority group and to detect outliers.

proportions. Under subpopulation shift, poor performance on the minority groups in the train data
translates into poor overall test distribution performance, where these groups are more prevalent or
more heavily weighted. Subpopulation shift occurs in many application domains (Tatman, 2017;
Beery et al., 2018; Oakden-Rayner et al., 2020; Santurkar et al., 2020; Koh et al., 2021). This effect
becomes particularly problematic when minority groups correspond to socially-protected groups,
potentially leading to discrimination (Dixon et al., 2018; Garg et al., 2019; Yurochkin & Sun, 2020).

1.1 Preliminaries & Related Works

Denote [N ] = {1, . . . , N}. Consider a dataset D = {(xi, yi)}
n
i=1 consisting of n samples, where

x ∈ X = Rd is the input feature and y ∈ Y = [C] is the class label. The samples are categorized into
G disjoint groups {G1, . . . ,GG} ≜ P , which may also take into account class label. Denote the group
membership of each point in the dataset as {gi}

n
i=1, where gi ∈ [G] for all i ∈ [n]. For example, in

toxicity classification, a group could correspond to a toxic comment mentioning a specific identity,
or, in image recognition, a group could be an animal species appearing on an atypical background
(Beery et al., 2018; Sagawa et al., 2019).

The goal of learning in the presence of minority groups is to learn a model h ∈ H : X → Y
parameterized by θ ∈ Θ that performs well on all groups Gg , where g ∈ [G].

Group-aware setting. Many prior works study the problem of learning in the presence of minority
groups assuming assume access to the group annotations. Among the state-of-the-art methods in this
setting is group Distributionally Robust Optimization (gDRO) (Sagawa et al., 2019). Let ℓ : Y × Y
be a loss function. The optimization problem of gDRO is

min
θ∈Θ

max
g∈[G]

1

|Gg|
∑

(x,y)∈Gg

ℓ(y, hθ(x)), (gDRO)

which aims to minimize the maximum group loss.

Group-oblivious setting. In contrast to the group-aware setting, the group-oblivious setting attempts
to improve worst-group performance without group annotations. Methods in this group rely on
various forms of DRO (Hashimoto et al., 2018; Zhai et al., 2021) or adversarial reweighing (Lahoti
et al., 2020). Algorithmically, this results in up/down-weighing the contribution of the high/low-
loss points. For example, Hashimoto et al. (2018) optimizes a DRO objective with respect to a
chi-square divergence ball around the data distribution, which is equivalent to an ERM discounting
low-loss points by a constant depending on the ball radius. Unfortunately, such methods are at risk of
overfitting to outliers.

We define outliers as data points that significantly deviate from other observations in either the feature
x (e.g. corrupted images) or label y (i.e. mislabeled data). Note that outliers differ from minority
groups in that minority groups must include multiple samples that are similar to each other, while
outliers are inherently isolated and unpredictable. These outliers will generally be high-loss points,
indeed, existing methods for outlier-robust training propose to ignore the high-loss points (Shen &
Sanghavi, 2019), the opposite of the approach in Hashimoto et al. (2018); Liu et al. (2021). Since
outliers of this form are ubiquitous in real-world datasets, it is crucial to resolve this dilemma.
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Table 2: Summary of methods for learning in the presence of minority groups. "-" indicates that
there is no clear evidence in the prior works.
Setting Group-aware Group-oblivious Group-learning

Method ERM gDRO χ2-DRO DORO JTT EIIL George GRASP
(Sagawa et al., 2019) (Hashimoto et al., 2018) (Zhai et al., 2021) (Liu et al., 2021) (Creager et al., 2021) (Sohoni et al., 2020) (Ours)

Improves worst-
group performance?

✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

No training group
annotations?

✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

No validation group
annotations?

✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Group inference? ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Robust to outliers? ✗ - ✗ ✓ ✗ - - ✓

Algorithm 1: GRASP
Input :DBSCAN hyperparameters ϵ and m
Train the ERM classifier θ0 ← argminθ∈Θ′

∑
(x,y)∈D ℓ(y, hθ(x)) ;

for (x, y) ∈ D do
Compute its gradient f ← ∂ℓ(y,hθ(x))

∂θ |θ=θ0
;

for y ∈ Y do
Consider all samples {(xi, yi)} ⊂ D with y = y and their corresponding gradients {fi};
Compute the distance matrix D, where Dij is the distance between fi and fj ;
Assign group annotations and identify outliers by performing DBSCAN clustering in

gradient space: {ĝi} ← DBSCAN(D, ϵ,m), where ĝi = −1 indicates outliers;
Output :Dataset with predicted group annotations D′ ← {(x, ĝ, y)}{ĝ ̸=−1,(x,y)∈D}, where the

detected outliers are removed

Group-learning setting. The final category corresponds to a two-step procedure, wherein the data
points are first assigned group annotations based on various criteria, followed by group-aware training
typically using gDRO. In this category, Just Train Twice (JTT) (Liu et al., 2021) trains an ERM model
and designates high-loss points as the minority and low-loss points as the majority group; George
(Sohoni et al., 2020) seeks to cluster the data to identify groups with a combination of dimensionality
reduction, overclustering, and augmenting features with loss values, and Environment Inference for
Invariant Learning (EIIL) (Creager et al., 2021) finds group partition that maximizes the Invariant
Risk criterion (Arjovsky et al., 2019).

2 GRASP: Gradient Space Partitioning

Our method, Gradient Space Partitioning (GraSP), belongs to the group-learning category.3 However,
GraSP differs from prior group-learning works in its ability to account for outliers in the data. In
addition, most prior methods in this and the group-oblivious categories typically require validation
data with true group annotations for model selection to achieve meaningful worst-group perfor-
mance improvements over ERM, while GraSP does not need any group annotations to achieve good
performance. Table 2 summarizes properties of relevant methods in each setting.

We propose to represent data using gradients of a datum’s loss w.r.t. the model parameters. Such
gradients tell us how a specific data point wants the parameters of the model to change to fit it better.
In this gradient space, we anticipate groups (conditioned on label) to correspond to gradients forming
clusters. Outliers, on the other hand, majorly correspond to isolated gradients: they are likely to
want model parameters to change differently from any of the groups and other outliers. See Figure 1
for an illustration. The gradient space structure allows us to separate out the outliers and learn the
group annotations via traditional clustering techniques such as DBSCAN (Ester et al., 1996). We use
learned group annotations to train models with improved worst-group performance (measured w.r.t.
the true group annotations).

Gradient Space vs Feature Space. We consider a logistic regression model to better understand
how gradient space simplifies data structure and aids clustering.

Consider a binary classification problem (y ∈ {0, 1}) and logistic regression model P(y = 1|x) =
σ(w⊤x + b) trained on the given dataset D, where σ(·) denotes the sigmoid function, w are the

3We present a taxonomy of distributionally-robust methods in Appendix Fig. 2 to clarify our problem setting.
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coefficients and b is the bias. Recall that the logistic regression loss is defined as,

ℓ(y, σ(w⊤x+ b)) = −y log(σ(w⊤x+ b))− (1− y) log(1− σ(w⊤x+ b)),

and the gradient of this loss at point (x, y) w.r.t. (w, b) is

f =: ∇[w,b]ℓ(y,w
⊤x+ b) = (σ(w⊤x+ b)− y)

[
x
1

]
. (1)

This gradient is simply a scaling of the data vector x by the error (σ(w⊤x + b) − y) ∈ [−1, 1],
padded by an additional element (the bias entry) consisting of the error alone. When (x, y) is correctly
classified, the scaling is close to zero and when it is incorrectly classified, the scaling approaches 1.

We interpret this gradient (1) through the lens of Euclidean distance (∥fi − fj∥2). Recall that we
apply clustering to each class independently. The scaling effect mentioned in the previous paragraph
shrinks the correctly classified points towards the origin, while leaving the misclassified points
almost unaffected (see Figure 1(d)). The error itself is included as an extra element (using loss as an
additional feature was previously considered as a heuristic in feature clustering for learning group
annotations (Sohoni et al., 2020)). Consequently, gradient clustering w.r.t. Euclidean distance should
cluster the correctly classified samples into one “majority” group, and then divide the remaining
points into minority groups and outliers based on the size of the error and their position in the feature
space. In Appendix D.1, we additionally provide an interpretation of our gradient representation
when centered cosine distance is employed.

Meanwhile, it is worth noting that the scaling term of (1), the error, is not specific to logistic regression
but applies to all models due to the chain rule. Thus, the intuition behind gradient space clustering
based on logistic regression model can be extended to non-linear models.

GraSP. We present the pseudocode for GRASP in Algorithm 1. We first train an ERM classifier
hθ(·) and collect the gradients of samples’ losses w.r.t. model parameters θ. We then compute
the pairwise centered cosine distances within each class y ∈ Y using gradient representations, as
discussed in Sec. C.1. Lastly, to estimate the group annotations and identify outliers, we apply
DBSCAN on these distance matrices for each class y ∈ Y .

We discard the identified outliers and provide learned group annotations as inputs to a Group-aware
method of choice. For concreteness, in this work, we solve (gDRO) with the method of Sagawa et al.
(2019), a stochastic optimization algorithm equipped with convergence guarantees. Note that other
choices could be appropriate. For example, methods accounting for noise in group annotations (Lamy
et al., 2019; Mozannar et al., 2020; Celis et al., 2021) are also useful as they could counteract mistakes
in GRASP annotations.

3 Experiments

In this section, we conduct experiments on synthetic and benchmark datasets (see Sec. E.1.1) to
evaluate the performance of GRASP,4 finding that GRASP outperforms state-of-the-art baselines in
group identification quality and downstream worst-group performance while providing robustness to
outliers.

3.1 Evaluation of GRASP Table 3: Group identification performance of group-
learning methods measured by Adjusted Rand In-
dex (ARI). Higher ARI indicates higher group iden-
tification quality. GRASP significantly outperforms
the group-learning baselines on all the tested datasets.
Moreover, we observe that GRASP is robust to outliers.

SYNTHETIC WATERBIRDS COMPAS CIVIL-
COMMENTSOUTLIERS? ✗ ✓ ✗ ✓

EIIL -.0069 -.0043 .0114 .0078 -.0025 -.0001
GEORGE .6027 .4565 .2832 .2600 .1962 .1422
FEASP .5133 .4946 .0418 .0418 .2956 .2093
GRASP (OURS) .6943 .6944 .7453 .7453 .5453 .2639

We assess the performance of GRASP in
terms of group identification and down-
stream tasks of training models with compa-
rable performance across groups, both with
and without outliers. In all experiments, we
consider true group annotations unknown
in both train and validation data (except
for “oracle” gDRO which has access to true
group annotations in both train and valida-
tion data). We note that this setting is stricter

4Our code is available at https://github.com/yzeng58/private_demographics.
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Table 4: Downstream worst-group accuracy and average accuracy on the test data. The average
test accuracy is a re-weighted average of the group-specific accuracies, where the weights are based
on the training distribution. The results are reported on clean and contaminated versions of Synthetic
and Waterbirds datasets (Sagawa et al., 2019; Wah et al., 2011), COMPAS (ProPublica, 2021) and
CivilComments (Borkan et al., 2019) datasets. We observe that GRASP significantly outperforms
the group-oblivious (DORO) and other group-learning approaches (EIIL, George, FeaSP) methods
on Synthetic, COMPAS, and CivilComments datasets, and performs relatively well on Waterbirds
datasets, while being robust to outliers.

SYNTHETIC WATERBIRDS COMPAS CIVILCOMMENTSOUTLIERS? ✗ ✓ ✗ ✓
METHOD WORST.(AVG.) WORST.(AVG.) WORST.(AVG.) WORST.(AVG.) WORST.(AVG.) WORST.(AVG.)

ERM .6667(.8823) .5333(.8273) .6075(.9673) .5249(.9621) .4706(.6792) .4659(.9213)

DORO .6667(.8823) .6000(.8342) .5888(.9694) .6636(.9686) .4706(.6801) .4905(.9182)
EIIL .6667(.8783) .6000 (.8115) .6916 (.9645) .7056(.9629) .0588 (.6046) .6056(.9066)
GEORGE .5333(.8732) .6000(.8342) .7523(.9612) .5897(.9100) .4416(.6232) .5897(.9100)
FEASP .6667(.8823) .6667(.8823) .1417(.9346) .1417(.9346) .4416(.6232) .6056(.9066)
GRASP (OURS) .8000(.8926) .8000(.8926) .6854(.9654) .6798(.9004) .4743(.6717) .6798(.9004)

GDRO (ORACLE) .7333(.8639) .8000(.8755) .8665(.9272) .8545(.9081) .4625(.6807) .6941(.8767)

than the majority of prior works considering unknown group annotations (see Table 2). For example,
inspecting Table 5 in Appendix B.2 of Zhai et al. (2021), we observe that DORO cannot surpass ERM
without access to validation data containing true group annotations (see non-oracle model selection
results).
Group annotations quality. The first experiment examines the quality of group annotations learned
with GRASP. To collect the gradients of the data’s losses w.r.t. the model parameters, we train
a logistic regression model on the Synthetic dataset, a three-layer ReLU neural network with 50
hidden neurons per layer on the COMPAS dataset, and a BERT (Devlin et al., 2018) model on the
CivilComments dataset (due to the large number of parameters in BERT, we only consider the last
transformer and the subsequent prediction layer when extracting gradients). For the Waterbirds
dataset, we first featurize the images using a ResNet50 pre-trained on ImageNet (Deng et al., 2009),
and then train a logistic regression. We then use DBSCAN clustering with centered cosine distance.
We select DBSCAN hyperparameters using standard clustering metrics that do not require knowledge
of the true group annotations, see Appendix E.1.

In Table 3, we compare group identification quality of GRASP (measured with ARI) to three group
learning baselines, EIIL, George, and FeaSP, across four datasets. There are two key observations
supporting the claims made in this paper: (i) clustering in the gradient space (GRASP) outperforms
clustering in the feature space (FeaSP and George), as well as other baselines (EIIL); (ii) GRASP is
robust to outliers, i.e. it performs equally well in the presence and absence of outliers. To comment on
the low ARI of EIIL, we note that the Invariant Risk criteria EIIL optimizes was designed primarily
for invariant learning (i.e., learning environment labels) (Arjovsky et al., 2019; Creager et al., 2021),
which may not be suitable for learning group annotations.

Worst-group performance. The standard metric when comparing methods for training ML models
with comparable performance across groups (evaluated w.r.t. true group annotations) is worst-group
accuracy (Sagawa et al., 2019; Koh et al., 2021). For the group-learning methods (GRASP, FeaSP,
George, EIIL), we first discard identified outliers if applicable (GRASP and FeaSP), and then train
gDRO with the corresponding learned group annotations. We also use the learned group annota-
tions on the validation data to select the corresponding gDRO hyperparameters. In Appendix E.2.2
we demonstrate that GRASP worst-group performance is fairly robust to the corresponding DB-
SCAN hyperparameters. For ERM and DORO we used the validation set overall performance for
hyperparameter selection.

For all methods, on a given dataset, we train models with the same architecture and initialization.
Recall that these models can be different from the models used in estimating group annotations with
any of the group-learning methods. See Appendix E.1 for details.

We summarize results in Table 4. GRASP outperforms baselines on Synthetic, COMPAS, and Civil-
Comments datasets. For the Waterbirds dataset, GRASP also performs relatively well. Interestingly,
EIIL performs best on the contaminated Waterbirds dataset, despite the poor ARI discussed earlier. It
is, however, failing on the COMPAS dataset. We also notice that GRASP outperforms “oracle” gDRO
on Synthetic and COMPAS datasets. This could be due to the fact that gradient space clustering
helps to focus on “harder” instances, as discussed in Section C.1, while the available (“oracle”) group
annotations (at least on COMPAS), might be noisy.
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A Background

In this section, we provide a taxonomy of the distributionally robust learning to better clarify our
problem setting (see Fig. 2), the details of the Adjusted Rand Index (ARI), and describe the complete
algorithm of DBSCAN.

Figure 2: A taxonomy of distributionally-robust learning illustrating our problem setting.

Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) The Adjusted Rand Index (ARI) is a
measure of the degree of agreement between two data partitions and accounts for the chance grouping
of elements in the data sets. In our case, consider true group partition P and estimated group partition
P̂ . ARI can be computed by

ARI(P, P̂ ) =

∑
g,g′

(
ngg′

2

)
−
[∑

g

(
ng

2

)∑′
g

(
ng′

2

)]
/

(
n
2

)
1
2

[∑
g

(
ng

2

)
+
∑′

g

(
ng′

2

)]
−

[∑
g

(
ng

2

)∑′
g

(
n′
g

2

)]
/

(
n
2

) ,

where ngg′ is the number of data points belonging to Gg ∈ P assigned to group Ĝg′ ∈ P̂ , ng = |Gg|,
ng′ = |Gg′ |, and n is the total number of samples in the dataset.

DBSCAN (Ester et al., 1996) DBSCAN is a clustering and outlier-detecting method that does not
require the number of clusters to be known. It operates on a distance matrix D. We call a sample as
a "core sample" if there exist m other samples within a distance of ϵ from this sample. DBSCAN
starts with a single cluster that contains an arbitrary core sample and adds core samples from the
neighborhood of the cluster to the cluster until all core samples in the ϵ-neighborhood of the cluster
have been visited. It then adds the remaining samples in the ϵ-neighborhood of the cluster to the
cluster. Next, DBSCAN creates another cluster and expands that cluster by finding unvisited core
samples. It then repeats this process of creating and expanding clusters until all core samples have
been visited. Any remaining samples that are not added to a cluster are considered outliers. Note that
DBSCAN clustering requires two hyperparameters (ϵ,m) and a distance matrix D as input.

B Extended Related Works

The challenge of outliers. Outliers, e.g., mislabeled samples or corrupted images, are ubiquitous
in applications (Singh & Upadhyaya, 2012), and outlier detection has long been a topic of inquiry
in ML (Hodge & Austin, 2004; Wang et al., 2019). For handling outliers without the presence of
minority groups, recent works have proposed ignoring samples with high losses during training (Shen
& Sanghavi, 2019) or using low-rank approximations of the Jacobian matrix of the model output to
extract a clean subset of the data (Mirzasoleiman et al., 2020). However, outliers are much more
challenging to detect when data has (unknown) minority groups, which could be hard to distinguish
from outliers but require the opposite treatment: minority groups need to be upweighted while outliers
must be discarded. Hashimoto et al. (2018) writes, “it is an open question whether it is possible to
design algorithms which are both fair to unknown latent groups and robust [to outliers].”
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We provide an illustration of a dataset with minority groups and an outlier in Figure 1(a). Figure 1(b)
illustrates the problem with the methods relying on the loss values. Specifically, Liu et al. (2021) and
Hashimoto et al. (2018) upweigh high-loss points, overfitting the outlier. Zhai et al. (2021) optimize
Hashimoto et al. (2018)’s objective function after discarding a fraction of points with the largest
loss values to account for outliers. They assume that outliers will have higher loss values than the
minority group samples, which can easily be violated leading to exclusion of the minority samples,
as illustrated in Figure 1(b).

Gradients as data representations. Given a model hθ0(·) and loss function ℓ(·, ·), we consider an
alternative representation of the data where each sample is mapped to the gradient with respect to the
model parameters of the loss on this sample:

fi =
∂ℓ(yi, hθ(xi))

∂θ

∣∣∣∣
θ=θ0

for i = 1, . . . , n. (2)

We refer to (2) as gradient representation. For scalability and efficiency, one can consider a subset of
the model parameters for large models with a high number of parameters such as ResNet-50 (He et al.,
2016). Gradient representations have also found success in novelty detection (Kwon et al., 2020b),
anomaly detection (Kwon et al., 2020a), out-of-distribution inputs detection (Huang et al., 2021),
and robust training (Mirzasoleiman et al., 2020). In this work, we show that gradient representations
are suitable for simultaneously learning group annotations and detecting outliers. Compared to the
original feature space, gradient space simplifies the data structure, making it easier to identify minority
groups. Figure 1(c) illustrates a failure of feature space clustering. Here the majority group for class
y = 0 is a mixture of three components with one of the components being close to the minority
group in the feature space. In the gradient space, for a logistic regression model, representations of
misclassified points remain similar to the original features, while the representations of correctly
classified points are pushed towards zero. We illustrate the benefits of clustering in the gradient space
in Figure 1(d) and provide additional details in the next section.

C Extended Description of GRASP

In this section, we provide more details of Gradient Space Partitioning (GRASP), our method for
identifying minority groups and outliers through clustering in the gradient space. We first demonstrate
through an empirical study of synthetic and semi-synthetic datasets that gradient space is more
suitable for clustering than feature space. We also present theoretical results showing that correctly
partitioning minority groups alone is sufficient for achieving good worst-group performance, even if
majority groups are not correctly partitioned. Lastly, the details of GRASP are provided in Sec. C.2.

C.1 Gradient Space vs Feature Space

Sufficiency of identifying minority groups. As we discussed above, representing data in gradient
space helps to cluster correctly classified samples into one group and to identify the minority groups.
We now theoretically prove that identifying minority groups is sufficient for achieving good worst-
group performance.

Assume that input feature x ∼ Px, group annotation g ∼ Pg, where Pg(g = g) = pg > 0 for all
g ∈ [G] and

∑K
g=1 pg = 1. Let y | x = x, g = g ∼ Bern(ηg(x)), where g ∈ [K]. Note that y | x =

x ∼ η(x), where η : X → [0, 1] as η(x) =
∑

g∈[K] pgηg(x). Let α = Px∼Px(|η(x) − 1/2| < δ)

indicate the separability of the dataset, where δ > 0 is a constant. LetH = {h : X → [0, 1]} be the
space of random classifiers. Given h ∈ H and data sample x, we consider the following random
predictions: ŷ | x = x ∼ Bern(h(x)). Given a group partition P , the risk of group g ∈ [|P |] = [G]
and gDRO classifier w.r.t. P are defined as

Rg(h;P ) ≜ E [h(x)(1− y) + (1− h(x))y | g = g] , (3)
hgDRO = argmin

h∈H
max
g∈[G]

Rg(h;P ). (4)

We now mathematically define majority and minority groups based on the similarity between their
group-specific decision boundaries ηg and overall decision boundary η.
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Table 5: Group identification quality of clustering methods in feature and gradient space
measured by Adjusted Rand Index (ARI). Higher ARI indicates higher group identification
quality. Three clustering methods are considered: K-means, DBSCAN w.r.t. Euclidean distance
(DBSCAN/Euclidean), and DBSCAN w.r.t. centered cosine distance (DBSCAN/Cos). We set the
number of groups per class k = 2 for K-means. The reported numbers show that gradient space
clustering noticeably outperforms feature space clustering.

DATASET SYNTHETIC WATERBIRDS
OUTLIERS? ✗ ✓ ✗ ✓

FEATURE
SPACE

K-MEANS .5505 .3631 .3932 .3932
DBSCAN/EUCLIDEAN .5923 .6042 .0000 .0000

DBSCAN/COS .5133 .4946 .0418 .0418

GRADIENT
SPACE

K-MEANS .8409 .6436 .7235 .7171
DBSCAN/EUCLIDEAN .7724 .7237 .7304 .7304

DBSCAN/COS .6943 .6944 .7453 .7453

Definition C.1 (Majority and minority groups). Assume that group partition P can be divided into
two nonempty disjoint sets: majority groups A and minority groups B:

A = {g ∈ [G] : Px∼Px(|ηg(x)− η(x)| < δ) ≥ 1− ϵ} , (Majority Groups)
B = {g ∈ [G] : Px∼Px(|ηg(x)− η(x)| < δ) < 1− ϵ} , (Minority Groups)

where ϵ ∈ [0, 1] captures how close the majority groups’ decision boundaries are to the overall
decision boundary.

A small ϵ implies better performance of the ERM classifier on the majority groups. Given Definition
C.1, the following theorem states that if the dataset is well-separated (i.e., α is small) and the
performance on majority groups is good (i.e., ϵ is small), applying gDRO on predicted group partition
P ′ which only identifies minority groups correctly can guarantee good worst-group performance.
Theorem C.2 (Error Analysis). Assume a predicted group partition P ′ that identifies the minority
groups correctly, i.e., there exists an index set B′ ⊂ [G′] such that

{
G′g′

}
g′∈B′ = {Gg}g∈B. Denote

the gDRO classifier w.r.t. predicted group partition P ′ as h′
gDRO, which is defined by (4) in terms of

P ′. Then the worst-case risk of f ′
gDRO satisfies the inequality

max
g∈[G]

Rg(h
′
gDRO;P )−min

h∈H
max
g∈[G]

Rg(h;P ) ≤ |A|ϵ(1− α) + α.

Remark C.3. When the performance on majority groups is not good (indicated by a large ϵ), identify-
ing minority groups only might not be sufficient. However, as discussed in Sec. C.2, our GRASP can
identify groups that suffer from high loss. Therefore, in this case, our GRASP has the potential to
correctly identify majority groups and still achieve good worst-group performance.

Quantitative comparison. We now empirically compare the group identification quality of cluster-
ing in feature space and gradient space on two datasets consisting of four groups each. We consider
both clean and contaminated versions. The first dataset is Synthetic based on the Figure 1 illustration.
The second dataset is known as Waterbirds (Sagawa et al., 2019). It is a semi-synthetic dataset of
images of two types of birds placed on two types of backgrounds. We embed the images with a
pre-trained ResNet50 (He et al., 2016) model. To obtain gradient space representations, we trained
logistic regression models. See Section 3 for additional details.

We consider three popular clustering methods: K-means, DBSCAN with Euclidean distance, and
DBSCAN with centered cosine distance. Group annotations quality is evaluated using the Adjusted
Rand Index (ARI) (Hubert & Arabie, 1985), a measure of clustering quality. Higher ARI indicates
higher group annotations quality, and ARI = 1 implies the predicted group partition is identical to the
true group partition. The definition of ARI is provided in Appendix A. Table 5 shows that clustering
in gradient space outperforms clustering in feature space, providing empirical evidence that gradient
space facilitates learning of group annotations. Visualizations of the feature and gradient spaces of
the datasets can be found in Appendix E.2.1.

C.2 GRASP for Group Inference and Outlier Identification

We now describe how to use GRASP to train a distributionally and outlier robust model.
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Clustering method and distance measure. Results in Table 5 indicate that both K-means and
DBSCAN perform well in the gradient space. DBSCAN is a density-based clustering algorithm,
where clusters are defined as areas of higher density, while the rest of the data is considered outliers.
In this work, we choose to use DBSCAN for its ability to identify outliers, which is an important
aspect of the problem we consider. As an additional benefit, unlike K-means, it does not require
knowledge of the number of groups. See Appendix A for a detailed description of DBSCAN.

In terms of distance measure, we recommend centered cosine distance due to its better performance
on the Waterbirds data, which closer resembles real data. We note that the distance and clustering
method choices could be reconsidered depending on the application. For example, for Gaussian-like
data without outliers, K-means performed better in Table 5.

GRASP. We present the pseudocode for GRASP in Algorithm 1. We first train an ERM classifier
hθ(·) and collect the gradients of samples’ losses w.r.t. model parameters θ. We then compute
the pairwise centered cosine distances within each class y ∈ Y using gradient representations, as
discussed in Sec. C.1. Lastly, to estimate the group annotations and identify outliers, we apply
DBSCAN on these distance matrices for each class y ∈ Y .

Training models with improved worst-group performance in the presence of outliers using
GRASP. We discard the identified outliers and provide learned group annotations as inputs to a
Group-aware method of choice. For concreteness, in this work, we solve (gDRO) with the method
of Sagawa et al. (2019), a stochastic optimization algorithm equipped with convergence guarantees.
Note that other choices could be appropriate. For example, methods accounting for noise in group
annotations (Lamy et al., 2019; Mozannar et al., 2020; Celis et al., 2021) are also useful as they could
counteract mistakes in GRASP annotations.

Remark. We note that the model hθ and parameter space Θ used for computing gradient representa-
tions f and learning group annotations with GRASP can be different from the classifier and parameter
space used for the final model training. For example, one can train a logistic regression model (using
features from a pre-trained model when appropriate) and collect the corresponding gradients for
GRASP, and then train a deep neural network of choice with the estimated group annotations.

D Proofs

D.1 Mathematical interpretation of gradient 1 with centered cosine distance

In Section C.1, we provided a mathematical interpretation of Gradient 1 using Euclidean distance
(|fi − fj |2). Here, we interpret Gradient 1 using centered cosine distance (1− ⟨fi−µf ,fj−µf ⟩

|fi−µf |2·|fj−µf |2 )5.
We compare the (class conditioned; class dependency omitted for simplicity) centering terms in the
gradient space (µf ) and feature space (µx):

µf =
1

n

∑
i:yi=c

(σ(w⊤xi + b)− yi)
[

xi

1

]
, µx =

1

n

∑
i:yi=c

xi.

Due to the underrepresentation of the minority group in the data, the feature space center is heavily
biased towards the majority group which could hinder the clustering as illustrated in Figure 3(a). On
the other hand, the expression of µf above implies that gradient space center upweighs high-loss
points which are more representative of the minority groups, resulting in a center in-between minority
and majority groups. Thus, centering in the gradient space facilitates learning group annotations via
clustering with the cosine distance as illustrated in Fig. 3(b).

D.2 Solution of gDRO classifier

Before providing the proof of Theorem C.2 that examines the performance of the gDRO classifier
w.r.t. the predicted group partition P ′, we will first discuss how to solve the gDRO classifier.

5Here, µf refers to the class-conditional empirical mean of f .
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r
Figure 3: Normalized representations of the data from Figure 1(a) in (a) feature space and
(b) gradient space. The green points are the means (before normalization) of the corresponding
representations. Gradient space makes it easier to identify groups and detect outliers via clustering
with centered cosine distances.

Continuing from Sec. C.1, we define the overall risk and rewrite the risk of group g ∈ [|P |] = [G]
defined in (3) as

R(h) = Ex∼Px [Ey [h(x)(1− y) + (1− h(x))y | x]]
= Ex∼Px [h(x)(1− η(x)) + (1− h(x))η(x)], and

Rg(h;P ) = Ex∼Px [Ey [h(x)(1− y) + (1− h(x))y | g = g]]

= Ex∼Px [h(x)(1− ηg(x)) + (1− h(x))ηg(x)] .

The ERM classifier and gDRO classifier w.r.t. group partition P are defined as below:

hERM = argmin
h∈H
R(h),

hgDRO = argmin
h∈H

max
g∈[G]

Rg(h;P ).

Given the formulation above, the following Lemma gives the closed form of ERM classifier.
Lemma D.1 (ERM classifier). The Empirical Risk Minimizer (ERM) classifier is hERM, where

hERM(x) =

{
1, η(x) ≥ 1/2
0, otherwise for all x ∈ X .

Proof of Lemma D.1. By the definition of ERM classifier,

argmin
h∈H
R(h) = argmin

h∈H
Ex∼Px [h(x)(1− η(x)) + (1− h(x))η(x)]

= argmin
h∈H

Ex∼Px (1− 2η(x))h(x). (5)

Since the range of h is [0, 1], (5) is minimized when h(x) = I {1− 2η(x) < 1/2}, which implies
the desired results.

We then obtain the closed-form formula of gDRO classifier following similar steps.
Lemma D.2 (gDRO classifier). Consider a group partition as P = {Gg}g∈[G]. The gDRO classifier
is

hgDRO(x) =

{
1, ηg(x) ≥ 1/2 for all g ∈ [G],
0, ηg(x) < 1/2 for all g ∈ [G],
1/2, otherwise,

and the minimal worst-group risk is

min
h∈H

max
g∈[G]

Rg(h;P ) = max
g∈[G]

Rg(hgDRO;P ) = Ex∼Px

[
min

(
max
g∈[G]

(1− ηg(x)), max
g∈[G]

ηg(x), 1/2

)]
.

Proof of Lemma D.2. Fix x ∈ X and consider the problem

min
h∈H

max
g∈[G]

[h(x)(1− ηg(x)) + (1− h(x))ηg(x)] = min
h∈H

max
g∈[G]

[(1− 2ηg(x))h(x) + ηg(x)] . (6)
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Let t1 = h(x) ∈ [0, 1] and t2 = maxg∈[G] [(1− 2ηg(x))h(x) + ηg(x)] =
maxg∈[G] [(1− 2ηg(x))t1 + ηg(x)]. It is easy to verify that (6) is equivalent to the following
linear programming problem

min
t1,t2

t2 s.t. 0 ≤ t1 ≤ 1, t2 ≥ (1− 2ηg(x))t1 + ηg(x) for all g ∈ [G]. (7)

We divide the problem into the following three cases.

Case 1: When ηg(x) ≥ 1/2 for all g ∈ [G].
For all g ∈ [G], since (1− 2ηg(x)) ≤ 0 , t2 is minimized when t1 = 1, where the minimum
is maxg∈[G](1− ηg(x)) ≤ 1/2.

Case 2: When ηg(x) < 1/2 for all g ∈ [G].
For all g ∈ [G], since (1− 2ηg(x)) > 0 , t2 is minimized when t1 = 0, where the minimum
is maxg∈[G] ηg(x) < 1/2.

Case 3: Other, i.e., there exists g1, g2 ∈ [G] such that ηg1(x) ≥ 1/2 and ηg2(x) < 1/2.
Note that lines t2 = (1− 2ηg(x))t1 + ηg(x) for all g ∈ [G] intersect at one feasible point
(t1, t2) = (1/2, 1/2). It is easy to verify that t2 is minimized when t1 = 1/2, where the
minimum is 1/2.

Therefore, the solution to problem (6) and (7) is

h⋆(x) = t1 =

{
1, ηg(x) ≥ 1/2 for all g ∈ [G],
0, ηg(x) < 1/2 for all g ∈ [G],
1/2, otherwise,

with optimal value

min
h∈H

max
g∈[G]

Rg(h;P ) = t2 = min

(
max
g∈[G]

(1− ηg(x)), max
g∈[G]

ηg(x), 1/2

)
,

which yields the desired results.

Now, consider true group parition P = {Gg}g∈[G] and predicted group partition P ′ =
{
G′g′

}
g′∈[G′]

.
Similarly, for the predicted group partition P ′, let predicted group annotation g′ ∼ Pg′ , where
Pg′(g′ = g′) = p′g′ and

∑G′

g′=1 p
′
g′ = 1. Let y | x = x, g′ = g′ ∼ Bern(η′g′(x)), where g′ ∈ [G′].

Therefore, the group-wise risk w.r.t. the predicted group partition P ′ can be written as

Rg′(h;P ′) = Ex∼Px

[
h(x)(1− η′g′(x)) + (1− h(x))η′g′(x)

]
, where g′ ∈ [|P ′|] = [G′].

Next, we will show that if the predicted group partition P ′ identifies the minority groups correctly,
applying gDRO on P ′ guarantees a small worst-case risk. The following Lemma gives the decision
boundaries of the predicted groups.
Lemma D.3 (Decision boundary of predicted groups). Denote the gDRO classifier w.r.t. predicted
group partition P ′ as h′

gDRO. Assume that predicted group partition P ′ identifies the minority
groups correctly, i.e., there exists an index set B′ ⊂ [G′] such that

{
G′g′

}
g′∈B′ = {Gg}g∈B. Let

A′ = [G′]/B′. The decision boundaries η′g′ of the predicted groups satisfies that

1. for g′ ∈ A′,

η′g′ =
∑
g∈A

wgηg for some wg ∈ [0, 1] with
∑
g∈A

wg = 1;

2. for g′ ∈ B′,
η′g′ = ηg for some g ∈ B.

Proof of Lemma D.3. For all g′ ∈ B′, since
{
G′g′

}
g′∈B′ = {Gg}g∈B, there exists a corresponding

g ∈ B such that ηg such that Gg = G′g′ and hence η′g′ = ηg .

Now consider g′ ∈ A′. Recall that D is the dataset. Note that⋃
g′∈A′

G′g′ = D/
⋃

g′∈B′

G′g′ = D/
⋃
g∈B
Gg =

⋃
g∈A
Gg,
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where
⋃

g∈A Gg is the union of majority groups. Therefore, data sample from any group G′g′ with
g′ ∈ A′ follows the mixture distribution of the majority groups, i.e., for g′ ∈ A′,

y | x = x, g′ = g′ ∼ Bern(η′g′(x)), where η′g′(x) =
∑
g∈A

wgηg(x), wg ∈ [0, 1], and
∑
g∈A

wg = 1.

D.3 Proof of Theorem C.2

Given the helper results presented in Appendix D.2, we now provide the proof for Theorem C.2.

Proof of Theorem C.2. By Lemma D.2, we have

hgDRO(x) =

{
1, ηg(x) ≥ 1/2 for all g ∈ [G],
0, ηg(x) < 1/2 for all g ∈ [G],
1/2, otherwise,

and

h′
gDRO(x) =

 1, η′g′(x) ≥ 1/2 for all g′ ∈ [G′],
0, η′g′(x) < 1/2 for all g′ ∈ [G′],
1/2, otherwise.

Therefore, hgDRO(x) ̸= h′
gDRO(x) if and only if one of the following three events happen:

E1 : ηg(x) ≥ 1/2 for all g ∈ [G] and there exists g′ ∈ [G′] such that η′g′(x) < 1/2;
E2 : ηg(x) < 1/2 for all g ∈ [G] and there exists g′ ∈ [G′] such that η′g′(x) ≥ 1/2;
E3 : there exists g1, g2 ∈ [G] such that ηg1(x) ≥ 1/2 and ηg2(x) < 1/2, while η′g′(x) ≥ 1/2 for all

g′ ∈ [G′] or η′g′(x) < 1/2 for all g′ ∈ [G′].

Consequently,
P(hgDRO(x) ̸= h′

gDRO(x)) = P(E1 ∪ E2 ∪ E3).
Note that for simplicity, here we use P to denote Px∼Prvx

without causing any ambiguity.

By Lemma D.3, it is easy to verify that E1 and E2 are impossible, i.e., P(E1) = P(E2) = 0. Therefore,

P(hgDRO(x) ̸= h′
gDRO(x)) = P(E1 ∪ E2 ∪ E3) = P(E3). (8)

Note that

P(E3)
= P

( {
x : there exists g ∈ [G] such that ηg(x) < 1/2 and η′g′(x) ≥ 1/2 for all g′ ∈ [G′]

}⋃{
x : there exists g ∈ [G] such that ηg(x) ≥ 1/2 and η′g′(x) < 1/2 for all g′ ∈ [G′]

} )
= P

( {
x : there exists g ∈ A such that ηg(x) < 1/2 and η′g′(x) ≥ 1/2 for all g′ ∈ [G′]

}⋃{
x : there exists g ∈ A such that ηg(x) ≥ 1/2 and η′g′(x) < 1/2 for all g′ ∈ [G′]

} )(
By Lemma D.3

)
≤ P

(
{x : there exists g ∈ A such that ηg(x) < 1/2 and η(x) ≥ 1/2}⋃
{x : there exists g ∈ A such that ηg(x) ≥ 1/2 and η(x) < 1/2}

)(
η is a linear combination of

{
η′g′

}
g′∈[G′]

)
≤ P(there exists g ∈ A such that (ηg(x)− 1/2)(η(x)− 1/2) ≤ 0)

= 1− P(for all g ∈ A such that (ηg(x)− 1/2)(η(x)− 1/2) > 0)

≤ 1− P (for all g ∈ A such that |ηg(x)− η(x)| < δ and |η(x)− 1/2| ≥ δ)(
triangle inequality

)
≤ 1− P (for all g ∈ A such that |ηg(x)− η(x)| < δ)P (|η(x)− 1/2| ≥ δ)

≤ 1− (1− |A|ϵ)(1− α) = |A|ϵ+ α− |A|ϵα. (9)
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Combining (8) and (9) yields

P(hgDRO(x) ̸= h′
gDRO(x)) ≤ |A|ϵ+ α− |A|ϵα.

Moreover, for any g ∈ [G],

Rg(h
′
gDRO;P )−Rg(hgDRO;P ) = Ex∼Px

[
h′
gDRO(x)(1− ηg(x)) + (1− h′

gDRO(x))ηg(x)
]

− Ex∼Px [hgDRO(x)(1− ηg(x)) + (1− hgDRO(x))ηg(x)]

= Ex∼Px

[
(1− 2ηg(x))(h

′
gDRO(x)− hgDRO(x))

]
≤ P(hgDRO(x) ̸= h′

gDRO(x))

≤ |A|ϵ+ α− |A|ϵα.

Consequently,

max
g∈[G]

Rg(h
′
gDRO;P )− max

g∈[G]
Rg(hgDRO;P ) ≤ |A|ϵ+ α− |A|ϵα.

This directly implies the desired results.

E Experiment
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Figure 4: (a) Scatter plot of contaminated Synthetic dataset. (b) Original im-
age of 010.Red_winged_Blackbird/Red_Winged_Blackbird_0079_4527.jpg. (c) Image
010.Red_winged_Blackbird/Red_Winged_Blackbird_0079_4527.jpg after Gaussian blur-
ring.

E.1 More Details of Experiment Setup

Our experiments are mainly performed on NIVIDA A100 GPUs.
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(a) Visualization of input features and 2D t-SNE results
of gradients with y = 0 on contaminated Synthetic
dataset. (i) Input features. (ii) 2D t-SNE results of
gradients.
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(b) 3D t-SNE visualization of features and gradients
with y = 1 on contaminated Waterbirds dataset. Left:
3D t-SNE visualization of features extracted from
ResNet-50 pretrained on ImageNet (Deng et al., 2009).
Right: 3D t-SNE visualization of gradients of the sam-
ple’s loss w.r.t. the parameters of the last layer.
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Figure 6: Group identification quality of GRASP v.s. DBSCAN clustering hyperparameters (eps: ϵ,
min_samples: m) measured in Adjusted Rand Index (ARI) on class 0 of Waterbirds dataset.

Figure 7: Group identification quality of GRASP v.s. DBSCAN clustering hyperparameters (eps: ϵ,
min_samples: m) measured in Adjusted Rand Index (ARI) on class 1 of Waterbirds dataset.

E.1.1 Datasets and Baselines

Synthetic. We generate a synthetic dataset of 1,000 samples with two features x ∈ R2, a group
attribute g ∈ [4], and a binary label y ∈ {0, 1}, similar to the motivating example of Figure 1.
(Clean): The synthetic dataset consists of 10 Gaussian clusters with a variance of 0.01, and each
Gaussian cluster contains 100 samples. Class 0 is divided into two groups: group 3 consists of four
Gaussian clusters with centers (1, 5), (1, 3), (1, 2), (1, 1); group 2 consists of one Gaussian cluster
with center (0, 4). Similarly, Class 1 is divided into two groups: group 1 consists of four Gaussian
clusters with centers (0, 5), (0, 3), (0, 2), (0, 1); group 2 consists of one Gaussian cluster with center
(1, 4). (Contaminated): We contaminate the synthetic dataset by flipping randomly selected 5% of
labels. The contaminated synthetic dataset is visualized in Appendix Figure 4a.

Waterbirds. (Clean): Waterbirds (Sagawa et al., 2019; Wah et al., 2011) is a semi-synthetic image
dataset of land birds and water birds (Wah et al., 2011) placed on either land or water backgrounds
using images from the Places dataset (Zhou et al., 2017). There are 11,788 images of birds on
their typical (majority) and atypical (minority) backgrounds. The task is to predict the types of
birds and the background type is the group (2 background types per class, a total of 4 groups). We
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pre-process the dataset as in Idrissi et al. (2022). (Contaminated): We contaminate the Waterbirds
dataset by introducing outliers in the training and validation datasets by flipping 2% of the class
labels, transforming 1% of the images with Gaussian blurring, color dithering 1% of the images, and
posterizing 1% of the images (4 bits per color channel). See Appendix Figure 4c for a visual example
of a contaminated image.

COMPAS & CivilComments. Both datasets are real and collected by humans, therefore likely to
contain outliers. (COMPAS): COMPAS (ProPublica, 2021) is a recidivism risk score prediction
dataset consisting of 7,214 samples. Each class y ∈ [0, 1] is divided into six groups: Caucasian
males, Caucasian females, African-American males, African-American females, males of other races,
and females of other races, making 12 groups in total. (CivilComments): CivilComments (Dixon
et al., 2018; Koh et al., 2021) is a language dataset containing online forum comments. The task is to
predict whether comments are toxic or not. We preprocess the dataset as in Idrissi et al. (2022). We
divide comments in each class into two groups according to the presence or absence of identity terms
pertaining to protected groups (LGBT, Black, White, Christian, Muslim, other religion).

Experimental baselines. We compare GRASP to four different types of baselines: (1) standard
empirical risk minimization (ERM), (2) a group-aware method (gDRO (Sagawa et al., 2019)), (3)
a group-oblivious method (DORO, CVaR-DORO variation (Zhai et al., 2021)), and (4) two group-
learning methods (EIIL (Creager et al., 2021), George (Sohoni et al., 2020)). We chose DORO among
the methods relying on loss values to improve worst-group performance because it is the only method
from this group designed to be robust to outliers. Recall that only the group-aware method (gDRO)
has access to the true group annotations, thus it should be interpreted as an “oracle” baseline.

For all methods, on a given dataset, we train models with the same architecture and initialization.
Recall that these models can be different from the models used in estimating group annotations with
any of the group-learning methods. See Appendix E.1 for details.

We also perform an ablation study by considering an additional group-learning baseline, Feature
Space Partitioning (FeaSP). It is identical to GraSP except it performs DBSCAN clustering in the
feature space. Comparison to FeaSP emphasizes the importance of clustering in the gradient space as
opposed to other choices such as the clustering method and distance measure.

The batch size of Synthetic, Waterbirds, COMPAS, and CivilComments datasets are 128, 128, 128,
and 32 for both group inference and downstream DRO tasks. We split the Synthetic and COMPAS
datasets into training, validation, and test datasets at the ratio of 0.6:0.2:0.2. We follow an identical
procedure to Idrissi et al. (2022) to pre-process the Waterbirds and Civilcomments dataset. Fig. 4a
visualizes the contaminated Synthetic dataset. We provide an example of a contaminated sample in
Fig. 4b and Fig. 4c, which present an image before and after Gaussian blurring.

E.1.2 Group annotations quality.

To collect the gradients of the corresponding datum’s loss w.r.t. the model parameters, we train
a logistic regression model on 50 epochs on the Synthetic dataset, a three-layer ReLU neural
network with 50 hidden neurons for 300 epochs on the COMPAS dataset, and a BERT (Devlin
et al., 2018) model for 10 epochs on the CivilComments dataset. For the Waterbirds dataset, we
first featurize the images using a ResNet50 pre-trained on ImageNet (Deng et al., 2009), and
then train a logistic regression for 360 epochs We tune the DBSCAN clustering hyperparameters
ϵ ∈ {.1, .2, .3, .5, .7} ,m ∈ {10, 20, 30, 50, 70, 100} for each y ∈ Y , for both FeaSP and GRASP.
We tune the learning rate of EIIL in

{
10−1, 10−2, 10−3, 10−4

}
, run EIIL for 50 epochs on Synthetic,

Waterbirds, and COMPAS datasets, three epochs on Civilcomments dataset. We tune the overcluster
factor of George in {1, 2, 5, 10}, and employ the over-cluster Gaussian Mixture Model clustering for
George. Lastly, we select the best EIIL epoch and all hyperparameters mentioned above based on
Silhouette Coefficient, a measure assessing the clustering quality in terms of the degree to which a
sample clusters with other similar samples.

E.1.3 Worst-group performance.

We use Adam optimizer for all trainings. We tune outlier fraction ϵ ∈ {.005, .01, .02, .1, .2} and
minimal group fraction ∈ {.1, .2, .5} for (CvAR-)DORO on all datasets. We tune the learning rate
∈
{
10−5, 10−4, 10−3

}
and weight decay ∈

{
10−4, 10−3, 10−2

}
for all methods. We select the step

size of the group weights q in gDRO (Sagawa et al., 2019) ∈ {.001, .01, .1}. We train a three-layer
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ReLU neural network with 50 hidden neurons per layer for 50 and 300 epochs on the Synthetic
and COMPAS datasets, respectively. We train a logistic regression model with 360 epochs on the
Waterbirds dataset, and a BERT model for 10 epochs on the Civilcomments dataset.
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Figure 8: Worst-group accuracy of GRASP v.s. DBSCAN clustering hyperparameters (eps: ϵ,
min_samples: m) on Waterbirds dataset.
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Figure 9: Worst-group accuracy of GRASP v.s. DBSCAN clustering hyperparameters (eps: ϵ,
min_samples: m) on COMPAS dataset.

E.2 Additional Experiments

E.2.1 Visualization of Gradient Space and Feature Space

In this section, we visualize the gradient space and feature space of contaminated Synthetic (see
Fig. 5a) and Waterbirds dataset (see Fig. 5b).

E.2.2 Robustness to DBSCAN Clustering Hyperparameters

In this experiment, we investigate the effect of clustering hyperparameters on group
inference and downstream DRO task performances. In doing so, we let ϵ ∈
{.1, .15, .2, .25, .3, .35, .4, .45, .5, .55, .6, .65, .7} and m ∈ {5, 10, 20, 30, 40, 50, 60, 100} and visu-
alize how ARI varies with different choice of clustering hyperparameters on different classes of
Waterbirds dataset in Fig. 6 and Fig. 7. We observe that the group identification performance is
robust to clustering hyperparameters. For worst-group performance, we set the ϵ and m to be the
same for different classes on the datasets. We visualize how it varies with clustering hyperparameters
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on Waterbirds and COMPAS dataset in Fig. 8 and Fig. 9. A similar phenomenon is observed for
worst-group performance — we find that worst-group performance is fairly robust to DBSCAN
clustering hyperparameters.

F Discussion and Conclusion

We considered the problem of learning in the presence of outliers and minority groups. Our method
facilitates the training of models that exhibit comparable performance across groups, even without
group annotations and in the presence of outliers, by leveraging gradient space clustering to predict
group annotations and identify outliers. In general, a limitation of the gradient space is the simpli-
fication of the structure of correctly classified points, typically found in the majority group. While
perhaps not ideal for data exploration, it does not impact downstream worst-group performance.

As a next step, when training models with GRASP group annotations, it would be interesting to
consider alternatives to gDRO that are accounting for noise in group annotations (Lamy et al., 2019;
Mozannar et al., 2020; Celis et al., 2021) to counteract potential errors in GRASP annotations.
Alternatively, one can consider training with group-oblivious methods such as DORO (Zhai et al.,
2021) and performing model selection on the validation data with GRASP group annotations.
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