
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FITLIGHT: FEDERATED IMITATION LEARNING FOR
PLUG-AND-PLAY TRAFFIC SIGNAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Although Reinforcement Learning (RL)-based Traffic Signal Control (TSC) meth-
ods have been extensively studied, their practical applications still raise some seri-
ous issues, such as high learning cost and poor generalizability. This is because the
“trial-and-error” training style makes RL agents extremely dependent on the spe-
cific traffic environment, which also requires a long convergence time. To address
these issues, we propose a novel federated imitation learning-based framework for
multi-intersection TSC, named FitLight, which allows RL agents to plug-and-play
for any traffic environment without additional pre-training cost. Unlike existing
imitation learning approaches that rely on pre-training RL agents with demon-
strations, FitLight allows real-time imitation learning and seamless transition to
reinforcement learning. Due to our proposed knowledge-sharing mechanism and
novel hybrid pressure-based agent design, RL agents can quickly find a best con-
trol policy with only a few episodes. Moreover, for resource-constrained TSC
scenarios, FitLight supports model pruning and heterogeneous model aggregation,
such that RL agents can work on a microcontroller with merely 16KB RAM and
32KB ROM. Extensive experiments demonstrate that, compared to state-of-the-art
methods, FitLight not only provides a superior starting point but also converges
to a better final solution on both real-world and synthetic datasets, even under
extreme resource limitations.

1 INTRODUCTION

With the rapid development of cities and the rapid growth of population, an increasing number of
cities are suffering from severe traffic congestion, resulting in various serious problems, including
economic losses, rising commuting costs, and environmental pollution. The Traffic Signal Control
(TSC) has attracted widespread attention as a promising solution to traffic congestion (Chen et al.,
2013; Waszecki et al., 2017; Chang et al., 2020). In most real-world applications, the control policies
are rule-based (e.g., FixedTime (Koonce & Rodegerdts, 2008), GreenWave (Török & Kertész, 1996),
SCOOT (Hunt et al., 1982), and SCATS (PR, 1992)) that follow some pre-defined rules of the traffic
plan. To better handle dynamic traffic scenarios, several adaptive methods have been proposed (e.g.,
MaxPressure (Varaiya, 2013), MaxQueue (Zhang et al., 2021), and SOTL (Cools et al., 2013)),
which control traffic in a heuristic manner. Due to the advancement of Artificial Intelligence (AI)
and Internet of Things (IoT) technologies, utilizing Reinforcement Learning (RL) to control traffic
signals has been a promising approach.

Although RL-based methods can achieve better control performance, their usage is greatly restricted
by the issues of high learning cost and poor generalizability. This is due to the trial-and-error learn-
ing style of RL agents, which requires the RL agent to make a large number of attempts in a specific
traffic environment to gradually learn the control strategy. Worse still, as the size of the road network
and the number of RL agents increase, the size of the policy space will also increase exponentially,
making it extremely difficult to find the optimal control strategy in multi-intersection scenarios and
requiring substantial training costs. Therefore, how to effectively improve both the training efficiency
and generalization ability is becoming a major challenge in designing RL-based TSC methods.

To tackle this problem, in this paper, we propose a novel Federated Imitation Learning (FIL)-based
framework named FitLight for efficient and effective multi-intersection TSC, which enables RL
agents to plug-and-play for different traffic environments without additional pre-training cost. In
other words, after obtaining a very high-quality solution in the first episode, FitLight can quickly
converge to a better final control strategy. As shown in Figure 1, FitLight is built on a cloud-
edge framework consisting of one cloud server and multiple edge nodes (i.e., RL agent and its

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

corresponding intersection). Unlike existing methods that either train RL agents directly within the
traffic environment or employ imitation learning over pre-collected data for pre-training, FitLight
seamlessly integrates imitation learning into the reinforcement learning process. This integration
enables the RL agent to achieve a high-quality initial solution in the first episode, thanks to the
supervision provided by imitation learning. Subsequently, due to our novel hybrid pressure-based
agent design, the RL agent seamlessly transitions into the reinforcement learning phase, ultimately
converging to an even better control strategy. Moreover, FitLight’s support for model pruning and
heterogeneous model aggregation ensures that RL agents can be deployed in resource-constrained
TSC scenarios. In summary, this paper makes the following four major contributions:

• We propose a novel Federated Imitation Learning (FIL)-based framework that can plug and
play for different traffic environment without incurring additional pre-training costs.

• We introduce an imitation learning mechanism combined with a hybrid pressure-based
agent design, enabling real-time imitation learning and smooth transitions to reinforcement
learning, allowing RL agents to quickly achieve a high-quality solution in the first episode.

• We propose a federated learning-based knowledge sharing mechanism that supports het-
erogeneous model aggregation, thereby improving learning efficiency and enabling our
FitLight to operate in TSC scenarios with extremely limited resources.

• Extensive experiments on various synthetic and real-world datasets show the superiority of
our FitLight in terms of average travel time and convergence rate.

2 RELATED WORK Cloud Server

Intersection
𝟏𝟏

Knowledge sharing Model pruning

RL Agent 𝟏𝟏

Expert 𝟏𝟏

⋯

Trajectory
Memory 𝟏𝟏

Intersection
𝒏𝒏

RL Agent 𝒏𝒏

Expert 𝒏𝒏 Trajectory
Memory 𝒏𝒏

𝒂𝒂𝒆𝒆

𝒂𝒂

𝒔𝒔

𝒔𝒔

𝒂𝒂

𝒔𝒔
𝒔𝒔

𝒂𝒂𝒆𝒆

𝒔𝒔 : Current State

𝒓𝒓 : Reward
𝒂𝒂 : Action

𝒔𝒔′ : Next State
𝒂𝒂𝒆𝒆 : Expert Action

ℒ

ℒ : Loss

ℒ

Figure 1: Framework of FitLight.

To improve the performance of TSC, various
methods based on RL have been proposed. For
example, PressLight (Wei et al., 2019a), CoL-
ight (Wei et al., 2019b), MPLight (Chen et al.,
2020), MetaLight (Zang et al., 2020), and RT-
Light (Ye et al., 2023a) performed TSC opti-
mization based on the concept of pressure from
the Max Pressure (MP) control theory (Varaiya,
2013) to design the state and reward. Unlike
these methods, IPDALight (Zhao et al., 2022) proposed a new concept named intensity, which in-
vestigates both the speed of vehicles and the influence of neighboring intersections. To reflect the
fairness of individual vehicles, FairLight (Ye et al., 2022) and FELight (Du et al., 2024) considered
the relationship between waiting time and driving time, as well as the extra waiting time of vehicles,
in a deceptive manner. To leverage cooperation among RL agents in the road network, FedLight
(Ye et al., 2021) and RTLight (Ye et al., 2023a) utilize federated reinforcement learning to share
knowledge. HiLight (Xu et al., 2021) cooperatively controls traffic signals to directly optimize av-
erage travel time by using hierarchical reinforcement learning. UniLight (Jiang et al., 2022) uses a
universal communication form between intersections to implement cooperation. However, the RL
agents of these methods are trained from randomly initialized models, resulting in a long training
time before obtaining the final control strategy.

To improve learning efficiency, imitation learning (Agarwal et al., 2019; Argall et al., 2009; Hussein
et al., 2017; Osa et al., 2018) that enables the RL agent to learn from expert demonstrations is a
promising approach. Currently, imitation learning can be divided into two categories: behavioral
cloning (Bain & Sammut, 1995; Pomerleau, 1991) and adversarial imitation learning (Abbeel &
Ng, 2004; Syed & Schapire, 2007; Ziebart et al., 2008), both of which have been applied in TSC.
Specifically, DemoLight (Xiong et al., 2019) is a behavioral cloning-based method that reduces the
imitation learning task to a common classification task (Ross & Bagnell, 2010; Syed & Schapire,
2010) by minimizing the action difference between the agent strategy and the expert strategy. How-
ever, since this method is trained in a single-intersection environment and relies on pre-collected
expert trajectories from the same environment, it cannot be applied to multi-intersection scenarios
and is highly specific to the training environment. On the other hand, as an adversarial imitation
learning-based method, InitLight (Ye et al., 2023b) uses a generative adversarial framework to learn
experts’ behaviors, where the discriminator iteratively differentiates between pre-collected expert
and agent trajectories (generated through real-time agent-environment interactions). Although Init-
Light can use trajectories from different environments to train RL agents, it still needs a pre-training
process to obtain an initial model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Base Model

Edge Node 1 Edge Node 2 Edge Node 𝒏

…

Aggregated Model

Phase

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

𝑝7

𝑝8

ℒ𝑅 ℒ𝐼

𝒂
𝒔 : Current State 𝒓 : Reward 𝒂 : Action 𝒔′ : Next State 𝒂𝒆 : Expert Action

𝒔 𝒔𝒔, 𝒂, 𝒓, 𝒔′

Trajectory

Memory
𝒂𝒆

𝒔, 𝒂, 𝒓, 𝒔′ 𝒔, 𝒂, 𝒂𝒆

Model Pruning Knowledge Sharing

RL Agent
Expert

Intersection Environment

Cloud Server

Figure 2: Architecture and workflow of FitLight.
To the best of our knowledge, FitLight is the first federated imitation learning framework for TSC,
enabling RL agents to plug-and-play in any traffic environment without additional pre-training costs.
This allows the RL agent to achieve a high-quality initial solution in the first episode and then
converge to an even better final result.

3 OUR FITLIGHT APPROACH

To enable RL agents to plug-and-play in various traffic scenarios without pre-training, we design
a novel FitLight approach based on a cloud-edge architecture, where the cloud server facilitates
knowledge sharing among intersections. Each intersection is equipped with an RL agent and an ex-
pert strategy. Figure 2 details the FitLight components and workflow. In our approach, the federated
imitation learning framework comprises a cloud server and multiple edge nodes. The cloud server
first dispatches pruned models from a base model to edge nodes and then shares knowledge among
different intersections by aggregating heterogeneous models during the RL training. For each edge
node, we deploy an RL agent to monitor traffic dynamics using connected sensors, such as cameras,
to make traffic signal control decisions and update network parameters. Once capturing the current
traffic state s, the RL agent will choose one best action a to control traffic lights. Meanwhile, the
expert strategy also gives a decision ae, which will be stored as the label of the current state for
imitation learning. This expert guidance enables the RL agent to quickly identify a high-quality
solution. We will give the details of our approach in the following subsections.

3.1 INTERSECTION MODELING

The right part of Figure 2 shows an intersection example with three components, i.e., arrival and
departure lanes, directed roads, and control phase setting:

• Arrival and Departure Lanes: The intersection consists of a set of arrival lanes La =
{l1, l2, · · · , l12} and a set of departure lanes Ld = {l′1, l′2, · · · , l′12}, where vehicles can
enter and exit the intersection, respectively.

• Directed Roads: Based on direction marks at the end of each arrival lane, we define a
directed road as (la, ld), la ∈ La, ld ∈ Ld, where ld is the departure lane indicated by the
direction mark on the ground of la. For example, (l7, l′7) and (l8, l

′
8) are two directed roads.

• Control Phases: According to common sense, the vehicles turning right are not restricted
by traffic. Therefore, we design a set of eight feasible control phases P = {p1, p2, · · · , p8},
which are obtained by combining 2 of 8 directed roads and indicate the rights-of-way sig-
naled to vehicles by traffic lights. For example, the intersection on the right side of Figure 2
shows a scenario with control phase p4 enabled, where the vehicles on lane l7 can turn left
to enter lane l′7 and the vehicles on lane l8 can go straight to enter lane l′8. Note that the
number of control phases is fixed, regardless of the number of lanes.

3.2 HYBRID PRESSURE

Unlike many existing works that use pressure from MP control theory to model traffic dynamics, this
paper introduces a novel concept called Hybrid Pressure (HP) for designing RL agents. Specifically,
HP takes into account a broader range of dynamics, from individual vehicle behavior to intersection-
level interactions, rather than solely focusing on the number of vehicles, as is common in MP. This
approach allows for more accurate modeling of RL elements.

Definition 1 (Hybrid Pressure of a Vehicle). The hybrid pressure of a vehicle veh on a lane of an
intersection hpveh is defined as:

hpveh = log(1 +
lmax − d

lmax
+

vmax − v

vmax
+

wtveh
dtveh

), (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where lmax is the lane length, d indicates the distance between the vehicle and the intersection,
vmax is the maximum speed of the lane, v is the current speed of the vehicle, wtveh and dtveh are
the overall waiting time and driving time of the vehicle along its route so far from the time when it
entering the traffic network, respectively. Note that we normalize the distance and speed by lmax

and vmax to constrain their ranges. Moreover, we use log(·) to smooth the absolute value of hveh

and plus 1 to make sure hveh is always greater than 0.

We use the newly designed hybrid pressure of a vehicle to indicate the traffic priority when the
vehicle arrives at an intersection. According to Definition 1, we can find that the vehicles with a
shorter distance to the intersection, a slower speed, and a longer cumulative waiting time will have
a higher hveh value, i.e., have greater priority for the right of way. When waiting at an intersection,
the waiting time of a vehicle increases cumulatively, resulting in an increase in the corresponding
lane’s HP value. Along with the increasing lane HP values, the vehicles on some feeder roads can
eventually move. Due to the elegant combination of individual vehicles’ features, HP can more
accurately reflect the traffic dynamics.

Definition 2 (Hybrid Pressure of a Directed Road). The hybrid pressure of a directed road (la, ld)
is defined as the difference in hybrid pressure between the arrival and departure lanes, where a
lane’s hybrid pressure is the sum of all vehicles’ HP on that lane.

hp(la,ld) =
∑

veh∈la

hpveh −
∑

veh∈ld

hpveh. (2)

To denote the hybrid pressure of all the vehicles on a lane, Definition 2 defines the HP of a directed
road (la, ld). Since the hybrid pressure of a lane is in a summation form, it implicitly reflects the
number of vehicles on both la and ld. Therefore, hp(la,ld) not only reflects the status of individual
vehicles but also captures the imbalance in traffic conditions between the upstream and downstream
lanes. In our approach, the TSC controller tends to allow the directed road with higher HP values to
move first.

Definition 3 (Hybrid Pressure of an Intersection). The hybrid pressure of an intersection I equals
the difference between the arrival and departure lanes’ HP values, i.e.,

hpI =
∑
l∈La

hpl −
∑
l∈Ld

hpl, (3)

Definition 3 presents how to calculate the FI for an intersection, which can be used to evaluate the
overall traffic pressure faced by the intersection. From this definition, we can see that the hybrid
pressure of the intersection can approximately reflect the imbalance between upstream and down-
stream traffic statuses at the intersection. Therefore, similar to the MP control theory, if the HP of
the intersection can be controlled at a low level, the throughput of vehicles crossing this intersection
will be maximized.

3.3 EDGE NODE DESIGN

In our approach, the traffic lights of each edge node are controlled by a Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) agent. Unlike most existing works that directly train the agent
through reinforcement learning, we deploy an expert algorithm to guide the agent towards efficient
convergence via imitation learning, enabling the RL agent to find a high-quality solution in the first
episode.

Expert Algorithm. Based on the concept of hybrid pressure, we design a simple but effective
control heuristic named MaxHP, which greedily selects the control phase with the maximum HP
values. Similar to the classic MP-based heuristic control method MaxPressure (Varaiya, 2013), by
allowing vehicles in the lane with the largest HP value to pass, MaxHP can reduce the HP value of
the intersection.

Agent Design. In this paper, we design the key elements of the PPO agent by using the proposed
HP concept, i.e.,

• State: State is the information of the intersection captured by the agent as its own obser-
vation for phase selection. Take the standard intersection in Figure 2 as an example, the
state includes the HP of all directed lanes (i.e., hpl1,l′1 , hpl2,l′2 , · · · , hpl12,l′12 and the current
control phase (i.e., p4)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Action: Based on the observed current traffic state, the PPO agent needs to choose one best
control phase to maximize the throughput of the intersection. For the intersection example
in Figure 2, the PPO agent has 8 permissible control phases (i.e., p1, · · · , p8).

• Reward: Once an action is completed, the environment will return a reward to the agent.
The reward mechanism plays an important role in the RL learning process. It is required
that a higher reward implies a better action choice. As mentioned in Definition 3, to en-
courage the agent to maximize the throughput of the intersection by minimizing the hybrid
pressure of the intersection hpI , in this paper, we define the reward as r = −hpI .

A PPO agent consists of two trainable networks, i.e., Actor θA and Critic θC , where θ is the model
parameter. The Actor model is responsible for learning the policy and determining which action to
take given the current state. The Critic model, on the other hand, serves as a value estimator, assess-
ing whether the action selected by the Actor will lead to an improved state in the traffic environment.
Therefore, the feedback from the Critic model can also be used to optimize the Actor model. In this
paper, since we also utilize imitation learning to guide the agent training, as shown in the right part
of Figure 2, there are two loss functions from reinforcement learning LR and imitation learning LI .
To calculate these loss values for optimizations, a mini-batch of trajectory samples is collected from
the agent trajectory memory, where each sample is a quintuple ⟨s, a, ae, r, s′⟩.
First, the reinforcement learning loss LR includes the losses of both the Critic model LC and the
Actor model LA. Note that the reinforcement learning of PPO requires that trajectory samples in a
mini-batch be continuous.

Critic Model. We optimize the Critic model by:

LC = E[|θC(st)target − θC(st)|], (4)

where E is an operator to calculate the empirical average over a mini-batch of samples, and
θC(st)target can be calculated as θC(st)target = rt+1 + γ · C(st+1) by using the Temporal-
Difference (TD) algorithm (Tesauro et al., 1995) to estimate the target value.

Actor Model. As a policy gradient-based RL algorithm, the objective of the Actor model is

LA = E[min(Rt, clip(Rt, 1− σ, 1 + σ))At], (5)

where Rt = θA(at|st)
θold
A (at|st)

is the importance sampling that obtains the expectation of samples under
the new Actor model θA we need to update, At is an estimated value of the advantage function
at time step t, and σ is the clipping parameter that restricts the upper/lower bounds in the clip(·)
function to stabilize the updating process. Note that the samples are gathered from an old Actor
model θoldA . The advantage function At is computed with the Generalized Advantage Estimator
(GAE) (Schulman et al., 2015) as

At = δt + (γλ)δt+1 + (γλ)2δt+2

+ · · ·+ (γλ)|B|−t+1δ|B|−1,
(6)

where γ ∈ [0, 1] is the discount factor of future rewards, λ ∈ [0, 1] is the GAE parameter, |B| is the
batch size of the sampled mini-batch, and δt = rt + γθC(st+1)− θC(st).

In addition to the reinforcement learning loss, the Actor model also has a loss from imitation learn-
ing, which guides the agent’s behavior.

Imitation Learning. In our approach, we use MaxHP as the expert algorithm to label the state s by
selecting the corresponding action ae. This labeling process enables us to apply supervised learning
to minimize the discrepancy between the Actor’s actions and the expert’s actions. Since the control
phases are discrete actions, we employ the cross-entropy loss function (Shannon, 1948; Zhang &
Sabuncu, 2018) to handle this multi-class classification task:

LI = −
|P |∑
i=1

aei log(ai), (7)

where |P | is the number of classes (control phases), aei is the indicator variable of the label (i.e.,
the action chosen by the expert algorithm) that is encoded by a one-hot vector, ai is the prediction
probability of the i-th action given by the Actor model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Finally, considering the balance of exploitation and exploration for the RL agent training, we use a
balance factor α to adjust the weighting of different losses:

L = α(LC + LA) + (1− α)LI , (8)

where α increases with the number of training episodes, facilitating a gradual transition from imita-
tion learning to reinforcement learning.

3.4 CLOUD SERVER DESIGN

Algorithm 1: FitLight Training Procedure
1 Input: episodes S; episode steps T ; trajectory

memory MT ; actor model θA; critic model θC ;
expert E; batch size B.

2 Output: trained models θC and θA.
3 receive model structures from cloud server;
4 randomly initialize θA and θC ;
5 for episode = 1 to S do
6 for step = 1 to T do
7 obtain current intersection traffic state s;
8 choose action a based on s;
9 obtain expert behavior ae from E;

10 execute action a at the intersection;
11 observe next state s′ of the intersection;
12 store trajectory ⟨s, a, ae, r, s

′⟩ in MT ;
13 if Size(MT) ≥ B then
14 sample mini-batch b from MT ;
15 compute LC by Equation 4;
16 compute LA by Equation 5;
17 compute LI by Equation 7;
18 compute L by Equation 8;
19 update model θC and θA;
20 upload gradient ∇L to cloud server

for aggregation (Eq. 9);
21 receive ∇L from cloud server to

update θC , θA;
22 end
23 end
24 end
25 return θC , θA

In our approach, we use a cloud server to co-
ordinate the training process among RL agents
at different intersections. Specifically, for traf-
fic scenarios with extremely limited resources,
the cloud server first sends pruned initial mod-
els that meet the requirements to each intersec-
tion. During the training process, the cloud
server facilitates knowledge sharing by aggre-
gating gradient information from these hetero-
geneous models, enabling effective collabora-
tion among agents at different intersections.
Model Pruning. To meet resource require-
ments, we employ structured pruning at initial-
ization. This technique leverages the concept
that a randomly initialized dense network con-
tains a subnetwork (referred to as a ”winning
ticket”) capable of achieving performance com-
parable to the original dense network (Frankle
& Carbin, 2018; Kim & Sung, 2023). Specif-
ically, for a dense network with parameters θ,
network pruning results in a new model θ⊙M ,
where M = {0, 1}|θ| is a binary mask used for
the pruning, and ⊙ denotes the Hadamard prod-
uct (element-wise multiplication). In our ap-
proach, we generate multiple Actor and Critic
subnetworks for each intersection, applying a
fixed set of pruning ratios to different network layers. As illustrated in the left part of Figure 2, we
create three pruned submodels from the base model for different intersections. In these submodels,
lighter colors indicate pruned neurons, while darker colors represent retained neurons.
Knowledge Sharing. As a specialized form of supervised learning, imitation learning also re-
quires a substantial number of samples to train RL agents effectively. To enhance learning effi-
ciency and maximize the use of trajectory samples, we introduce a knowledge-sharing mechanism
that aggregates gradients from heterogeneous submodels. Specifically, since the submodels for each
intersection are derived from the same base model, we aggregate their gradients using a weighted
average operation as follows:

∇L =

∑N
i=1 ∇Li∑N
i=1 Mi

, (9)

where N is the number of intersections, ∇Li and Mi represent the gradient of the loss function and
the binary mask from the i-th intersection’s submodel, respectively.

As shown in the left part of Figure 2, each colored neural network represents different agents’
subnetworks, where the generated subnetworks share some subsets of parameters across multiple
agents. In the aggregated model, each neuron is colored according to the colors of agents that share
the corresponding neuron.

3.5 FITLIGHT IMPLEMENTATION

Algorithm 1 details the training process of a FitLight agent. In lines 1-2, the agent is initialized with
the pruned structure. Lines 5-10 illustrate the interaction between the agent and the intersection,
where the exact algorithm assigns the label ae to the current state s. When the agent stores enough
trajectory samples, lines 12-16 update the parameters of the PPO agent by using the local loss. Lines

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

18-19 show our knowledge-sharing mechanism, where the cloud server collects the gradient from
all intersections and then dispatches the aggregated gradient to them for parameter update.

4 PERFORMANCE EVALUATION
To evaluate the effectiveness of our approach, we conduct experiments on a Ubuntu server equipped
with an Intel Core i9-12900K CPU, 128GB of memory, and an NVIDIA RTX 3090 GPU. We im-
plement our FitLight approach using the open-source traffic simulator Cityflow (Zhang et al., 2019)
in Python. During the simulation of traffic scenarios, similar to prior work (Wei et al., 2019a; Ye
et al., 2021; 2023b), we set the phase duration to 10 seconds. In FitLight, the PPO agent comprises
two neural networks: the Actor model, which has three layers (containing 13, 32, and 8 neurons),
and the Critic model, which has three layers (containing 13, 32, and 1 neurons). We use the Adam
optimizer for parameter updating and set the learning rate η of the Actor and Critic models to 0.0005
and 0.001, respectively. We set the discount factor γ to 0.99, the GAE parameter λ to 0.95, the batch
size N of the data sampled for training to 5, the clipping parameter ϵ to 0.2, and the balance factor
α to 0.001 × # of episode. We design comprehensive experiments to answer the following four
Research Questions (RQs):
RQ1 (Effectiveness): Can FitLight explore a better TSC strategy starting from imitation learning?
RQ2 (Generalizability): Can FitLight be plug-and-played cross different traffic environment?
RQ3 (Benefits): Why can FitLight improve both learning efficiency and generalizability?
RQ4 (Applicability): Can FitLight adapt to real-world situations with very limited resources?
Baselines. For a fair comparison, we chose eight representative baseline methods with constant
duration, including three Non-RL methods and five RL-based methods as follows: i) FixedTime
(Koonce & Rodegerdts, 2008); ii) MaxPressure (Varaiya, 2013); iii) MaxHP, our proposed expert
algorithm; iv) PressLight (Wei et al., 2019a); v) A2C (Ye et al., 2021); vi) FedLight (Ye et al.,
2021); vii) PPO (Schulman et al., 2017), and; viii) InitLight (Ye et al., 2023b). On the other hand,
to further evaluate the performance of our approach, we also conduct two state-of-the-art dynamic
duration-based methods for comparison: i) FairLight (Ye et al., 2022), and ii) IPDALight (Zhao
et al., 2022). Moreover, to validate the effectiveness of our proposed approach, we compare with
four ablation methods as follows: i) FairLight(c) (Ye et al., 2022), a constant duration version
of FairLight; ii) IPDALight(c) (Zhao et al., 2022), a constant duration version of IPDALight; iii)
FitLight(p), a pressure-based method that replaces the hybrid pressure in the sate representation
and reward design of FitLight with pressure, and; iv) FitLight(mp), the light version of the FitLight
model pruning. For FitLight(mp), to meet the extremely resource-constrained requirements of (Xing
et al., 2022) (i.e., a microcontroller with merely 16KB RAM and 32KB ROM), we set the pruning
rate of each layer of the model to 0.2, 0.4, and 0.6, respectively. Under this setting, the memory cost
of each PPO agent is only 14.83KB.
Datasets. We consider nine public multi-intersection datasets provided by (Wei et al., 2019c). For
all datasets, each intersection of all the road networks has four incoming roads and four outgoing
roads, where each road has three lanes, i.e., turning left, going straight, and turning right. The details
of the datasets are as follows:

• Synthetic datasets: Four synthetic datasets, Syn1-4, contain 1 × 3, 2 × 2, 3 × 3, and
4 × 4 intersections, respectively. The vehicle arrival rates are modeled using a Gaussian
distribution, with an average rate of 500 vehicles per hour for each entry lane.

• Real-world datasets: Five real-world datasets (i.e., Hangzhou1, 2, and Jinan1-3) were col-
lected using cameras deployed in the Gudang sub-district of Hangzhou and the Dongfeng
sub-district of Jinan. Each dataset from Hangzhou contains 16 intersections arranged in a
4× 4 grid, while each dataset from Jinan includes 12 intersections arranged in a 3× 4 grid.

4.1 RESULTS OF THE CONTROL PERFORMANCE (RQ1)
To answer RQ1, we compared FitLight against the fourteen baseline methods in terms of average
travel time, training all RL-based methods using 200 episodes. Table 1 shows experimental results
for different control methods. For each dataset, the TSC methods with the best or second-best per-
formance are highlighted in bold. From this table, MaxHP can achieve a shorter average travel time
than MaxPressure and competitive results compared with some RL-based methods, especially for
larger datasets. These results show the effectiveness of our proposed hybrid pressure and illustrate
the reason why we chose MaxHP as the expert algorithm. In this table, FitLight can outperform all
constant duration methods. This is because, based on our proposed knowledge sharing mechanism,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of average travel time.

Type Method
Average Travel Time (seconds)

Synthetic Dataset Real-world Dataset
Syn1 Syn2 Syn3 Syn4 Hangzhou1 Hangzhou2 Jinan1 Jinan2 Jinan3

Non-RL
FixedTime 380.35 453.73 534.47 606.52 525.28 537.82 444.84 378.41 403.22

MaxPressure 122.68 162.32 245.26 310.37 404.67 456.11 373.76 371.24 356.30
MaxHP 122.98 159.72 211.72 267.38 362.34 419.82 330.00 330.04 320.77

RL

PressLight 108.23 145.43 186.28 260.41 351.55 425.61 305.21 302.56 294.08
A2C 117.60 133.65 236.58 433.85 339.24 416.08 375.12 322.92 288.92

FedLight 108.71 136.45 172.45 217.58 341.94 410.40 290.38 290.58 278.69
PPO 105.86 138.11 204.76 314.84 358.66 421.89 321.37 304.66 286.43

InitLight 102.86 126.44 172.36 237.52 333.80 374.60 297.58 293.81 284.24
FairLight 96.49 121.67 156.55 198.52 316.28 365.20 262.55 257.38 250.69

IPDALight 89.66 110.00 146.34 182.72 299.37 403.18 264.31 256.89 253.41
FairLight(c) 98.36 132.48 193.20 228.59 314.38 383.38 281.71 277.09 270.45

IPDALight(c) 97.26 121.78 161.18 205.31 310.30 392.15 272.67 270.59 263.20
FitLight(p) 96.13 123.62 160.23 213.52 339.15 441.40 317.18 301.83 287.60

FitLight(mp) 90.41 112.98 149.05 189.40 306.39 378.84 261.82 261.50 253.83
FitLight 91.06 113.57 150.83 189.72 306.44 378.00 260.84 260.96 253.64

Table 2: Comparison of convergence performance for different TSC methods.

Method
Average Travel Time (seconds) / Start Episode # of Converge (#)

Synthetic Dataset Real-world Dataset
Syn1 Syn2 Syn3 Syn4 Hangzhou1 Hangzhou2 Jinan1 Jinan2 Jinan3

PressLight 487.54 (79) 532.26 (123) 759.62 (142) 781.93 (157) 472.46 (80) 521.24 (61) 541.44 (75) 512.36 (76) 543.18 (82)
A2C 871.73 (95) 1306.89 (165) 1032.85 (N/A) 1315.05 (N/A) 1241.92 (122) 765.53 (65) 1298.90 (N/A) 1207.52 (105) 1224.99 (133)

FedLight 916.81 (53) 1175.63 (111) 1309.26 (133) 1357.66 (59) 1009.92 (48) 807.72 (52) 1152.66 (47) 1213.16 (110) 1229.11 (70)
PPO 873.82 (83) 1056.83 (165) 1127.96 (145) 1297.66 (N/A) 813.43 (111) 694.34 (100) 972.88 (110) 1031.68 (89) 869.87 (80)

InitialLight 115.73 (1) 164.63 (2) 202.51 (2) 262.45 (5) 330.78 (1) 387.06 (1) 300.42 (1) 294.18 (1) 288.42 (1)
FairLight 530.37 (30) 686.65 (39) 876.40 (76) 979.99 (58) 517.50 (11) 512.99 (11) 703.27 (18) 677.06 (16) 588.71 (14)

IPDALight 228.7 (3) 237.61 (3) 415.12 (14) 420.39 (3) 345.61 (2) 419.51 (23) 358.12 (10) 299.72 (2) 313.30 (2)
FairLight(c) 609.42 (92) 774.53 (167) 1003.88 (N/A) 1030.18 (N/A) 721.58 (35) 588.67 (29) 757.77 (103) 691.84 (99) 687.28 (92)

IPDALight(c) 592.45 (13) 819.53 (14) 979.09 (11) 951.04 (11) 558.56 (3) 533.64 (12) 711.45 (3) 634.07 (3) 672.85 (12)
FitLight(p) 173.23 (4) 275.91 (6) 475.40 (7) 630.18 (8) 369.91 (8) 423.10 (1) 382.60 (6) 357.85 (6) 363.30 (7)

FitLight(mp) 104.74 (1) 136.94 (2) 183.86 (2) 310.18 (2) 330.88 (2) 392.23 (1) 281.88 (2) 282.30 (2) 274.37 (2)
FitLight 99.21 (1) 125.05 (2) 163.77 (2) 215.21 (2) 321.58 (1) 387.98 (1) 272.97 (2) 274.22 (1) 267.41 (1)

FitLight enables RL agents to jointly explore the optimal control strategy. On the other hand, due
to the full use of duration, dynamic duration methods are significantly better than constant methods.
However, our FitLight methods can still achieve a similar level with these two dynamic duration
methods, with the biggest gap being only 3.51%. Moreover, compared with the original uncom-
pressed model, the performance decrease of FitLight(mp) is negligible, showing the practicality of
our model pruning approach.

4.2 RESULTS OF THE CONVERGENCE (RQ2)

To evaluate the efficiency and the generalization ability of FitLight, Figure 3 evaluates the conver-
gence performance of the RL-based methods on the nine datasets. Compared to all baseline methods,
our FitLight method achieves the lowest average travel time at the beginning of RL training across
all datasets, with significantly fewer fluctuations. This is because our proposed knowledge sharing
mechanism enables RL agents to perform effective imitation learning with only very few trajectory
samples. In addition, although InitLight uses a pre-trained model that can also perform well initially
and converge quickly, our FitLight can consistently achieve the lowest average travel time for all
datasets in the long run. This result demonstrates that, due to the better initial solution obtained
by imitation learning, the subsequent reinforcement learning process of FitLight enables RL agents
to achieve a better final result, confirming the seamless transition between imitation learning and
reinforcement learning in our method. Note that, for all the evaluated datasets, FitLight can con-
verge within 2 episodes, significantly faster than most baseline methods. The above facts clearly
demonstrate the efficiency and generalizability of our FitLight approach.
To further illustrate the advantages of FitLight, Table 2 provides the detailed convergence informa-
tion for different RL-based methods, focusing on jumpstart performance (i.e., average travel time in
the first episode) and the episode at which the convergence begins, where the best and the second-
best results are highlighted in bold. Here, we used the criterion of convergence as described in (Zhao
et al., 2022). From this table, we can see that FitLight achieves the best jumpstart performance on all
datasets and the fastest convergence on most of them. Due to the pre-trained initial model, InitLight
can converge faster on some datasets (e.g., Hangzhou1 and Jinan1-3). However, the gap is only 1
episode, and FitLight can achieve better control performance without any pre-training. Note that,
due to model pruning, although the jumpstart performance of the pruned FitLight(mp) model has
decreased slightly, it can still converge to a final result similar to the unpruned version. These results
demonstrate the plug-and-play capability of our FitLight approach for different traffic scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Comparison of convergence rates. Figure 4: Comparison of travel time and reward.

4.3 QUALITY OF THE REWARD FUNCTION (RQ3)
In this paper, we utilize the newly proposed concept of hybrid pressure to represent the state and
design the reward of the RL agent, thereby enabling the agent to consider the traffic dynamics of
individual vehicles more accurately. To justify our hybrid pressure design and understand why
FitLight can be easily applied to different datasets, as shown in Figure 4, we compare the average
travel time and average reward of each episode across various datasets. From this figure, we observe
that the average travel time is closely correlated with absolute values of the average reward (i.e., the
average HP of intersections). These results support the effectiveness of our HP-based agent design
in reducing the average travel time of vehicles. Moreover, the smooth change of rewards during
training also confirms that our FitLight method supports a smooth transition from imitation learning
to reinforcement learning. Thus, our FitLight can improve both the control performance and the
generalization ability of RL agents.

4.4 RESULTS OF THE DEPLOYMENT COST (RQ4)
To analyze the deployment cost of FitLight, we built a cloud-edge simulation platform consisting
of the server mentioned above and 16 Raspberry Pi 4B boards (with an ARM Cortex-A72 CPU and
2GB RAM), on which we deploy a FitLight agent to simulate a real-world intersection scenario.
Regarding memory cost, as mentioned above, due to model pruning, the model size of each agent is
reduced to only 14.83 KB, which can be deployed on most resource-constrained embedded systems.
For computational cost, the agent requires only 0.05ms to make a control decision regarding phase
selection. Within an autonomous TSC system, the agent also needs to update its model parameters
after collecting some trajectory data. In our approach, an agent takes five samples from its trajectory
memory at a time for model update, which costs approximately 51.67ms. Compared with the 10-
second signal phase duration, these inference and training costs can meet the real-time requirements
of embedded devices in most real-world scenarios. On the other hand, since FitLight includes a
federated learning-based knowledge-sharing mechanism, we also evaluate the communication cost
of our approach. In the experiment, we set the phase duration of traffic lights to 10 seconds, meaning
that every 10 seconds, the agent at an intersection needs to interact with its traffic environment and
store a trajectory sample. Once the agent collects a batch of five new samples, it will use these
samples to calculate and share the gradient. In other words, every 50 seconds, each edge device
needs to send and receive 14.83KB gradients, respectively. This communication cost is tolerable for
most IoT devices, as each device incurs a communication overhead of only 2.09MB per hour.

5 CONCLUSION
Due to trial-and-error attempts during the training process, existing RL-based TSC methods suffer
from the problem of high learning costs and poor generalizability. To address this problem, this
paper proposes a novel FIL-based approach named FitLight, which enables RL agents to be plug-
and-play for any traffic scenario. Based on the proposed federated imitation learning frameworks
and hybrid pressure-based agent design, our FitLight agent can smoothly transition from imitation
learning to reinforcement learning. Therefore, the RL agent can quickly find a high-quality initial
solution and then find a better final control strategy. Experimental results on various well-known
benchmarks show that, compared with the state-of-the-art RL-based TSC methods, FitLight not
only converges faster to competitive results but also exhibits stronger robustness in different traffic
scenarios. Especially, our approach can achieve near-optimal performance in the first episode.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proc. of International Conference on Machine Learning (ICML), pp. 1–8, 2004.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

Michael Bain and Claude Sammut. A framework for behavioral cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Wanli Chang, Debayan Roy, Shuai Zhao, Anuradha Annaswamy, and Samarjit Chakraborty. Cps-
oriented modeling and control of traffic signals using adaptive back pressure. In Proc. of Design,
Automation and Test in Europe Conference (DATE), pp. 1686–1691, 2020.

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui
Li. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic
signal control. In Proc. of AAAI Conference on Artificial Intelligence (AAAI), pp. 3414–3421,
2020.

Qiuwen Chen, Qinru Qiu, Hai Li, and Qing Wu. A neuromorphic architecture for anomaly detection
in autonomous large-area traffic monitoring. In Proc. of International Conference on Computer-
Aided Design (ICCAD), pp. 202–205, 2013.

Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe. Self-organizing traffic lights: A realistic
simulation. In Advances in applied self-organizing systems, pp. 45–55. Springer, 2013.

Xinqi Du, Ziyue Li, Cheng Long, Yongheng Xing, S Yu Philip, and Hechang Chen. Felight:
Fairness-aware traffic signal control via sample-efficient reinforcement learning. IEEE Trans-
actions on Knowledge and Data Engineering, 36(9):4678–4692, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In Proc. of International Conference on Learning Representations (ICLR), pp. 1–42,
2018.

PB Hunt, DI Robertson, RD Bretherton, and M Cr Royle. The scoot on-line traffic signal optimiza-
tion technique. Traffic Engineering & Control, 23(4), 1982.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys, 50(2):1–35, 2017.

Qize Jiang, Minhao Qin, Shengmin Shi, Weiwei Sun, and Baihua Zheng. Multi-agent reinforce-
ment learning for traffic signal control through universal communication method. In Proc. of
International Joint Conference on Artificial Intelligence (IJCAI), pp. 3854–3860, 2022.

Woojun Kim and Youngchul Sung. Parameter sharing with network pruning for scalable multi-
agent deep reinforcement learning. In Proc. of International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 1942–1950, 2023.

Peter Koonce and Lee Rodegerdts. Traffic signal timing manual. Technical report, United States.
Federal Highway Administration, 2008.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral Computation, 3(1):88–97, 1991.

Lowrie PR. Scats: A traffic responsive method of controlling urban traffic control/pr lowrie. Roads
and Traffic Authority, 1992.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proc. of Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pp. 661–668, 2010.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. Proc. of International
Conference on Learning Representations (ICLR), pp. 1–14, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In Proc.
of Advances in Neural Information Processing Systems (NeurIPS), pp. 1–8, 2007.

Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to classification. In
Proc. of Advances in Neural Information Processing Systems (NeurIPS), pp. 1–9, 2010.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM,
38(3):58–68, 1995.

János Török and János Kertész. The green wave model of two-dimensional traffic: Transitions in
the flow properties and in the geometry of the traffic jam. Physica A: Statistical Mechanics and
its Applications, 231(4):515–533, 1996.

Pravin Varaiya. The max-pressure controller for arbitrary networks of signalized intersections. In
Advances in dynamic network modeling in complex transportation systems, pp. 27–66. Springer,
2013.

Peter Waszecki, Philipp Mundhenk, Sebastian Steinhorst, Martin Lukasiewycz, Ramesh Karri, and
Samarjit Chakraborty. Automotive electrical and electronic architecture security via distributed
in-vehicle traffic monitoring. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 36(11):1790–1803, 2017.

Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li.
Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In Proc.
of International Conference on Knowledge Discovery & Data Mining (SIGKDD), pp. 1290–1298,
2019a.

Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,
Yanmin Zhu, Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traffic
signal control. In Proc. of International Conference on Information & Knowledge Management
(CIKM), pp. 1913–1922, 2019b.

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. A survey on traffic signal control methods.
arXiv preprint arXiv:1904.08117, 2019c.

Dong Xing, Qian Zheng, Qianhui Liu, and Gang Pan. Tinylight: Adaptive traffic signal control on
devices with extremely limited resources. In Proc. of International Joint Conference on Artificial
Intelligence (IJCAI), pp. 3999–4005, 2022.

Yuanhao Xiong, Guanjie Zheng, Kai Xu, and Zhenhui Li. Learning traffic signal control from
demonstrations. In Proc. of International Conference on Information & Knowledge Management
(CIKM), pp. 2289–2292, 2019.

Bingyu Xu, Yaowei Wang, Zhaozhi Wang, Huizhu Jia, and Zongqing Lu. Hierarchically and co-
operatively learning traffic signal control. In Proc. of AAAI Conference on Artificial Intelligence
(AAAI), pp. 669–677, 2021.

Yutong Ye, Wupan Zhao, Tongquan Wei, Shiyan Hu, and Mingsong Chen. Fedlight: Federated
reinforcement learning for autonomous multi-intersection traffic signal control. In Proc. of Design
Automation Conference (DAC), pp. 847–852, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yutong Ye, Jiepin Ding, Ting Wang, Junlong Zhou, Xian Wei, and Mingsong Chen. Fairlight:
Fairness-aware autonomous traffic signal control with hierarchical action space. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

Yutong Ye, Zhiwei Ling, Yaning Yang, Xian Wei, Chen Cheng, Su Chen, and Mingsong Chen. Brief
industry paper: Rtlight: Digital twin-based real-time federated traffic signal control. In Proc. of
Real-Time Systems Symposium (RTSS), pp. 473–477. IEEE, 2023a.

Yutong Ye, Yingbo Zhou, Jiepin Ding, Ting Wang, Mingsong Chen, and Xiang Lian. Initlight: Initial
model generation for traffic signal control using adversarial inverse reinforcement learning. In
Proc. of International Joint Conference on Artificial Intelligence (IJCAI), pp. 4949–4958, 2023b.

Xinshi Zang, Huaxiu Yao, Guanjie Zheng, Nan Xu, Kai Xu, and Zhenhui Li. Metalight: Value-based
meta-reinforcement learning for traffic signal control. In Proc. of AAAI Conference on Artificial
Intelligence (AAAI), pp. 1153–1160, 2020.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang,
Yong Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environ-
ment for large scale city traffic scenario. In Proc. of World Wide Web Conference (WWW), pp.
3620–3624, 2019.

Liang Zhang, Qiang Wu, and Jianming Deng. Knowledge intensive state design for traffic signal
control. arXiv preprint arXiv:2201.00006, 2021.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), pp.
1–9, 2018.

Wupan Zhao, Yutong Ye, Jiepin Ding, Ting Wang, Tongquan Wei, and Mingsong Chen. Ipdalight:
Intensity-and phase duration-aware traffic signal control based on reinforcement learning. Journal
of Systems Architecture, 123:102374, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Proc. of AAAI Conference on Artificial Intelligence (AAAI), pp. 1433–
1438, 2008.

12

	Introduction
	Related Work
	Our FitLight Approach
	Intersection Modeling
	Hybrid Pressure
	Edge Node Design
	Cloud Server Design
	FitLight Implementation

	Performance Evaluation
	Results of the Control Performance (RQ1)
	Results of the Convergence (RQ2)
	Quality of the Reward Function (RQ3)
	Results of the Deployment Cost (RQ4)

	Conclusion

