Published at ICLR 2025 Workshop on Foundation Models in the Wild.

ACTIVATION STEERING IN NEURAL THEOREM
PROVERS

Shashank Kirtania
Microsoft, India
t-skirtania@microsoft.com

ABSTRACT

Large Language Models (LLMs) have shown promise in proving formal theorems
using proof assistants like Lean. However, current state of the art language mod-
els struggle to predict next step in proofs leading practitioners to use different
sampling techniques to improve LLMs capabilities. We observe that the LLM is
capable of predicting the correct tactic; however, it faces challenges in ranking
it appropriately within the set of candidate tactics, affecting the overall selection
process. To overcome this hurdle we use activation steering to guide LLMs re-
sponses to improve the generations at the time of inference. Our results suggest
that activation steering offers a promising lightweight alternative to specialized
fine-tuning for enhancing theorem proving capabilities in LLMs, particularly valu-
able in resource-constrained environments.

1 INTRODUCTION

Interactive proof assistants such as Lean|de Moura et al.| (2015)), Isabelle Wenzel et al.| (2008]), and
Coq [Barras et al.| (1999) enable the formal verification of mathematical proofs and software by
leveraging specialized programming languages |Avigad| (2023)); Ringer et al.|(2019). Neural theorem
proving, which integrates neural language models with interactive proof assistants, has emerged as
a promising approach to automating formal reasoning |First et al.| (2023); Polu & Sutskever| (2020b);
Polu et al.|(2022);| Yang et al.|(2023b)); Welleck|(2023)). This integration is mutually beneficial: proof
assistants enforce formal correctness, while language models assist in proof construction by predict-
ing and suggesting logical steps. A central challenge in this setting is tactic prediction—determining
the appropriate next step at each proof state.

In this work, we investigate activation steering |Panickssery et al.| (2024); [Turner et al.| (2024); |Luc-
chett1 & Guha|(2024) as a technique to enhance tactic prediction in Llemmal|Azerbayev et al.|(2024a)
and InternL.M?2 |Ying et al|(2024a). These language models are designed for theorem proving by
training and fine-tuning on mathematical data. Activation steering is an inference-time model edit-
ing method that modifies a model’s internal representations to guide its behavior toward desired
outputs. We propose its application in refining tactic selection, aiming to improve both the accuracy
and interpretability of proof automation. By systematically influencing LLMs’ reasoning process,
our approach enables structured interventions that enhance model-driven theorem proving, leading
to more reliable and controllable predictions.

We present an approach for steering tactic selection from a pair of prompts (p1, p2) that contain a
LEAN state s to generate the next step (or tactic) t. However, the LLM successfully predicts ¢ for
p1 but mispredicts for p,. In each pair p is natural data and p; is synthetically generated using ps.
We systematically add the attributes and a high level of structure the proof should follow. These
additional attributes guide the model to a specific and more grounded chain of thought to follow
while predicting the tactics. These abstractions over the proof help the LLM to do critical decision
making while predicting the next step.

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

2 RELATED WORK

2.1 FORMAL THEOREM PROVING

Formal theorem proving encodes theorems and proofs in a machine-verifiable format, ensuring cor-
rectness through rigid logical rules. A key component of this field is Interactive Theorem Prov-
ing (ITP), where humans collaborate with proof assistants such as Isabelle Wenzel et al.| (2008),
Lean|de Moura et al.|(2015)), and Coq|Barras et al.[(1999)) to formally verify proofs. These assistants
allow users to express theorems in higher-order logic and construct verifiable proofs.

In Lean|de Moura et al.|(2015), proofs are built using factics, which either solve a goal or decompose
it into sub-goals.

2.2 PROOFSTEP GENERATION WITH LARGE LANGUAGE MODELS

Generating intermediate proof steps is a fundamental challenge in theorem proving, particularly in
tactic-based automated theorem provers (ATPs). Early neural approaches (Whalen, [2016; Huang
et al., [2019; Bansal et al.| |2019; [Paliwal et al., 2020; |Sanchez-Stern et al., 2020) framed proofstep
generation as a classification task, employing models like TreeLSTM and RNN to predict tactics and
their arguments. ASTactic (Yang & Deng| 2019) later introduced a grammar-constrained decoder
for structured tactic generation.

Recent advances leverage large language models (LLMs) for proof generation, casting tactic predic-
tion as an extitauto-regressive sequence modeling problem. GPT-f (Polu & Sutskever, [2020a)) pio-
neered this approach by training transformers only with decoders to generate structured proof steps.
Baldur (First et al., 2023)) extended this by producing entire proofs, while POETRY (Wang et al.,
2024) adopted a recursive decomposition strategy. Other works (Szegedy et al., [2021; [Tworkowski
et al., 2022; |Welleck et al., 2022; Jiang et al., [2022} |Yang et al., [2023a)) integrate the selection of
premises with tactic prediction, employing retrieval-augmented methods and constrained decoding
to improve the coherence of the proof.

Lean-Star|Lin et al.|(2024) introduced Self-Taught Reasoning, incorporating Chain-of-Thought|Wei
et al.| (2023) reasoning before each tactic to generate synthetic data for fine-tuning LLMs via self-
play |Chen et al.| (2024). Our work leverages these randomly sampled data points from Lean-STaR-
base as natural data.

2.3 MECHANISTIC INTERPRETABILITY

Previous work has focused on localizing and editing factual associations within transformers (Meng
et al.,|2022) and probing hidden representations for high-level knowledge (Li et al., 2024b; |Dong
et al., |2023). Such studies perform implicit evaluations of model ability, complementing explicit
benchmarks (Dong et al.,|2023)). A key technique in mechanistic interpretability is activation patch-
ing (Vig et al.| |2020; [Variengien & Winsor, [2023), which modifies model activations to influence
outputs. This research has suggested the existence of task vectors (Hendel et al., 2023} [lharco et al.,
2022)—representations encoding abstract task information. Activation steering has been employed
to mitigate model deceitfulness and sycophancy (Rimsky et al., {2023} |L1 et al., [2024b), further sup-
porting the presence of task vectors. Steering is based on the linear representation hypothesis (Park
et al.| 2023), which posits that concepts exist as directions in the embedding space of the model.

For theorem proving, mechanistic interpretability provides insights into how LLMs represent logical
structures and reasoning processes. By dissecting these representations, we can identify failure
cases, refine tactic prediction, and enhance proof generation. We hypothesize that effective steering
transforms activations to align the model’s reasoning trajectory with a more structured and verifiable
direction.

2.4 MODEL STEERING

Activation-based interventions can directly influence the language model output during infer-
ence |Dathathri et al.| (2019); |Subramani et al.| (2022). Recent studies demonstrate that activation

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

steering enhances truthfulness , mitigates sycophancy, and improves instruction-following |Stolfo
et al.| (2024)), as well as type prediction in code Lucchetti & Guha|(2024)).

Building on these ideas, we investigate steering vectors in the context of theorem proving. Following
prior work [Burns et al.|(2024); Turner et al.|(2024); [Arditi et al.| (2024); [van der Weij et al.| (2024),
we compute steering vectors based on input pairs differing by a specific feature—here, the presence
or absence of synthetic metadata. Unlike previous studies that focused on broad linguistic properties
such as sentiment and style, our approach seeks to refine the logical inference pathways of LLMs.

Steering Vector Computation | Inference Time Steering

Input
Predict th ic(s) >
redict the next tactic(s;
to use in this LEAN 4 . @ Input v
code snippet: m
“‘leanpp Predict the next
NN tactic(s) to use in this
1. What are the core LEAN4 codesnippet: | |] [T

Extract Residual :lean

Stream Activation n
H H Output

The theorem here seems
to be about the
interaction between
tangent cones, spans...
1. Core Mathematical
Principles:

- Tangent Cone

mathematical principles
involved in this theorem?

Add steering
vector
X =x1+puy

o oy

Input S

Predict the next
tactic(s) to use in this
LEAN 4 code snippet:

- Dense Subsets:
Involving dense subsets
means considering sets

whose closure ...

" lean
lean

Figure 1: Steering Vectors are computed as difference of activations of p; and ps

For theorem proving, activation steering provides a mechanism to guide the model towards struc-
tured reasoning, improving its ability to generate valid proof steps. By leveraging task vectors, we
aim to shift model activations to align with correct logical deductions, thereby enhancing both proof
coherence and model interpretability. This intervention is particularly valuable in interactive theo-
rem proving, where fine-grained control over reasoning steps can lead to more reliable and verifiable
proofs.

3 METHODOLOGY

3.1 CONSTRUCTING STEERING DATASET

Model Choice We build steering datasets for 7B parameter Llemma Azerbayev et al.|(2024b) and
7B parameter InternLM?2 |Ying et al.|(2024b). These models are trained to generate formal theorems
and code, which is important for the tactic prediction task.

Source Dataset We constructed steering pairs from a randomly sampled subset S from Lean-STaR
data. The subset consists of approximately ten thousand unique proof stages and tactics. We treat
this subset as natural prompt data p, and generate a new set p; by adding reasoning steps in ps
representing a lean stage [. This generates a set of pairs (p1, p2) which we then prompt InternLM?2
to predict the next tactic ¢; and o respectively. We then take pairs where ¢; # to creating a subset s
of prompt pairs. We then validate tactics ¢y, t2 € s with Lean Prover to generate s’.

This process generates a quadruple {p1, p2, t1,t2} where ¢; and to are valid tactics for a lean stage
l. We assume that ¢, is a more optimal tactic for [.

Generating p; from p» In Fig. [2} we illustrate the process of improving theorem-proving LLMs
using StepBackReasoning |[Zheng et al.| (2024)). Initially, the model is given a prompt asking it to
predict the next tactic in a Lean 4 proof. Without additional reasoning guidance, the model produces
an incorrect output, such as r fl. which does not align with the required proof strategy. To address
this, we introduce a step-back reasoning mechanism. First, we extract the proof state from the given

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Lean prompt, as shown in the StepBackAbstraction module. This abstraction step helps identify
the core mathematical principles underlying the theorem. Using GPT-4, we generate step-back rea-
soning prompts, which explicitly highlight key mathematical structures, such as exponentiation in
a division monoid and properties like associativity and commutativity. These enriched insights are
then incorporated into the original theorem-proving prompt, providing the model with a more struc-
tured understanding of the problem. As a result, when the theorem-proving LLM is queried again,
it produces the correct output rwpow,,ul which correctly applies the relevant exponentiation rule.
This process demonstrates how structured reasoning about the problem enhances logical coherence
and guides LLMs toward more accurate proof generation in Lean 4.

Prompt StepBackAbsrtaction StepBackReasoning
Core Mathematical Principles:
Predict the next What are the mathematical @ theorem involves ... exponentiation
tactic(s) to use in this principles involved to ——iinadivision monoid... definition of
Lean 4 code snippet: complete this Lean 4 state: exponentiation in monoidal \
" lean i Extraction : structures. Associativity & \‘
commutativity ... \
: \
Theorem Proving LLM ‘
Incorrect Output: Correct Output: Prompt [
Predict the next tactic(s) to use in
- this Lean 4 code snippet:
T lean " lean o
rﬂ . oLl Theorem Proving :lean
LLM

Figure 2: Steering Vectors are computed as difference of activations of p; and ps

3.2 CONSTRUCTING STEERING VECTORS

Given dataset of steering pairs and tactics {p1, p2,t1,t2} € s’ and a model M, we apply a forward
pass to every M (p1),M (p2) to collect values of the residual stream vector on queries at the last
token of the input layer £ € {1, ..., L}. We isolate the internal representation corresponding to the
reasoning by computing the difference in residual stream vectors v; ¢ and vo . More formally, we
compute the vector u, representing the direction of the steering at layer /:

Ve
W

N
1
= ——, where VgZ*E Pi1,ei — P2
vel N 2P Paed)

Averaging our different proof states to capture activation values most closely associated with the
structured reasoning step independent of the query. The calculation of the direction of the steering is
carried out using the representations in the last token of the input, which effectively encapsulates the
behavior of the model not only for the next token prediction task, but also for the entire generation
following [Todd et al.|(2024); |Scalena et al.[(2024). After identifying steering direction, we compute
steering vector by re-scailing unit vector u, by a coefficient c. We use a systematic scaling approach
where the value of c is selected to ensure that residual stream activations are assigned to their mean
value on inputs that contain the structured reasoning steps. In particular, we compute a new example
with residual stream values p’ at a given token.

L&
c=Zz—pyuy, where z= N E D1 U
i

The steering vector cuy is then added to the corresponding residual stream layer and the forward
pass is resumed with the updated residual stream value &, = x, + cuy,. This procedure is carried out

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Model Decoding N K S MiniF2F
GPT-3.5 (FEW-SHOT) SAMPLING 50 1 1 2.8%
GPT-4 (FEW-SHOT) SAMPLING 50 1 1 11.9%
LLEMMA-7B SEARCH 50 1 32 262%
INTERNLM2-7B SEARCH 50 1 32 303%
INTERNLM2-7B (SFT) SEARCH 50 1 32 30.7%
LEAN-COT (INTERNLM2-7B) SAMPLING 50 32 1 27.0%
LEAN-COT (INTERNLM2-7B) SEARCH 50 1 32 254%

LEAN-STAR (INTERNLM2-7B) SAMPLING 50 32 1 29.1%
LEAN-STAR (INTERNLM2-7B) SEARCH 50 1 32 262%

CORPA (WITH GPT-4) CUSTOMIZED - 60 1 29.9%
OURS (LLEMMA-7B) SAMPLING 50 32 1 28.1%
OURS (LLEMMA-7B) SEARCH 50 1 32 263%
OURS (INTERNLM2-7B) SAMPLING 50 32 1 32.4%
OURS (INTERNLM2-7B) SEARCH 50 1 32 26.8%

Table 1: Pass rates on the miniF2F-test dataset with Lean. This table shows the pass rates of
previous works and our work. S is the number of tactics attempted at each expanded node (assumed
to be 1 in sampling), and K is the total number of search or sampling attempts per problem.

at a single layer across all token positions, motivated by previous findings that show models tend to
deviate from instructions as they generate more tokens Stolfo et al.[(2024)); L1 et al.|(2024a)

4 RESULTS AND ANALYSIS

Setup We evaluated the technique using Best First Search. It is one of the most popular meth-
ods to evaluate the theorem-proving ability of a language model |Polu & Sutskever| (2020b); |Yang
et al.| (2023b)); |/Azerbayev et al.| (2023)); Lin et al.[(2024). For a given language model M, we keep
all unexpanded states s;; each time we expand the best state s; and use the language model to
sample S net tactics a; ;.. g for the current state s;. Following standard practice [Polu & Sutskever
(2020b); |Yang et al.[(2023b)); Welleck & Saha (2023)); |Lin et al. (2024)) we assume the state with
maximum negative log-probabilities is the “best” state. Specifically, we select state s; with max-

imum Z;;E —logp(a;, s;), where (sg, ag), ..., (Si—1, a;—1) is proof trajectory before state s; and
log p(a;, s;) is the average log probability of each generated token. We expand upto N states and
we get successful proofs search when we reach any proof state with no goals.

Dataset We evaluated our technique on MiniF2F benchmark [Zheng et al.| (2022). Which consists
of 244 theorems in lean 4. We use the same evaluation setting as previous works|Yang et al.| (2023b));
Welleck & Sahal (2023); Ying et al.| (2024a).

Sampling We evaluate two different decoding strategies: sampling and search. Sampling involves
drawing multiple proof steps stochastically based on the model’s output distribution, promoting
diversity in the generated proofs. In contrast, search incorporates structured exploration techniques
to improve proof discovery. Specifically, we consider two widely used search methods: beam search
and best-first search.

Beam Search. Beam search maintains a fixed number % of proof trajectories at each step, selecting
the top-ranked candidates based on the model’s confidence scores. By preserving multiple plausible
proof paths instead of greedily committing to the highest-confidence step, beam search mitigates
early pruning errors and allows exploration of alternative reasoning chains. However, the trade-
off between beam width and computational cost remains a key consideration: while larger beams
enhance robustness, they also introduce significant overhead.

Best-First Search. Best-first search prioritizes proof states according to a heuristic function, typ-
ically based on model confidence or learned value estimates. Unlike depth-first or breadth-first
strategies, best-first search expands the most promising proof state first, dynamically adjusting the
exploration process. In our experiments, we observe that combining best-first search with sampling
yields notable improvements. We hypothesize that this effect arises because traditional reranking,

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Model Decoding Random Steering

LLEMMA-7B SAMPLING 22.7% 28.1%
SEARCH 19.2% 26.3%

INTERNLM-7B SAMPLING 21.4% 32.4%
SEARCH 18.9% 26.8%

Table 2: Pass rates with randomized vectors and steering vectors.

despite boosting the likelihood of high-reward tactics, may suffer from premature convergence to
suboptimal proof paths. In contrast, best-first search, when coupled with sampling, allows for im-
perfect scoring, thereby encouraging broader exploration and improved intermediate state discovery.

4.1 MAIN RESULTS

Our main results are reported in Table [T Steering the model’s activation significantly improves
performance over the base model. Notably, we observe that steering markedly increases pass rates
when using Best First Search with sampling. We hypothesize that this improvement occurs because
reranking may be too narrowly focused—potentially getting trapped in local optima—even though
it boosts log probabilities for tactics that follow the highest reward path. In contrast, combining
sampling with Best First Search allows for imperfect scoring, which in turn enables the exploration
of nodes that lead to better intermediate states.

4.2 ABLATIONS

Random Steering Vectors

A potential validity concern with any intervention involving activation patching is that the observed
improvements might not stem from genuine performance enhancements but rather from activating
fallback mechanisms McGrath et al.|(2023)); Lucchetti & Guha|(2024). For instance, patching could
merely introduce noise into the embedding space, inadvertently triggering alternative pathways that
lead to the desired outcome. This phenomenon complicates the interpretability of both patches and
steering vectors. To examine this, we conduct an experiment using a randomly generated steering
vector (denoted as "Random” in Table [2). Our findings show that even random steering achieves
a nonzero accuracy, albeit significantly lower than that of our computed steering vectors. We hy-
pothesize that this residual accuracy arises due to backup circuits. Nevertheless, the substantially
higher performance of our computed steering vectors suggests that our approach induces meaningful
transformations toward the correct target.

5 CONCLUSION

We investigate activation steering for tactic prediction by making language models adhere to struc-
tured reasoning approaches in theorem proving. We find that by constructing steering pairs using
synthetic metadata and natural proof states, we can construct effective steering vectors that improve
tactic selection. Our experiments show that steering vectors enhance model performance beyond
random interventions and generalize well across different theorem-proving strategies. The effec-
tiveness of our steering approach demonstrates the existence of underlying reasoning pathways that
can be systematically influenced within language models. Activation steering proves to be a power-
ful technique for improving model performance on formal reasoning tasks where fine-tuning may be
impractical or resource-intensive. As language models continue to evolve in their theorem-proving
capabilities, activation steering may serve as a lightweight alternative to specialized fine-tuning ap-
proaches. This could be particularly valuable for interactive theorem proving environments where
computational resources are limited. Our reasoning-based steering vectors, for example, could pro-
vide an efficient way to enhance proof assistants, particularly useful for applications like automated
tactic suggestion. In future work, we aim to study the underlying mechanisms in language models re-
sponsible for structured mathematical reasoning. We further wish to explore how reasoning-focused
steering vectors may generalize to open-ended theorem proving tasks and investigate their potential
for improving proof search strategies.

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

6 FUTURE WORKS

Our work opens several promising research directions for improving theorem proving with activation
steering. From a theoretical perspective, we aim to investigate the geometric properties of steering
vectors in the context of formal reasoning, studying how different model layers represent logical
structures and how steering vectors interact with these representations. Understanding these proper-
ties could lead to more efficient steering methods and deeper insights into how LLMs encode mathe-
matical concepts. On the practical side, several extensions could enhance theorem proving systems,
including the development of adaptive steering mechanisms that dynamically adjust based on proof
state complexity, the investigation of steering vector composition for handling compound mathe-
matical concepts, and the integration of steering with existing proof search heuristics to improve
exploration efficiency. Scalability remains a challenge, and future work should explore techniques
for reducing the computational overhead of steering during inference, methods for distilling steer-
ing vectors while maintaining their effectiveness, and approaches for generalizing steering vectors
across different mathematical domains. Our findings suggest that activation steering could become
a powerful tool for enhancing LLM-based theorem provers, particularly in resource-constrained en-
vironments where fine-tuning is impractical. We believe that exploring these directions will lead to
more robust and efficient theorem proving systems.

REFERENCES

FMCAD ’96: Proceedings of the First International Conference on Formal Methods in Computer-
Aided Design, Berlin, Heidelberg, 1996. Springer-Verlag. ISBN 3540619372.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction, 2024. URL https:
//arxiv.orqg/abs/2406.11717.

Jeremy Avigad. Mathematics and the formal turn. Bulletin (New Series) of the American Mathemat-
ical Society, Received by the editors October 2, 2023.,2023. URL https://www.andrew.
cmu.edu/user/avigad/Papers/formal_turn.pdfl

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.06786, 2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2024a. URL https://arxiv.org/abs/2310.10631.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An Open Language Model
for Mathematics. In Proceedings of the International Conference on Learning Representations,

2024b.

Kshitij Bansal, Sarah M. Loos, Markus Norman Rabe, Christian Szegedy, and Stewart Wilcox.
HOList: An Environment for Machine Learning of Higher Order Logic Theorem Proving. In
Proceedings of the International Conference on Machine Learning, 2019.

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliatre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq Proof Assistant Reference Manual. INRIA, 1999.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision, 2024. URL https://arxiv.org/abs/2212.03827.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models, 2024. URL https://arxiv.
org/abs/2401.01335.

https://arxiv.org/abs/2406.11717
https://arxiv.org/abs/2406.11717
https://www.andrew.cmu.edu/user/avigad/Papers/formal_turn.pdf
https://www.andrew.cmu.edu/user/avigad/Papers/formal_turn.pdf
https://arxiv.org/abs/2310.10631
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. CoRR, abs/1912.02164, 2019. URL http://arxiv.org/abs/1912.02164.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
lean theorem prover (system description). In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pp.
378-388. Springer, 2015.

Xiangjue Dong, Yibo Wang, Philip S Yu, and James Caverlee. Probing explicit and implicit gender
bias through IIm conditional text generation. arXiv preprint arXiv:2311.00306, 2023.

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-Proof Generation and
Repair with Large Language Models. In Proceedings of the ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, 2023.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv
preprint arXiv:2310.15916, 2023.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A Learning En-
vironment for Theorem Proving. In Proceedings of the International Conference on Learning
Representations, 2019.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Albert Q Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygézdz, Piotr
Mitos, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding Hammers to Integrate Language Models
and Automated Theorem Provers. In Proceedings of the International Conference on Neural
Information Processing Systems, 2022.

Kenneth Li, Tianle Liu, Naomi Bashkansky, David Bau, Fernanda Viégas, Hanspeter Pfister, and
Martin Wattenberg. Measuring and controlling instruction (in)stability in language model di-
alogs. In First Conference on Language Modeling, 2024a. URL https://openreview.
net/forum?id=60alSAtH4e.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural Information
Processing Systems, 36, 2024b.

Haohan Lin, Zhiging Sun, Yiming Yang, and Sean Welleck. Lean-STaR: Learning to Interleave
Thinking and Proving. arXiv preprint arXiv:2407.10040, 2024.

Francesca Lucchetti and Arjun Guha. Understanding how codellms (mis)predict types with activa-
tion steering, 2024. URL https://arxiv.org/abs/2404.01903.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations. arXiv preprint arXiv:2307.15771,
2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Fac-
tual Associations in GPT, October 2022. URL http://arxiv.org/abs/2202.05262.
arXiv:2202.05262 [cs].

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. Graph Represen-
tations for Higher-Order Logic and Theorem Proving. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020.

Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition, 2024. URL https://arxiv.
org/abs/2312.06681.

http://arxiv.org/abs/1912.02164
https://openreview.net/forum?id=60a1SAtH4e
https://openreview.net/forum?id=60a1SAtH4e
https://arxiv.org/abs/2404.01903
http://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2312.06681
https://arxiv.org/abs/2312.06681

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
arXiv preprint arXiv:2009.03393, 2020a.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020b.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning, 2022.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.
Steering llama 2 via contrastive activation addition. arXiv preprint arXiv:2312.06681, 2023.

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. QED at large: A
survey of engineering of formally verified software. Foundations and Trends in Programming
Languages, 2019. ISSN 23251131. doi: 10.1561/2500000045.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating Correctness
Proofs with Neural Networks. In Proceedings of the ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, 2020.

Daniel Scalena, Gabriele Sarti, and Malvina Nissim. Multi-property steering of large language
models with dynamic activation composition. In Proceedings of the 7th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP, pp. 577-603. Association for Computa-
tional Linguistics, 2024. doi: 10.18653/v1/2024.blackboxnlp-1.34. URL http://dx.doi.
org/10.18653/v1/2024.blackboxnlp—1.34.

Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi.
Improving instruction-following in language models through activation steering, 2024. URL
https://arxiv.org/abs/2410.12877.

Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from
pretrained language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
(eds.), Findings of the Association for Computational Linguistics: ACL 2022, pp. 566-581,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
findings-acl.48. URL https://aclanthology.org/2022.findings—-acl.48/,

Christian Szegedy, Markus Rabe, and Henryk Michalewski. Retrieval-Augmented Proof Step Syn-
thesis. In Proceedings of the Conference on Artificial Intelligence and Theorem Proving, 2021.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering, 2024. URL
https://arxiv.org/abs/2308.10248.

Szymon Tworkowski, Maciej Mikuta, Tomasz OdrzygézdzZ, Konrad Czechowski, Szymon Antoniak,
Albert Jiang, Christian Szegedy, Lukasz Kuciriski, Piotr MitoS§, and Yuhuai Wu. Formal Premise
Selection With Language Models. In Proceedings of the Conference on Artificial Intelligence and
Theorem Proving, 2022.

Teun van der Weij, Massimo Poesio, and Nandi Schoots. Extending activation steering to broad
skills and multiple behaviours, 2024. URL https://arxiv.org/abs/2403.05767.

Alexandre Variengien and Eric Winsor. Look before you leap: A universal emergent decomposition
of retrieval tasks in language models. arXiv preprint arXiv:2312.10091, 2023.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting neural nlp:
The case of gender bias. arXiv preprint arXiv:2004.12265, 2020.

http://dx.doi.org/10.18653/v1/2024.blackboxnlp-1.34
http://dx.doi.org/10.18653/v1/2024.blackboxnlp-1.34
https://arxiv.org/abs/2410.12877
https://aclanthology.org/2022.findings-acl.48/
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2403.05767

Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jiangiao Lu, Zhicheng
Yang, Jing Tang, Jian Yin, Zhenguo Li, et al. Proving Theorems Recursively. arXiv preprint
arXiv:2405.14414, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Sean Welleck. Neural theorem proving tutorial. https://github.com/wellecks/
ntptutorial, 2023.

Sean Welleck and Rahul Saha. LLMSTEP: LLM Proofstep Suggestions in Lean. In International
Conference on Neural Information Processing Systems Workshop on MATH-AI, 2023.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. NaturalProver:
Grounded Mathematical Proof Generation with Language Models. In Proceedings of the Inter-
national Conference on Neural Information Processing Systems, 2022.

Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. The isabelle framework. In Theo-
rem Proving in Higher Order Logics: 21st International Conference, TPHOLs 2008, Montreal,
Canada, August 18-21, 2008. Proceedings 21, pp. 33-38. Springer, 2008.

Daniel Whalen. Holophrasm: A Neural Automated Theorem Prover for Higher-Order Logic. arXiv
preprint arXiv:1608.02644, 2016.

Kaiyu Yang and Jia Deng. Learning to Prove Theorems via Interacting with Proof Assistants. In
Proceedings of the International Conference on Machine Learning, 2019.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem Proving with Retrieval-Augmented
Language Models. In Proceedings of the International Conference on Neural Information Pro-
cessing Systems, 2023a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023Db.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024a. URL https://arxiv.org/abs/2402.06332.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. InternLM-Math: Open Math Large Language Models
Toward Verifiable Reasoning. arXiv preprint arXiv:2402.06332, 2024b.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models,
2024. URL https://arxiv.org/abs/2310.06117.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=9ZPegFuFTFvV.

10

https://arxiv.org/abs/2201.11903
https://github.com/wellecks/ntptutorial
https://github.com/wellecks/ntptutorial
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2310.06117
https://openreview.net/forum?id=9ZPegFuFTFv

	Introduction
	Related Work
	Formal Theorem Proving
	Proofstep Generation with Large Language Models
	Mechanistic Interpretability
	Model Steering

	Methodology
	Constructing Steering Dataset
	Constructing Steering Vectors

	Results and Analysis
	Main Results
	Ablations

	Conclusion
	Future Works

