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ABSTRACT

Large Language Models (LLMs) have shown promise in proving formal theorems
using proof assistants like Lean. However, current state of the art language mod-
els struggle to predict next step in proofs leading practitioners to use different
sampling techniques to improve LLMs capabilities. We observe that the LLM is
capable of predicting the correct tactic; however, it faces challenges in ranking
it appropriately within the set of candidate tactics, affecting the overall selection
process. To overcome this hurdle we use activation steering to guide LLMs re-
sponses to improve the generations at the time of inference. Our results suggest
that activation steering offers a promising lightweight alternative to specialized
fine-tuning for enhancing theorem proving capabilities in LLMs, particularly valu-
able in resource-constrained environments.

1 INTRODUCTION

Interactive proof assistants such as Lean de Moura et al. (2015), Isabelle Wenzel et al. (2008), and
Coq Barras et al. (1999) enable the formal verification of mathematical proofs and software by
leveraging specialized programming languages Avigad (2023); Ringer et al. (2019). Neural theorem
proving, which integrates neural language models with interactive proof assistants, has emerged as
a promising approach to automating formal reasoning First et al. (2023); Polu & Sutskever (2020b);
Polu et al. (2022); Yang et al. (2023b); Welleck (2023). This integration is mutually beneficial: proof
assistants enforce formal correctness, while language models assist in proof construction by predict-
ing and suggesting logical steps. A central challenge in this setting is tactic prediction—determining
the appropriate next step at each proof state.

In this work, we investigate activation steering Panickssery et al. (2024); Turner et al. (2024); Luc-
chetti & Guha (2024) as a technique to enhance tactic prediction in Llemma Azerbayev et al. (2024a)
and InternLM2 Ying et al. (2024a). These language models are designed for theorem proving by
training and fine-tuning on mathematical data. Activation steering is an inference-time model edit-
ing method that modifies a model’s internal representations to guide its behavior toward desired
outputs. We propose its application in refining tactic selection, aiming to improve both the accuracy
and interpretability of proof automation. By systematically influencing LLMs’ reasoning process,
our approach enables structured interventions that enhance model-driven theorem proving, leading
to more reliable and controllable predictions.

We present an approach for steering tactic selection from a pair of prompts (p1, p2) that contain a
LEAN state s to generate the next step (or tactic) t. However, the LLM successfully predicts t for
p1 but mispredicts for p2. In each pair p2 is natural data and p1 is synthetically generated using p2.
We systematically add the attributes and a high level of structure the proof should follow. These
additional attributes guide the model to a specific and more grounded chain of thought to follow
while predicting the tactics. These abstractions over the proof help the LLM to do critical decision
making while predicting the next step.
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2 RELATED WORK

2.1 FORMAL THEOREM PROVING

Formal theorem proving encodes theorems and proofs in a machine-verifiable format, ensuring cor-
rectness through rigid logical rules. A key component of this field is Interactive Theorem Prov-
ing (ITP), where humans collaborate with proof assistants such as Isabelle Wenzel et al. (2008),
Lean de Moura et al. (2015), and Coq Barras et al. (1999) to formally verify proofs. These assistants
allow users to express theorems in higher-order logic and construct verifiable proofs.

In Lean de Moura et al. (2015), proofs are built using tactics, which either solve a goal or decompose
it into sub-goals.

2.2 PROOFSTEP GENERATION WITH LARGE LANGUAGE MODELS

Generating intermediate proof steps is a fundamental challenge in theorem proving, particularly in
tactic-based automated theorem provers (ATPs). Early neural approaches (Whalen, 2016; Huang
et al., 2019; Bansal et al., 2019; Paliwal et al., 2020; Sanchez-Stern et al., 2020) framed proofstep
generation as a classification task, employing models like TreeLSTM and RNN to predict tactics and
their arguments. ASTactic (Yang & Deng, 2019) later introduced a grammar-constrained decoder
for structured tactic generation.

Recent advances leverage large language models (LLMs) for proof generation, casting tactic predic-
tion as an extitauto-regressive sequence modeling problem. GPT-f (Polu & Sutskever, 2020a) pio-
neered this approach by training transformers only with decoders to generate structured proof steps.
Baldur (First et al., 2023) extended this by producing entire proofs, while POETRY (Wang et al.,
2024) adopted a recursive decomposition strategy. Other works (Szegedy et al., 2021; Tworkowski
et al., 2022; Welleck et al., 2022; Jiang et al., 2022; Yang et al., 2023a) integrate the selection of
premises with tactic prediction, employing retrieval-augmented methods and constrained decoding
to improve the coherence of the proof.

Lean-Star Lin et al. (2024) introduced Self-Taught Reasoning, incorporating Chain-of-Thought Wei
et al. (2023) reasoning before each tactic to generate synthetic data for fine-tuning LLMs via self-
play Chen et al. (2024). Our work leverages these randomly sampled data points from Lean-STaR-
base as natural data.

2.3 MECHANISTIC INTERPRETABILITY

Previous work has focused on localizing and editing factual associations within transformers (Meng
et al., 2022) and probing hidden representations for high-level knowledge (Li et al., 2024b; Dong
et al., 2023). Such studies perform implicit evaluations of model ability, complementing explicit
benchmarks (Dong et al., 2023). A key technique in mechanistic interpretability is activation patch-
ing (Vig et al., 2020; Variengien & Winsor, 2023), which modifies model activations to influence
outputs. This research has suggested the existence of task vectors (Hendel et al., 2023; Ilharco et al.,
2022)—representations encoding abstract task information. Activation steering has been employed
to mitigate model deceitfulness and sycophancy (Rimsky et al., 2023; Li et al., 2024b), further sup-
porting the presence of task vectors. Steering is based on the linear representation hypothesis (Park
et al., 2023), which posits that concepts exist as directions in the embedding space of the model.

For theorem proving, mechanistic interpretability provides insights into how LLMs represent logical
structures and reasoning processes. By dissecting these representations, we can identify failure
cases, refine tactic prediction, and enhance proof generation. We hypothesize that effective steering
transforms activations to align the model’s reasoning trajectory with a more structured and verifiable
direction.

2.4 MODEL STEERING

Activation-based interventions can directly influence the language model output during infer-
ence Dathathri et al. (2019); Subramani et al. (2022). Recent studies demonstrate that activation
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steering enhances truthfulness , mitigates sycophancy, and improves instruction-following Stolfo
et al. (2024), as well as type prediction in code Lucchetti & Guha (2024).

Building on these ideas, we investigate steering vectors in the context of theorem proving. Following
prior work Burns et al. (2024); Turner et al. (2024); Arditi et al. (2024); van der Weij et al. (2024),
we compute steering vectors based on input pairs differing by a specific feature—here, the presence
or absence of synthetic metadata. Unlike previous studies that focused on broad linguistic properties
such as sentiment and style, our approach seeks to refine the logical inference pathways of LLMs.

Input

Predict the next tactic(s) 
to use in this LEAN 4 
code snippet:
```lean
```
1. What are the core 
mathematical principles 
involved in this theorem?
...

Input

Predict the next 
tactic(s) to use in this 
LEAN 4 code snippet:
```lean
```

Extract Residual 
Stream Activation

Input

Predict the next 
tactic(s) to use in this 
LEAN 4 code snippet:
```lean
```

Add steering 
vector

x̄ ′𝑙  = x′𝑙  +p u𝑙  

=-

𝑥𝑙
+ 𝑥𝑙 𝑢𝑙

Output

The theorem here seems 
to be about the 
interaction between 
tangent cones, spans…
1. Core Mathematical 
Principles:
- Tangent Cone
- Dense Subsets: 
Involving dense subsets 
means considering sets 
whose closure …
```lean
```

Steering Vector Computation Inference Time  Steering

Figure 1: Steering Vectors are computed as difference of activations of p1 and p2

For theorem proving, activation steering provides a mechanism to guide the model towards struc-
tured reasoning, improving its ability to generate valid proof steps. By leveraging task vectors, we
aim to shift model activations to align with correct logical deductions, thereby enhancing both proof
coherence and model interpretability. This intervention is particularly valuable in interactive theo-
rem proving, where fine-grained control over reasoning steps can lead to more reliable and verifiable
proofs.

3 METHODOLOGY

3.1 CONSTRUCTING STEERING DATASET

Model Choice We build steering datasets for 7B parameter Llemma Azerbayev et al. (2024b) and
7B parameter InternLM2 Ying et al. (2024b). These models are trained to generate formal theorems
and code, which is important for the tactic prediction task.

Source Dataset We constructed steering pairs from a randomly sampled subset S from Lean-STaR
data. The subset consists of approximately ten thousand unique proof stages and tactics. We treat
this subset as natural prompt data p2 and generate a new set p1 by adding reasoning steps in p2
representing a lean stage l. This generates a set of pairs (p1, p2) which we then prompt InternLM2
to predict the next tactic t1 and t2 respectively. We then take pairs where t1 ̸= t2 creating a subset s
of prompt pairs. We then validate tactics t1, t2 ∈ s with Lean Prover to generate s′.

This process generates a quadruple {p1, p2, t1, t2} where t1 and t2 are valid tactics for a lean stage
l. We assume that t1 is a more optimal tactic for l.

Generating p1 from p2 In Fig. 2, we illustrate the process of improving theorem-proving LLMs
using StepBackReasoning Zheng et al. (2024). Initially, the model is given a prompt asking it to
predict the next tactic in a Lean 4 proof. Without additional reasoning guidance, the model produces
an incorrect output, such as rfl. which does not align with the required proof strategy. To address
this, we introduce a step-back reasoning mechanism. First, we extract the proof state from the given
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Lean prompt, as shown in the StepBackAbstraction module. This abstraction step helps identify
the core mathematical principles underlying the theorem. Using GPT-4, we generate step-back rea-
soning prompts, which explicitly highlight key mathematical structures, such as exponentiation in
a division monoid and properties like associativity and commutativity. These enriched insights are
then incorporated into the original theorem-proving prompt, providing the model with a more struc-
tured understanding of the problem. As a result, when the theorem-proving LLM is queried again,
it produces the correct output rwpowmul which correctly applies the relevant exponentiation rule.
This process demonstrates how structured reasoning about the problem enhances logical coherence
and guides LLMs toward more accurate proof generation in Lean 4.

Prompt

Predict the next 
tactic(s) to use in this 
Lean 4 code snippet:
```lean
```

StepBackAbsrtaction

What are the mathematical 
principles involved to 
complete this Lean 4 state:

```lean
```

StepBackReasoning
Core Mathematical Principles: 
theorem involves ... exponentiation 
in a division monoid... definition of 
exponentiation in monoidal 
structures. Associativity & 
commutativity …

Extraction 

Prompt

Predict the next tactic(s) to use in 
this Lean 4 code snippet:

```lean
```

StepBackReasoning

Correct Output:

```lean
rw pow_mul
```

Incorrect Output:

```lean
rfl
```

Theorem Proving LLM

Theorem Proving
 LLM

Figure 2: Steering Vectors are computed as difference of activations of p1 and p2

3.2 CONSTRUCTING STEERING VECTORS

Given dataset of steering pairs and tactics {p1, p2, t1, t2} ∈ s′ and a model M , we apply a forward
pass to every M(p1),M(p2) to collect values of the residual stream vector on queries at the last
token of the input layer ℓ ∈ {1, ..., L}. We isolate the internal representation corresponding to the
reasoning by computing the difference in residual stream vectors v1,ℓ and v2,ℓ. More formally, we
compute the vector uℓ representing the direction of the steering at layer ℓ:

uℓ =
vℓ

∥vℓ∥
, where vℓ =

1

N

N∑
i

(p1,ℓ,i − p2,ℓ,i)

Averaging our different proof states to capture activation values most closely associated with the
structured reasoning step independent of the query. The calculation of the direction of the steering is
carried out using the representations in the last token of the input, which effectively encapsulates the
behavior of the model not only for the next token prediction task, but also for the entire generation
following Todd et al. (2024); Scalena et al. (2024). After identifying steering direction, we compute
steering vector by re-scailing unit vector uℓ by a coefficient c. We use a systematic scaling approach
where the value of c is selected to ensure that residual stream activations are assigned to their mean
value on inputs that contain the structured reasoning steps. In particular, we compute a new example
with residual stream values p′ at a given token.

c = z̄ − p′ℓuℓ, where z̄ =
1

N

N∑
i

p1,i,ℓuℓ.

The steering vector cuℓ is then added to the corresponding residual stream layer and the forward
pass is resumed with the updated residual stream value x̃′

ℓ = x′
ℓ + cuℓ. This procedure is carried out
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Model Decoding N K S MiniF2F

GPT-3.5 (FEW-SHOT) SAMPLING 50 1 1 2.8%
GPT-4 (FEW-SHOT) SAMPLING 50 1 1 11.9%
LLEMMA-7B SEARCH 50 1 32 26.2%
INTERNLM2-7B SEARCH 50 1 32 30.3%
INTERNLM2-7B (SFT) SEARCH 50 1 32 30.7%
LEAN-COT (INTERNLM2-7B) SAMPLING 50 32 1 27.0%
LEAN-COT (INTERNLM2-7B) SEARCH 50 1 32 25.4%
LEAN-STAR (INTERNLM2-7B) SAMPLING 50 32 1 29.1%
LEAN-STAR (INTERNLM2-7B) SEARCH 50 1 32 26.2%
CORPA (WITH GPT-4) CUSTOMIZED - 60 1 29.9%
OURS (LLEMMA-7B) SAMPLING 50 32 1 28.1%
OURS (LLEMMA-7B) SEARCH 50 1 32 26.3%
OURS (INTERNLM2-7B) SAMPLING 50 32 1 32.4%
OURS (INTERNLM2-7B) SEARCH 50 1 32 26.8%

Table 1: Pass rates on the miniF2F-test dataset with Lean. This table shows the pass rates of
previous works and our work. S is the number of tactics attempted at each expanded node (assumed
to be 1 in sampling), and K is the total number of search or sampling attempts per problem.

at a single layer across all token positions, motivated by previous findings that show models tend to
deviate from instructions as they generate more tokens Stolfo et al. (2024); Li et al. (2024a)

4 RESULTS AND ANALYSIS

Setup We evaluated the technique using Best First Search. It is one of the most popular meth-
ods to evaluate the theorem-proving ability of a language model Polu & Sutskever (2020b); Yang
et al. (2023b); Azerbayev et al. (2023); Lin et al. (2024). For a given language model M , we keep
all unexpanded states si; each time we expand the best state si and use the language model to
sample S net tactics ai,1...S for the current state si. Following standard practice Polu & Sutskever
(2020b); Yang et al. (2023b); Welleck & Saha (2023); Lin et al. (2024) we assume the state with
maximum negative log-probabilities is the ”best” state. Specifically, we select state si with max-
imum

∑i−1
j=0 − log p(aj , sj), where (s0, a0), ..., (si−1, ai−1) is proof trajectory before state si and

log p(aj , sj) is the average log probability of each generated token. We expand upto N states and
we get successful proofs search when we reach any proof state with no goals.

Dataset We evaluated our technique on MiniF2F benchmark Zheng et al. (2022). Which consists
of 244 theorems in lean 4. We use the same evaluation setting as previous works Yang et al. (2023b);
Welleck & Saha (2023); Ying et al. (2024a).

Sampling We evaluate two different decoding strategies: sampling and search. Sampling involves
drawing multiple proof steps stochastically based on the model’s output distribution, promoting
diversity in the generated proofs. In contrast, search incorporates structured exploration techniques
to improve proof discovery. Specifically, we consider two widely used search methods: beam search
and best-first search.

Beam Search. Beam search maintains a fixed number k of proof trajectories at each step, selecting
the top-ranked candidates based on the model’s confidence scores. By preserving multiple plausible
proof paths instead of greedily committing to the highest-confidence step, beam search mitigates
early pruning errors and allows exploration of alternative reasoning chains. However, the trade-
off between beam width and computational cost remains a key consideration: while larger beams
enhance robustness, they also introduce significant overhead.

Best-First Search. Best-first search prioritizes proof states according to a heuristic function, typ-
ically based on model confidence or learned value estimates. Unlike depth-first or breadth-first
strategies, best-first search expands the most promising proof state first, dynamically adjusting the
exploration process. In our experiments, we observe that combining best-first search with sampling
yields notable improvements. We hypothesize that this effect arises because traditional reranking,
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Model Decoding Random Steering
LLEMMA-7B SAMPLING 22.7% 28.1%

SEARCH 19.2% 26.3%
INTERNLM-7B SAMPLING 21.4% 32.4%

SEARCH 18.9% 26.8%

Table 2: Pass rates with randomized vectors and steering vectors.

despite boosting the likelihood of high-reward tactics, may suffer from premature convergence to
suboptimal proof paths. In contrast, best-first search, when coupled with sampling, allows for im-
perfect scoring, thereby encouraging broader exploration and improved intermediate state discovery.

4.1 MAIN RESULTS

Our main results are reported in Table 1. Steering the model’s activation significantly improves
performance over the base model. Notably, we observe that steering markedly increases pass rates
when using Best First Search with sampling. We hypothesize that this improvement occurs because
reranking may be too narrowly focused—potentially getting trapped in local optima—even though
it boosts log probabilities for tactics that follow the highest reward path. In contrast, combining
sampling with Best First Search allows for imperfect scoring, which in turn enables the exploration
of nodes that lead to better intermediate states.

4.2 ABLATIONS

Random Steering Vectors
A potential validity concern with any intervention involving activation patching is that the observed
improvements might not stem from genuine performance enhancements but rather from activating
fallback mechanisms McGrath et al. (2023); Lucchetti & Guha (2024). For instance, patching could
merely introduce noise into the embedding space, inadvertently triggering alternative pathways that
lead to the desired outcome. This phenomenon complicates the interpretability of both patches and
steering vectors. To examine this, we conduct an experiment using a randomly generated steering
vector (denoted as ”Random” in Table 2). Our findings show that even random steering achieves
a nonzero accuracy, albeit significantly lower than that of our computed steering vectors. We hy-
pothesize that this residual accuracy arises due to backup circuits. Nevertheless, the substantially
higher performance of our computed steering vectors suggests that our approach induces meaningful
transformations toward the correct target.

5 CONCLUSION

We investigate activation steering for tactic prediction by making language models adhere to struc-
tured reasoning approaches in theorem proving. We find that by constructing steering pairs using
synthetic metadata and natural proof states, we can construct effective steering vectors that improve
tactic selection. Our experiments show that steering vectors enhance model performance beyond
random interventions and generalize well across different theorem-proving strategies. The effec-
tiveness of our steering approach demonstrates the existence of underlying reasoning pathways that
can be systematically influenced within language models. Activation steering proves to be a power-
ful technique for improving model performance on formal reasoning tasks where fine-tuning may be
impractical or resource-intensive. As language models continue to evolve in their theorem-proving
capabilities, activation steering may serve as a lightweight alternative to specialized fine-tuning ap-
proaches. This could be particularly valuable for interactive theorem proving environments where
computational resources are limited. Our reasoning-based steering vectors, for example, could pro-
vide an efficient way to enhance proof assistants, particularly useful for applications like automated
tactic suggestion. In future work, we aim to study the underlying mechanisms in language models re-
sponsible for structured mathematical reasoning. We further wish to explore how reasoning-focused
steering vectors may generalize to open-ended theorem proving tasks and investigate their potential
for improving proof search strategies.
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6 FUTURE WORKS

Our work opens several promising research directions for improving theorem proving with activation
steering. From a theoretical perspective, we aim to investigate the geometric properties of steering
vectors in the context of formal reasoning, studying how different model layers represent logical
structures and how steering vectors interact with these representations. Understanding these proper-
ties could lead to more efficient steering methods and deeper insights into how LLMs encode mathe-
matical concepts. On the practical side, several extensions could enhance theorem proving systems,
including the development of adaptive steering mechanisms that dynamically adjust based on proof
state complexity, the investigation of steering vector composition for handling compound mathe-
matical concepts, and the integration of steering with existing proof search heuristics to improve
exploration efficiency. Scalability remains a challenge, and future work should explore techniques
for reducing the computational overhead of steering during inference, methods for distilling steer-
ing vectors while maintaining their effectiveness, and approaches for generalizing steering vectors
across different mathematical domains. Our findings suggest that activation steering could become
a powerful tool for enhancing LLM-based theorem provers, particularly in resource-constrained en-
vironments where fine-tuning is impractical. We believe that exploring these directions will lead to
more robust and efficient theorem proving systems.
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