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Abstract

Leveraging the autonomous decision-making001
capabilities of large language models (LLMs)002
has demonstrated superior performance in rea-003
soning tasks. However, despite the success of004
iterative or recursive retrieval-augmented gen-005
eration (RAG) techniques, these methods are006
often constrained to a single solution space007
when confronted with complex problems. In008
this paper, we propose a novel thinking pat-009
tern in RAG that integrates system analysis010
with efficient reasoning actions, significantly011
Activating intrinsic reasoning capabilities and012
expanding the solution space of specific tasks013
via Monte Carlo Tree Search (MCTS), which014
we refer to as AirRAG. Specifically, our ap-015
proach designs five fundamental reasoning ac-016
tions, which are expanded to a broad tree-based017
reasoning space using MCTS. The approach018
also incorporates self-consistency verification019
to explore potential reasoning paths and infer-020
ence scaling law. Additionally, computation-021
ally optimal strategies are employed to allo-022
cate more inference resources to key actions,023
thereby enhancing overall performance. Ex-024
perimental results demonstrate the effective-025
ness of AirRAG, showing significant perfor-026
mance gains on complex question-answering027
datasets. Furthermore, AirRAG is flexible and028
lightweight, making it easy to integrate with029
other advanced technologies.030

1 Introduction031

Retrieval-Augmented Generation (RAG) has032

shown great potential in addressing the issue033

of generating factually incorrect content, espe-034

cially in domain-specific or knowledge-intensive035

tasks (Kandpal et al., 2023). However, as task com-036

plexity increases, several new challenges emerge,037

such as the inability to retrieve sufficient knowl-038

edge with a single query and the difficulty of un-039

derstanding the intricate reasoning logic inherent040
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Figure 1: Comparison of average performance across
three datasets with varying numbers of output sequences.
Ltotal represents the total number of tokens consumed
during the reasoning process. AirRAG leverages gen-
eration diversity and self-consistency to explore the po-
tential solution space, significantly enhancing overall
performance by scaling inference computation.

in the question. To tackle these challenges, it is cru- 041

cial to harness the reasoning capabilities of large 042

language models (LLMs) to improve RAG perfor- 043

mance (Jiang et al., 2023; Jeong et al., 2024; Asai 044

et al., 2024; Yu et al., 2024). 045

Previous research on complex query scenarios 046

has primarily focused on optimizing the query 047

and retrieval processes to obtain relevant informa- 048

tion (Shi et al., 2023; Zhou et al., 2023; Gao et al., 049

2023; Jiang et al., 2023; Zheng et al., 2024). While 050

these methods improve task efficiency, their perfor- 051

mance often depends heavily on manually crafted 052

rules and prompt engineering, limiting flexibility 053

and making it difficult to adapt quickly to differ- 054

ent scenarios. Moreover, recursive retrieval is fre- 055

quently used to improve the depth and relevance of 056

search results in information retrieval tasks. This 057

process continuously updates intermediate queries 058

and results to satisfy dynamic information needs 059

during the complex task-solving process (Jiang 060

et al., 2023; Asai et al., 2024; Yan et al., 2024; 061
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Jeong et al., 2024). Recent approaches leverage the062

decision-making abilities of LLMs to implement063

automated iterative retrieval and generation (Yu064

et al., 2024; Yue et al., 2024).065

However, these approaches face two significant066

issues. First, modular RAG struggles to cover the067

diverse range of question types, requiring substan-068

tial human effort and resulting in inefficiencies.069

The limited solution space also prevents the full070

activation of LLMs’ decision-making abilities. Sec-071

ond, the single reasoning paradigm and the chain-072

like reasoning process often fail to effectively ex-073

plore the solution space, particularly when reason-074

ing relies on self-exploration. This process is vul-075

nerable to low-quality intermediate reasoning steps076

and is easily trapped in a narrow solution space.077

Furthermore, guiding self-exploration becomes078

challenging when using relatively smaller language079

models (e.g., Qwen2.5-14B-Instruct (Yang et al.,080

2024)). Therefore, it is necessary to design rational081

reasoning actions that comprehensively explore a082

broad and deep solution space.083

In response to these challenges, we propose Air-084

RAG, a method that leverages intrinsic reasoning085

capabilities and expands the solution space using086

Monte Carlo Tree Search (MCTS). We design five087

fundamental reasoning actions: system analysis, di-088

rect answer, retrieval-answer, query transformation,089

and summary-answer. These actions can effectively090

address a wide range of problems in various sce-091

narios, including those that require progressive or092

parallel queries. Importantly, these actions can be093

executed efficiently even on relatively smaller lan-094

guage models. Additionally, we introduce MCTS095

and self-consistency to enable controllable reason-096

ing path generation and efficient inference scaling.097

To accurately select the answer from multiple rea-098

soning paths, we combine a voting mechanism with099

a process-supervised reward model. As inference100

computation increases, our approach demonstrates101

significant performance improvements as shown102

in Figure 1. Moreover, AirRAG features a flexi-103

ble architecture that can easily integrate other ad-104

vanced methods into the approach as additional105

action branches. In summary, our main contribu-106

tions are as follows:107

• We design five fundamental reasoning actions108

that can address most problem types in RAG109

scenarios, ensuring controllable reasoning pro-110

cesses.111

• We introduce MCTS and self-consistency to112

effectively expand the solution space for com- 113

plex tasks. Our approach improves generaliza- 114

tion and performance through comprehensive 115

inference scaling and a pluggable architecture. 116

• We show through experimental results that 117

AirRAG outperforms current iterative or recur- 118

sive RAG approaches, effectively activating 119

the intrinsic reasoning capabilities of LLMs 120

and expanding the solution space in a control- 121

lable manner. 122

2 Related Work 123

Retrieval-Augmented Generation (RAG). RAG 124

has demonstrated significant improvements in the 125

performance of LLMs in knowledge-intensive 126

tasks. Compared to vanilla RAG, optimizing the 127

query and retrieval process enhances knowledge 128

correlation and, consequently, improves reasoning 129

performance. Several methods, such as query ex- 130

pansion and transformation, have been proposed 131

to achieve better retrieval results (Zhou et al., 132

2023; Ma et al., 2023; Gao et al., 2023). How- 133

ever, as task complexity increases, retrieving suf- 134

ficient knowledge in a single query becomes in- 135

creasingly difficult. To address this, iterative re- 136

trieval techniques have been proposed to gather 137

additional contextual references. For instance, IR- 138

CoT (Trivedi et al., 2023) utilizes chain-of-thought 139

(CoT) to guide the retrieval process, refining the 140

CoT with the retrieved information. Similarly, 141

ITER-RETGEN (Shao et al., 2023) combines re- 142

trieval and generation modules to promote a deeper 143

understanding of specific tasks. 144

Activating the reasoning capabilities of LLMs 145

in RAG. In addition to optimizing retrieval, activat- 146

ing the reasoning capabilities of LLMs can signifi- 147

cantly improve the efficiency and relevance of the 148

retrieved information. Leveraging the decision- 149

making abilities of LLMs enhances the overall 150

performance (Nakano et al., 2022; Schick et al., 151

2023). Self-RAG and its variants (Asai et al., 2024; 152

Yan et al., 2024; Jeong et al., 2024) adopt a self- 153

reflection mechanism that iteratively predicts reflec- 154

tion tokens during training, enabling better control 155

during inference. Auto-RAG (Yu et al., 2024) sys- 156

tematically plans retrievals and refines queries to 157

acquire valuable knowledge through multi-turn iter- 158

ations. IterDRAG (Yue et al., 2024) explores infer- 159

ence scaling strategies in RAG, enhancing LLMs’ 160

ability to effectively acquire and utilize contex- 161

tual information. Despite the progress made in 162
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these methods, they often struggle to explore the163

solution space effectively during reasoning. Self-164

exploration frequently leads to being trapped in165

a limited solution space, hindered by low-quality166

reasoning steps even after multiple iterations. This167

issue is often attributed to the chain reasoning pat-168

tern and the difficulty small-scale LLMs face when169

handling overly complex tasks in a single iteration.170

Monte Carlo Tree Search (MCTS). To address171

these challenges, tree-based search algorithms, par-172

ticularly Monte Carlo Tree Search (MCTS), have173

emerged as effective tools to expand search spaces174

and enhance reasoning capabilities (Silver et al.,175

2017; Chen et al., 2024; Qi et al., 2024; Zhang176

et al., 2024). MCTS has been shown to extend177

reasoning by exploring multiple branching queries,178

thus enabling the exploration of diverse reasoning179

paths (Yao et al., 2023; Besta et al., 2024). In180

the mathematical reasoning scenario, Zhang et al.181

(2024) and Chen et al. (2024) leverage MCTS182

to achieve more efficient exploration of solution183

spaces, while Qi et al. (2024) designs rich human-184

like reasoning actions to improve reasoning tra-185

jectories. Furthermore, recent research indicates186

that inference scaling (Yue et al., 2024) and self-187

consistency (Wang et al., 2023) can lead to substan-188

tial improvements. In this context, our approach189

samples diverse reasoning paths to achieve both190

inference scaling and self-consistency verification191

during the next expansion of the action space.192

Unlike existing methods that focus on optimiz-193

ing query and retrieval processes or leveraging194

LLMs’ reasoning capabilities through iterative re-195

trieval, AirRAG uniquely integrates MCTS and196

self-consistency to systematically expand the so-197

lution space and ensure the controllability of the198

reasoning process. Simultaneously, we design five199

fundamental reasoning actions that effectively ad-200

dress a broader range of question types, particu-201

larly in complex tasks. This pluggable architecture202

also allows for easy integration of current advanced203

methods, making AirRAG a flexible and powerful204

solution for RAG scenarios. In the experiment, we205

thoroughly verify the performance gains brought206

by the inference scaling law and investigate how to207

rationally allocate inference resources.208

3 Methodology209

In order to effectively explore the solution space210

during reasoning, we propose a controllable tree-211

based framework of RAG. This framework com-212

bines Monte Carlo Tree Search (MCTS) with five 213

distinct reasoning actions, enabling efficient and 214

controlled expansion of the solution space. Mean- 215

while, we further implement more comprehensive 216

inference scaling strategies based on Yue et al. 217

(2024) and employ pruning techniques along with 218

computationally optimal strategies to strike a bal- 219

ance between effectiveness and efficiency. The 220

whole process is illustrated in Figure 2. 221

3.1 Define Fundamental Reasoning Actions 222

Relying solely on the autonomy of LLMs for itera- 223

tive self-exploration often results in getting trapped 224

in a solution space that is difficult to navigate, es- 225

pecially when dealing with different types of com- 226

plex questions. IterDRAG (Yue et al., 2024) uses 227

a single action type to generate the next reasoning 228

step, which can lead to ineffective space explo- 229

ration. The core of MCTS generation lies in the 230

action space, which defines the scope of tree ex- 231

ploration. Therefore, simplifying human cognitive 232

processes in complex reasoning is essential (Jaffe 233

et al., 2023). Inspired by this, we introduce five fun- 234

damental human-like reasoning actions to bridge 235

the gap between LLM reasoning and human cogni- 236

tion in RAG scenarios. 237

• A1: System Analysis (SAY). This action analyzes 238

the overall structure of the problem, followed 239

by its decomposition or planning. It represents 240

systematic and global thinking before problem- 241

solving. 242

• A2: Direct Answer (DA). This action leverages 243

parametric knowledge of LLMs to answer ques- 244

tions directly, without relying on any external 245

knowledge. 246

• A3: Retrieval-Answer (RA). This action retrieves 247

related knowledge from the external knowledge 248

base to support subsequent reasoning. 249

• A4: Query Transformation (QT). This action 250

transforms human questions in order to improve 251

retrieval performance. It supports various trans- 252

formations, such as rewriting, step back prompt- 253

ing, follow-up questions and multi-query re- 254

trieval. 255

• A5: Summary-Answer (SA). This action com- 256

bines intermediate reasoning steps, answers and 257

the initial questions to generate the final answer. 258
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Figure 2: The schematic diagram of our proposed AirRAG. AirRAG implements a paradigm that combines system
thinking with step-by-step reasoning. In the inference phase, we introduce MCTS and self-consistency to scaling
computation, which significantly outperforms other strong baselines.

The above five actions define a highly diverse ac-259

tion space {A1, A2, A3, A4, A5}. In the first step,260

the initial state is denoted as s0 and then MCTS261

selects the action a1 and a2 to prompt the LLM to262

generate the next reasoning steps in parallel. Sub-263

sequent actions are performed sequentially to ex-264

pand the reasoning path. It is important to note265

that there are sequential dependencies between266

different actions. For example, A1 and A2 can267

only be executed after the root question. Addi-268

tionally, we incorporate the diverse sampling of269

self-consistency (Wang et al., 2023) for each ac-270

tion to expand the reasoning paths. Specifically, an271

action is more likely to generate the correct reason-272

ing step if we sample multiple times in the current273

state. Finally, we can obtain multiple generated rea-274

soning trajectories, such as [s0 ⊕ s1:n]. To further275

improve inference efficiency, we choose the action276

{A3, A4, A5} as a simplified action space, referred277

to as AirRAG-Lite, which achieves a better balance278

between efficiency and effectiveness.279

3.2 Perform Reasoning Processes via MCTS280

3.2.1 Solution Generation281

Based on the action space defined above, we intro-282

duce MCTS to generate candidate reasoning tra-283

jectories. The initial root node, s0, represents the284

question without any reasoning steps. The pol-285

icy is directly modeled by a language model as286

π(a|s) = LM(a|s), and the state transition func-287

tion combines preceding reasoning steps with cur- 288

rent actions, i.e., si = Concat(s0:i−1, aj). Dur- 289

ing each MCTS rollout, we execute multiple steps, 290

including selection, expansion, simulations, and 291

backpropagation. Multiple rollouts are performed 292

to expand the solution space. To balance the 293

exploration and exploitation, we adopt the well- 294

known Upper Confidence Bounds applied to Trees 295

(UCT) (Kocsis and Szepesvári, 2006) for node se- 296

lection as follows: 297

UCT(s, p) =
Q(s, a)

N(s)
+ w

√
logNp(s)

N(s)
, (1) 298

where Q(s, a) is the reward value for node s and is 299

updated through backpropagation. N(s) denotes 300

the number of visits to s, p is the parent node of 301

s, and w is the weight to balance exploration and 302

exploitation. 303

When the search reaches a terminal node, de- 304

fined either by a terminal state or a predetermined 305

maximum tree depth d, we obtain a trajectory from 306

the root to the terminal node. All trajectories from 307

the rollout iterations are collected as candidate so- 308

lutions. Section 3.3 explains how we select the 309

optimal answer node from these trajectories. 310

3.2.2 Inference Scaling 311

Numerous studies have demonstrated that scaling 312

inference computation can significantly improve 313

the performance of LLMs without additional train- 314

ing (Snell et al., 2024; Yue et al., 2024). Based on 315
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the above methods, we explore strategies to lever-316

age inference computation scaling in AirRAG. One317

straightforward strategy is extending the effective318

context length (short for Lmax) during the docu-319

ment retrieval phase, allowing more related docu-320

ments to supplement the knowledge base. Addi-321

tionally, we perform multiple rollouts to thoroughly322

explore the solution space relying on the tree-based323

search. Adjusting the number of output sequences324

(n) generated during certain actions enables self-325

consistency verification and further inference scal-326

ing. These strategies provide flexibility for scaling327

inference computation in RAG, empowering LLMs328

to address complex knowledge-intensive queries329

more effectively.330

To improve efficiency and minimize redundant331

computations, we implement an early pruning strat-332

egy for state nodes and reasoning paths. Dedu-333

plication is applied to the output sequence states334

generated by each action, ensuring the diversity335

of the subsequent path. Furthermore, if multiple336

rollouts select the same state sequence, only one337

valid reasoning path is retained.338

3.2.3 Flexible Architecture339

Our tree-based architecture provides the flexibility340

to integrate other advanced approaches. We repro-341

duce the IterDRAG method based on the prompt342

design by Yue et al. (2024). Meanwhile, inspired343

by its iterative implementation, we simplify the fun-344

damental action space to {A3, A4, A5}, enabling345

a faster implementation while still achieving rel-346

atively good results. These methods serve as an347

exploratory extension of our approach and can be348

activated or deactivated as needed.349

3.3 Select the Optimal Answer Node350

For common mathematical reasoning tasks, a sim-351

ple consistency-based method can efficiently se-352

lect the most precise reasoning path. For example,353

the most frequent number extracted from multiple354

candidate solutions in MATH (Hendrycks et al.,355

2021) can be chosen as the final answer. How-356

ever, extracting precise answers and performing ef-357

fective aggregation becomes more challenging for358

knowledge-intensive tasks. To address this, we de-359

sign two self-consistency verification methods for360

such problems. Jaccard similarity and text embed-361

dings are two different approaches used in natural362

language processing to measure the similarity be-363

tween texts. We apply these methods to cluster text364

answers and compute answer scores as follows: 365

jcdScorei =
1

N

N∑
j=1

|Ai ∩Aj |
|Ai ∪Aj |

, (2) 366

embScorei =
1

N

N∑
j=1

cos(Ei, Ej), (3) 367

where N is the number of valid answer nodes, Ai is 368

the word-level set of answer text i, and Ei denotes 369

the embedding vector of answer text i. 370

In addition, we further investigate the self-refine 371

and process-supervision reward model to iden- 372

tify the most accurate reasoning trajectory. Self- 373

refinement uses the A5 (Summary-Answer) action 374

to refine the final answer from all candidate answer 375

nodes. The reward modeling process consists of 376

two steps: data synthesis and instruction tuning. 377

• Data synthesis: We leverage MCTS to per- 378

form multiple rollouts on partial training sets. 379

Based on known ground truth, we sample pos- 380

itive and negative reasoning trajectories and 381

use Monte Carlo estimation to evaluate inter- 382

mediate state scores. 383

• Instruction tuning: Synthetic samples are 384

used to fine-tune a relatively small LLM, such 385

as Qwen2.5-14B-Instruct. 386

4 Experiments 387

In this section, we conducted experiments on com- 388

plex QA benchmarks by answering the following 389

research questions. 390

• RQ1: Does AirRAG outperform state-of-the- 391

art baselines? 392

• RQ2: How does AirRAG perform when it 393

comes to comprehensive inference scaling? 394

• RQ3: What is the performance benefit of Air- 395

RAG in optimizing the allocation of inference 396

computation? 397

• RQ4: How does AirRAG perform for various 398

verification methods for multiple candidate 399

rollouts? 400

• RQ5: What is the intuitive performance of 401

AirRAG in the reasoning process? 402
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4.1 Experimental Settings403

4.1.1 Datasets404

To evaluate the effectiveness of AirRAG, we con-405

duct experiments on various question-answering406

(QA) tasks, including both open-domain QA407

and multi-hop QA. The complex multi-hop QA408

datasets consist of HotpotQA (Yang et al., 2018),409

MuSiQue (Trivedi et al., 2022) and 2WikiMul-410

tiHopQA (2Wiki) (Ho et al., 2020). Other411

single-hop QA datasets include Natural Questions412

(NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi413

et al., 2017), PopQA (Mallen et al., 2023) and We-414

bQA (Berant et al., 2013).415

4.1.2 Implementation Details416

We use the hyperparameters reported for the exist-417

ing models whenever available. Implementation418

details are available in the Appendix A.419

4.1.3 Baselines and Metrics420

To investigate the enhancement effects of thinking421

and planning on complex RAG tasks, we compare422

it with vanilla RAG, which performs only a single423

retrieval and generation process. We evaluate the424

naive generators of Qwen2.5-14B-Instruct (Yang425

et al., 2024) and Llama-3-8B-Instruct (Grattafiori426

et al., 2024). In the retrieval phase, we employ427

multilingual-e5-base (Wang et al., 2024) as the re-428

triever. The prompt of vanilla RAG are shown in429

the Appendix C. For iterative retrieval, we com-430

pare AirRAG with Iter-RetGen (Shao et al., 2023),431

Self-RAG (Asai et al., 2024), Auto-RAG (Yu et al.,432

2024), and IterDRAG (Yue et al., 2024). To fur-433

ther explore RAG performance and inference com-434

putation scaling, we focus on a comparison with435

IterDRAG for a given budget on inference com-436

putation. For evaluation metrics, we report Exact437

Match (EM), F1 score (F1) and Accuracy (Acc)438

between the generated summary and gold answer,439

where accuracy measures whether the gold answer440

is covered in the generated answer.441

4.2 Main Results (RQ1)442

We first evaluate the performance of AirRAG on443

various complex QA datasets. Table 1 compares444

its accuracy and F1 with strong baselines under the445

given inference computation budget, which is im-446

plemented based on Qwen2.5-14B-Instruct and one447

million document database. The optimal perfor-448

mance exhibits consistent gains as Lmax expands,449

which is termed as the inference scaling laws for450

RAG (Yue et al., 2024). We integrate the remaining451

methods for a given maximum computational bud- 452

get into our approach, dubbed as AirRAG-Blender. 453

The best results are obtained by using only the SA 454

action to refine the final answer from all candidates, 455

as shown in Table 1. This also demonstrates the 456

flexibility of our approach architecture. In addi- 457

tion, to verify the robustness and generalization of 458

AirRAG, Table 5 shows the performance on more 459

diverse LLMs and datasets. For a fair comparison, 460

we utilize the widely used Wikipedia dump from 461

December 2018 (Karpukhin et al., 2020) as the 462

retrieval corpus. We observe consistent improve- 463

ments over vanilla RAG and existing iterative meth- 464

ods (more than 10% on average). The significant 465

boost over IterDRAG and Auto-RAG suggests that 466

AirRAG explores more effective reasoning paths 467

through the human-like thinking paradigm and tree- 468

based search. 469

4.3 Inference Scaling for RAG (RQ2) 470

Inference computation scaling can enable LLMs 471

to improve their output performance (Snell et al., 472

2024). Self-consistency can also improve the ro- 473

bustness of the reasoning process (Wang et al., 474

2023). Therefore, we carry out a comprehensive 475

experimental analysis on the inference computation 476

scaling. Based on tree-based search and RAG sce- 477

nario, there are multiple ways to optimize the use 478

of inference computation resources. Specifically, 479

we can adjust both the number of retrieved docu- 480

ments in a single retrieval and the effective context 481

length in all iterations. The average performance of 482

three datasets exhibits consistent gains in Figure 3. 483

In subsequent experiments, unless otherwise speci- 484

fied, the data presented represent the average perfor- 485

mance across the HotpotQA, MuSiQue, and 2Wiki 486

datasets. In particular, the initial computation scal- 487

ing brings significant performance improvements. 488

In addition, the number of output sequences and 489

rollouts in MCTS can expand the solution space 490

and explore potential reasoning paths. As shown in 491

Figure 1, the average performance increases with 492

the number of output sequences per action, demon- 493

strating the effectiveness of self-consistency. We 494

also investigate the number of effective reasoning 495

paths under different rollouts in Figure 4. Simi- 496

larly, the performance improvement caused by the 497

increase of effective reasoning paths in the early 498

stage is relatively high. Similarly, the increase 499

in early reasoning paths leads to relatively higher 500

performance gains. We provide additional dataset- 501

specific results in Appendix B. 502
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Lmax Method HotpotQA MuSiQue 2Wiki Average

F1 Acc F1 Acc F1 Acc F1 Acc

8k

ZeroShot QA 42.5 41.3 13.5 12.1 48.2 47.3 34.7 33.6
Vanilla RAG 70.3 65.4 23.0 17.7 55.8 53.4 49.7 45.5
IterDRAG∗ 74.3 69.1 26.7 19.4 60.5 57.6 53.8 48.7
AirRAG-Lite 80.6 75.4 35.4 28.9 75.3 73.1 63.8 59.1
AirRAG 79.6 75.2 41.0 35.0 76.0 74.2 65.6 61.5

AirRAG-Blender 81.1 79.8 41.6 36.4 82.2 81.7 68.3 66.0

32k

Vanilla RAG 77.1 72.0 29.0 22.9 60.9 58.1 55.7 51.0
IterDRAG∗ 77.7 71.6 30.8 22.3 63.0 60.2 57.1 51.4
AirRAG-Lite 82.4 76.9 36.7 30.1 78.8 76.8 66.0 61.3
AirRAG 82.5 77.4 43.2 36.3 80.4 78.9 68.7 64.2

AirRAG-Blender 82.9 80.6 43.3 37.6 83.4 83.0 69.9 67.1

128k
IterDRAG∗ 76.8 71.0 31.7 24.8 65.5 62.4 58.0 52.7
AirRAG-Lite 82.5 77.1 35.7 30.4 78.3 76.0 65.5 62.2
AirRAG 83.3 78.0 43.5 36.5 82.3 80.5 69.7 65.0

AirRAG-Blender 83.7 81.4 43.9 38.5 84.4 84.2 70.6 68.0

Table 1: Overall evaluation results on the test sets of three datasets. * indicates the results reproduced by us. Lmax

denotes the maximum number of input tokens across all rollouts. The best results for each Lmax are in bold. The
number of both rollouts and output sequences is set to 1.
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Figure 3: Impact of the retrieved document number scaling (Left) and the maximum context length scaling (Right)
on model performance (averaged Accuracy and Recall of three datasets). All methods show consistent performance
improvements as the effective inference computation scales.

Method Average

F1 Acc

Vanilla RAG 47.0 43.2
IterDRAG 49.8 45.9
AirRAG
+ nall=1 62.9 58.8
+ nall=3 63.4 62.1
+ na1,a4=3, na2,a3,a5=1 63.2 62.0
+ na1,a4=3, na2,a3,a5=1, qdiv=1.0 65.1 63.9

Table 2: Performance comparison with different compu-
tationally optimal strategies. nai denotes the number of
output sequences of the reasoning action ai in a single
extension. qdiv indicates that setting top-p to 1.0 and
temperature to 1.0 for query-related actions, i.e. SAY
and QT, increases the diversity of reasoning. The default
sampling parameters top-p, top-k and temperature are
set to 0.8, 50 and 0.7 respectively. Rational sampling
strategies and inference scaling further improve perfor-
mance across multiple datasets.

4.4 Ablation Studies 503

Effect of Computationally Optimal Strategies 504

(RQ3). Extensive experiments show that the out- 505

puts of certain actions (e.g., RA, DA and SA) are 506

almost consistent when performing multiple gen- 507

erations. Therefore, we only increase the number 508

of output sequences (short for n) for the remaining 509

actions (e.g., SAY and QT), which reduces invalid 510

inference computation while maintaining good re- 511

sults. This also reflects that this kind of reasoning 512

action, which effectively activates the creativity of 513

LLMs, requires more diversified sampling strate- 514

gies. We adjust the sampling parameters (top-p=1.0 515

and temperature=1.0) to improve the diversity of 516

the model output. The complete experimental re- 517

sults in Table 2 show that the diversity of key ac- 518

tions can significantly improve performance. 519
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Figure 4: Left: Performance comparison under different
size of document database. A streamlined database can
maintain a better performance. Right: Performance
comparison in increasing the number of valid rollouts.
Sampling a higher number of diverse reasoning paths
consistently improves accuracy.

From the aforementioned experiments, it is ob-520

served that the recall and accuracy of model are521

linearly correlated. Intuitively, the size of docu-522

ment database is also related to the recall score. By523

reducing the scale of the document database, we524

find a gradual improvement in model performance525

(shown in Figure 4). This observation provides526

experimental evidence for effective database parti-527

tioning in practical application.528

Effect of Verification Methods (RQ4). The larger529

search space also generates more candidate reason-530

ing trajectories. Therefore, how to select the opti-531

mal trajectory is crucial for the final performance.532

We compare multiple verification methods with the533

average scores of all candidates in Figure 5. These534

two self-consistency verification methods are al-535

ways slightly better than the average score, but they536

are not nearly as good as the SA and QwenRM537

methods. The SA method uses the LLM to further538

refine the final answer from all candidate rollouts,539

which is simple and effective. Finally, the reward540

model achieves the most competitive results due541

to the introduction of supervised information on542

key intermediate reasoning steps in the training pro-543

cess. However, collecting process-supervised train-544

ing samples requires high computational costs and545

high-quality raw data. In the practical application546

scenario, we can choose the appropriate method547

while balancing efficiency and effectiveness.548

4.5 Qualitative Analysis (RQ5)549

To make it easier to understand why our proposed550

AirRAG works, we present a qualitative analysis551

in MuSiQue. Existing iterative methods are often552

trapped in a single solution space when confronted553

with complex tasks. As illustrated in Figure 13,554

1 2 3 4 5
58
59
60
61
62
63
64
65

Ac
cu

ra
cy

Retrieve 3 Documents
QwenRM
SA
SC-emb
SC-jcd
Average

1 2 3 4 5
65
66
67
68
69
70
71

Retrieve 8k Context Length
QwenRM
SA
SC-emb
SC-jcd
Average

Number of Output Sequences

Figure 5: Performance comparison of different verifi-
cation methods. "QwenRM" is short for reward model
trained on the Qwen model. "SA" is the reasoning ac-
tion of summary and answer. "SC-emb/jcd" are two
self-consistency verification methods based on text em-
beddings and jaccard similarity. "Average" is the aver-
age score over all candidate rollouts. The single retrieval
process is set to retrieve three documents or fixed 8k
context.

these iterative methods exhibit a key limitation that 555

insufficient or ambiguous retrieval context can lead 556

to repetitive follow-up queries until it reaches the 557

predefined maximum depth of iterations. This inef- 558

ficient iteration results in high computational cost 559

and incorrect answer. In contrast, our proposed Air- 560

RAG designs efficient reasoning actions to activate 561

the intrinsic reasoning capabilities of LLMs. As 562

shown in Figure 14, the SAY action decomposes 563

the original query into a more rational sequence 564

of sub-queries, and then the combination of RA 565

and QT ensures the accuracy of the intermediate 566

reasoning step. We eventually leverage the efficient 567

reasoning trajectory to obtain the correct answer. 568

5 Conclusions 569

In this paper, we propose AirRAG, a novel RAG 570

approach to activate intrinsic reasoning capabili- 571

ties of LLMs. AirRAG designs an efficient action 572

space for the controllable reasoning generation. We 573

also introduce Monte Carlo Tree Search to expand 574

the solution space. Meanwhile, by employing the 575

tree-based search and self-consistency verification, 576

we explore potential reasoning paths and achieve 577

comprehensive inference computation scaling in 578

RAG. In addition, computationally optimal strate- 579

gies are used to apply more computation to key 580

actions, leading to further performance improve- 581

ments. Experimental results on diverse QA datasets 582

demonstrate the significant superiority of AirRAG 583

over other methods designed for complex RAG 584

scenarios. Furthermore, AirRAG can be integrated 585

with other advanced methods with great flexibility. 586
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Limitations587

Although our model achieves competitive perfor-588

mance in various RAG tasks, there are some meth-589

ods and limitations that can be improved. The590

current optimal computation allocation strategy is591

derived from sufficient experiments. We can con-592

sider designing an automated policy model to im-593

plement the trade-off between computational cost594

and performance. Despite great efforts in the in-595

ference scaling of RAG, the experimental analysis596

may be limited due to the massive computational597

cost of tree-based search approaches. We will ex-598

plore more complex reasoning tasks to verify the599

robustness and effectiveness of our approach. In600

addition, the large search space also brings more601

noise information, so we will further investigate602

the reward model or strategy to explore a better603

reasoning path.604
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A Implementation Details847

For evaluation, we randomly select 1,000 samples848

from the whole validation sets of each dataset as849

our final test set, with a fixed random seed 0. To850

better understand the complexity of multi-hop rea-851

soning in these datasets, we analyze the hop dis-852

tribution of the HotpotQA, MuSiQue, and 2Wiki-853

MultiHopQA test sets in Figure 6. The statistics854

show that there is a high proportion of complex rea-855

soning queries with 3 hops or more (aboout 30%,856

50%, 25%). HotpotQA lacks explicit hop annota-857

tions, so we instead count the number of supporting858

facts. MuSiQue has a significantly higher propor-859

tion of 3-hop and 4-hop queries compared to the860

other datasets, indicating great reasoning complex-861

ity. This observation is further corroborated by our862

experimental results in Table 1 and Figure 7. The863

performance of our approach on MuSiQue is much864

lower than those of the other two datasets.865

In the retrieval process, we employ the866

multilingual-e5-base (Wang et al., 2024) as the867

retriever and use the widely used Wikipedia868

dump from December 2018 as the retrieval cor-869

pus (Karpukhin et al., 2020) which comprises over870

21 million passages. For generation, the default871

sampling parameters top-p, top-k and temperature872

are set to 0.8, 50 and 0.7 respectively. Evalua-873

tion metrics include Exact Match (EM), F1 score874

(F1), and Accuracy (Acc), where accuracy indi-875

cates whether the ground truth is a substring of the876

final generated answer. For reward model training,877

we sample 8,000 question-answer pairs from each878

dataset and generate more than 156,000 reasoning879

paths using our proposed AirRAG (rollouts=32,880

n=4, qdiv=1.0). In inference scaling experiments,881

we sample maximum computation budgets Lmax882

(e.g., 8k, 16k, 32k, 64k and 128k tokens). The883

Lmax (maximum effective context length) denotes884

the maximum number of input tokens across all885

rollouts following (Yue et al., 2024). The predeter-886

mined maximum tree depth d is set to 10, specif-887

ically indicating that the SAY and SA actions are888

executed once, while the RA-QT or QT-RA actions889

have a maximum of 4 iterations.890

B Additional Experiment Results891

We report the average performance of our approach892

on three datasets with the support of the Qwen2.5-893

72B-Instruct model in Table 3 and 4. The experi-894

mental results show that the performance is further895

improved (+4.6%, +6.1%, +6.9% in average accu-896

racy) over 14B model. Meanwhile, we observe that 897

the performance of our AirRAG based on the 14B 898

model surpasses other methods using a 72B model. 899

Furthermore, we present detailed inference scaling 900

results for each dataset individually, as shown in 901

Figure 7 and Figure 8. 902

Method Qwen2.5-72B Qwen2.5-14B

F1 Acc F1 Acc

Vanilla RAG 51.6 46.9 47.0 43.2
IterDRAG 53.4 48.5 49.8 45.9
AirRAG 69.6 68.5 65.1 63.9

Table 3: Performance comparison between Qwen2.5-
14B-Instruct and Qwen2.5-72B-Instruct. Three docu-
ments are retrieved in a single RA action. Rollouts and
n are set to 32 and 3 respectively.

Lmax Method Qwen2.5-72B Qwen2.5-14B

F1 Acc F1 Acc

8k

ZeroShot QA 38.8 37.6 34.7 33.6
Vanilla RAG 56.2 51.8 49.7 45.5
IterDRAG∗ 57.0 52.2 53.8 48.7
AirRAG-Lite 70.9 66.6 63.8 59.1
AirRAG 72.4 67.6 65.6 61.5

AirRAG-Blender 73.2 70.0 68.3 66.0

16k

Vanilla RAG 56.8 52.5 53.5 49.2
IterDRAG∗ 58.3 53.9 55.3 50.2
AirRAG-Lite 73.2 68.8 65.2 60.7
AirRAG 74.2 69.7 67.2 62.8

AirRAG-Blender 75.3 71.0 69.3 66.5

Table 4: Overall average evaluation results between
Qwen2.5-14B-Instruct and Qwen2.5-72B-Instruct over
three datasets. Lmax denotes the maximum number
of input tokens across all rollouts or iterations. Both
rollouts and n are set to 1.

C Prompt Examples 903

Given a user input query, our proposed AirRAG, 904

as shown in Figure 2, first attempts the direct an- 905

swer (DA) action without prompts and performs 906

system analysis (SAY) using the prompt in Figure 9. 907

Subsequently, AirRAG performs retrieval and an- 908

swer (RA) with the prompt in Figure 11, or query 909

transformation (QT) to generate refined queries for 910

better retrieval and answer. This process of RA-QT 911

or QT-RA can continuously iterate until no new 912

sub-queries arise or the maximum iteration depth is 913

reached. Finally, the summary answer (SA) in Fig- 914

ure 11 utilizes all the information and conclusions 915

from intermediate steps to refine the final answer. 916
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Method NQ TriviaQA PopQA WebQA HotpotQA 2Wiki

EM EM F1 EM F1 F1

Vanilla RAG 35.1 58.8 36.7 15.7 35.3 21.0
Self-RAG 36.4 38.2 32.7 21.9 29.6 25.1
Iter-RetGen 36.8 60.1 37.9 18.2 38.3 21.6
Auto-RAG 37.9 60.9 47.8 25.1 44.9 48.9
AirRAG 53.6 63.2 51.8 52.6 67.6 66.3

Table 5: Performance comparison on six benchmarks, where Llama3-8B-Instruct is used as the generator LLM.
Partial experimental results are quoted from Jin et al. (2024) and Yu et al. (2024). The best results are in bold. The
number of both rollouts and output sequences is set to 1. The number of documents for a single retrieval is set to 5.
Our proposed AirRAG significantly outperform the others.
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3 facts
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4 facts
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2 hops51.2%
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4 hops

17.9%

MuSiQue
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Figure 6: Overview of the distribution of query complexity over three multi-hop QA datasets.

D Case Study917

We select a sample from the complex multi-hop918

dataset MuSiQue to analyse in detail, as shown in919

Figures 13 and 14.920
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Figure 7: Impact of the retrieved document number scaling and the maximum context length scaling over three
datasets.
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Figure 8: Performance comparison on the number of different effective rollouts over three datasets. Sampling more
diverse reasoning paths consistently improves accuracy.

Example prompt for SAY reasoning action

Given the user query, you may rephrase it for better clarity, summarize it at a higher level,
or decompose it into multiple sub-queries to facilitate more effective information retrieval and
response generation. If no modification is necessary, return "None". Otherwise, list sub-queries,
each on a new line.
<Here are some examples.>
Query: {question}
Output:

Figure 9: Example prompt for SAY reasoning action.

Example prompt for QT reasoning action

Given the context provided, please determine whether rephrasing, summarization, or decomposition
into sub-queries is necessary to enhance the accuracy and efficiency of information retrieval and
response generation. If no modification is required, return "None". Subsequent queries should be
listed individually.
<Here are some examples.>
Main Query: {question}
History: {history}
This Query: {this_question}

Figure 10: Example prompt for QT reasoning action.

Example Prompt for RA actions

You are an expert in question answering. I am going to give you some contexts with may or may
not be relevant to the question. Answer the question according to the contexts.
{contexts}
Question: {question}

Figure 11: Example Prompt for RA actions.
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Example prompt for SA reasoning action

You are an expert in question answering. Given the context, sub-queries and responses, output a
correct and concise answer to User Query.
<Here are some examples.>
User Query: {question}
{history}
Contexts: {contexts}
Final Answer:

Figure 12: Example prompt for SA reasoning action.

The iterative methods often traps in a solution space

Context: <Retrieved documents>
Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Follow up: Which body of water is Bartram’s Covered Bridge located on?
Follow up: | Intermediate answer: | So the final answer is:

Output: Follow up: Which body of water is Bartram’s Covered Bridge located on?

(Note: The context does not specify which body of water Bartram’s Covered Bridge is located on, but it does mention
that the bridge carries Goshen Road over Crum Creek. Therefore, we need to confirm that Crum Creek is the body
of water in question before proceeding to find the mouth of the watercourse.)

· · ·
· · · (It enters an endless cycle of iteration until it reaches predefined maximum depth.)

Gold Answer: Delaware River
Process Annotation: Q1: Bartram’s Covered Bridge » crosses
A1: Crum Creek
Q2: Q1 » mouth of the watercourse
A2: Delaware River

The iterative self-exploration often traps in a solution space with low-quality reasoning steps even
after many attempts.

Figure 13: Incorrect reasoning path of iterative RAG methods. Ambiguity or missing information in the intermediate
steps leads in duplicate sub-query.
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The simple and effective action space of AirRAG leads to the correct reasoning trajectory

Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?

Action1: SAY
Input: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Output: Where is Bartram’s Covered Bridge located?
What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?

Action2: RA
Input: <Retrieved documents> Where is Bartram’s Covered Bridge located?
Output: Bartram’s Covered Bridge is located on the border between Delaware County and Chester County, Pennsylvania,
carrying Goshen Road over Crum Creek.

Action3: QT
Input: What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?
Output: What is the mouth of Crum Creek?

Action4: RA
Input: <Retrieved documents> What is the mouth of Crum Creek?
Output: Based on the provided contexts, there are two different locations referred to as Crum Creek, and they flow into
different bodies of water:
1. The Crum Creek in Delaware County and Chester County, Pennsylvania, flows into the Delaware River in Eddystone,
Pennsylvania.
2. The Crum Creek (also called Cathatachua Creek) in East Creek, New York, flows into the Mohawk River.
Since the question does not specify which Crum Creek is being referred to, both answers are possible. However, if
we consider the first context as the primary reference, the mouth of Crum Creek is the Delaware River in Eddystone,
Pennsylvania.

Action5: SA
Input: <Retrieved documents> <Sub-queries with answers>
Output: The mouth of the watercourse for the body of water where Bartram’s Covered Bridge is located, Crum Creek,
is the Delaware River in Eddystone, Pennsylvania.

Gold Answer: Delaware River.

AirRAG obtains the correct answer by performing five reasoning actions efficiently.

Figure 14: Effective reasoning rollout of AirRAG. The fundamental action space and tree-based search provides
greater compatibility and flexibility, which avoids being trapped in a single solution space by a low-quality
intermediate step for chain-like reasoning paradigm.
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