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Abstract

Leveraging the autonomous decision-making
capabilities of large language models (LLMs)
has demonstrated superior performance in rea-
soning tasks. However, despite the success of
iterative or recursive retrieval-augmented gen-
eration (RAG) techniques, these methods are
often constrained to a single solution space
when confronted with complex problems. In
this paper, we propose a novel thinking pat-
tern in RAG that integrates system analysis
with efficient reasoning actions, significantly
Activating intrinsic reasoning capabilities and
expanding the solution space of specific tasks
via Monte Carlo Tree Search (MCTS), which
we refer to as AirRAG. Specifically, our ap-
proach designs five fundamental reasoning ac-
tions, which are expanded to a broad tree-based
reasoning space using MCTS. The approach
also incorporates self-consistency verification
to explore potential reasoning paths and infer-
ence scaling law. Additionally, computation-
ally optimal strategies are employed to allo-
cate more inference resources to key actions,
thereby enhancing overall performance. Ex-
perimental results demonstrate the effective-
ness of AirRAG, showing significant perfor-
mance gains on complex question-answering
datasets. Furthermore, AirRAG is flexible and
lightweight, making it easy to integrate with
other advanced technologies.

1 Introduction

Retrieval-Augmented Generation (RAG) has
shown great potential in addressing the issue
of generating factually incorrect content, espe-
cially in domain-specific or knowledge-intensive
tasks (Kandpal et al., 2023). However, as task com-
plexity increases, several new challenges emerge,
such as the inability to retrieve sufficient knowl-
edge with a single query and the difficulty of un-
derstanding the intricate reasoning logic inherent

78 F32k
—e— Accuracy
761 Recall
744 F1
Leotal

72+

70

681

Score
=
()}
~
Total Tokens

66 1
64|
r 8k
621

601

1 2 3 4 5
Number of Output Sequences

Figure 1: Comparison of average performance across
three datasets with varying numbers of output sequences.
Lo represents the total number of tokens consumed
during the reasoning process. AirRAG leverages gen-
eration diversity and self-consistency to explore the po-
tential solution space, significantly enhancing overall
performance by scaling inference computation.

in the question. To tackle these challenges, it is cru-
cial to harness the reasoning capabilities of large
language models (LLMs) to improve RAG perfor-
mance (Jiang et al., 2023; Jeong et al., 2024; Asai
et al., 2024; Yu et al., 2024).

Previous research on complex query scenarios
has primarily focused on optimizing the query
and retrieval processes to obtain relevant informa-
tion (Shi et al., 2023; Zhou et al., 2023; Gao et al.,
2023; Jiang et al., 2023; Zheng et al., 2024). While
these methods improve task efficiency, their perfor-
mance often depends heavily on manually crafted
rules and prompt engineering, limiting flexibility
and making it difficult to adapt quickly to differ-
ent scenarios. Moreover, recursive retrieval is fre-
quently used to improve the depth and relevance of
search results in information retrieval tasks. This
process continuously updates intermediate queries
and results to satisfy dynamic information needs
during the complex task-solving process (Jiang
et al., 2023; Asai et al., 2024; Yan et al., 2024;



Jeong et al., 2024). Recent approaches leverage the
decision-making abilities of LLMs to implement
automated iterative retrieval and generation (Yu
et al., 2024; Yue et al., 2024).

However, these approaches face two significant
issues. First, modular RAG struggles to cover the
diverse range of question types, requiring substan-
tial human effort and resulting in inefficiencies.
The limited solution space also prevents the full
activation of LLMs’ decision-making abilities. Sec-
ond, the single reasoning paradigm and the chain-
like reasoning process often fail to effectively ex-
plore the solution space, particularly when reason-
ing relies on self-exploration. This process is vul-
nerable to low-quality intermediate reasoning steps
and is easily trapped in a narrow solution space.
Furthermore, guiding self-exploration becomes
challenging when using relatively smaller language
models (e.g., Owen2.5-14B-Instruct (Yang et al.,
2024)). Therefore, it is necessary to design rational
reasoning actions that comprehensively explore a
broad and deep solution space.

In response to these challenges, we propose Air-
RAG, a method that leverages intrinsic reasoning
capabilities and expands the solution space using
Monte Carlo Tree Search (MCTS). We design five
fundamental reasoning actions: system analysis, di-
rect answer, retrieval-answer, query transformation,
and summary-answer. These actions can effectively
address a wide range of problems in various sce-
narios, including those that require progressive or
parallel queries. Importantly, these actions can be
executed efficiently even on relatively smaller lan-
guage models. Additionally, we introduce MCTS
and self-consistency to enable controllable reason-
ing path generation and efficient inference scaling.
To accurately select the answer from multiple rea-
soning paths, we combine a voting mechanism with
a process-supervised reward model. As inference
computation increases, our approach demonstrates
significant performance improvements as shown
in Figure 1. Moreover, AirRAG features a flexi-
ble architecture that can easily integrate other ad-
vanced methods into the approach as additional
action branches. In summary, our main contribu-
tions are as follows:

* We design five fundamental reasoning actions
that can address most problem types in RAG
scenarios, ensuring controllable reasoning pro-
cesses.

* We introduce MCTS and self-consistency to

effectively expand the solution space for com-
plex tasks. Our approach improves generaliza-
tion and performance through comprehensive
inference scaling and a pluggable architecture.

* We show through experimental results that
AirRAG outperforms current iterative or recur-
sive RAG approaches, effectively activating
the intrinsic reasoning capabilities of LLMs
and expanding the solution space in a control-
lable manner.

2 Related Work

Retrieval-Augmented Generation (RAG). RAG
has demonstrated significant improvements in the
performance of LLMs in knowledge-intensive
tasks. Compared to vanilla RAG, optimizing the
query and retrieval process enhances knowledge
correlation and, consequently, improves reasoning
performance. Several methods, such as query ex-
pansion and transformation, have been proposed
to achieve better retrieval results (Zhou et al.,
2023; Ma et al., 2023; Gao et al., 2023). How-
ever, as task complexity increases, retrieving suf-
ficient knowledge in a single query becomes in-
creasingly difficult. To address this, iterative re-
trieval techniques have been proposed to gather
additional contextual references. For instance, IR-
CoT (Trivedi et al., 2023) utilizes chain-of-thought
(CoT) to guide the retrieval process, refining the
CoT with the retrieved information. Similarly,
ITER-RETGEN (Shao et al., 2023) combines re-
trieval and generation modules to promote a deeper
understanding of specific tasks.

Activating the reasoning capabilities of LLMs
in RAG. In addition to optimizing retrieval, activat-
ing the reasoning capabilities of LLMs can signifi-
cantly improve the efficiency and relevance of the
retrieved information. Leveraging the decision-
making abilities of LLMs enhances the overall
performance (Nakano et al., 2022; Schick et al.,
2023). Self-RAG and its variants (Asai et al., 2024,
Yan et al., 2024; Jeong et al., 2024) adopt a self-
reflection mechanism that iteratively predicts reflec-
tion tokens during training, enabling better control
during inference. Auto-RAG (Yu et al., 2024) sys-
tematically plans retrievals and refines queries to
acquire valuable knowledge through multi-turn iter-
ations. IterDRAG (Yue et al., 2024) explores infer-
ence scaling strategies in RAG, enhancing LLMs’
ability to effectively acquire and utilize contex-
tual information. Despite the progress made in



these methods, they often struggle to explore the
solution space effectively during reasoning. Self-
exploration frequently leads to being trapped in
a limited solution space, hindered by low-quality
reasoning steps even after multiple iterations. This
issue is often attributed to the chain reasoning pat-
tern and the difficulty small-scale LLMs face when
handling overly complex tasks in a single iteration.
Monte Carlo Tree Search (MCTS). To address
these challenges, tree-based search algorithms, par-
ticularly Monte Carlo Tree Search (MCTS), have
emerged as effective tools to expand search spaces
and enhance reasoning capabilities (Silver et al.,
2017; Chen et al., 2024; Qi et al., 2024; Zhang
et al., 2024). MCTS has been shown to extend
reasoning by exploring multiple branching queries,
thus enabling the exploration of diverse reasoning
paths (Yao et al., 2023; Besta et al., 2024). In
the mathematical reasoning scenario, Zhang et al.
(2024) and Chen et al. (2024) leverage MCTS
to achieve more efficient exploration of solution
spaces, while Qi et al. (2024) designs rich human-
like reasoning actions to improve reasoning tra-
jectories. Furthermore, recent research indicates
that inference scaling (Yue et al., 2024) and self-
consistency (Wang et al., 2023) can lead to substan-
tial improvements. In this context, our approach
samples diverse reasoning paths to achieve both
inference scaling and self-consistency verification
during the next expansion of the action space.

Unlike existing methods that focus on optimiz-
ing query and retrieval processes or leveraging
LLMs’ reasoning capabilities through iterative re-
trieval, AirRAG uniquely integrates MCTS and
self-consistency to systematically expand the so-
lution space and ensure the controllability of the
reasoning process. Simultaneously, we design five
fundamental reasoning actions that effectively ad-
dress a broader range of question types, particu-
larly in complex tasks. This pluggable architecture
also allows for easy integration of current advanced
methods, making AirRAG a flexible and powerful
solution for RAG scenarios. In the experiment, we
thoroughly verify the performance gains brought
by the inference scaling law and investigate how to
rationally allocate inference resources.

3 Methodology

In order to effectively explore the solution space
during reasoning, we propose a controllable tree-
based framework of RAG. This framework com-

bines Monte Carlo Tree Search (MCTS) with five
distinct reasoning actions, enabling efficient and
controlled expansion of the solution space. Mean-
while, we further implement more comprehensive
inference scaling strategies based on Yue et al.
(2024) and employ pruning techniques along with
computationally optimal strategies to strike a bal-
ance between effectiveness and efficiency. The
whole process is illustrated in Figure 2.

3.1 Define Fundamental Reasoning Actions

Relying solely on the autonomy of LLM:s for itera-
tive self-exploration often results in getting trapped
in a solution space that is difficult to navigate, es-
pecially when dealing with different types of com-
plex questions. IterDRAG (Yue et al., 2024) uses
a single action type to generate the next reasoning
step, which can lead to ineffective space explo-
ration. The core of MCTS generation lies in the
action space, which defines the scope of tree ex-
ploration. Therefore, simplifying human cognitive
processes in complex reasoning is essential (Jaffe
et al., 2023). Inspired by this, we introduce five fun-
damental human-like reasoning actions to bridge
the gap between LLM reasoning and human cogni-
tion in RAG scenarios.

e Ay: System Analysis (SAY). This action analyzes
the overall structure of the problem, followed
by its decomposition or planning. It represents
systematic and global thinking before problem-
solving.

e As: Direct Answer (DA). This action leverages
parametric knowledge of LLMs to answer ques-
tions directly, without relying on any external
knowledge.

e As: Retrieval-Answer (RA). This action retrieves
related knowledge from the external knowledge
base to support subsequent reasoning.

e Ay: Query Transformation (QT). This action
transforms human questions in order to improve
retrieval performance. It supports various trans-
formations, such as rewriting, step back prompt-
ing, follow-up questions and multi-query re-
trieval.

e As: Summary-Answer (SA). This action com-
bines intermediate reasoning steps, answers and
the initial questions to generate the final answer.
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Figure 2: The schematic diagram of our proposed AirRAG. AirRAG implements a paradigm that combines system
thinking with step-by-step reasoning. In the inference phase, we introduce MCTS and self-consistency to scaling
computation, which significantly outperforms other strong baselines.

The above five actions define a highly diverse ac-
tion space {41, Ao, A3, Ay, As}. In the first step,
the initial state is denoted as sg and then MCTS
selects the action a; and ag to prompt the LLM to
generate the next reasoning steps in parallel. Sub-
sequent actions are performed sequentially to ex-
pand the reasoning path. It is important to note
that there are sequential dependencies between
different actions. For example, A; and As can
only be executed after the root question. Addi-
tionally, we incorporate the diverse sampling of
self-consistency (Wang et al., 2023) for each ac-
tion to expand the reasoning paths. Specifically, an
action is more likely to generate the correct reason-
ing step if we sample multiple times in the current
state. Finally, we can obtain multiple generated rea-
soning trajectories, such as [sg @ s1.]. To further
improve inference efficiency, we choose the action
{As, Ay, A5} as a simplified action space, referred
to as AirRAG-Lite, which achieves a better balance
between efficiency and effectiveness.

3.2 Perform Reasoning Processes via MCTS
3.2.1 Solution Generation

Based on the action space defined above, we intro-
duce MCTS to generate candidate reasoning tra-
jectories. The initial root node, sg, represents the
question without any reasoning steps. The pol-
icy is directly modeled by a language model as
m(als) = LM(als), and the state transition func-

tion combines preceding reasoning steps with cur-
rent actions, i.e., s; = Concat(sg;;—1,a;). Dur-
ing each MCTS rollout, we execute multiple steps,
including selection, expansion, simulations, and
backpropagation. Multiple rollouts are performed
to expand the solution space. To balance the
exploration and exploitation, we adopt the well-
known Upper Confidence Bounds applied to Trees
(UCT) (Kocsis and Szepesvari, 2006) for node se-
lection as follows:

Qs,a) |
NGs)

log Np(s)

UCT(S,p) = N(S) )

6]
where (s, a) is the reward value for node s and is
updated through backpropagation. N (s) denotes
the number of visits to s, p is the parent node of
s, and w is the weight to balance exploration and
exploitation.

When the search reaches a terminal node, de-
fined either by a terminal state or a predetermined
maximum tree depth d, we obtain a trajectory from
the root to the terminal node. All trajectories from
the rollout iterations are collected as candidate so-
lutions. Section 3.3 explains how we select the
optimal answer node from these trajectories.

3.2.2 Inference Scaling

Numerous studies have demonstrated that scaling
inference computation can significantly improve
the performance of LLMs without additional train-
ing (Snell et al., 2024; Yue et al., 2024). Based on



the above methods, we explore strategies to lever-
age inference computation scaling in AirRAG. One
straightforward strategy is extending the effective
context length (short for Ly, ,y) during the docu-
ment retrieval phase, allowing more related docu-
ments to supplement the knowledge base. Addi-
tionally, we perform multiple rollouts to thoroughly
explore the solution space relying on the tree-based
search. Adjusting the number of output sequences
(n) generated during certain actions enables self-
consistency verification and further inference scal-
ing. These strategies provide flexibility for scaling
inference computation in RAG, empowering LLMs
to address complex knowledge-intensive queries
more effectively.

To improve efficiency and minimize redundant
computations, we implement an early pruning strat-
egy for state nodes and reasoning paths. Dedu-
plication is applied to the output sequence states
generated by each action, ensuring the diversity
of the subsequent path. Furthermore, if multiple
rollouts select the same state sequence, only one
valid reasoning path is retained.

3.2.3 Flexible Architecture

Our tree-based architecture provides the flexibility
to integrate other advanced approaches. We repro-
duce the IterDRAG method based on the prompt
design by Yue et al. (2024). Meanwhile, inspired
by its iterative implementation, we simplify the fun-
damental action space to {As, A4, A5}, enabling
a faster implementation while still achieving rel-
atively good results. These methods serve as an
exploratory extension of our approach and can be
activated or deactivated as needed.

3.3 Select the Optimal Answer Node

For common mathematical reasoning tasks, a sim-
ple consistency-based method can efficiently se-
lect the most precise reasoning path. For example,
the most frequent number extracted from multiple
candidate solutions in MATH (Hendrycks et al.,
2021) can be chosen as the final answer. How-
ever, extracting precise answers and performing ef-
fective aggregation becomes more challenging for
knowledge-intensive tasks. To address this, we de-
sign two self-consistency verification methods for
such problems. Jaccard similarity and text embed-
dings are two different approaches used in natural
language processing to measure the similarity be-
tween texts. We apply these methods to cluster text

answers and compute answer scores as follows:
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where N is the number of valid answer nodes, A; is
the word-level set of answer text ¢, and F; denotes
the embedding vector of answer text <.

In addition, we further investigate the self-refine
and process-supervision reward model to iden-
tify the most accurate reasoning trajectory. Self-
refinement uses the A5 (Summary-Answer) action
to refine the final answer from all candidate answer
nodes. The reward modeling process consists of
two steps: data synthesis and instruction tuning.

» Data synthesis: We leverage MCTS to per-
form multiple rollouts on partial training sets.
Based on known ground truth, we sample pos-
itive and negative reasoning trajectories and
use Monte Carlo estimation to evaluate inter-
mediate state scores.

* Instruction tuning: Synthetic samples are
used to fine-tune a relatively small LLM, such
as Qwen2.5-14B-Instruct.

4 Experiments

In this section, we conducted experiments on com-
plex QA benchmarks by answering the following
research questions.

* RQ1: Does AirRAG outperform state-of-the-
art baselines?

* RQ2: How does AirRAG perform when it
comes to comprehensive inference scaling?

* RQ3: What is the performance benefit of Air-
RAG in optimizing the allocation of inference
computation?

* RQ4: How does AirRAG perform for various
verification methods for multiple candidate
rollouts?

* RQS5: What is the intuitive performance of
AirRAG in the reasoning process?



4.1 Experimental Settings
4.1.1 Datasets

To evaluate the effectiveness of AirRAG, we con-
duct experiments on various question-answering
(QA) tasks, including both open-domain QA
and multi-hop QA. The complex multi-hop QA
datasets consist of HotpotQA (Yang et al., 2018),
MuSiQue (Trivedi et al., 2022) and 2WikiMul-
tiHopQA (2Wiki) (Ho et al., 2020). Other
single-hop QA datasets include Natural Questions
(NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi
etal., 2017), PopQA (Mallen et al., 2023) and We-
bQA (Berant et al., 2013).

4.1.2 Implementation Details

We use the hyperparameters reported for the exist-
ing models whenever available. Implementation
details are available in the Appendix A.

4.1.3 Baselines and Metrics

To investigate the enhancement effects of thinking
and planning on complex RAG tasks, we compare
it with vanilla RAG, which performs only a single
retrieval and generation process. We evaluate the
naive generators of Qwen2.5-14B-Instruct (Yang
et al., 2024) and Llama-3-8B-Instruct (Grattafiori
et al., 2024). In the retrieval phase, we employ
multilingual-e5-base (Wang et al., 2024) as the re-
triever. The prompt of vanilla RAG are shown in
the Appendix C. For iterative retrieval, we com-
pare AirRAG with Iter-RetGen (Shao et al., 2023),
Self-RAG (Asai et al., 2024), Auto-RAG (Yu et al.,
2024), and IterDRAG (Yue et al., 2024). To fur-
ther explore RAG performance and inference com-
putation scaling, we focus on a comparison with
IterDRAG for a given budget on inference com-
putation. For evaluation metrics, we report Exact
Match (EM), F1 score (F1) and Accuracy (Acc)
between the generated summary and gold answer,
where accuracy measures whether the gold answer
is covered in the generated answer.

4.2 Main Results (RQ1)

We first evaluate the performance of AirRAG on
various complex QA datasets. Table 1 compares
its accuracy and F1 with strong baselines under the
given inference computation budget, which is im-
plemented based on Qwen2.5-14B-Instruct and one
million document database. The optimal perfor-
mance exhibits consistent gains as L,y expands,
which is termed as the inference scaling laws for
RAG (Yue et al., 2024). We integrate the remaining

methods for a given maximum computational bud-
get into our approach, dubbed as AirRAG-Blender.
The best results are obtained by using only the SA
action to refine the final answer from all candidates,
as shown in Table 1. This also demonstrates the
flexibility of our approach architecture. In addi-
tion, to verify the robustness and generalization of
AirRAG, Table 5 shows the performance on more
diverse LLMs and datasets. For a fair comparison,
we utilize the widely used Wikipedia dump from
December 2018 (Karpukhin et al., 2020) as the
retrieval corpus. We observe consistent improve-
ments over vanilla RAG and existing iterative meth-
ods (more than 10% on average). The significant
boost over IterDRAG and Auto-RAG suggests that
AirRAG explores more effective reasoning paths
through the human-like thinking paradigm and tree-
based search.

4.3 Inference Scaling for RAG (RQ2)

Inference computation scaling can enable LLMs
to improve their output performance (Snell et al.,
2024). Self-consistency can also improve the ro-
bustness of the reasoning process (Wang et al.,
2023). Therefore, we carry out a comprehensive
experimental analysis on the inference computation
scaling. Based on tree-based search and RAG sce-
nario, there are multiple ways to optimize the use
of inference computation resources. Specifically,
we can adjust both the number of retrieved docu-
ments in a single retrieval and the effective context
length in all iterations. The average performance of
three datasets exhibits consistent gains in Figure 3.
In subsequent experiments, unless otherwise speci-
fied, the data presented represent the average perfor-
mance across the HotpotQA, MuSiQue, and 2Wiki
datasets. In particular, the initial computation scal-
ing brings significant performance improvements.
In addition, the number of output sequences and
rollouts in MCTS can expand the solution space
and explore potential reasoning paths. As shown in
Figure 1, the average performance increases with
the number of output sequences per action, demon-
strating the effectiveness of self-consistency. We
also investigate the number of effective reasoning
paths under different rollouts in Figure 4. Simi-
larly, the performance improvement caused by the
increase of effective reasoning paths in the early
stage is relatively high. Similarly, the increase
in early reasoning paths leads to relatively higher
performance gains. We provide additional dataset-
specific results in Appendix B.



Lo Method HotpotQA MuSiQue 2Wiki Average
F1 Acc F1 Acc F1 Acc F1 Acc
ZeroShot QA 425 413 135 121 482 473 347 336
8k Vanilla RAG 703 654 23.0 177 558 534 497 455
IterDRAG™ 743 69.1 267 194 60.5 576 53.8 487
AirRAG-Lite 80.6 754 354 289 753 73.1 638 59.1
AIrRAG 79.6 752 41.0 350 76.0 742 65.6 615
AirRAG-Blender 81.1 79.8 41.6 364 822 817 683 66.0
Vanilla RAG 77.1 720 29.0 229 609 58.1 557 51.0
30Kk IterDRAG™ 777 716 308 223 63.0 602 571 514
AirRAG-Lite 824 769 367 30.1 788 76.8 660 61.3
AIrRAG 825 774 432 363 804 789 68.7 64.2
AirRAG-Blender 829 806 433 376 834 830 699 67.1
IterDRAG* 76.8 710 31.7 248 655 624 58.0 527
128k  AirRAG-Lite 825 77.1 357 304 783 76.0 655 622
AIrRAG 833 780 435 365 823 80.5 69.7 65.0
AirRAG-Blender 83.7 814 439 385 844 842 70.6 680

Table 1: Overall evaluation results on the test sets of three datasets. * indicates the results reproduced by us. Ly ax
denotes the maximum number of input tokens across all rollouts. The best results for each L, are in bold. The

number of both rollouts and output sequences is set to 1.
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Figure 3: Impact of the retrieved document number scaling (Left) and the maximum context length scaling (Right)
on model performance (averaged Accuracy and Recall of three datasets). All methods show consistent performance
improvements as the effective inference computation scales.

Method Average
F1 Acc
Vanilla RAG 47.0 432
IterDRAG 49.8 459
AIrRAG
+ nai=1 62.9 58.8
+ Nan=3 634  62.1
+ nal,a4=3, naz,aS,aE):l 63.2 62.0
+ nal,a4=3, nag,ag,a5=1, Qdiu=1.0 65.1 63.9

Table 2: Performance comparison with different compu-
tationally optimal strategies. n,, denotes the number of
output sequences of the reasoning action a; in a single
extension. qg;, indicates that setting top-p to 1.0 and
temperature to 1.0 for query-related actions, i.e. SAY
and QT, increases the diversity of reasoning. The default
sampling parameters top-p, top-k and temperature are
set to 0.8, 50 and 0.7 respectively. Rational sampling
strategies and inference scaling further improve perfor-
mance across multiple datasets.

4.4 Ablation Studies

Effect of Computationally Optimal Strategies
(RQ3). Extensive experiments show that the out-
puts of certain actions (e.g., RA, DA and SA) are
almost consistent when performing multiple gen-
erations. Therefore, we only increase the number
of output sequences (short for n) for the remaining
actions (e.g., SAY and QT), which reduces invalid
inference computation while maintaining good re-
sults. This also reflects that this kind of reasoning
action, which effectively activates the creativity of
LLMs, requires more diversified sampling strate-
gies. We adjust the sampling parameters (top-p=1.0
and temperature=1.0) to improve the diversity of
the model output. The complete experimental re-
sults in Table 2 show that the diversity of key ac-
tions can significantly improve performance.
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Sampling a higher number of diverse reasoning paths
consistently improves accuracy.

From the aforementioned experiments, it is ob-

served that the recall and accuracy of model are
linearly correlated. Intuitively, the size of docu-
ment database is also related to the recall score. By
reducing the scale of the document database, we
find a gradual improvement in model performance
(shown in Figure 4). This observation provides
experimental evidence for effective database parti-
tioning in practical application.
Effect of Verification Methods (RQ4). The larger
search space also generates more candidate reason-
ing trajectories. Therefore, how to select the opti-
mal trajectory is crucial for the final performance.
We compare multiple verification methods with the
average scores of all candidates in Figure 5. These
two self-consistency verification methods are al-
ways slightly better than the average score, but they
are not nearly as good as the SA and QwenRM
methods. The SA method uses the LLM to further
refine the final answer from all candidate rollouts,
which is simple and effective. Finally, the reward
model achieves the most competitive results due
to the introduction of supervised information on
key intermediate reasoning steps in the training pro-
cess. However, collecting process-supervised train-
ing samples requires high computational costs and
high-quality raw data. In the practical application
scenario, we can choose the appropriate method
while balancing efficiency and effectiveness.

4.5 Qualitative Analysis (RQ5)

To make it easier to understand why our proposed
AirRAG works, we present a qualitative analysis
in MuSiQue. Existing iterative methods are often
trapped in a single solution space when confronted
with complex tasks. As illustrated in Figure 13,
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Figure 5: Performance comparison of different verifi-
cation methods. "QwenRM" is short for reward model
trained on the Qwen model. "SA" is the reasoning ac-
tion of summary and answer. "SC-emb/jcd" are two
self-consistency verification methods based on text em-
beddings and jaccard similarity. "Average" is the aver-
age score over all candidate rollouts. The single retrieval
process is set to retrieve three documents or fixed 8k
context.

these iterative methods exhibit a key limitation that
insufficient or ambiguous retrieval context can lead
to repetitive follow-up queries until it reaches the
predefined maximum depth of iterations. This inef-
ficient iteration results in high computational cost
and incorrect answer. In contrast, our proposed Air-
RAG designs efficient reasoning actions to activate
the intrinsic reasoning capabilities of LLMs. As
shown in Figure 14, the SAY action decomposes
the original query into a more rational sequence
of sub-queries, and then the combination of RA
and QT ensures the accuracy of the intermediate
reasoning step. We eventually leverage the efficient
reasoning trajectory to obtain the correct answer.

5 Conclusions

In this paper, we propose AirRAG, a novel RAG
approach to activate intrinsic reasoning capabili-
ties of LLMs. AirRAG designs an efficient action
space for the controllable reasoning generation. We
also introduce Monte Carlo Tree Search to expand
the solution space. Meanwhile, by employing the
tree-based search and self-consistency verification,
we explore potential reasoning paths and achieve
comprehensive inference computation scaling in
RAG. In addition, computationally optimal strate-
gies are used to apply more computation to key
actions, leading to further performance improve-
ments. Experimental results on diverse QA datasets
demonstrate the significant superiority of AirRAG
over other methods designed for complex RAG
scenarios. Furthermore, AirRAG can be integrated
with other advanced methods with great flexibility.



Limitations

Although our model achieves competitive perfor-
mance in various RAG tasks, there are some meth-
ods and limitations that can be improved. The
current optimal computation allocation strategy is
derived from sufficient experiments. We can con-
sider designing an automated policy model to im-
plement the trade-off between computational cost
and performance. Despite great efforts in the in-
ference scaling of RAG, the experimental analysis
may be limited due to the massive computational
cost of tree-based search approaches. We will ex-
plore more complex reasoning tasks to verify the
robustness and effectiveness of our approach. In
addition, the large search space also brings more
noise information, so we will further investigate
the reward model or strategy to explore a better
reasoning path.
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A Implementation Details

For evaluation, we randomly select 1,000 samples
from the whole validation sets of each dataset as
our final test set, with a fixed random seed 0. To
better understand the complexity of multi-hop rea-
soning in these datasets, we analyze the hop dis-
tribution of the HotpotQA, MuSiQue, and 2Wiki-
MultiHopQA test sets in Figure 6. The statistics
show that there is a high proportion of complex rea-
soning queries with 3 hops or more (aboout 30%,
50%, 25%). HotpotQA lacks explicit hop annota-
tions, so we instead count the number of supporting
facts. MuSiQue has a significantly higher propor-
tion of 3-hop and 4-hop queries compared to the
other datasets, indicating great reasoning complex-
ity. This observation is further corroborated by our
experimental results in Table 1 and Figure 7. The
performance of our approach on MuSiQue is much
lower than those of the other two datasets.

In the retrieval process, we employ the
multilingual-e5-base (Wang et al., 2024) as the
retriever and use the widely used Wikipedia
dump from December 2018 as the retrieval cor-
pus (Karpukhin et al., 2020) which comprises over
21 million passages. For generation, the default
sampling parameters top-p, top-k and temperature
are set to 0.8, 50 and 0.7 respectively. Evalua-
tion metrics include Exact Match (EM), F1 score
(F1), and Accuracy (Acc), where accuracy indi-
cates whether the ground truth is a substring of the
final generated answer. For reward model training,
we sample 8,000 question-answer pairs from each
dataset and generate more than 156,000 reasoning
paths using our proposed AirRAG (rollouts=32,
n=4, q4;»=1.0). In inference scaling experiments,
we sample maximum computation budgets Lax
(e.g., 8k, 16k, 32k, 64k and 128k tokens). The
Lnax (maximum effective context length) denotes
the maximum number of input tokens across all
rollouts following (Yue et al., 2024). The predeter-
mined maximum tree depth d is set to 10, specif-
ically indicating that the SAY and SA actions are
executed once, while the RA-QT or QT-RA actions
have a maximum of 4 iterations.

B Additional Experiment Results

We report the average performance of our approach
on three datasets with the support of the Qwen2.5-
72B-Instruct model in Table 3 and 4. The experi-
mental results show that the performance is further
improved (+4.6%, +6.1%, +6.9% in average accu-
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racy) over 14B model. Meanwhile, we observe that
the performance of our AirRAG based on the 14B
model surpasses other methods using a 72B model.
Furthermore, we present detailed inference scaling
results for each dataset individually, as shown in
Figure 7 and Figure 8.

Method Qwen2.5-72B  Qwen2.5-14B
F1 Acc F1 Acc

Vanilla RAG 51.6 469 47.0 432
IterDRAG 53.4 485 49.8 459
AirRAG 69.6 68.5 65.1 63.9

Table 3: Performance comparison between Qwen2.5-
14B-Instruct and Qwen2.5-72B-Instruct. Three docu-
ments are retrieved in a single RA action. Rollouts and
n are set to 32 and 3 respectively.

Luax  Method Qwen2.5-72B  Qwen2.5-14B
F1 Acc F1 Acc

ZeroShot QA 38.8 37.6 347 33.6

8k Vanilla RAG 56.2 51.8 49.7 45.5
IterDRAG* 57.0 52.2 53.8 48.7
AirRAG-Lite 70.9 66.6 63.8 59.1
AirRAG 724  67.6 65.6 61.5
AirRAG-Blender 73.2 70.0 68.3 66.0

Vanilla RAG 56.8 52.5 53.5 49.2

16k IterDRAG* 58.3 53.9 55.3 50.2
AirRAG-Lite 73.2 68.8 65.2 60.7
AirRAG 742  69.7 67.2 62.8
AirRAG-Blender 75.3 71.0 69.3 66.5

Table 4: Overall average evaluation results between
Owen2.5-14B-Instruct and Qwen2.5-72B-Instruct over
three datasets. L., denotes the maximum number
of input tokens across all rollouts or iterations. Both
rollouts and n are set to 1.

C Prompt Examples

Given a user input query, our proposed AirRAG,
as shown in Figure 2, first attempts the direct an-
swer (DA) action without prompts and performs
system analysis (SAY) using the prompt in Figure 9.
Subsequently, AirRAG performs retrieval and an-
swer (RA) with the prompt in Figure 11, or query
transformation (QT) to generate refined queries for
better retrieval and answer. This process of RA-QT
or QT-RA can continuously iterate until no new
sub-queries arise or the maximum iteration depth is
reached. Finally, the summary answer (SA) in Fig-
ure 11 utilizes all the information and conclusions
from intermediate steps to refine the final answer.



Method NQ TriviaQA PopQA  WebQA HotpotQA  2Wiki

EM EM F1 EM F1 F1
Vanilla RAG  35.1 58.8 36.7 15.7 353 21.0
Self-RAG 36.4 38.2 32.7 21.9 29.6 25.1
Iter-RetGen  36.8 60.1 37.9 18.2 38.3 21.6
Auto-RAG 37.9 60.9 47.8 25.1 44.9 48.9
AirRAG 53.6 63.2 51.8 52.6 67.6 66.3

Table 5: Performance comparison on six benchmarks, where Llama3-8B-Instruct is used as the generator LLM.
Partial experimental results are quoted from Jin et al. (2024) and Yu et al. (2024). The best results are in bold. The
number of both rollouts and output sequences is set to 1. The number of documents for a single retrieval is set to 5.
Our proposed AirRAG significantly outperform the others.

HotpotQA MuSiQue 2WikiMultiHopQA
>=5 facts >=5 hops
4 facts 4 hops
4 hops
1.6% 0.6%
3 facts 6.5% 17.9% 22.1%

21.2%
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OGS 76.7%
3 hops

2 facts

2 hops

Figure 6: Overview of the distribution of query complexity over three multi-hop QA datasets.

D Case Study

We select a sample from the complex multi-hop
dataset MuSiQue to analyse in detail, as shown in
Figures 13 and 14.

13



HotpotQA

81 96 80 94
78+ 92 78 921
- - 90 -
3751 — 881 761 o e
] ] -
5 721 == 9| U gq O~ 5 741 Y 86 A e
o P ] - o 3 -
2 69 ¥ 3 & 504 -7 S 55 84 » :
< 69 - 80 » g 72 7 % 82 jf/ AIrRAG
4 % /TN emm 1 AirRAG-Lite
le ] 1.
66 76 ¢ 70 P 801¢ —~®- IterDRAG
63 T T T T 72— T T T T T T T 78 T T T
510 20 30 40 50 510 20 30 40 50 816 32 64 128 816 32 64 128
Number of Documents Effective Context Length (k)
MuSiQue
40 72 40 72
36 66 36 68 1
64
232 — 601 2321 - -
£ T o-—o| & S 60 =
5 28 g 541 P S 5 28 $ o6 o-""
o « - 4 x 26 ===
< 244 o -—g-—-e---0| 487 4§ L R St ol Tl AIrRAG
204 07 12 ld 201 “/'" y AIrRAG-Lite
p 48 1¢ - IterDRAG
16 T T T T 36— T T T T T T T —— T T
510 20 30 40 50 510 20 30 40 50 816 32 64 128 816 32 64 128
Number of Documents Effective Context Length (k)
2WikiMultihopQA
85 102 85 98
80 96 80 1 91 4
754 90 -
z - 2751 — 841
® 70 T 84 s ©
5 i 5 70 g 774 o
g 65 ol & 781 Soese| § g O
< 404 /_!,__—o-——a—— 724 e g 651 P 70714 AirRAg
o o | @ g =T ] AirRAG-Lite
551¢ 66 1o 60 o 4 63 —e- IterDRAG
50 T T T T 60 T T T T T T T —— T T
510 20 30 40 50 510 20 30 40 50 816 32 64 128 816 32 64 128

Number of Documents

Effective Context Length (k)

Figure 7: Impact of the retrieved document number scaling and the maximum context length scaling over three

datasets.
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Figure 8: Performance comparison on the number of different effective rollouts over three datasets. Sampling more
diverse reasoning paths consistently improves accuracy.

Example prompt for SAY reasoning action

Given the user query, you may rephrase it for better clarity, summarize it at a higher level,
or decompose it into multiple sub-queries to facilitate more effective information retrieval and
response generation. If no modification is necessary, return "None". Otherwise, list sub-queries,
each on a new line.

<Here are some examples.>

Query: {question}

Output:

Figure 9: Example prompt for SAY reasoning action.

Example prompt for QT reasoning action

Given the context provided, please determine whether rephrasing, summarization, or decomposition
into sub-queries is necessary to enhance the accuracy and efficiency of information retrieval and
response generation. If no modification is required, return "None". Subsequent queries should be
listed individually.

<Here are some examples.>

Main Query: {question}

History: {history}

This Query: {this_question}

Figure 10: Example prompt for QT reasoning action.

Example Prompt for RA actions

You are an expert in question answering. I am going to give you some contexts with may or may
not be relevant to the question. Answer the question according to the contexts.

{contexts}

Question: {question}

Figure 11: Example Prompt for RA actions.
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Example prompt for SA reasoning action

You are an expert in question answering. Given the context, sub-queries and responses, output a
correct and concise answer to User Query.

<Here are some examples.>

User Query: {question}

{history }

Contexts: {contexts}

Final Answer:

Figure 12: Example prompt for SA reasoning action.

The iterative methods often traps in a solution space

Context: <Retrieved documents>

Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Follow up: Which body of water is Bartram’s Covered Bridge located on?

Follow up: | Intermediate answer: | So the final answer is:

Output: Follow up: Which body of water is Bartram’s Covered Bridge located on?

(Note: The context does not specify which body of water Bartram’s Covered Bridge is located on, but it does mention
that the bridge carries Goshen Road over Crum Creek. Therefore, we need to confirm that Crum Creek is the body
of water in question before proceeding to find the mouth of the watercourse.)

- -+ (It enters an endless cycle of iteration until it reaches predefined maximum depth.)
Gold Answer: Delaware River

Process Annotation: Q1: Bartram’s Covered Bridge » crosses

Al: Crum Creek

Q2: Q1 » mouth of the watercourse

A2: Delaware River

The iterative self-exploration often traps in a solution space with low-quality reasoning steps even
after many attempts.

Figure 13: Incorrect reasoning path of iterative RAG methods. Ambiguity or missing information in the intermediate
steps leads in duplicate sub-query.
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The simple and effective action space of AirRAG leads to the correct reasoning trajectory

Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?

Actionl: SAY

Input: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Output: Where is Bartram’s Covered Bridge located?

What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?

Action2: RA

Input: <Retrieved documents> Where is Bartram’s Covered Bridge located?

Output: Bartram’s Covered Bridge is located on the border between Delaware County and Chester County, Pennsylvania,
carrying Goshen Road over Crum Creek.

Action3: QT
Input: What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?
Output: What is the mouth of Crum Creek?

Action4: RA

Input: <Retrieved documents>  What is the mouth of Crum Creek?

Output: Based on the provided contexts, there are two different locations referred to as Crum Creek, and they flow into
different bodies of water:

1. The Crum Creek in Delaware County and Chester County, Pennsylvania, flows into the Delaware River in Eddystone,
Pennsylvania.

2. The Crum Creek (also called Cathatachua Creek) in East Creek, New York, flows into the Mohawk River.

Since the question does not specify which Crum Creek is being referred to, both answers are possible. However, if
we consider the first context as the primary reference, the mouth of Crum Creek is the Delaware River in Eddystone,
Pennsylvania.

Action5: SA
Input: <Retrieved documents> <Sub-queries with answers>

Output: The mouth of the watercourse for the body of water where Bartram’s Covered Bridge is located, Crum Creek,
is the Delaware River in Eddystone, Pennsylvania.

Gold Answer: Delaware River.

AirRAG obtains the correct answer by performing five reasoning actions efficiently.

Figure 14: Effective reasoning rollout of AirRAG. The fundamental action space and tree-based search provides
greater compatibility and flexibility, which avoids being trapped in a single solution space by a low-quality

intermediate step for chain-like reasoning paradigm.
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