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ABSTRACT

Accumulating evidence suggests the canonical cortical circuit, consisting of excita-
tory (E) and diverse classes of inhibitory (I) interneurons, implements Bayesian
posterior sampling. However, most of the identified circuits’ sampling algorithms
are simpler than the nonlinear circuit dynamics, suggesting complex circuits may
implement more advanced algorithms. Through comprehensive theoretical analy-
ses, we discover the canonical circuit innately implements natural gradient Bayesian
sampling, which is an advanced sampling algorithm that adaptively adjusts the
sampling step size based on the local geometry of stimulus posteriors measured by
Fisher information. Specifically, the nonlinear circuit dynamics can implement nat-
ural gradient Langevin and Hamiltonian sampling of uni- and multi-variate stimulus
posteriors, and these algorithms can be switched by interneurons. We also find that
the non-equilibrium circuit dynamics when transitioning from the resting to evoked
state can further accelerate natural gradient sampling, and analytically identify
the neural circuit’s annealing strategy. Remarkably, we identify the approximated
computational strategies employed in the circuit dynamics, which even resemble
the ones widely used in machine learning. Our work provides an overarching
connection between canonical circuit dynamics and advanced sampling algorithms,
deepening our understanding of the circuit algorithms of Bayesian sampling.

1 INTRODUCTION

The brain lives in a world of uncertainty and ambiguity, necessitating the inference of unobserved
world states. The Bayesian inference provides a normative framework for this process, and extensive
studies have suggested that neural computations across domains aligns with Bayesian principles,
giving rise to the concept of the “Bayesian brain” (Knill & Pouget, 2004). These include visual
processing (Yuille & Kerstenl 2006), multi-sensory integration (Ernst & Banks|, [2002), decision-
making (Beck et al., 2008)), sensorimotor learning (Kording & Wolpert, 2004), etc. Recent studies
suggested the canonical cortical circuit may naturally implement sampling-based Bayesian inference
to compute the posterior (Hoyer & Hyvirinen, 2003; |Buesing et al., 2011} |Aitchison & Lengyell
2016}, Haefner et al., 2016; |Orban et al.l [2016; |[Echeveste et al., [2020; [Zhang et al., [2023]; |[Terada
& Toyoizumi, [2024; [Masset et al., 2022} |Sale & Zhang |2024), in that the large cortical response
variability is consistent with the stochastic nature of sampling algorithms.

The canonical cortical circuit (Fig. [T]A) — the fundamental computational building block of the cerebral
cortex — consists of excitatory (E) neurons and various inhibitory interneurons (I) including neurons of
parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) (Adesnik et al.|[2012;
Fishell & Kepecs|, [2020; |Niell & Scanziani, [2021; |Campagnola et al., [2022). Different interneuron
classes have different intrinsic electrical properties and form specific connectivity patterns (Fig. [IB).
The canonical circuit is highly conserved across a wide spectrum of vertebrate species and likely
represents a common network architecture solution discovered by evolution over millions of years.
Therefore, studying the algorithms underlying canonical circuits not only advances our understanding
of neural computations, but also positions these circuits as building blocks for next-generation deep
network models, with their clear algorithmic understanding enabling full interpretability.

The field has started to identify the algorithm of the canonical circuit. For example, a very recent
study has identified the Bayesian sampling algorithm in reduced canonical circuit motifs (Sale &
Zhangl, 2024)): the reduced circuit of only E and PV neurons can implement Langevin posterior



sampling in the stimulus feature manifold. And incorporating SOM into the circuit introduces
oscillations that accelerate sampling by upgrading Langevin sampling into more efficient Hamiltonian
sampling. Nevertheless, a significant gap remains between identified Bayesian sampling algorithms
and the complex, nonlinear canonical circuit dynamics. A notable distinction is that canonical
circuit dynamics is inherently non-linear and substantially more complex than the linear dynamics
of Langevin and Hamiltonian samplings identified in previous circuit models and used in machine
learning (ML) research. Rather than dismissing the added complexity as incidental to neural dynamics
without computational purpose, we explore whether these nonlinear circuit dynamics may serve some
advanced function. This raises a compelling question: Can nonlinear circuit dynamics implement
more advanced and efficient sampling algorithms? If so, what are advanced circuit algorithms?

To address this question, we perform comprehensive theoretical analyses of the canonical circuit
model composed of E neurons and two classes of interneurons (PV and SOM). Our analysis reveals
that canonical circuit dynamics not only implements standard Langevin and Hamiltonian sampling as
revealed in|Sale & Zhang|(2024)), but innately incorporate the natural gradient (NG) to automatically
adjust the step size (or the “temperature”) in the circuit’s Langevin and Hamiltonian sampling based
on the local geometry of the posterior distribution measured by the Fisher information (FT).

Specifically, we find the total activity of E neurons monotonically increases with posteriors’ FI, and
dynamically control the effective sampling step size in the low-dimensional stimulus feature manifold.
Remarkably, the NG sampling in canonical circuit dynamics exhibits computational strategies
analogous to established numerical techniques in ML (Hwang, |2024; |Girolami & Calderhead, 2011}
Marceau-Caron & Ollivier, [2017). These include, 1) the recurrent E input acts as a regularization
analogous to adding a small number during FI inversion to prevent numerical instabilities (Eq. [5}
«) —a common practice in NG sampling algorithms; 2) When coupling multiple canonical circuits
interact to sample multivariate stimulus posteriors, the coupled circuit approximates the full FI matrix
with its diagonal elements (Sec. [3)), similar to the diagonal approximation used in scalable NG
samplings. In addition, our analysis reveals that when the circuit transitions from resting state (no
feedforward input) to evoked state (with feedforward input), the non-equilibrium circuit dynamics
further accelerates sampling beyond the efficiency of standard NG sampling. We analytically identify
the neural annealing strategy within canonical circuit dynamics (Fig. [2JJ, Eq. [3b).

Significance. The present study provides the first demonstration that canonical cortical circuits
with diverse classes of interneurons naturally implement natural gradient Langevin and Hamiltonian
sampling. We establish a precise mapping between circuit components and computational elements
of advanced sampling algorithms, bridging computational neuroscience and ML. And the canonical
cortical circuit may inspire the new building block for more efficient, interpretable deep networks.

2 BACKGROUND: THE CANONICAL CORTICAL CIRCUIT MODEL

We consider a nonlinear canonical circuit model consisting of E neurons and two classes of interneu-
rons (PV and SOM) (Fig. [T)A), whose dynamics is adopted from a recent circuit modeling study (Sale
& Zhang, [2024)). This model is biologically plausible by reproducing tuning curves of different types
of neurons (Fig. [ATA-C), and is analytically tractable so we can directly identifying the nonlinear
circuit’s algorithm. Briefly, each of the Vg E neurons is tuned to a preferred 1D stimulus z = 0;.
The full set of these preferences, {9]-}],\’:}51, uniformly covers the whole stimulus space. E neurons
are recurrently connected with a Gaussian kernel in the stimulus space (Eq. [Id). Both PV and SOM
neurons are driven by E neurons but with different interactions: PV neurons deliver global, divisive
normalization to E neurons (Eq. [Ib), whereas SOM neurons provide local, subtractive inhibition (Eq.
[Ic). The whole circuit dynamics is (Sec. [C|for detailed explanation and construction rationale).

E: Tug(0,t) = —ug(0,t) + p>_ «(Wex *rx)(0,t) + /TF[ug(0,t)]+£(6,t), (1a)
Div. norm. : rg(0,t) = [ug(0,1)]2 /(1 + pwgprp); PV: rp = [[ug(6',t)]3d0, (1b)
SOM: Tug(0,t) = —us(0,t) + p(Wsp xrp)(0,1); rs(0,t) =gs-[us(0,1)]+, (lo)
Rec. weight: Wy x (0 — 0') = wy x (\/ﬂaxy)_1 exp(—(0 — 0')?/2a%y ), (1d)
Feedfwd.:  rp(0,t) ~ Poisson[A\r(0|2:)], Ar(0|z:) = Rpexp[—(0 — 2)?/2a?]. (le)

ux and rx represent the synaptic inputs and firing rates of neurons of type X respectively. In Eq. (Ta),
the neuronal types X € {E, F, S} representing inputs from E neurons, sensory feedforward inputs
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Figure 1: (A) The canonical circuit of E and diverse types of interneurons and sampling-based
Bayesian inference. (B) The circuit model in the present study consists of E and two types of interneu-
rons (PV and SOM). (C) The recurrent connection kernel between E neurons. (D) Feedforward input
represented as a continuous approximation of Poisson spike trains with Gaussian tuning across the
stimulus feature. (E) The feedforward input parametrically encodes the stimulus feature likelihood.
(F) The population responses of E (top) and SOM neurons (bottom). (G) Stimulus feature values
sampled by the E and SOM neurons respectively. (H) The network’s sampling distribution read
out from E and SOM neurons. The E neuron’s position is regarded as stimulus feature sample zg,
while the sample of SOM neurons zg contributes to the auxiliary momentum variable in Hamiltonian
sampling. The distribution of zg (top marginal) will be used to approximate the posterior.

(Eq.[1€), and SOM neurons (Eq. [Id) respectively. [z]; = max(z,0) is the negative rectification. E
neurons receive internal Poisson variability with Fano factor F, mimicking stochastic spike generation
that can provide appropriate internal variability for circuit sampling (Zhang et al.,2023). In particular,
gs is the "gain" of SOM neurons and can be modulated (see Discussion), which is the key circuit
mechanism to flexibly switch between static inference and dynamic inference with various speeds.

To facilitate math analysis, the above dynamics consider infinite number of neurons in theory
(Ng — 00), then the summation of inputs from other neurons ¢; becomes an integration (convolution)
over 6, e.g., (Wxr)(0) = [ W(0—0")r(0)d¢’, while our simulations take finite number of neurons.
p = Ng/2m is the neuronal density in the stimulus feature space, a factor in discretizing the integral.

2.1 THEORETICAL ANALYSIS OF THE CANONICAL CIRCUIT DYNAMICS

It has established theoretical approach to obtain analytical solutions of the nonlinear recurrent circuit
dynamics considered in the present study (Fung et al., 2010; |Wu et al., 2016; [Zhang & Wu, 2012}
Sale & Zhang, |2024), including attractor states, full eigenspectrum of the perturbation dynamics, and
the projected dynamics onto the dominant eigenmodes. These analytical solutions are essential to
identify the circuit’s Bayesian algorithms. Below, we briefly introduce the key steps and results of
the theoretical analysis, with detailed math calculations in Sec. |g

Attractors. E neurons in canonical circuit dynamics have the following attractor states with a bump
profile over the stimulus feature space (Fig. [AT} Sec. [C),

ﬁE(G) = UE exp[—(9 — EE)2/4CL2L fE(Q) = RE exp[—(@ — EE)2/2(12]. 2)

Similar bump attractor states exist for SOM neurons (Eq. |E_7| ). In contrast, PV neurons don’t have a
spatial bump profile since their interactions with E neurons are unstructured (Eq. [Ib).

Dimensionality reduction for stimulus sampling dynamics. The perturbation analysis reveals that
the first two dominant eigenmodes of the circuit dynamics correspond to the change of bump position
zp and the bump height U, respectively (Sec. [C| (Fung et al, 2010; [Wu et al| 2016)), and similarly
for SOM neurons. We project the E dynamics (Eq. [La) onto the above two dominant eigenvectors
(calculating the inner product of the circuit dynamics and the eigenvectors), yielding the governing
dynamics of the zp and U, (the projection of SOM neurons will be shown later in Sec. [f]and [E),

Position : g ~ (tUg) *Upr(u. — 25) + JZ(TUE)71/2&, (Uxy = pryRy/\/ﬁ) (3a)
Height : Ug ~ 7 [~Ug + Ugg + Ugp| + ou(r—UR)Y%&, (3b)

where Uy is the population input height from population Y to X. o2 = 8aF/(3v/37) and
0% = F/(v/3ma) are constants that don’t change with network activities. The approximation comes
from omitting negligible nonlinear terms in the circuit dynamics (Sec. [C.3). Our following theoretical
analysis on circuit algorithms will be based on the above two equations.



2.2 BACKGROUND: NATURAL GRADIENT BAYESIAN SAMPLING

Amari’s natural gradient is a well-known method to adaptively adjust the sampling step size based
on the local geometry characterized by the Fisher information (FI) G(z) (Amari, 1998} |Amari &
Douglas| [1998}; [Amari, [2016; [Girolami & Calderhead, 2011) (see details in Sec. (B.2),

G(2) = —Epp2) [V2In7(2)] )
For a Gaussian distribution A (z|u, A1), the FI will be its precision A and doesn’t depend on 2.

Natural gradient Langevin sampling (NGLS). The FI is used to determine the step size of the
Langevin sampling dynamics to sample the posterior 7(z) (Girolami & Calderhead, 2011),

=17 Vinw(z) 4+ (2r;H)Y2€, where 7, = 5[G(z) + a. 3)

o is a small positive constant acting as a regularization term to improve numerical stability in inverting
the FI (Hwang| |2024} Marceau-Caron & Ollivier, [2017} [Wu et al.| 2024), which is widely used in
ML. 7 is a small constant similar to the inverse of “learning rate”. In the naive Langevin sampling,
71, is fixed rather than proportional to the FI. In the NG Langevin sampling, the 7;, scales with the
FI. If the distribution is widely spread out, the sampling step size will be larger, allowing for faster
exploration of the space. Conversely, if the distribution is sharply peaked, the sampling step size will
be smaller to explore the local region more thoroughly.

Natural gradient Hamiltonian sampling (NGHS). It defines a Hamiltonian function H (z, p) where
the momentum distribution 7 (p|z)’s variance (rather than precision) is proportional to the FI G(z).

H(z,p) = —In7(z) — Inn(plz), =(plz) =N[p|0,G(z)]. 6)

The NGHS dynamics with friction is governed by (Girolami & Calderhead, 2011; Ma et al., 2015),
d |z 0 V.H 0
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where is the time constant of the Hamiltonian sampling, and + is the friction that dampens
momentum. The Hamiltonian dynamics with friction can be interpreted as a Langevin dynamics
added into the momentum dynamics (Chen et al., 2014; [Ma et al., 2015). When v = 0, Eq.
reduces into the naive Hamiltonian dynamics. Our following analysis will show the canonical circuit
can automatically implement the natural gradient Langevin sampling and Hamiltonian sampling.

3  FROM CIRCUIT DYNAMICS TO BAYESIAN SAMPLING

In our framework, the stage from external stimulus z to the feedforward input rp is regarded as a
generative process (Fig. [T]A), and then the circuit dynamics (Eqgs. [Taand[Ic) effectively performs
Bayesian sampling dynamics to compute the stimulus posterior, 7(z) = p(z|rr) x p(rp|2)p(z). We
hypothesize that the circuit computes subjective posterior distributions 7(z) based on its internal
generative model (Lange et al. 2023)), implicitly assuming the subjective prior in brain’s neural
circuits matches the objective prior (usually not known precisely) of the world. With this hypothesis,
we treat the canonical circuit, strongly supported by experiments, as a “ground truth”, and aim to
identify the circuit’s internal generative model and its Bayesian sampling algorithms.

Subjective prior p(z). We will leave the subjective prior p(s) unspecific for now and will find it
through the analysis of the circuit dynamics. This will be shown later in the Eqs. (I0]and [T3).

Stimulus likelihood L(z). The stochastic feedforward input from the stimulus z (Eq. [1€) naturally
specifies the stimulus likelihood that is calculated as a Gaussian likelihood (see Sec. [C.4),

L(z) x p(rp|z) = [, Poisson[Ap(6]|2)] oc N'(z|p., A71),

where p. =3, rp(0;)0;/>;tr(0;), A= a2 > Tr(05) = V2rpa~'Rp.
The mean i, and precision A are geometrically regarded as rz’s location and height respectively
(Fig. -E). A single snapshot of r  parametrically conveys the stimulus likelihood p(rr|z), in that

all likelihood parameters are read out from rx. In particular, the Gaussian stimulus likelihood is
resulted from the the Gaussian profile of feedforward input tuning A (6|2) (Eq. |le| Ma et al.{(2006).

®)
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Figure 2: NG Langevin sampling in the reduced circuit (E and PV). (A) The need for adaptive step
size to sample different posteriors. (B) The reduced circuit with fixed weights flexibly samples
posteriors with different uncertainties. (C-D) E bump height Ug, increases with posterior FI (C)
and determines the sampling time constant in the stimulus feature manifold. (E-F) The sampling
convergence with recurrent weight wgpg that acts as a regularizer (Eq. [5). (G-H) The sampling
convergence at different posterior uncertainties. (I-K) Non-equilibrium sampling further accelerates
convergence. The non-equilibrium population responses (I), bump height (J), and the KL divergence
(K) from the resting state (no feedforward input) to evoked state.

Circuit’s stimulus posterior FI comes from the likelihood (Eq. [8) and the prior (unspecified now),
G(2) = A+ V2Inp(z) = V2rpa ' Rp + VZInp(2). ©)

Our following analysis will focus on connecting the circuit dynamics on the position and height
subspace (Eqs. [3a and b)) to the NG sampling dynamics (Sec. [2.2), to identify how the circuit
implements NG Langevin and Hamiltonian sampling. To facilitate understanding, we will start from
the reduced circuit model without SOM neurons (Sec. []-[3) and then add the SOM back (Sec. [6).

4 A REDUCED CIRCUIT WITH E AND PV NEURONS: NG LANGEVIN SAMPLING

To facilitate understanding, we first present how the circuit realizes the naive Langevin sampling (Sale
& Zhang), |2024), then conduct further analyses to reveal its mechanism of NG Langevin samplings.

4.1 NAIVE LANGEVIN SAMPLING IN THE REDUCED CIRCUIT

To analyze the circuit Langevin sampling, we convert the bump position zg dynamics (Eq. [3a) into a
Langevin sampling form by expressing its drift term as the log-likelihood gradient,

WEFRFaQ
2y/m
where the feedforward input strength Ug (Eq. [3a) is proportional to the likelihood precision A, i.e.,
Urr x wgpRp < wgpA (Eq.[8). Notably, the drift and diffusion terms in Eq. (TI0) share the same

factor 7Upg, a necessary condition for Langevin sampling (Eq. [5). Then we investigate the how the
circuit realizes Langevin sampling by comparing Eqs. (T0]and[3)), and study its sampling structure.

ip = (TUp) "NV InL(zg) + 0. (7Ug) ~V2¢,, with VIn£(2) = A(ps — 2), A, = , (10)

Uniform (uninformative) circuit prior. It is because the drift term in Eq. (10) is the stimulus
likelihood L(z) gradient, due to the translation-invariant recurrent weights (Eq. [1d). This result is
consistent with the previous study (Zhang et al.|(2023); Sale & Zhang|(2024); see Discussion).

The circuit sampling only constrains feedforward weight wg . It requires the ratio 02 /), = 2 in
Eq. (T0) which only constrains the feedforward weight as w}, . = /702/a = (2/+/3)3F, irrelevant
with other circuit weights like wg g and wgp as long as the circuit dynamics is stable. This suggests
the robust circuit sampling and no fine-tuning of circuit parameters is needed.

Flexible sampling the whole likelihood family. Once the feedforward weight is set at w}, , the
circuit with fixed weights flexibly sampling likelihoods with different means and uncertainties,
because in Eq. (I0) the A\, and o, are invariant with circuit activities, and 7Up is a free parameter



without changing the equilibrium sampling distribution. And then the bump position zg dynamics
will automatically sample the corresponding likelihood that is parametrically represented by the
instantaneous feedforward input r (Eq. [8). This is also confirmed by our simulation (Fig. 2B).

4.2 NATURAL GRADIENT LANGEVIN SAMPLING IN THE REDUCED CIRCUIT

The NG Langevin sampling requires the sampling time constant increases with the FI G(z) (Eq.
. Meanwhile, the time constant of the circuit’s bump position zg dynamics is proportional to the
bump height Ug (Eq. [3bjand and is confirmed by circuit simulation (Fig. 2D). Thus we analyze
the relation between Ug and the FI. For simplicity, we first focus on the equilibrium mean of Ug,
(averaging Eq. [3b), and the identified NGLS parameters in the circuit are shown in Fig. @E.

Ug =Ugg +Ugr, Upr = pwerRrp/vV2 =X, G(2) = \.A. (1)

E bump height Ur, encodes Fisher information. The feedforward input height UgF is proportional
to the likelihood FI G(z) (Eq. @ uniform prior), making the mean bump height Ug increase with
G(z). This is also confirmed by the circuit simulation (Fig. ). Consequently, the bump height Ug,
effectively represents the stimulus FI and in turn scales the time constant of the circuit sampling 2
dynamics (Eq. [I0] Fig. 2ID), enabling the NGLS in the circuit.

The recurrent E input (weight) acts as a regularizer. Comparing Eqgs. and [3)), the recurrent
input strength Ug g acts as a role of the regularization coefficient «v, improving the numerical stability
in inverting the FI when it is small or ill-conditioned (Hwang} 2024} Marceau-Caron & Ollivier, [2017}
Wu et al.,2024). Without recurrent E weight (Ugg = 0 via setting wgp = 0), the circuit sampling
behaves similarly with the NGLS (Fig. 2E). Including recurrent weights enlarges the sampling
time constant, slowing down the sampling as suggested by our theory (Fig. [ZE). Nevertheless,
with extremely small FI, the circuits with higher recurrent weights have faster convergence (Fig. 2F,
leftmost part), because the recurrent E input stabilizes the inversion of very small FI. Moreover, NGLS
is characterized by the invariant temporal correlation of samples with the posterior uncertainties
(controlled by input intensity Ry), which is also confirmed in the circuit simulation (Fig. 2G).

The flexible scaling with various posterior FI. The canonical circuit model with fixed weights
flexibly scales its sampling time constant (determined by Ufg, Eq. with various posteriors FI
(controlled by the feedforward input rate Rr), all of which is automatically completed by the
recurrent dynamics without the need of changing circuit parameters. For example, increasing Ry
increases the bump height Ug (Eq. that leads to a larger sampling time constant, and meanwhile
it changes the equilibrium sampling distribution of the circuit (Eqgs. [§]and [3a).

4.3 NON-EQUILIBRIUM CIRCUIT DYNAMICS ACCELERATES NATURAL GRADIENT SAMPLING.

Our analysis so far concentrates on the equilibrium mean U (Eq. . We now extend to the
non-equilibrium dynamics (Eq. [3b), particularly during the transient response immediately following
the onset of a stimulus. After receiving a rr, the Ug will gradually grow up until the equilibirum
state (Fig. 2J-J). And meanwhile, the sampling step size will gradually decreases in that a larger U
leads to larger sampling constant and therefore smaller step size. This is similar to the annealing
in stochastic computation. The larger sampling step size during the non-equilibrium implies the
circuit can sample faster than the equilibrium state, confirmed by simulation (Fig. 2K). Furthermore,
Ug temporal trajectory (Fig. [2JJ) describes circuit’s annealing strategy, governed by Eq. This
intrinsic annealing schedule is an emergent property of the circuit’s nonlinear dynamics.

5 COUPLED CIRCUITS: NGLS OF MULTIVARIATE POSTERIORS

The brain needs to sample multivariate stimulus posteriors, which can be implemented by a decentral-
ized system consisting of multiple coupled canonical circuit modules (Fig. B]A, [Zhang et al.| (2016}
2023); Raju & Pitkow| (2016)). Each circuit module m receives a feedforward input stochastically
evoked by a 1D stimulus z,, (Fig. E]), and the cross-talk between circuits enables them to read out the
circuit prior, and eventually each circuit m samples the corresponding stimulus z;, distributedly. As
a proof of concept, we consider the smallest decentralized system of two coupled circuits to sample
bivariate posteriors (Fig. BJA). The sampling of higher dim. posteriors can be extended by inserting
more circuit modules, with the number of circuit modules determined by the stimulus dimension.
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Figure 3: Coupled canonical circuits sample multivariate posteriors, with each circuit m sampling
the corresponding marginal posterior of z,,. (A) The structure of decentralized circuit with each
consisting of E and PV neurons (the same as Fig. 2B). (B-C) The spatiotemporal E neuronal responses
in two circuits (B) and the decoded stimulus samples (C). (D) When concatenating the samples from
two circuits together, we recover the bivariate sampling distribution. Vector field: the drift term of the
sampling dynamics in the circuit. (E) The vector field of natural gradient sampling with full FIM and
diagonal FIM approximation. (F) The convergence speed in the decentralized circuit. The diagonal
FIM approximation is scalable in high dimensions, while paying the cost of slower sampling speed.

We investigate how the coupled circuits implement bivariate posteriors’ NGLS, and what kind of
approximation, if there is any, is used in the circuit. The theoretical analysis of the two coupled
circuits is similar to a single circuit module, but we perform the analysis on each circuit module
individually, yielding the new position and height dynamics (details at Sec. D)),

Position : zp = (TDy) [ — Lzp + Ugpr o (4, — 2p)] + 0.(Du) " '/2¢,. (12a)
Height : Ug=7"'(~Up+Ugp + Ugr) +ouy(r"'Dy)/2%,. (12b)
zp = (21,2)" is two circuits’ E bump positions. Similarly for u, and Ry (feedfwd. input

position and intensity respectively), and Ug and R (bump height of synaptic input and firing rate
respectively). Dy = diag(Upg) is a diagonal matrix of Ug. The o denots the element-wise product.

The associative bivariate stimulus prior. The zg dynamics (Eq. [12a)) has a new term, i.e., — Lz,
which can be linked to the internal stimulus prior (omitting the subscript E'E of U for clarity below).

Uiz Uiz T
Vinp(z) = —Lzg, L= (_(}21 Us, ) & p(z) < exp (—zpLlzg/2). (13)

Hence the coupling matrix L is the prior’s precision matrix (see Sec. [D.2). To ease of understanding,
we expand the bivariate prior as p(z1, z2) o< exp [—Alg(zl — 29)2 /2], with A15 oc (Us + Usa) /2.
The coupled circuit stores an associative (correlational) stimulus prior with each marginal uniform,
consistent with previous studies (Sale & Zhang||2024;Zhang et al.;|2023). The identified correlational
prior is confirmed by numerical simulation, where the actual sampling distribution of the circuit
dynamics matches the subjective posterior predicted via the identified prior (Fig. [A2).

Diagonal Fisher information approximation. Given the identified circuit’s prior, we calculate the
Fisher information matrix (FIM) G(z) and compare it with the actual sampling time constants,

FI: G(z) = \]* (_%121 UU212> vs. Circuit: Dy = (Ul U2> . (14)
The time constant matrix Dy in the circuit dynamics is proportional to the diagonal elements of the
FIM, i.e., Dy « diag[G(z)], suggesting the circuits utilize the diagonal approximation of the FIM
to scale the Langevin sampling step size. The diagonal FIM approximation is widely used in ML, as
a trade-off of computational efficiency and accuracy (Amari, 1998 |Amari & Douglas| 1998} |Amari,
20165 (Wu et al., 2024), where the full FIM is hard to estimate.

To illustrate the effect of diagonal FIM approximation on sampling dynamics, we plot the vector field
of NGLS with full FIM and diagonal FIM respectively (Fig. BD). All vector fields under full FIM
directly point to the posterior mean, while the ones under diagonal FIM are curled along the long axis
of the posterior. Meanwhile, the curled vector fields also exist in coupled circuits’ sampling dynamics,
confirming diagonal FIM approximation in the circuit (Fig. 3|C). The diagonal FIM simplifies the
computation, while paying the cost of sampling speed (Fig. BE).



6 THE CIRCUIT WITH SOM NEURONS: NG HAMILTONIAN SAMPLING

We investigate the Bayeisan sampling in the augmented circuit model with SOM neurons providing
structured inhibition to E neurons (Eq. [Ta). The SOM’s structured inhibition can add the Hamiltonian
sampling component in the circuit (Sale & Zhang| |2024). We further analyze whether the augmented
circuit with SOM neurons implements the natural gradient Hamiltonian sampling (NGHS). For
simplicity, we consider a augmented circuit model to sample a univariate stimulus posterior. Similarly,
we derive the eigenvectors of the SOM’s dynamics and then project the dynamics on dominant
eigenvectors (see details in Sec. [E). The position dynamics of the E and SOM neurons are,

E: TEiE = | + |+ [arUpp(p. — 28) + 0.4/TEé], (152)
Langevin part

SOM: 75i¢ ~ Usp(zr — 25), (7x =7Ux) (15b)

To understand the circuit’s sampling dynamics, the zg dynamics (Eq. [[5a)) is decomposed into the
drift terms from Langevin and parts with + a7, = 1, and the momentum p is defined

as a mixture of zg and zg. Transforming the (zg, zs) dynamics (Egs. - [15b} Fig. ) into the
(zg, p) dynamics (Fig. ) shows a mixture of Langevin and Hamiltonian sampling in the circuit,

4 Jae| _ _Jartory —V.Inn(zg) 0.7’
dt {P] N { TUEBBEA™! A A L

where (), g and o, are functions of the coefficients in Eq. (details at Eq. [ET6). And the
momentum p dynamics has a friction term (Eq. [I6)), corresponding to a Langevin component.

A line manifold in weight space for Hamiltonian sampling. It requires the ratio between the
drift and diffusion coefficients are the same as the Langevin (Eq. [5) and Hamiltonian sampling (Eq.

. Specifically, it requires 1) avp A T;-l =o?7, : /2 and 2) TE/J’I,BEA’] = 02/2. Solving the two
constraints, we can derive the requirement of circuit weights for Hamiltonian sampling,
(Ug'Rs) -wgs — [(1 —ar)Uz'Re| - wer = [Q(ar)Us ' RE] - wsk. (17)

Q(«y) is nonlinear with a7, and is invariant with network activities (Eq. [E21). Ux and Rx are the
height of the population synaptic input and firing rate of neurons X (Eq. [2). Eq. suggests a
line manifold in the circuit’s weight space (wgs, wgr) for correct posterior sampling, confirmed by
numerical simulation (Fig. @]} Moreover, once circuit weights are set within the line manifold, the
circuit with fixed weights can flexibly sample posteriors with various uncertainties (Fig. @[C).

Natural gradient Hamiltonian sampling. Implementing NGHS requires the precision of the
momentum p to be inversely proportional to posterior’s FI, G(z) (Eq. . To verify this, we calculate
the momentum distribution (p|z) in the circuit (comparing Eqs. [L6|and[7),

—Vinn(p|z) = -p = w(plz) = N(pl|0, ), where (18)

We analyze the momentum precision A, in the circuit dynamics. Since g is a complex, quadratic
function of neuronal responses, we then use order analysis to provide insight (details at Sec. [E.4).
In the circuit dynamics, we calculate Sg ~ O(G(z)), Ug ~ O(G(z)), and G(z) = A, and then we
have A, < O(G(z)™1), suggesting the momentum precision A, decreases with posterior’s FI and
satisfys the requirement of NGHS. This is confirmed by simulation results (Fig. @D).

7 CONCLUSION AND DISCUSSION

The present theoretical study for the first time discovers that the canonical circuit dynamics with
E and two classes of interneurons (PV and SOM) innately implement natural gradient sampling
of stimulus posteriors, deepening our understanding of circuit computations. The circuit samples
stimulus posterior in the stimulus manifold that is geometrically regarded as the E neurons’ bump
position. And we find the E bump height encodes the FI of the stimulus posterior, and determine the
time constant of bump position’s sampling dynamics. We find the non-equilibirum dynamics of the
E bump height can further accelerate sampling, and explicitly identify the circuit annealing strategy
(Eq. [3b). Remarkably, we discover the circuit dynamics also utilizes computational approximations
widely used in ML algorithms, including the regularization coefficient for inverting FI (Eq.
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Figure 4: Natural gradient Hamiltonian sampling in the augmented circuit with E, PV, and SOM
neurons. (A) The circuit structure. (B) The decoded trajectory of stimulus sample zr and momentum
p exhibits an oscillation pattern, which is a characteristic of Hamiltonian sampling. The momentum p
is a weighted average of sample zg and zg as shown in Fig. [[H. (C) The circuit with fixed weights
can sample posteriors with different uncertainties. (D) The momentum precision decreases with the
Fisher information controlled by feedforward input strength, satisfying the requirement of natural
gradient Hamiltonian sampling. (E) A table summarizing the circuit’ sampling parameters.

and the diagonal FI matrix approximation in multivariate cases (Eq. [I2b), which provides a direct
evidence to validate the biological plausibility of artificial ML algorithms. Our work unprecedentedly
links the canonical circuit with classes of interneurons to natural gradient sampling and related
approximation strategies, providing deep, mechanistic insight into circuit sampling algorithms.

Preliminary experimental support of NG sampling. Our NG sampling circuit specifically predicts
that the magnitude of the E neurons’ responses (the bump height U, Eq. [3b)), is inversely proportional
to the step size of the trajectory in the stimulus feature subspace (bump position zg, Eq. [3a)). This is
supported by experiments from hippocampal place cells where the step size of the decoded spatial
trajectories (akin to our zg) was found to be negatively correlated with population firing rate (Pfeiffer
& Foster] [2015), providing a necessary condition for validating circuit NG sampling.

Comparison with previous studies. First, In our best knowledge, only one study investigated
the NG sampling in recurrent networks (Masset et al., [2022), while it is difficult to make direct
and “fair” comparison since the network models in two studies are different: The previous study
considers a spiking network without explicit defining neuron types, while the present study considers
a rate-based network with diverse classes of interneurons (PV and SOM) that has rich repertoire of
realizing various NG sampling algorithms (Langevin and Hamiltonian). From functional perspective,
our circuit with fixed weights can flexibly realize NG sampling for posteriors with different mean
and uncertainties, whereas it remains unknown whether this flexibly holds in the previous study.
Second, our circuit model builds upon a recent work (Sale & Zhang, |2024) that discovered the
conventional Langevin and Hamiltonian sampling in the canonical circuit. Our work takes one step
further and finds the same circuit can innately realize NG Langevin and Hamiltonian sampling, which
is a fundamentally deeper result after more comprehensive theoretical analysis of the circuit by
additionally projecting the circuit dynamics onto the second dominant height mode (Eq. 3b).

Limitations, generalizations, and future directions. First, the proposed circuit model doesn’t
include VIP neurons (Fig. [T), which are likely act as a “knob” modulating the SOM gain (g, Eq.
to adjust circuit sampling speed and the momentum (Sec. [E.4). Second, Our canonical circuit model,
widely used in neuroscience, only stores a uniform (marginal) prior for each stimulus as a result
of an ideal case that neurons are uniformly tiling the stimulus manifold and translation-invariant
recurrent weights (Eq. [Id). This implies the circuit has to break the neuronal homogeneity on the
stimulus manifold to store a non-uniform (marginal) prior (Ganguli & Simoncelli, [2010). Third,
although our circuit with fixed weights automatically scale its sampling time constant with various
posteriors’ FI, for each posterior it uses a globally homogeneous FI because the Gaussian posteriors
have homogeneous curvature. In principle, we can change the profile of the recurrent kernel, and then
the circuit can sample other posteriors in the exponential family with locally dependent FI. Fourth,
we can introduce bump height Ug, oscillations with larger PV inhibitory weight wg p, and then the
circuit has the potential to implement cosine-profile annealing. Fifth, to implement the NG sampling
of general distributions, one possibility is our circuit samples baseline Gaussian distributions, and
a feedforward decoder network map the base distribution into arbitrary distributions. Preserving
the NG sampling in the space of arbitrary distribution probably requires the diffeomorphism of the
decoder network. All of these form our future research.



8 REPRODUCIBILITY STATEMENT

All analytical calculations of the nonlinear circuit dynamics are detailed from Appendix Sec. [B]- [El
Below is a list of the Appendix sections and their associated sections in the main text.

1) Circuit models and theoretical analysis: is presented in Sec. [2]in the main text and the detailed
introduction and rationale are presented in Appendix Sec.

2) 1D NG Langevin sampling: is presented in Sec. []in the main text and the detailed calculations
are in Appendix Sec. [C}

3) Multivariate NG Langevin in coupled circuits: is presented in Sec. [5in the main text and the
detailed calculations are in Appendix Sec. [D]

4) 1D NG Hamiltonian sampling: is presented in Sec. [6]in the main text and the detailed calcula-
tions are in Appendix Sec.

5) Numerical simulation details: is presented in Appendix Sec. [Fincluding the parameters for
each figure. The complete code of simulation is provided in the supplementary files with detailed
usage instructions.
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Figure Al: (A-B)The tuning curve of an example E neuron in control state compared with enhancing
PV neurons (A) and SOM neurons (B). It shows the PV neurons provide divisive inhibition to the E
neuron, while the SOM provides subtractive inhibition to the E neuron. (C) The tuning curves of
all E neurons in the circuit tile the whole stimulus feature space z. (D-E) The temporally averaged
Gaussian profile of the firing rate rz(6) (D) and synaptic input ug () (E), supporting the Gaussian
ansatz of the attractor states in Eqgs.
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Figure A2: (A) The joint correlational prior of the stimulus z; and 2z stored in the coupled circuits
presented in Fig. 3] The correlation between two stimuli is determined by width of the diagonal
band . (B) The prior precision A, increases with the coupling weight between two circuits. (C-D)
The coupled circuits sample the posterior by using its internal subjective prior. Comparison of the
sampling mean (C) and the prior precision (D) stored in the network with theoretical predictions.
Each point represents results from a combination of feedforward inputs, connection weights.
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Figure A3: The augmented circuit with E, PV and SOM neurons have a line manifold in the parameter
space to sample posteriors correctly, suggesting no fine-tuning is needed. The parameter space is
spanned by feedforward weight wgr and the inhibitory weight from SOM to E neurons wggs. The
red dot shows the network parameters we use for simulation

14



B NATURAL GRADIENT LANGEVIN SAMPLING

B.1 LANGEVIN DYNAMICS

The dynamics of Langevin sampling performs stochastic gradient ascent on the manifold of the
log-posterior of stimulus features (Welling & Teh, 2011), which is written as,

it :TEIVIHP(Zt‘rF)+(27—El)1/2€ta (v Ed/dZ) (Bl)

where &; is a multivariate independent Gaussian-white noise, satisfying (£,£,}) = I5(t — t'), with I
the identity matrix and 0(¢ — ¢’) the Dirac delta function, and

71, 1S a positive-definite matrix (or a positive scalar in the 1D case) determining the sampling time
constant, which is also called the pre-conditioning matrix. Importantly, 77, is a free parameter of the
sampling in that it doesn’t change the equilibrium distribution of z;.

B.2 NATURAL GRADIENT SAMPLING VIA FISHER INFORMATION (MATRIX)

Amari proposed the natural gradient method to utilize the geometry of the distribution to adaptively
determine the sampling time constant 77, that controls the sampling step size (Amari,|1998)). Intuitively,
for a widely spread distribution, we should choose a small time constant (large step size) that can
speed up the convergence of the sampling. Vice versa, for a narrowly distributed latent variable, a
large time constant (small step size) is favoured to avoid instability of the sampling. Specifically,
Amari’s natural gradient method proposed the sampling time constant can be determined by using the
Fisher information that is a measure of the local curvature of the distribution. In the framework of
information geometry (Amari, [2016), the Fisher information matrix serves as a Riemannian metric on
the statistical manifold of z. Consider two neighboring (posterior) distributions 7(z) and 7(z + d)
with an infinitesimal displacement d, a second-order Taylor series approximation reveals the Fisher
information as the underlying distance metric.

Dicr [n(a) (s + )] ~ 3d Gla)d

While the Fisher Information is often introduced in the context of the likelihood function in frequentist
statistics, its definition can be generalized. For any probability distribution, its Fisher Information
matrix measures the expected curvature of its logarithm. For the posterior 7w(z) = p(z|rr) to be
sampled, we get the posterior information matrix (or Bayesian Fisher Information)(Amari, 2016)),

G(2) = —Ep(rp|») |[Vzlogm(2z)V, log W(Z)T] . (B2)

It is symmetric and positive semi-definite. Then the posterior information matrix acts as a precondition
to set up the time constant of the sampling(Girolami & Calderhead, 2011):

2, =7, ' Vinn(z) + (2, )V2&, 1 =1n[G(2) +q (B3)

Here, the time constant increases with G(z), which ensures a smaller step size (larger time constant)
when the posterior is more curved (larger Fisher information). This adaptation improves sampling
efficiency, as it accounts for anisotropies in the posterior, preventing slow mixing along directions of
low curvature. The « is a regularization term that increases the numerical stability when inverting the
time constant with a very small Fisher information G(z).

With more details, the Fisher information is the expected value of the negative Hessian matrix. It
represents the curvature of the posterior on the statistical manifold where the latent variable z reside.

G(z) = ~Eyep) [Valogm(z)] (B4)

In many practical applications, a "flat" or "non-informative" prior is used for some or all parameters.
The posterior information matrix simplifies to become identical to the likelihood’s Fisher information
matrix. If prior is flat, this metric tensor of posterior manifold becomes,

G(2) = —Eprp)2) (0(rr|2) = Eprplz) (0(2) = —Epeplz) (p(rR[2))
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B.3 SAMPLING SPEED MEASURED BY THE DECAYING SPEED OF KLL DIVERGENCE

It has been proved that the upper-bound of the KL-divergence between the distribution of sample
pi(z) =T~ 13", 8(z — 2;) and the equilibrium distribution p.(z) decreases exponentially (Dong
et al.l [2022), i.e.,

D [p1(2)[poo(2)] < Dicr [po(2)[|poc (2)] exp(—ht)
where po(z) denotes the initial distribution at ¢ = 0, and h denotes the smallest real-part of all
eigenvalues of the drift matrix.

C A SINGLE CANONICAL CIRCUIT AND 1D NATURAL GRADIENT SAMPLING:
THEORY

We present the math of theoretical analyses of the reduced recurrent circuit model consisting of E and
PV neurons based on continuous attractor network dynamics.

C.1 CONTINUOUS ATTRACTOR NETWORK DYNAMICS

To simplify the reading, we copy the network dynamics of E neurons (Eq. [Ta),

PUEOD g0, 40 Y (Wex = m)(0.0) + VAFRR@. 01 E0.0, (1)

X=E,F

and the divisive normalization provided by PV neurons (Eq. [Tb),
[up(0)2

rp(f) = 7 ; (C2)
( ) 1+ pwgp ffﬂ[uE(G)ﬁdﬁ
and the recurrent connection kernel W gx (Eq.
—1
Wyx(@) = wyx(v 27Taxy) exp(—92/2a§<Y). (C3)
C.2 NETWORK’S ATTRACTOR STATES
We verify the proposed Gaussian ansatz of the attractor states of E neurons (Eq. [2)),
_ 0 — »-)2
ug(0) =Ugexp {—(4?3)} ) (C4)
¥D)

First, we substitute it into the divisive normalization (Eq. [C2)), yielding the following expression for
the firing rate of E neurons,

. [a,(0)1% Uk { (0 — ZE)Q]
0) = = = —_ . C5
re(6) 1+ pwgp [[Gp(0)3d0 1+ pwepUivV2rag P 2a%, ©)
Rp

Then we use the above E firing rate (Eq. [C3) to calculate the recurrent input from the neuronal
population of type Y to the one with type X in the circuit model,

qu(G) = pWXY * I‘y(@)
. pwxy Ry /eXp |:_ (9/ _ 9)2 B (6/ _ Zy)2:| p

 V2rmaxy 2a%y 2a3, (C6)
a 0 — zy)?
= pwxyRy 5 Y 5 exp |:— (2 Y)2 :| .
Vaxy +ay 2(a%y +ay)
Specifically, based on Eq. (C6), the recurrent E population input is

p (9 — ZE)2
0) = pW 0) = — R - Cc7
upp () = pWeg *rg(0) 5 eEfe e { e (C7)

Uee
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and the feedforward population input is,

W} . (C8)

upr(0) = pWger xrp(0) = %WEFRF exp {_ 402
E

Uer

It can be checked the proposed Gausian ansatz (Eq. [C4) is indeed the sum of the recurrent input (Eq.
and the feedforward input (Eq. [C§), i.e.,

ug(0) = ugp(d) + ugr(0)

(60— ZE)2] = Upp exp [_ (0 — zg)

2 (9 _ ,Uz)2
fa | e [

ﬁE exp |:—
4a%

and implies

rp(0,t) =Upp +Ugpr, 25 = ;.
This completes the recurrent loop of the dynamics, and verify the validity of the Gaussian ansatz (Eq.

C.3 DIMENSIONALITY REDUCTION BY PROJECTING ON DOMINANT MODES

We substitute Eqs. (C4HC8) into the Eq. (CIJ),
. — 2 — _ 2
TUEexp |:(9 ZE) :| +TUE;}E <0 ZE)eXp |:(9 ZE) :|
ag

4a?, 205 4a?,
(0 — ZE)Q} P { (0 — ZE)Q]
— Upexp |- 2BV | P Rpexp | — 2B 9
E Xp[ 1a \/ﬁwEE E €xD 12 (C9)
P (0 — p)? (0 —zg)?
L wprR _Y AP FU 2B (o,
+ BYEr FeXp{ 2 +\/7FUg exp SaL £(0,1)

Previous studies analytically calculated the first two dominant eigenvectors (modes) (Wu et al.| [2016;
Fung et al.| |2010), corresponding to the change of the position and height of the Gaussian ansatz
respectively,

Position : ¢1(0|zg) x V.ug(0) < (0 — zg) exp[—(0 — zg)?/4a?], (C10a)
Height :  ¢2(0|2z) x  1g(0) o« exp[—(0 — zg)?/4a?]. (C10b)

Projecting the dynamics Eq. (C9) into these 2 motion modes (Eq. [CI0), which means calculate the
inner product [ f(0)$(6|zg)df with f() a term in Eq. (C9),

. P _ _(n—zp)? i
TURZE = wgrRrp(p— zg) exp + 0./ TUEE

V2 8a?,
2
: P p (1 —2E) S
TUg = —Ugp+ —=wppRg + —=wgrpRrexp | ———— | + ou/7TUEE
V2 V2 8a?,
where
8aF F
2 2

ol=—, of= . Cl1
33w v V3ra ( )

When the bump position zg is near the input position, i.e., 4 — zg < ag, which is usually the case
in the circuit model, the exponential term exp[—(u — zg)?/8a%] is close to one and can be safely
ignored,

ip = (TUE>‘1%wEFRF<uz —zp) +0:(1Up) % (€12)
Ug =7 ~Ug+ % (wepRE +werRp)| + ou(r~'Ur)'/?. (C13)

Furthermore, by using the notation

Ugr = pwprRr/V2, Ugpp = pwppRe/V?,
we arrive at Egs. (3a]and [3b) in the main text.
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C.4 THE PROBABILISTIC GENERATIVE MODEL EMBEDDED IN THE CIRCUIT MODEL

C.4.1 THE STIMULUS LIKELIHOOD

We study how feedforward input defines the latent stimulus likelihood, i.e., £(z) « p(rp|z). From
the Eq. (T¢)), the feedforward input r ;- is modeled as a set of independent Poisson spike trains, where
each neuron’s firing rate is Gaussian-tuned to the stimulus (Ma et al., [2006)):

rr(0]2) ~ Poisson[A\r(0]|2)], Ar(0]2) = Rp exp[—(0 — 2)? /24, (C14)
where Ap(6|z) is the mean firing rate of the neuron with stimulus preference . r denotes the peak

input rate, and a specifies the tuning width. Explicitly writing the Poisson distribution of feedforward
input spikes (we discretize the continuous ¢ into equally spaced 0,),

p(r|2) = [1)% Poisson (r;|A;At) = [TV Q202 exp(—A;At). (C15)

Jj=1 r;!

Taking the logarithm,
Inp(r|z) = E]‘ [rj In(A;At) — In(r;!) — /\j],
= >, r;jIn(A;At) + const.
The const. in the above equation is under the assumption that the sum of population firing rate A

is a constant irrelevant to latent stimulus z , which is true in a homogeneous population with a large
number of neurons. Substituting the expression of the Gaussian tuning,

(C16)

(0 — 2)? 1 2
1Hp(I‘|Z) = — zj:ro + const = —§A(Z - /sz) =+ const, (C17)
where
>_;r(6;)0; 2
po=~—~—p~> A=a" r(0;) ~ mpailRF' (C18)
>_;r(8;) ZJ: ’

This implies the latent stimulus likelihood for the latent stimulus feature z given an observed
feedforward input rr is derived as a Gaussian distribution,

L(z) = N (zlp=, A7,

which is the Eq. (8] in the main text. Notably, the Gaussian distribution comes from the profile of the
Gaussian tuning (Eq. [C14) (Ma et al.| 2006).

C.4.2 UNIFORM STIMULUS PRIOR IN THE CIRCUIT

Comparing the E bump position dynamics (Eq. [CI2)) with the Langevin sampling dynamics (Eq. [B3),
it immediately suggests that the circuit stores a uniform (uninformative) stimulus prior, i.e., p(z) is
uniform. This is because the gradient of the log-likelihood (V £(z), Eq. [8)) has the same form with
the drift term in the E position dynamics

Likelihood gradient: VinL(z) = A(p, — 2)

E bump position drift term: Ugp(u, — 2g)
suggesting the gradient of the prior is zero, i.e., VIn p(z) = 0. This uniform prior arises from the
circuit’s homogeneous neurons (uniformly distributed in feature space) and its translation-invariant
connection profile. Consequently, for the circuit to store a non-uniform prior, it must break this
inherent symmetry in its neural organization and connectivity.

C.5 CONDITIONS FOR REALIZING LANGEVIN SAMPLING IN THE CIRCUIT

The circuit sampling of the likelihood means the equilibrium distribution of the bump position (Eq.
[CT2) should match with the likelihood (Eq. [8). We copy the circuit bump position dynamics and the
likelihood Langevin sampling dynamics in below for comparison,

_1 pwgrRp L1/
— = Mpz — zp) +0:(7U. ,
\/§A (:U’ E) ( E) ft

b\
Langevin: % = 7 A(u= = 2) + (2r; ) /%6,

Circuit: g = (TUg)
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The o, is a constant that doesn’t change with neuronal activities. Therefore, the likelihood Langevin
sampling in the circuit can be realized by setting the feedforward weight wgr appropriately to make
the ratio of the drift and diffusion coefficients the same as the Langevin sampling dynamics. The
optimal feedforward weight can be found as (by using Eq. [CI8)

o2 o2 A 2\°
Az BT 2p R <\/§ ) (9
Furthermore, the time constant of the zr dynamics is
2
T, =\ U = VT Ug, (C20)
QWEFR

which is proportional to the E bump height Ug. Finally, the equation of bump position (Eq. [C12) can
be converted into the same form with a standard Langevin sampling,

s -1 —1\1/2
RE = Ty A(H’ - ZE) + (2Tz ) / gt
C.6 NATURAL GRADIENT SAMPLING IN THE CIRCUIT

The natural gradient Langevin sampling utilizes the Fisher information to determine the sampling
time constant (Eq. [B3). We verify whether this can be realized in the circuit dynamics. Firstly, the
Fisher information of the likelihood is (Eqs. [B4] and [CT7)),

G(z) = —E [V?log L(2)], where L(z)=N(z|p:, A7),
— A (C21)
= \/ﬁpaflRF
Meanwhile, the time constant of the circuit sampling dynamics 7, is proportional to the bump height

Ug (Eq.[C20). From the Eq. (CI3)), the equilibrium mean of the bump height can be calculated as
_ p — p QWEFR

Ug = —=wgpRg+ —=wgrRr = Ugg + G(2).
V2 V2 2w (C22)
——
UEE UEF AZ
And therefore the circuit’s sampling time constant is
Circuit: .=\ 1Up = T[G(z) + A;lUEE], (C23)
Natural gradient: 71, = n[G(z) + q] (C24)

It clearly shows the bump height Ug increases with the Fisher information G(z). Moreover, the
recurrent E input Ug g acts as the regularization term to increase the numerical stability of inverting
the Fisher information (similar to the role of cv in Eq. [B3). This proves the reduced circuit with E and
PV neurons indeed implements natural gradient Langevin sampling from the likelihood.

D COUPLED NEURAL CIRCUITS AND MULTIVARIATE POSTERIOR SAMPLING:
THEORY

D.1 THEORETICAL ANALYSIS OF THE COUPLED CIRCUIT DYNAMICS

We present the math about coupled canonical neural circuits implementing multivariate stimulus
posterior inference via natural gradient Langevin sampling (Zhang et al, 201652023} Raju & Pitkowl
2016). The model we consider is composed of M reciprocally connected coupled circuit, with
each the same as a single canonical circuit in Sec. [C} Each circuit m receives a feedforward input
independently generated from the corresponding latent stimulus s,,, (Fig. [3), and eventually draw the
stimulus z,,, from the multivariate posterior. Therefore, the number of coupled circuits in the model
is determined by the dimension of the multivariate posteriors.

The dynamics of the coupled circuits is written as (we raise the subscript of capital latter denoting
neuron and input types to the superscript, and the new subscripts of lowercase letters denote the E
population indices),

T%Ti@t)_ E0.)+p 3 Z WEX X0, 1) 4+ \/TF[uE (0, 8)] L& (6,)  (D1)
X=E,Fn=1
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Each circuit uZ (6) receives a feedforward input r (9) that is independently generated from a latent
stimulus s,,, via the same way in the single circuit (Fig. 3} Eq. [CT4),

rr(0]2) ~ Poisson[AL (0]2,,)], AL (02m) = RE exp[—(0 — 2,,)%/2a%),
For simplicity, we consider the feedforward connection weight wZ % of each circuit is the same.

Similar to the one-dimensional case (Eq. [C4), we consider the Gaussian ansatz for the population
synaptic input at each circuit m,
(0 — 25)1

E TE
uf (6.0 = U@ exp |-

Performing similar calculations by substituting the Gaussian ansatz of each circuit into the dynamics
of the coupled circuits (Eq. [DI),
’]’UE’m dth 0 — Zmt ef(ﬁfzmt)2/4a2 LT T dUE‘ m 7(9 2 t) /4a
2a dt a 2a dt

0—2zme)? /40> EE RE ,—(0—znt 4a?
—Ugme™ ( )2/ \[ZwmnR )2/ ’ D2)

Projecting the above dynamlcs onto the two eigenfunctions (CI0), and assume the differences between
the bump positions of different circuits are small enough compared with the tuning width a, i.e.,
|2 — 2m| < a,

. dzm,
Position: 7 = \[ {ZwEER Znt = Zmt) + Wy By (m — th)}

+0.(TUL) 71/2§mt

. du, E EE pE EF pF E\1/2
Height: 7 =-U,, Jrfzw R, Jrfw R, +oy (TUm) Emt-

dt mn f mm
where o, and oy are the same as Eq. @ Reorganizing the above equation into the matrix form,
Position: zp = (TDy) ™" [ —Lzg+Ugpo(u— ZE)} + UZ(TDu)_1/2ft, (D3a)
Height: Up = 7'*1( —Ug +Ugg + UEF) + CTU(TilDU)l/zft. (D3b)

where o denotes the element-wise multiplication, and
E M
UE - {U }’rn 1, ZE = {Zm}7rL:17

Upp = {UEPI,, with UEP = UL = Z 5 B

Upp = {UEFYM_,, with UEF = Lw,’;ifan;, (D4)
V2

Matrix L: [Llpn = —Upl (m #n), and [Llmm = = >, [Llomn,

Matrix Dy = diag(Ug)

We obtain the bump position and height dynamics embedded in neural dynamics as presented in Eqgs.
(12al{I2D) in the main text.

D.2 THE GENERATIVE MODEL OF MULTIVARIATE STIMULUS STORED IN THE CIRCUIT

We present the math analysis in identifying the generative model especially the subjective stimulus
prior stored in the circuit. Generally, the multivariate stimulus posteriors given received feedforward
inputs are,

( |{rm m= 1)
ocp({rm} 1|2)p(z)

= [T p(xh2m)|p(2)

= [TTo—y N o, A3 p(2),
= N (2|, A)p(z)
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where the second last equality comes from by using the same derivations as the Sec. [C.4.1|on each
feedforward input rZ. And

A =diag(A1, Ay, ,Arr), where A, =V2mpa 'RE

is the likelihood precision matrix. Note that the stimulus prior p(z) is still unspecified at this moment.
We will determine it in the following.

Subjective prior stored in the coupled circuits
Utilizing the Langevin sampling dynamics to sample the posterior
7 =7, Vinm(z) + (27‘51)1/2&,
=7, [Vinp(z) + Ao (n—2)] + (21, 1)'/2¢,,

Meanwhile, the coupled circuits’ bump position dynamics is

Zp = (TDU)—l[_ Lzg + Ugpo (u— ZE)] +Uz(TDU)_1/2§t,

Using the definition of Ugp (Eq. [D4) and the feedforward input intensity with the likelihood
precision (Eq. [CT8),
wEl q
U — mm
BE= o/

A

It is straightforward to regard the Lz term as the gradient from the stimulus prior,

Vinp(z) = —A\;'Lz < p(z) x exp(—z ' Lz/2).) (D5)

Specifically, the prior precision matrix A\; 'L is a generalized Laplacian matrix (Eq. [D4} whose
determinant is zero, i.e., |L| = 0, suggesting the marginal prior of each stimulus is uniform, i.e.,

p(2m) is uniform. As an example, for M = 2, the prior p(z = (21,22) ") is written as,

plz) = exp [—LHZT (_11 _11> z} — exp {—L;(zq - zzﬂ , (D6)

where L2 characterizes the correlation between z; and z». It can be checked each marginal stimulus
prior is uniform.

Subjective multivariate stimulus posterior in the circuit
Based on the identified stimulus prior stored in the circuit (Eq. [D3), the (subjective) stimulus posterior
is calculated as

m(z) = p(2l{x 20,
= N (z|p, AN (2]0, A L)
= N(z|lp,, Q71
where

Q=A+)\'L, p,=9'Apn. (D7)

D.3 NATURAL GRADIENT SAMPLING VIA DIAGONAL APPROXIMATION OF FISHER
INFORMATION MATRIX

Eq. (D3a) suggests the time constant of the circuit’s sampling dynamics (bump position) is determined
by the matrix Dy.

Dy = diag(Ug) where Ug = Ugp + Ugr

We next analyze its relation with the Fisher information to verify whether the circuit implement
natural gradient sampling for multivariate posteriors.
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FISHER INFORMATION OF THE MULTIVARIATE STIMULUS

Based on the (subjective) multivariate posterior calculated by the circuits (Eq. |[D7)), the Fisher
information matrix of the multivariate stimulus is,

G(z) = Q=)L+ A = )\![L + diag(Ugr)] (D8)
In particular, by using the definition of the prior precision matrix (Eq. [D5) and the posterior precision
(Eq. [D7).
diag(G(z)) = A\ ! (diag(L) + Ugp),
= \; '[diag(Upp) + diag(Ugr)],
= Azldlag(ﬁE)a

which clearly shows the circuit’s sampling time constant Dy is the diagonal matrix of the full Fisher
information matrix, giving rise to the Eq. (I4)) in the main text.

E NATURAL GRADIENT HAMILTONIAN SAMPLING IN THE CIRCUIT WITH
SOM NEURONS

E.1 CIRCUIT DYNAMICS

We also copy the dynamics of a single augmented circuit with SOM neurons (Eq. [Ta]and Eq.
below.

TﬁE(e,t) = —U.E(H,t) + pZX:E,F,S(WEX * Px)(e,t) + vV TF[uE(G,t)]+§(9,t)
Tug(0,t) = —us(0,t) + p(Wsg xrg)(0,t); rs(6,t) = gs - [us(0,1)]+,

Similar to the Gaussian ansatz presented in Eqs. (C4}[C8)), we also propose the same Gaussian ansatz
for the synaptic inputs of E and SOM neurons respectively. Specifically, since SOM neurons have
different activation function with the E neurons, the population firing rate of SOM neurons is,

(ED)

_ (9 — Zs)2
r5(0) = gs -us(0,t) = gsUs exp | ————5—"|. (E2)
N~ 4as
Rs

Substituting the Gaussian ansatz of E and SOM neurons into the circuit dynamics (Egs. [EI)),

(0—=2)] _ »p (0 — 2p)* (0 = p=)®
UE exp |:_4Q2E = ﬁ U)EERE exp _W + wEFRF exp W
P as [ (0-z5) (E3)
+ \/§'LUESRS e exp [ 1 )
(6 — 25)2] ap (0 —zp)°
U exp{ =pwsgRe————exp|——5—"5<|,
g da proseite VaEp +a% 2(a%p + a3)

Since the above equations are summations of Gaussian functions, it can be checked that when the
positions of Gaussian functions are the same, i.e., zg = 25 = p., the sum of two Gaussian functions
will also be a Gaussian function. In addition, to validate the Gaussian ansatz, we need the width
fulfilling the following constrain of the connection width,

2 2 2
2ag = agp +ag

2 _ 2 2
ap = ags t+asg-

Similar to the two motion modes for E neuron, the SOM also have two motion nodes (Sale & Zhang,
2024),

Position : ¢;(0]zs) o V.iis(0) o« (0 — z5) exp[—(0 — 25)*/4a%], (Eda)
Height :  ¢9(0]2s) x  1g(0) o exp[—(0 — z5)?/4a%]. (E4b)
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We project the dynamics of ug and ug onto their respective position modes (Eq. [CI0Jand Eq.
respectively). From here, we assume the difference between neuronal populations’ positions is small
enough compared to the connection width a, i.e., |2 — zg| and |, — zp| < 4ax. In this case, the
projected circuit dynamics can be simplified by ignoring exponential terms in Eq. (E3)),

. a
TUgpzg = % wEsRsa*S(Zs —z2g) + wprRp(pu: — 2g)| + 0./ TUpn:
E (ES)

. p ag
TUs23 = —=—wspRe(zg — 2
5%s V3 as seRE(2p — 2s)
Similarly, we project the E and SOM’s dynamics on their respective height modes,

- a
TUE:—UE—FLUJEERE—FiinSRS_FLwEFRF_FUUm t (E6)

V2 V2ag V2

P 2B vspRE. (E7)

V2 as

Similarly, to simplify notations, we define

TUS:—Us—‘r

a
Uxy = \%;X wxy Ry, (E8)
and o, and oy are the same as Eq. (C11). The Eq. (E3) is simplified into,
TUg%g = Ugs(zs — zg) + Ugr(p: — zg) + 0./ 7Ugn:, (E9)
Usis = Usp(zp — zs),
Reorganizing the bump position dynamcis into the matrix form,
z = (tDy) '(Fiz + My) + (rDy) /*%:& (E10)
where
2= (25,25)", Du = diag(Ug, Us),

_ (~Ugr—Ugs Ukgs _ (Ugerp. _ (o= O (E1D
Fl - ( USE _USE> ) Ml - ( 0 3 El - 0 0

E.2 HAMILTONIAN SAMPLING IN THE CIRCUIT

In the present study, we consider a Hamiltonian sampling with friction, because it can be mapped to
the proposed circuit with a diversity of interneurons. Hamiltonian sampling can sample the desired
distribution 7 (z) (with 7(z) as the equilibrium distribution), which is defined as,

m(2,p) = exp[—H (z,p)] = exp[—In7(z) — In7(p|z)] (E12)

The previous study suggested the zr dynamics is a mixture of the Langevin sampling and the
sampling (Sale & Zhang| [2024), and thus inspires us to decompose it into two parts,

TUpip = | + |+ [arUsr(ps — 25) + 0./ TURE],

Langevin part

where ay, € [0,1] denotes the proportion of Langevin sampling component. In this way, we can
define the transformation matrix and rewrite,

= (5) = (s 0-cwen) 005 )+ (0 aomms)

T M,

We are interested in zz; dynamics, and investigate how the circuit parameters can be set to fulfill the
Hamiltonian sampling. Without loss of generality, we consider a case of ;1, = 0 that simplify the
derivation of the zy dynamics, which will make M; = My = 0. And then,

_ _ 1 U 0
—T 1 h T 1 — ES
Z Zyg where 7UES ( UES + (1 _ OLL)UEF 1
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Then we can derive the dynamics of zy,

2y = T3,
= T[(rDu) 'Fiz + (1Dy) /*%1¢], (E14)
= [T(rDy) 'FiT '] -z + T(rDy) /*%:&,
where
T(rDy) 'Fi T~ = - (aLUEFﬁ(;UE)l (Tng) ’ ,
T(+Dy) /2%, = <JZ(TU012)1/2 8) (E15)
and
Be = —(1Ug) ' Ups + (1 — ar)UprplaLUpp + (1 — ar)(7Us) 'UseUsr,
Bp = (tUg) ' [Ups + (1 — ar)Ugp] + (Us)'Usk, (E16)
op = (tUr) ' Ugrs + (1 — ar)Usr|*o?

Standard form of the Hamiltonian sampling dynamics

We further convert the Eq. (ET4) into the standard form of Hamiltonian sampling dynamics (Eq. [7),
which corresponds to multiply the zr with the posterior precision A and then compensate the A~!
into the preceding matrix,

ZE N aLUEF(TUE)_lA_l —(7'UVE)_1 Azg Op 0

b)) BpA~" 8 p )T 0 o)
= _ arUpp(tUp) 1A —BeA™t Azg + o (tUR)™Y% 0 13
N BeA~! TUpByBeA™" ) \(TUpBE) ™ Ap op 0)%

The second equality comes from we have the freedom of determining the momentum p’s precision,
and then we could choose a momentum precision to make sure the first matri on the RHS is anti-
symmetric. Eventually, by using

UEFZ)\ZA, AZE:—VzthF(ZE), TX:TUX (X:E,S),

We can convert the (zg, p) dynamics into the standard form of Hamiltonian sampling dynamics as
shown in the main text (Eq. [I6), i.e.,

d [ZE] _ {(1 L (tUg) !
at |p|

vzlnw(zE)} i {U;(T/;) MZ} & (E17)

Op

TEﬂz)[))EA1:|

E.3 CONDITIONS FOR REALIZING HAMILTONIAN SAMPLING IN THE CIRCUIT

Realizing Hamiltonian sampling in the circuit requires we set the ratio between drift and diffusion
terms appropriately in Eq. (ET7).

ar\. 7yt =olryt/2 (E18a)
TEBpBEAT! =07 /2 (E18b)
Solving Eq. (ET8a),
2\°_ _,
WEp = (\/3) Fag (E19)

Solving Eq. (ET8b) by substituting Eq. (ET6)
A 'Ugp[— (tUg) 'Ugs + (1 — ap)Ugrlar + (1 — ar)(tUs) ' Usk]
x [(TUg) ' [Ugs + (1 — ar)Ugr] + (1Us) ' Usg]
=7,%Ups + (1 — az)Ugr)?0?/2.
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To simplify notations, we define two intermediate variables about common factors in the above
equation

hg =715 Ugs + (1 — ap)Ugr); hs =75 'Usk. (E20)
And utilizing the Eq. (ET84), it simplifies the equation into
[~hpar + (1 —ap)hs](hg + hs) = aLhy
Reorganizing the above equation into a quadratic equation of hg,
201, - h% + (20 — 1) - hshg + (ar, — 1)h% =0,
Then the root of the hg is

1—20p) £ /14 4o — 403
hp = h U2 BV 300 o (E21)

40éL

Combining the expression of hg in Eq. (E20),
7 [Ugs + (1 —ap)Ugr] = Q(ar) - 75 ' Usk
Then substituting the detailed expression of Ugr, Usg, Tg, and Tg into the above equation, we have
(Ug'Rs) -wps — [(1 = ar)Ug ' Rr] - wer = [Q(ar)Us ' Re] - wsp, (E22)
which is the Eq. in the main text.

E.4 NATURAL GRADIENT HAMILTONIAN: DETERMINING THE MOMENTUM PRECISION IN THE
CIRCUIT

Eq. (EI7) suggests the momentum precision in the circuit dynamics is
Ap = (TEﬁE)_lA,

which should be proportional to the inverse of the Fisher inforamtion of the stimulus, G(z) (Eq. .
We next verify whether this can be satisfied in the circuit dynamics.

Substituting the expression of Sg in Eq. into the above equation and using the simplified
notation h g (Eq. [E20)), we have

Ap = TE_lA ([Farhg + (1 — aL)hs]UEF)_l
Utilizing the relation between hg and hg in Eq. (E21),
Ap =75 A([arQ(ar) + (1 - ar)lhsUprp) "

B 1 A1
[—arQ(ar) + (1 —ar)] Upr Tehs’
——
A const. Azt

Here the first term of o, about the proportion of Langevin sampling can be treated as a constant,
and the )\, is also a constant that doesn’t change with the network activity. Substituting the detailed
expression of 7 and hg (Eq. [E20)
-y,

UrUsk
where the last equality comes from Ug = Ugg in the equilibrum state (Eq. (E7)) Furthermore, from
the bump height dynamics in the augmented circuit with SOM (Eq. [E6)), and using similar analysis in

Eq. (C22)

A, x (tehs)™"

Ug = (Ugg + Ugs) + Ugr,
= (Uge + Ugs) + X\.G(2),
which clearly shows the Ug in the augmented circuit increases with the Fisher information of the

stimulus G(z). Since the momentum precision A,, is inversely proportional to Ug, it decreases with
the stimulus Fisher information G(z), which is consistent with the natural gradient Hamiltonian

sampling (Eq. [7).
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F CIRCUIT SIMULATION PARAMETERS AND DETAILS

F.1 CRITICAL WEIGHT

To scale the connection strengths in our network model, we use a critical recurrent connection strength
as a reference point. This critical strength is defined as the smallest value that allows the network to
maintain persistent activity even when there is no feedforward input.

In the absence of feedforward input, the stationary state of circuit’s bump height satisfies (Eqs. [E6]-

’

P p
Ug = —=REg |WgEg + —=WESJsSWSE | »

V2 V2 (F1)
Us = LaijERE

ﬂas

Furthermore, the firing rate of the E population, R, is related to its input Ug by the activation
function defined in Eq. (C5)). Substituting this expression for R into Eq. (FI)) allows us to write an
equation solely in terms of Ug:

_ PUE
V2 + 2y7mkpapUs

Assuming Ug # 0 (for persistent activity), we can divide by Ug, and rearrange the equation into a
quadratic form for Ug:

p
U WEE + —=WESW .
E [ EE \/§ ES SEQS]

QﬁkpaEUé —p {IUEE + \;)instEgs] U + \/5 =0.

Let w. = wgg + %w Eswsggs. This quadratic equation for Ug has real solutions if and only if

its discriminant is non-negative (p?w? — 8v/2wkpar > 0). The smallest value of w, that permits
non-zero persistent activity occurs when the discriminant is zero, i.e.,

2 _ 8V 2rkag
¢ P
The network parameters used in our simulations are provided in Table[T} This includes parameters like

the number of neurons (Ng = 180, Ng = 180) distributed over a feature space of width w, = 360°,
leading to a neuronal density p = N/w,. So the critical weight value is calculated as:

we = 2v2(21)Y*\/ka/p ~ 0.896. (F3)

The intensity of the feedforward input is then scaled relative to U, which is the peak synaptic input
to the E population that is self-sustained by the E recurrent connections at their critical strength w,,
in the absence of feedforward input and SOM inhibition. U, is given by:

(F2)

We

- 2\/mka’

F.2 PARAMETERS FOR NETWORK SIMULATION

U,

(F4)

For the reduced network with only PV and excitatory neuron, the network parameters is set as
following. This parameter set applies for a single circuit sampling a 1D stimulus posterior, and
coupled circuits sampling multivariate stimulus posteriors. For 1D and 2D, the parameters are the
same aside there are not couping weight for 1d case.

For the equilibrium state analysis depicted in Figure 2] the network is first initialized using an
input intensity identical to that of subsequent simulation phases, in order to remove the influence of
non-equilibrium bump height. During this initialization, the input position varies across trials, drawn
from a Gaussian distribution with mean p and variance V.

After allowing the network’s bump height to reach equilibrium post-initialization, the input position
is then set to match the mean of the network’s activity bump. The simulation proceeds for a duration
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Table 1: PARAMETERS FOR HAMILTONIAN SAMPLING

PARAMETER VARIABLE VALUE

E time constant T 1
Connection width ag 40°
Num. of E neurons Npg 180

Fano factor F 0.5
Normalization WEP 5x 1074
Feedforward weight wZl 0.2v/2w,.
Coupling Weight wkE 0.8w,

Table 2: Parameters for network

PARAMETER VARIABLE VALUE

Number of trials 500
Simulation time T 500.0
Time step dt 0.01
Recording start tsteady 50
Input position I 0
Initial mean eq 1o 0
Initial var eq Vo 30

of 507, using an integration time step of 0.01 time units. The first 20 time steps of this period are
discarded to avoid transient effects. Following this, the input position is fixed at 0, and the network is
simulated for an additional 4507 with the same integration step.

Throughout the latter 4507 simulation, the bump position is recorded to calculate the KL divergence
between the network’s evolving state and a target posterior distribution. The network state at the end
of the initialization phase serves as the reference for the initial KL divergence value.

For comparison, a separate Langevin sampling process is performed. This sampling is initialized
using the network’s bump position from the end of its initialization phase. The Langevin sampling
then runs for a duration of 4507, also using an integration time step of 0.01 time units.

For the non-equilibrium state depicted in Figure[2] the network is initially prepared by applying a
substantially smaller input signal, denoted as scale;,;. This input is administered uniformly to all
neurons for a duration of 207 to initialize the network. After this initialization phase, the input to
each neuron is then adjusted to its designated operational value.

For the natural gradient (NG) sampling procedure, the starting position is set to the "bump’ location
observed at the final step of the Continuous Attractor Neural Network (CANN) model’s initialization.

For the different recurrent weight, we fix input intensity Ry = 3. We get time constant by getting the
cross-corelation of bump postion simulated from the network and fit the exponential function to get
the time constant.

Hamiltonian sampling parameters mostly mirror the previous set, but differ by including connection
parameters that define interactions between SOM and excitatory neurons. For 500 trials and simulation
5007, it takes 2 hours on the 512GB cpu hpc.

F.2.1 NUMERICAL ESTIMATE OF THE STIMULUS PRIOR IN COUPLED CIRCUITS

We numerically estimate the subjective bivariate stimulus prior stored in the coupled circuits. Given a
combination of circuit parameters, we ran a large ensemble of stochastic network simulations. From
the spatio-temporal firing rate patterns in each circuit r,,, we decoded instantaneous population
vectors z,, in each time bin in each trial. Then we concatenate the z,, from two circuits together,
z = (z1,%2), and estimate its mean p, and covariance X,, which are used to parameterize the
Gaussian sampling distribution, i.e., p (z) = N (p,, ).
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Table 3: PARAMETERS FOR HAMILTONIAN SAMPLING

PARAMETER VARIABLE VALUE
Num. of SOM Ng 180
SOM time constant TS 1.0
SOM connection width ag 37.4°
E to SOM connection width  agg 34.6°
SOM to E connection width  agg 20°
SOM to E connection weight wgg 0.6w,.

And then we search the prior precision matrix L under which the posterior is closet to the sampling
distribution p(z),

L = arg mgn Dy [7(2)|lp (2)]

where the posterior 7(z) is calculated based on the parameter L to be estimated,
m(z) =N (12, Q7Y), with Q=A+L, p,=Q"Ap,

and the likelihood mean g and precision A are directly estimated from the received feedforward

inputs (Eq. [CT8),
Zj 1 (0)0;
zm = Am: 725 m(0:) =~ V2 -1 F F
Hz, Zj rm(0]> ’ @ - r (0]) yeed Rm ( 5)
J

F.2.2 THE VECTOR FIELD (DRIFT TERM) OF CIRCUITS’ SAMPLING DYNAMICS

For both the diagonal-Fisher natural-gradient Langevin sampler and the full-Fisher method, we
can directly compute the gradient at each point in parameter space, evaluate the Fisher information
(either the full matrix or just its diagonal), and then derive the corresponding vector field from this
information.

In the case of our CANN (Continuous Attractor Neural Network) model, constructing the equilibrium
vector field requires a slightly different approach. The goal is to observe how the position of the
bump (i.e., the localized peak of neural activity) shifts in response to changes in the input. To do
this, we first stabilize the bump at a reference location. Specifically, we apply a fixed external input
centered at (xg, yo) and run the CANN dynamics until the bump height reaches equilibrium. In our
experiments, this equilibration phase lasted for 20 time constants (207) .

Once the bump has stabilized, we perturb the input by shifting it to a new position (x1,y;), and
observe how the bump position responds. The resulting displacement of the bump provides the vector
at the new point, essentially showing how the internal state of the network changes in response to
this small input shift. Analytically, this shift can be expressed as moving the input from (zo, yo)
to (w2,92) = (20, y0) + A1Q (21— 20,31 — yo), where A~1Q captures the relationship between
input space and the internal dynamics of the bump.

Because our 2D network structure implicitly encodes a prior, shifting the bump corresponds to
translating the mean of the posterior distribution. Repetition of this process across a grid of input
locations (2, y2), we can scan the whole bump position grid and then we can systematically map out
the equilibrium vector field of the CANN. This field describes how the network’s internal estimate-the
bump position-evolves in response to perturbations in the input.

F.3 PARAMETERS FITTING

In our attractor network, the bump position z(t) = (zz(t), zs(t))" is determined by the connection
between Excitoory and SOM populations. The dynamics are described by equations(ET0).

By introducing a compact notation and collecting terms into matrix-vector form, we specifically
define the state as z = (2p, 2z5) | and the 2D dynamics as:

z=Dg'Fiz+D'M; + 2,4 (F6)
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where D' F € R? which is the drift matrix, M; € R? is a constant input, and ¥¢; is noise term.

Convert into the form of transition probability:

zeiar ~ N (I+Dy'FiAt)z, + DM AL Q) , (F7)
where
i@ _ |hEs +her —hgs _
D, F, = . —hap ,Q =3X1At (F8)
and hgg = —UEIUES, hgprp = —U]:?IUEF7 hsg = —U§1U5E are time-rescaled synaptic
coefficients.

Because the noise enters the network only through the excitatory population. We therefore estimate
the four unknown parameters {hs E, hes, her, az} in two consecutive steps.

From the noiseless second equation, we have 25 = Ugg (2g — zg) with the closed-form discrete
update zg(t +At) — z5(t) = Usp[zp(t) — zs(t) |At. Averaging over a trajectory of length T" gives

an unbiased estimator
<Zs(t —‘rAt) — Zs(t)>t
At (zp(t) — zs(t)),

Usg = (F9)

S0 no optimization is required.

Conditioned on zg, the excitatory coordinate follows a scalar Ornstein—Uhlenbeck process

ZE(t —I—At) = ZE(t) + At [(hES + hEF)ZE(t) — hSEZS(t)] + O'Z\/Eft. (F10)

Then we used maximum likelihood estimation (MLE) to estimate the parameters of
{hSE, hgs, hgr, az} in the above equation. All parameters are regressed on a data segment
of 1000 samples, corresponding to 10 7. The parameters are explicitly reparameterized in terms of
their biological interpretation and optimized via stochastic gradient descent (Adam), enabling stable
and interpretable system identification.

After obtaining the MLE estimate of {hsg, hgs, her, az} for each data set, we numerically find
the transformation T matrix (Eq. [E13) by directly estimating the values of Ug, Ug and oy, from
network activities. Eventually, we use the estimated T matrix to convert the (2, zg) into (zg, p) as
described in Eq. (ET3).

We evaluated A, under 11 values of feedforward input intensity, Rp € {11,13,...,23}, and found
the decreasing tread of kinetic energy. The decreasing trend confirms the theoretical prediction that a
stronger external drive reduces the effective momentum budget required for accurate sampling. All
experiments were performed on a compute node equipped with 40 CPU cores and one NVIDIA A100
GPU; the full pipeline completed in about 26 hours.
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