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ABSTRACT

Accumulating evidence suggests the canonical cortical circuit, consisting of excita-
tory (E) and diverse classes of inhibitory (I) interneurons, implements Bayesian
posterior sampling. However, most of the identified circuits’ sampling algorithms
are simpler than the nonlinear circuit dynamics, suggesting complex circuits may
implement more advanced algorithms. Through comprehensive theoretical analy-
ses, we discover the canonical circuit innately implements natural gradient Bayesian
sampling, which is an advanced sampling algorithm that adaptively adjusts the
sampling step size based on the local geometry of stimulus posteriors measured by
Fisher information. Specifically, the nonlinear circuit dynamics can implement nat-
ural gradient Langevin and Hamiltonian sampling of uni- and multi-variate stimulus
posteriors, and these algorithms can be switched by interneurons. We also find that
the non-equilibrium circuit dynamics when transitioning from the resting to evoked
state can further accelerate natural gradient sampling, and analytically identify
the neural circuit’s annealing strategy. Remarkably, we identify the approximated
computational strategies employed in the circuit dynamics, which even resemble
the ones widely used in machine learning. Our work provides an overarching
connection between canonical circuit dynamics and advanced sampling algorithms,
deepening our understanding of the circuit algorithms of Bayesian sampling.

1 INTRODUCTION

The brain lives in a world of uncertainty and ambiguity, necessitating the inference of unobserved
world states. The Bayesian inference provides a normative framework for this process, and extensive
studies have suggested that neural computations across domains aligns with Bayesian principles,
giving rise to the concept of the “Bayesian brain” (Knill & Pouget, 2004). These include visual
processing (Yuille & Kersten, 2006), multi-sensory integration (Ernst & Banks, 2002), decision-
making (Beck et al., 2008), sensorimotor learning (Körding & Wolpert, 2004), etc. Recent studies
suggested the canonical cortical circuit may naturally implement sampling-based Bayesian inference
to compute the posterior (Hoyer & Hyvärinen, 2003; Buesing et al., 2011; Aitchison & Lengyel,
2016; Haefner et al., 2016; Orbán et al., 2016; Echeveste et al., 2020; Zhang et al., 2023; Terada
& Toyoizumi, 2024; Masset et al., 2022; Sale & Zhang, 2024), in that the large cortical response
variability is consistent with the stochastic nature of sampling algorithms.

The canonical cortical circuit (Fig. 1A) – the fundamental computational building block of the cerebral
cortex – consists of excitatory (E) neurons and various inhibitory interneurons (I) including neurons of
parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) (Adesnik et al., 2012;
Fishell & Kepecs, 2020; Niell & Scanziani, 2021; Campagnola et al., 2022). Different interneuron
classes have different intrinsic electrical properties and form specific connectivity patterns (Fig. 1B).
The canonical circuit is highly conserved across a wide spectrum of vertebrate species and likely
represents a common network architecture solution discovered by evolution over millions of years.
Therefore, studying the algorithms underlying canonical circuits not only advances our understanding
of neural computations, but also positions these circuits as building blocks for next-generation deep
network models, with their clear algorithmic understanding enabling full interpretability.

The field has started to identify the algorithm of the canonical circuit. For example, a very recent
study has identified the Bayesian sampling algorithm in reduced canonical circuit motifs (Sale &
Zhang, 2024): the reduced circuit of only E and PV neurons can implement Langevin posterior
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sampling in the stimulus feature manifold. And incorporating SOM into the circuit introduces
oscillations that accelerate sampling by upgrading Langevin sampling into more efficient Hamiltonian
sampling. Nevertheless, a significant gap remains between identified Bayesian sampling algorithms
and the complex, nonlinear canonical circuit dynamics. A notable distinction is that canonical
circuit dynamics is inherently non-linear and substantially more complex than the linear dynamics
of Langevin and Hamiltonian samplings identified in previous circuit models and used in machine
learning (ML) research. Rather than dismissing the added complexity as incidental to neural dynamics
without computational purpose, we explore whether these nonlinear circuit dynamics may serve some
advanced function. This raises a compelling question: Can nonlinear circuit dynamics implement
more advanced and efficient sampling algorithms? If so, what are advanced circuit algorithms?

To address this question, we perform comprehensive theoretical analyses of the canonical circuit
model composed of E neurons and two classes of interneurons (PV and SOM). Our analysis reveals
that canonical circuit dynamics not only implements standard Langevin and Hamiltonian sampling as
revealed in Sale & Zhang (2024), but innately incorporate the natural gradient (NG) to automatically
adjust the step size (or the “temperature”) in the circuit’s Langevin and Hamiltonian sampling based
on the local geometry of the posterior distribution measured by the Fisher information (FI).

Specifically, we find the total activity of E neurons monotonically increases with posteriors’ FI, and
dynamically control the effective sampling step size in the low-dimensional stimulus feature manifold.
Remarkably, the NG sampling in canonical circuit dynamics exhibits computational strategies
analogous to established numerical techniques in ML (Hwang, 2024; Girolami & Calderhead, 2011;
Marceau-Caron & Ollivier, 2017). These include, 1) the recurrent E input acts as a regularization
analogous to adding a small number during FI inversion to prevent numerical instabilities (Eq. 5,
α) – a common practice in NG sampling algorithms; 2) When coupling multiple canonical circuits
interact to sample multivariate stimulus posteriors, the coupled circuit approximates the full FI matrix
with its diagonal elements (Sec. 5), similar to the diagonal approximation used in scalable NG
samplings. In addition, our analysis reveals that when the circuit transitions from resting state (no
feedforward input) to evoked state (with feedforward input), the non-equilibrium circuit dynamics
further accelerates sampling beyond the efficiency of standard NG sampling. We analytically identify
the neural annealing strategy within canonical circuit dynamics (Fig. 2J, Eq. 3b). We also show that
the canonical circuit with clear algorithm understanding can serve as a latent space sampler in deep
generative models, moving a step toward biologically plausible and interpretable deep networks.

Significance. The present study provides the first demonstration that canonical cortical circuits
with diverse classes of interneurons naturally implement natural gradient Langevin and Hamiltonian
sampling. We establish a precise mapping between circuit components and computational elements
of advanced sampling algorithms, bridging computational neuroscience and ML. And the canonical
cortical circuit may inspire the new building block for more efficient, interpretable deep networks.

2 BACKGROUND: THE CANONICAL CORTICAL CIRCUIT MODEL

We consider a nonlinear canonical circuit model consisting of E neurons and two classes of interneu-
rons (PV and SOM) (Fig. 1A), whose dynamics is adopted from a recent circuit modeling study (Sale
& Zhang, 2024). This model is biologically plausible by reproducing tuning curves of different types
of neurons (Fig. A1A-C), and is analytically tractable so we can directly identifying the nonlinear
circuit’s algorithm. Briefly, each of the NE E neurons is tuned to a preferred 1D stimulus z = θj .
The full set of these preferences, {θj}NE

j=1, uniformly covers the whole stimulus space. E neurons
are recurrently connected with a Gaussian kernel in the stimulus space (Eq. 1d). Both PV and SOM
neurons are driven by E neurons but with different interactions: PV neurons deliver global, divisive
normalization to E neurons (Eq. 1b), whereas SOM neurons provide local, subtractive inhibition (Eq.
1c). The whole circuit dynamics is (Sec. C for detailed explanation and construction rationale).

E: τ u̇E(θ, t) = −uE(θ, t) + ρ
∑

X(WEX ∗ rX)(θ, t) +
√

τF[uE(θ, t)]+ξ(θ, t), (1a)

Div. norm. : rE(θ, t) = [uE(θ, t)]
2
+/(1 + ρwEP rP ); PV: rP =

∫
[uE(θ

′, t)]2+dθ
′, (1b)

SOM: τ u̇S(θ, t) = −uS(θ, t) + ρ(WSE ∗ rE)(θ, t); rS(θ, t) = gS · [uS(θ, t)]+, (1c)

Rec. weight: WY X(θ − θ′) = wY X

(√
2πaXY

)−1
exp(−(θ − θ′)2/2a2XY ), (1d)

Feedfwd.: rF (θ, t) ∼ Poisson[λF (θ|zt)], λF (θ|zt) = RF exp[−(θ − zt)
2/2a2]. (1e)
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Figure 1: (A) The canonical circuit of E and diverse types of interneurons and sampling-based
Bayesian inference. (B) The circuit model in the present study consists of E and two types of interneu-
rons (PV and SOM). (C) The recurrent connection kernel between E neurons. (D) Feedforward input
represented as a continuous approximation of Poisson spike trains with Gaussian tuning across the
stimulus feature. (E) The feedforward input parametrically encodes the stimulus feature likelihood.
(F) The population responses of E (top) and SOM neurons (bottom). (G) Stimulus feature values
sampled by the E and SOM neurons respectively. (H) The network’s sampling distribution read
out from E and SOM neurons. The E neuron’s position is regarded as stimulus feature sample zE ,
while the sample of SOM neurons zS contributes to the auxiliary momentum variable in Hamiltonian
sampling. The distribution of zE (top marginal) will be used to approximate the posterior.

uX and rX represent the synaptic inputs and firing rates of neurons of type X respectively. In Eq. (1a),
the neuronal types X ∈ {E,F, S} representing inputs from E neurons, sensory feedforward inputs
(Eq. 1e), and SOM neurons (Eq. 1c) respectively. [x]+ = max(x, 0) is the negative rectification. E
neurons receive internal Poisson variability with Fano factor F, mimicking stochastic spike generation
that can provide appropriate internal variability for circuit sampling (Zhang et al., 2023). In particular,
gS is the "gain" of SOM neurons and can be modulated (see Discussion), which is the key circuit
mechanism to flexibly switch between static inference and dynamic inference with various speeds.

To facilitate math analysis, the above dynamics consider infinite number of neurons in theory
(NE → ∞), then the summation of inputs from other neurons θj becomes an integration (convolution)
over θ, e.g., (W∗r)(θ) =

∫
W(θ−θ′)r(θ′)dθ′, while our simulations take finite number of neurons.

ρ = NE/2π is the neuronal density in the stimulus feature space, a factor in discretizing the integral.

2.1 THEORETICAL ANALYSIS OF THE CANONICAL CIRCUIT DYNAMICS

It has established theoretical approach to obtain analytical solutions of the nonlinear recurrent circuit
dynamics considered in the present study (Fung et al., 2010; Wu et al., 2016; Zhang & Wu, 2012;
Sale & Zhang, 2024), including attractor states, full eigenspectrum of the perturbation dynamics, and
the projected dynamics onto the dominant eigenmodes. These analytical solutions are essential to
identify the circuit’s Bayesian algorithms. Below, we briefly introduce the key steps and results of
the theoretical analysis, with detailed math calculations in Sec. C.

Attractors. E neurons in canonical circuit dynamics have the following attractor states with a bump
profile over the stimulus feature space (Fig. A1; Sec. C),

ūE(θ) = ŪE exp[−(θ − z̄E)
2/4a2], r̄E(θ) = R̄E exp[−(θ − z̄E)

2/2a2]. (2)

Similar bump attractor states exist for SOM neurons (Eq. E2 ). In contrast, PV neurons don’t have a
spatial bump profile since their interactions with E neurons are unstructured (Eq. 1b).

Dimensionality reduction for stimulus sampling dynamics. The perturbation analysis reveals that
the first two dominant eigenmodes of the circuit dynamics correspond to the change of bump position
zE and the bump height UE respectively (Sec. C, (Fung et al., 2010; Wu et al., 2016)), and similarly
for SOM neurons. We project the E dynamics (Eq. 1a) onto the above two dominant eigenvectors
(calculating the inner product of the circuit dynamics and the eigenvectors), yielding the governing
dynamics of the zE and UE (the projection of SOM neurons will be shown later in Sec. 6 and E),

Position : żE ≈ (τUE)
−1UEF (µz − zE) + σz(τUE)

−1/2ξt, (UXY = ρwXY RY /
√
2) (3a)

Height : U̇E ≈ τ−1[−UE + UEE + UEF ] + σU (τ
−1UE)

1/2ξt, (3b)

where UXY is the population input height from population Y to X . σ2
z = 8aF/(3

√
3π) and

σ2
U = F/(

√
3πa) are constants that don’t change with network activities. The approximation comes
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from omitting negligible nonlinear terms in the circuit dynamics (Sec. C.3). Our following theoretical
analysis on circuit algorithms will be based on the above two equations.

2.2 BACKGROUND: NATURAL GRADIENT BAYESIAN SAMPLING

Amari’s natural gradient is a well-known method to adaptively adjust the sampling step size based
on the local geometry characterized by the Fisher information (FI) G(z) (Amari, 1998; Amari &
Douglas, 1998; Amari, 2016; Girolami & Calderhead, 2011) (see details in Sec. (B.2),

G(z) = −Ep(rF |z)[∇2
z lnπ(z)] (4)

For a Gaussian distribution N (z|µ,Λ−1), the FI will be its precision Λ and doesn’t depend on z.

Natural gradient Langevin sampling (NGLS). The FI is used to determine the step size of the
Langevin sampling dynamics to sample the posterior π(z) (Girolami & Calderhead, 2011),

ż = τ−1
L ∇ lnπ(z) + (2τ−1

L )1/2ξt, where τL = η[G(z) + α]. (5)

α is a small positive constant acting as a regularization term to improve numerical stability in inverting
the FI (Hwang, 2024; Marceau-Caron & Ollivier, 2017; Wu et al., 2024), which is widely used in
ML. η is a small constant similar to the inverse of “learning rate”. In the naive Langevin sampling,
τL is fixed rather than proportional to the FI. In the NG Langevin sampling, the τL scales with the
FI. If the distribution is widely spread out, the sampling step size will be larger, allowing for faster
exploration of the space. Conversely, if the distribution is sharply peaked, the sampling step size will
be smaller to explore the local region more thoroughly.

Natural gradient Hamiltonian sampling (NGHS). It defines a Hamiltonian function H(z, p) where
the momentum distribution π(p|z)’s variance (rather than precision) is proportional to the FI G(z).

H(z, p) = − lnπ(z)− lnπ(p|z), π(p|z) = N [p|0, G(z)]. (6)

The NGHS dynamics with friction is governed by (Girolami & Calderhead, 2011; Ma et al., 2015),

d

dt

[
z
p

]
= −

[
0 −τ−1

H

τ−1
H γ

] [
∇zH
∇pH

]
+
√
2

[
0

γ1/2

]
ξt (7)

where τH is the time constant of the Hamiltonian sampling, and γ is the friction that dampens
momentum. The Hamiltonian dynamics with friction can be interpreted as a Langevin dynamics
added into the momentum dynamics (Chen et al., 2014; Ma et al., 2015). When γ = 0, Eq. (7)
reduces into the naive Hamiltonian dynamics. Our following analysis will show the canonical circuit
can automatically implement the natural gradient Langevin sampling and Hamiltonian sampling.

3 FROM CIRCUIT DYNAMICS TO BAYESIAN SAMPLING

In our framework, the stage from external stimulus z to the feedforward input rF is regarded as a
generative process (Fig. 1A), and then the circuit dynamics (Eqs. 1a and 1c) effectively performs
Bayesian sampling dynamics to compute the stimulus posterior, π(z) ≡ p(z|rF ) ∝ p(rF |z)p(z). We
hypothesize that the circuit computes subjective posterior distributions π(z) based on its internal
generative model (Lange et al., 2023), implicitly assuming the subjective prior in brain’s neural
circuits matches the objective prior (usually not known precisely) of the world. With this hypothesis,
we treat the canonical circuit, strongly supported by experiments, as a “ground truth”, and aim to
identify the circuit’s internal generative model and its Bayesian sampling algorithms.

Subjective prior p(z). We will leave the subjective prior p(z) unspecific for now and will find it
through the analysis of the circuit dynamics. This will be shown later in the Eqs. (10 and 13).

Stimulus likelihood L(z). The stochastic feedforward input from the stimulus z (Eq. 1e) naturally
specifies the stimulus likelihood that is calculated as a Gaussian likelihood (see Sec. C.4),

L(z) ∝ p(rF |z) =
∏

θ Poisson[λF (θ|z)] ∝ N
(
z|µz,Λ

−1
)
,

where µz =
∑

j rF (θj)θj/
∑

j rF (θj), Λ = a−2
∑

j rF (θj) =
√
2πρa−1RF .

(8)

The mean µz and precision Λ are geometrically regarded as rF ’s location and height respectively
(Fig. 1D-E). A single snapshot of rF parametrically conveys the stimulus likelihood p(rF |z), in
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Figure 2: NG Langevin sampling in the reduced circuit (E and PV). (A) The need for adaptive step
size to sample different posteriors. (B) The reduced circuit with fixed weights flexibly samples
posteriors with different uncertainties. (C-D) E bump height UE increases with posterior FI (C)
and determines the sampling time constant in the stimulus feature manifold. (E-F) The sampling
convergence with recurrent weight wEE that acts as a regularizer (Eq. 5). (G-H) The sampling
convergence at different posterior uncertainties. (I-K) Non-equilibrium sampling further accelerates
convergence. The non-equilibrium population responses (I), bump height (J), and the KL divergence
(K) from the resting state (no feedforward input) to evoked state.

that all likelihood parameters are read out from rF . In particular, the Gaussian stimulus likelihood
resulted from the Gaussian profile of feedforward input tuning λF (θ|z) (Eq. 1e, Ma et al. (2006).

Circuit’s stimulus posterior FI comes from the likelihood (Eq. 8) and the prior (unspecified now),

G(z) = Λ +∇2
z ln p(z) =

√
2πρa−1RF +∇2

z ln p(z). (9)

Our following analysis will focus on connecting the circuit dynamics on the position and height
subspace (Eqs. 3a and 3b) to the NG sampling dynamics (Sec. 2.2), to identify how the circuit
implements NG Langevin and Hamiltonian sampling. To facilitate understanding, we will start from
the reduced circuit model without SOM neurons (Sec. 4 - 5) and then add the SOM back (Sec. 6).

4 A REDUCED CIRCUIT WITH E AND PV NEURONS: NG LANGEVIN SAMPLING

To facilitate understanding, we first present how the circuit realizes the naive Langevin sampling (Sale
& Zhang, 2024), then conduct further analyses to reveal its mechanism of NG Langevin samplings.

4.1 NAIVE LANGEVIN SAMPLING IN THE REDUCED CIRCUIT

To analyze the circuit Langevin sampling, we convert the bump position zE dynamics (Eq. 3a) into a
Langevin sampling form by expressing its drift term as the log-likelihood gradient,

żE = (τUE)
−1λz∇ lnL(zE) + σz(τUE)

−1/2ξt, with ∇ lnL(z) = Λ(µz − z), λz =
wEFa

2
√
π

, (10)

where the feedforward input strength UEF (Eq. 3a) is proportional to the likelihood precision Λ,
i.e., UEF ∝ wEFRF ∝ wEFΛ (Eq. 8). Notably, the drift and diffusion terms in Eq. (10) share the
same factor τUE , a necessary condition for Langevin sampling (Eq. 5). Then we investigate how the
circuit realizes Langevin sampling by comparing Eqs. (10 and 5), and study its sampling structure.

Uniform (uninformative) circuit prior. It is uniform because the drift term in Eq. (10) is the
stimulus likelihood L(z) gradient, due to the translation-invariant recurrent weights (Eq. 1d). This
result is consistent with the previous study (Zhang et al. (2023); Sale & Zhang (2024); see Discussion).

The circuit sampling only constrains feedforward weight wEF . It requires the ratio σ2
z/λz = 2 in

Eq. (10) which only constrains the feedforward weight as w∗
EF =

√
πσ2

z/a = (2/
√
3)3F, irrelevant

with other circuit weights like wEE and wEP as long as the circuit dynamics is stable. This suggests
the robust circuit sampling and no fine-tuning of circuit parameters is needed.

5
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Flexible sampling the whole likelihood family. Once the feedforward weight is set at w∗
EF ,

the circuit with fixed weights flexibly samples likelihoods with different means and uncertainties,
because in Eq. (10) the λz and σz are invariant with circuit activities, and τUE is a free parameter
without changing the equilibrium sampling distribution. And then the bump position zE dynamics
will automatically sample the corresponding likelihood that is parametrically represented by the
instantaneous feedforward input rF (Eq. 8). This is also confirmed by our simulation (Fig. 2B).

4.2 NATURAL GRADIENT LANGEVIN SAMPLING IN THE REDUCED CIRCUIT

The NG Langevin sampling requires the sampling time constant increases with the FI G(z) (Eq.
5). Meanwhile, the time constant of the circuit’s bump position zE dynamics is proportional to the
bump height UE (Eq. 3b and 10) and is confirmed by circuit simulation (Fig. 2D). Thus we analyze
the relation between UE and the FI. For simplicity, we first focus on the equilibrium mean of UE

(averaging Eq. 3b), and the identified NGLS parameters in the circuit are shown in Fig. 4E.
ŪE = UEE + UEF , UEF = ρwEFRF /

√
2 = λz ·G(z) = λzΛ. (11)

E bump height UE encodes Fisher information. The feedforward input height UEF is proportional
to the likelihood FI G(z) (Eq. 9, uniform prior), making the mean bump height ŪE increase with
G(z). This is also confirmed by the circuit simulation (Fig. 2C). Consequently, the bump height ŪE

effectively represents the stimulus FI and in turn scales the time constant of the circuit sampling zE
dynamics (Eq. 10, Fig. 2D), enabling the NGLS in the circuit.

The recurrent E input (weight) acts as a regularizer. Comparing Eqs. (11 and 5), the recurrent
input strength UEE acts as a role of the regularization coefficient α, improving the numerical stability
in inverting the FI when it is small or ill-conditioned (Hwang, 2024; Marceau-Caron & Ollivier, 2017;
Wu et al., 2024). Without recurrent E weight (UEE = 0 via setting wEE = 0), the circuit sampling
behaves similarly with the NGLS (Fig. 2E). Including recurrent weights enlarges the sampling
time constant, slowing down the sampling as suggested by our theory (Fig. 2E). Nevertheless,
with extremely small FI, the circuits with higher recurrent weights have faster convergence (Fig. 2F,
leftmost part), because the recurrent E input stabilizes the inversion of very small FI. Moreover, NGLS
is characterized by the invariant temporal correlation of samples with the posterior uncertainties
(controlled by input intensity RF ), which is also confirmed in the circuit simulation (Fig. 2G).

The flexible scaling with various posterior FI. The canonical circuit model with fixed weights
flexibly scales its sampling time constant (determined by ŪE , Eq. 3a) with various posteriors FI
(controlled by the feedforward input rate RF ), all of which is automatically completed by the
recurrent dynamics without the need of changing circuit parameters. For example, increasing RF

increases the bump height UE (Eq. 3b) that leads to a larger sampling time constant, and meanwhile
it changes the equilibrium sampling distribution of the circuit (Eqs. 8 and 3a).

4.3 NON-EQUILIBRIUM CIRCUIT DYNAMICS ACCELERATES NATURAL GRADIENT SAMPLING.

Our analysis so far concentrates on the equilibrium mean ŪE (Eq. 11). We now extend to the
non-equilibrium dynamics (Eq. 3b), particularly during the transient response immediately following
the onset of a stimulus. After receiving a rF , the UE will gradually grow up until the equilibirum
state (Fig. 2I-J). And meanwhile, the sampling step size will gradually decreases in that a larger UE

leads to larger sampling constant and therefore smaller step size. This is similar to the annealing in
stochastic computation. The larger sampling step size during the non-equilibrium implies the circuit
can sample faster than the equilibrium state, confirmed by simulation (Fig. 2K). Furthermore, UE

temporal trajectory (Fig. 2J) describes circuit’s annealing strategy, governed by Eq. (3b). This
intrinsic annealing schedule is an emergent property of the circuit’s nonlinear dynamics.

5 COUPLED CIRCUITS: NGLS OF MULTIVARIATE POSTERIORS

The brain needs to sample multivariate stimulus posteriors, which can be implemented by a decentral-
ized system consisting of multiple coupled canonical circuit modules (Fig. 3A, Zhang et al. (2016;
2023); Raju & Pitkow (2016)). Each circuit module m receives a feedforward input stochastically
evoked by a 1D stimulus zm (Fig. 3), and the cross-talk between circuits enables them to read out the
circuit prior, and eventually each circuit m samples the corresponding stimulus zm distributedly. As
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Figure 3: Coupled canonical circuits sample multivariate posteriors, with each circuit m sampling
the corresponding marginal posterior of zm. (A) The structure of decentralized circuit with each
consisting of E and PV neurons (the same as Fig. 2B). (B-C) The spatiotemporal E neuronal responses
in two circuits (B) and the decoded stimulus samples (C). (D) When concatenating the samples from
two circuits together, we recover the bivariate sampling distribution. Vector field: the drift term of the
sampling dynamics in the circuit. (E) The vector field of natural gradient sampling with full FIM and
diagonal FIM approximation. (F) The convergence speed in the decentralized circuit. The diagonal
FIM approximation is scalable in high dimensions, while paying the cost of slower sampling speed.

a proof of concept, we consider the smallest decentralized system of two coupled circuits to sample
bivariate posteriors (Fig. 3A). The sampling of higher dim. posteriors can be extended by inserting
more circuit modules, with the number of circuit modules determined by the stimulus dimension.

We investigate how the coupled circuits implement bivariate posteriors’ NGLS, and what kind of
approximation, if there is any, is used in the circuit. The theoretical analysis of the two coupled
circuits is similar to a single circuit module, but we perform the analysis on each circuit module
individually, yielding the new position and height dynamics (details at Sec. D),

Position : żE = (τDU)−1
[
− LzE +UEF ◦ (µz − zE)

]
+ σz(τDU)−1/2ξt. (12a)

Height : U̇E = τ−1
(
−UE +UEE +UEF

)
+ σU (τ

−1DU)1/2ξt. (12b)

zE = (z1, z2)
⊤ is two circuits’ E bump positions. Similarly for µz and RF (feedfwd. input

position and intensity respectively), and UE and RE (bump height of synaptic input and firing rate
respectively). DU = diag(UE) is a diagonal matrix of UE . The ◦ denotes the element-wise product.

The associative bivariate stimulus prior. The zE dynamics (Eq. 12a) has a new term, i.e., −LzE ,
which can be linked to the internal stimulus prior (omitting the subscript EE of U for clarity below).

∇ ln p(z) = −LzE , L =

(
U12 −U12

−U21 U21

)
⇔ p(z) ∝ exp

(
−z⊤ELzE/2

)
. (13)

Hence the coupling matrix L is the prior’s precision matrix (see Sec. D.2). For ease of understanding,
we expand the bivariate prior as p(z1, z2) ∝ exp

[
−Λ12(z1 − z2)

2/2
]
, with Λ12 ∝ (U12 + U12)/2.

The coupled circuit stores an associative (correlational) stimulus prior with each marginal uniform,
consistent with previous studies (Sale & Zhang, 2024; Zhang et al., 2023). The identified correlational
prior is confirmed by numerical simulation, where the actual sampling distribution of the circuit
dynamics matches the subjective posterior predicted via the identified prior (Fig. A2).

Diagonal Fisher information approximation. Given the identified circuit’s prior, we calculate the
Fisher information matrix (FIM) G(z) and compare it with the actual sampling time constants,

FI: G(z) = λ−1
z

(
U1 −U12

−U21 U2

)
vs. Circuit: DU =

(
U1

U2

)
. (14)

The time constant matrix DU in the circuit dynamics is proportional to the diagonal elements of the
FIM, i.e., DU ∝ diag[G(z)], suggesting the circuits utilize the diagonal approximation of the FIM
to scale the Langevin sampling step size. The diagonal FIM approximation is widely used in ML, as
a trade-off of computational efficiency and accuracy (Amari, 1998; Amari & Douglas, 1998; Amari,
2016; Wu et al., 2024), where the full FIM is hard to estimate.

To illustrate the effect of diagonal FIM approximation on sampling dynamics, we plot the vector field
of NGLS with full FIM and diagonal FIM respectively (Fig. 3D). All vector fields under full FIM
directly point to the posterior mean, while the ones under diagonal FIM are curled along the long axis
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of the posterior. Meanwhile, the curled vector fields also exist in coupled circuits’ sampling dynamics,
confirming diagonal FIM approximation in the circuit (Fig. 3C). The diagonal FIM simplifies the
computation, while paying the cost of sampling speed (Fig. 3E and Fig.A4).

6 THE CIRCUIT WITH SOM NEURONS: NG HAMILTONIAN SAMPLING

We investigate the Bayeisan sampling in the augmented circuit model with SOM neurons providing
structured inhibition to E neurons (Eq. 1a). The SOM’s structured inhibition can add the Hamiltonian
sampling component in the circuit (Sale & Zhang, 2024). We further analyze whether the augmented
circuit with SOM neurons implements the natural gradient Hamiltonian sampling (NGHS). For
simplicity, we consider a augmented circuit model to sample a univariate stimulus posterior. Similarly,
we derive the eigenvectors of the SOM’s dynamics and then project the dynamics on dominant
eigenvectors (see details in Sec. E). The position dynamics of the E and SOM neurons are,

E: τE żE = [UES(zS − zE) + αHUEF (µz − zE)]︸ ︷︷ ︸
Momentum p, (Hamiltonian part)

+ [αLUEF (µz − zE) + σz
√
τEξt]︸ ︷︷ ︸

Langevin part

, (15a)

SOM: τS żS ≈ USE(zE − zS), (τX = τUX) (15b)

To understand the circuit’s sampling dynamics, the zE dynamics (Eq. 15a) is decomposed into the
drift terms from Langevin and Hamiltonian parts with αH +αL = 1, and the momentum p is defined
as a mixture of zE and zS . Transforming the (zE , zS) dynamics (Eqs. 15a - 15b, Fig. 1H) into the
(zE , p) dynamics (Fig. 4B) shows a mixture of Langevin and Hamiltonian sampling in the circuit,

d

dt

[
zE
p

]
= −

[
αLλzτ

−1
E −βEΛ

−1

βEΛ
−1 τUEβpβEΛ

−1

] [
−∇z lnπ(zE)
(τEβE)

−1Λ · p

]
+

[
σzτ

−1/2
E
σp

]
ξt (16)

where βp, βE and σp are functions of the coefficients in Eq. (15a) (details at Eq. E16). And the
momentum p dynamics has a friction term (Eq. 16), corresponding to a Langevin component.

A line manifold in weight space for Hamiltonian sampling. It requires the ratio between the
drift and diffusion coefficients are the same as the Langevin (Eq. 5) and Hamiltonian sampling (Eq.
7). Specifically, it requires 1) αLλzτ

−1
E = σ2

zτ
−1
E /2 and 2) τEβpβEΛ

−1 = σ2
p/2. Solving the two

constraints, we can derive the requirement of circuit weights for Hamiltonian sampling,(
U−1
E RS

)
· wES −

[
(1− αL)U

−1
E RF

]
· wEF =

[
Q(αL)U

−1
S RE

]
· wSE . (17)

Q(αL) is nonlinear with αL and is invariant with network activities (Eq. E21). UX and RX are the
height of the population synaptic input and firing rate of neurons X (Eq. 2). Eq. (17) suggests a
line manifold in the circuit’s weight space (wES , wEF ) for correct posterior sampling, confirmed by
numerical simulation (Fig. A3). Moreover, once circuit weights are set within the line manifold, the
circuit with fixed weights can flexibly sample posteriors with various uncertainties (Fig. 4C).

Natural gradient Hamiltonian sampling. Implementing NGHS requires the precision of the
momentum p to be inversely proportional to posterior’s FI, G(z) (Eq. 7). To verify this, we calculate
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the contrast increases the feedforward input intensity (E), sampling precision in the canonical circuit
(F) and meanwhile decreases the sampling step size (G).

the momentum distribution π(p|z) in the circuit (comparing Eqs. 16 and 7),

−∇ lnπ(p|z) = (τEβE)
−1Λ · p ⇒ π(p|z) = N (p|0,Λ−1

p ), where Λp = (τEβE)
−1Λ (18)

We analyze the momentum precision Λp in the circuit dynamics. Since βE is a complex, quadratic
function of neuronal responses, we then use order analysis to provide insight (details at Sec. E.4).
In the circuit dynamics, we calculate βE ∼ O(G(z)), UE ∼ O(G(z)), and G(z) = Λ, and then we
have Λp ∝ O(G(z)−1), suggesting the momentum precision Λp decreases with posterior’s FI and
satisfies the requirement of NGHS. This is confirmed by simulation results (Fig. 4D).

7 CANONICAL CIRCUIT: NG LATENT SPACE SAMPLER IN AUTOENCODERS

The exact, analytical mapping between nonlinear canonical circuit dynamics and the sampling
algorithm not only enhances our algorithmic understanding of circuit computation, but also the
canonical circuit model can be a novel, biologically plausible building block for machine learning
models. As a proof-of-concept example, we embed the Gaussian posterior sampling canonical
circuits (Fig. 2B) into the latent space of deep generative models like variational autoencoders (VAE)
(Kingma & Welling, 2013) (Fig. 5A). In the autoencoder framework, its encoder and decoder can be
regarded as the feedforward and feedback neural pathways in the cortical hierarchy, which link the
data with complex distributions into simple Gaussian distributions in the latent space.

Since the latent space sampling in VAE is directly given without training, we can directly connect our
handcrafted canonical circuit (Fig. 2B) with an encoder and a decoder, avoiding the time-consuming
training of the recurrent circuit. Given the canonical circuit and its parametric form of feedforward
input (Eqs. 1a - 1e), we directly train an encoder in a supervised way that transforms MNIST
hand-written digit images into the two parameters of feedforward neural inputs, i.e., input strength
RF (Eq. 1e) and location µz (Eq. 8) which represent the physical attributes of image contrast and
orientation respectively. This is supported by neuroscience studies that the V1 population bump
responses’ strength increases with image contrast, while their bump response location represents
orientation (Ben-Yishai et al., 1995; Rubin et al., 2015). Then we separately train the decoder that
converts E neurons’ firing rate rE(θ) into reconstructed images (see Appendix Sec. F.4 for details).

The discovered natural gradient sampling in canonical circuits still functions in the autoencoder
framework. Increasing the image contrast increases the feedforward input strength (Fig. 5E), which
in turn increases the likelihood precision and the E neuronal firing rate in the circuits (Fig. 5D).
And the model successfully reconstructs the images with different contrasts. When examining the
sampling in the canonical circuit in the latent space (Fig. 5B-C), we find the precision of the samples
generated in the circuit increases with image contrast (Fig. 5F), and importantly, the sampling step
size decreases with the contrast (Fig. 5G), suggesting the natural gradient sampling is reserved.
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8 CONCLUSION AND DISCUSSION

The present theoretical study for the first time discovers that the canonical circuit dynamics with
E and two classes of interneurons (PV and SOM) innately implement natural gradient sampling
of stimulus posteriors, deepening our understanding of circuit computations. The circuit samples
stimulus posterior in the stimulus manifold that is geometrically regarded as the E neurons’ bump
position. And we find the E bump height encodes the FI of the stimulus posterior, and determine the
time constant of bump position’s sampling dynamics. We find the non-equilibirum dynamics of the
E bump height can further accelerate sampling, and explicitly identify the circuit annealing strategy
(Eq. 3b). Remarkably, we discover the circuit dynamics also utilizes computational approximations
widely used in ML algorithms, including the regularization coefficient for inverting FI (Eq. 11)
and the diagonal FI matrix approximation in multivariate cases (Eq. 12b), which provides a direct
evidence to validate the biological plausibility of artificial ML algorithms. Our work unprecedentedly
links the canonical circuit with classes of interneurons to natural gradient sampling and related
approximation strategies, providing deep, mechanistic insight into circuit sampling algorithms. At
last, our proof-of-concept example suggests the canonical circuit can be a biologically plausible and
interpretable building block for latent space sampling in deep generative models.

Preliminary experimental support of NG sampling. Our NG sampling circuit specifically predicts
that the magnitude of the E neurons’ responses (the bump height UE , Eq. 3b), is inversely proportional
to the step size of the trajectory in the stimulus feature subspace (bump position zE , Eq. 3a). This is
supported by experiments from hippocampal place cells where the step size of the decoded spatial
trajectories (akin to our zE) was found to be negatively correlated with population firing rate (Pfeiffer
& Foster, 2015), providing a necessary condition for validating circuit NG sampling.

Comparison with previous studies. First, In our best knowledge, only one study investigated
the NG sampling in recurrent networks (Masset et al., 2022), while it is difficult to make direct
and “fair” comparison since the network models in two studies are different: The previous study
considers a spiking network without explicit defining neuron types, while the present study considers
a rate-based network with diverse classes of interneurons (PV and SOM) that has rich repertoire of
realizing various NG sampling algorithms (Langevin and Hamiltonian). From functional perspective,
our circuit with fixed weights can flexibly realize NG sampling for posteriors with different mean
and uncertainties, whereas it remains unknown whether this flexiblility holds in the previous study.
Second, our circuit model builds upon a recent work (Sale & Zhang, 2024) that discovered the
conventional Langevin and Hamiltonian sampling in the canonical circuit. Our work takes one step
further and finds the same circuit can innately realize NG Langevin and Hamiltonian sampling, which
is a fundamentally deeper result after more comprehensive theoretical analysis of the circuit by
additionally projecting the circuit dynamics onto the second dominant height mode (Eq. 3b).

Limitations, generalizations, and future directions. First, the proposed circuit model doesn’t
include VIP neurons (Fig. 1), which are likely act as a “knob” modulating the SOM gain (gS , Eq. 1c)
to adjust circuit sampling speed and the momentum (Sec. E.4). Second, Our canonical circuit model,
widely used in neuroscience, only stores a uniform (marginal) prior for each stimulus as a result
of an ideal case that neurons are uniformly tiling the stimulus manifold and translation-invariant
recurrent weights (Eq. 1d). This implies the circuit has to break the neuronal homogeneity on the
stimulus manifold to store a non-uniform (marginal) prior (Ganguli & Simoncelli, 2010). Regarding
the circuit mechanism, the tuning heterogeneity for non-uniform marginal prior may come from 1) an
external prior input that may from higher cortex (Appendix Sec.G.1), or 2) internally stored in the
recurrent weights in the network model which can be realized by introducing an extra heterogeneous
recurrent weight component superimposed on the translation-invariant recurrent weight matrix. Third,
although our circuit with fixed weights automatically scale its sampling time constant with various
posteriors’ FI, for each posterior it uses a globally homogeneous FI because the Gaussian posteriors
have homogeneous curvature. In principle, we can change the profile of the recurrent kernel, and then
the circuit can sample other posteriors in the exponential family with locally dependent FI. We show
a von Mises case in Sec. G.2. Fourth, we can introduce bump height UE oscillations with larger PV
inhibitory weight wEP , and then the circuit has the potential to implement cosine-profile annealing.
Fifth, to implement the NG sampling of general distributions, one possibility is our circuit samples
baseline Gaussian distributions, and a feedforward decoder network map the base distribution into
arbitrary distributions. Preserving the NG sampling in the space of arbitrary distribution probably
requires the diffeomorphism of the decoder network. All of these form our future research.
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9 REPRODUCIBILITY STATEMENT

All analytical calculations of the nonlinear circuit dynamics are detailed from Appendix Sec. B - E.
Below is a list of the Appendix sections and their associated sections in the main text.

1) Circuit models and theoretical analysis: is presented in Sec. 2 in the main text and the detailed
introduction and rationale are presented in Appendix Sec. C

2) 1D NG Langevin sampling: is presented in Sec. 4 in the main text and the detailed calculations
are in Appendix Sec. C.

3) Multivariate NG Langevin in coupled circuits: is presented in Sec. 5 in the main text and the
detailed calculations are in Appendix Sec. D.

4) 1D NG Hamiltonian sampling: is presented in Sec. 6 in the main text and the detailed calcula-
tions are in Appendix Sec. E.

5) Numerical simulation details: is presented in Appendix Sec. F including the parameters for
each figure. The complete code of simulation is provided in the supplementary files with detailed
usage instructions.

6) Generalization is presented in Appendix Sec.G including the non-flat prior and Von Mises case.
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Figure A1: Supplementary figure of Fig. 1. (A-B)The tuning curve of an example E neuron in control
state compared with enhancing PV neurons (A) and SOM neurons (B). It shows the PV neurons
provide divisive inhibition to the E neuron, while the SOM provides subtractive inhibition to the E
neuron. (C) The tuning curves of all E neurons in the circuit tile the whole stimulus feature space z.
(D-E) The temporally averaged Gaussian profile of the firing rate rE(θ) (D) and synaptic input uE(θ)
(E), supporting the Gaussian ansatz of the attractor states in Eqs. (2)
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Figure A2: Supplementary figure of Fig. 3. (A) The joint correlational prior of the stimulus z1 and z2
stored in the coupled circuits presented in Fig. 3. The correlation between two stimuli is determined
by width of the diagonal band . (B) The prior precision λs increases with the coupling weight
between two circuits. (C-D) The coupled circuits sample the posterior by using its internal subjective
prior. Comparison of the sampling mean (C) and the prior precision (D) stored in the network with
theoretical predictions. Each point represents results from a random combination of feedforward
inputs, connection weights. (D) The picture shows the off-diagonal term of prior precision i.e. the
joint part of posterior. (E) The sampling step size of coupled network changes with posterior FI
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Figure A3: Supplementary figure of Fig. 4. The augmented circuit with E, PV and SOM neurons
have a line manifold in the parameter space to sample posteriors correctly, suggesting no fine-tuning
is needed. The parameter space is spanned by feedforward weight wEF and the inhibitory weight
from SOM to E neurons wES . The red dot shows the network parameters we use for simulation
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Figure A4: Supplementary figure of Fig. 3. Convergence time for multivariate posterior sampling
coupled networks with the posterior dimensions. (A) At a dimension of 5, Natural gradient Langevin
sampling with a diagonal Fisher information matrix converges more slowly than the full Fisher variant.
(B) To determine the convergence time constant across dimensions, we fitted an exponential function
to the KL divergence trajectories, excluding the noisy tails. These simulation results demonstrate that
the full Fisher method maintains a consistent convergence time constant across dimensions, whereas
the diagonal method is slower, whose convergence times increase with the posterior dimension.
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Figure A5: Supplementary figure of Fig. 2J-K. Non-equilibrium sampling in neural circuits (red
and orange lines) whose sampling time constant UE gradually increases (panel A) compared with
equilibrium sampling of simulating the bump position dynamics (Eq. 3a) but with deliberately
clamped lower UE (blue line, panel A). Although the latter equilibrium bump position sampling
(blue) is faster than the former non-equilibrium circuit sampling (red and orange), the latter is
infeasible in neural circuit dynamics. This is because the circuit dynamics is automatic and has its
intrinsic way to evolve the UE that lives in a subspace of the population activity, and it is infeasible
to clamp UE in the circuit dynamics without affecting other subspaces.

B NATURAL GRADIENT LANGEVIN SAMPLING

B.1 LANGEVIN DYNAMICS

The dynamics of Langevin sampling performs stochastic gradient ascent on the manifold of the
log-posterior of stimulus features (Welling & Teh, 2011), which is written as,

żt = τ−1
L ∇ ln p(zt|rF ) + (2τ−1

L )1/2ξt, (∇ ≡ d/dz) (B1)

where ξt is a multivariate independent Gaussian-white noise, satisfying ⟨ξtξ⊤t′ ⟩ = Iδ(t− t′), with I
the identity matrix and δ(t− t′) the Dirac delta function, and

τL is a positive-definite matrix (or a positive scalar in the 1D case) determining the sampling time
constant, which is also called the pre-conditioning matrix. Importantly, τL is a free parameter of the
sampling in that it doesn’t change the equilibrium distribution of zt.

B.2 NATURAL GRADIENT SAMPLING VIA FISHER INFORMATION (MATRIX)

Amari proposed the natural gradient method to utilize the geometry of the distribution to adaptively
determine the sampling time constant τL that controls the sampling step size (Amari, 1998). Intuitively,
for a widely spread distribution, we should choose a small time constant (large step size) that can
speed up the convergence of the sampling. Vice versa, for a narrowly distributed latent variable, a
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large time constant (small step size) is favoured to avoid instability of the sampling. Specifically,
Amari’s natural gradient method proposed the sampling time constant can be determined by using the
Fisher information that is a measure of the local curvature of the distribution. In the framework of
information geometry (Amari, 2016), the Fisher information matrix serves as a Riemannian metric on
the statistical manifold of z. Consider two neighboring (posterior) distributions π(z) and π(z+ d)
with an infinitesimal displacement d, a second-order Taylor series approximation reveals the Fisher
information as the underlying distance metric.

DKL [π(z)∥π(z+ d)] ≈ 1

2
d⊤G(z)d

While the Fisher Information is often introduced in the context of the likelihood function in frequentist
statistics, its definition can be generalized. For any probability distribution, its Fisher Information
matrix measures the expected curvature of its logarithm. For the posterior π(z) ≡ p(z|rF ) to be
sampled, we get the posterior information matrix (or Bayesian Fisher Information)(Amari, 2016),

G(z) = −Ep(rF |z)
[
∇z log π(z)∇z log π(z)

⊤] . (B2)

It is symmetric and positive semi-definite. Then the posterior information matrix acts as a precondition
to set up the time constant of the sampling(Girolami & Calderhead, 2011):

żt = τ−1
L ∇ lnπ(z) + (2τ−1

L )1/2ξt, τL = η[G(z) + α] (B3)

Here, the time constant increases with G(z), which ensures a smaller step size (larger time constant)
when the posterior is more curved (larger Fisher information). This adaptation improves sampling
efficiency, as it accounts for anisotropies in the posterior, preventing slow mixing along directions of
low curvature. The α is a regularization term that increases the numerical stability when inverting the
time constant with a very small Fisher information G(z).

With more details, the Fisher information is the expected value of the negative Hessian matrix. It
represents the curvature of the posterior on the statistical manifold where the latent variable z reside.

G(z) = −Ep(rF |z)
[
∇2

z log π(z)
]

(B4)

In many practical applications, a "flat" or "non-informative" prior is used for some or all parameters.
The posterior information matrix simplifies to become identical to the likelihood’s Fisher information
matrix. If prior is flat, this metric tensor of posterior manifold becomes,

G(z) = −Ep(rF |z)(p(rF|z))− Ep(rF |z)(p(z)) = −Ep(rF |z)(p(rF|z))

B.3 SAMPLING SPEED MEASURED BY THE DECAYING SPEED OF KL DIVERGENCE

It has been proved that the upper-bound of the KL-divergence between the distribution of sample
pt(z) = T−1

∑
t δ(z − zt) and the equilibrium distribution p∞(z) decreases exponentially (Dong

et al., 2022), i.e.,
DKL [pt(z)∥p∞(z)] ≤ DKL [p0(z)∥p∞(z)] exp(−ht)

where p0(z) denotes the initial distribution at t = 0, and h denotes the smallest real-part of all
eigenvalues of the drift matrix.

C A SINGLE CANONICAL CIRCUIT AND 1D NATURAL GRADIENT SAMPLING:
THEORY

We present the math of theoretical analyses of the reduced recurrent circuit model consisting of E and
PV neurons based on continuous attractor network dynamics.

C.1 CONTINUOUS ATTRACTOR NETWORK DYNAMICS

To simplify the reading, we copy the network dynamics of E neurons (Eq. 1a),

τ
∂uE(θ, t)

∂t
= −uE(θ, t) + ρ

∑
X=E,F

(WEX ∗ rX)(θ, t) +
√

τF[uE(θ, t)]+ξ(θ, t), (C1)
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and the divisive normalization provided by PV neurons (Eq. 1b),

rE(θ) =
[uE(θ)]

2
+

1 + ρwEP

∫ π

−π
[uE(θ)]2+dθ

, (C2)

and the recurrent connection kernel WEX (Eq. 1d)

WY X(θ) = wY X

(√
2πaXY

)−1
exp(−θ2/2a2XY ). (C3)

C.2 NETWORK’S ATTRACTOR STATES

We verify the proposed Gaussian ansatz of the attractor states of E neurons (Eq. 2),

ūE(θ) = ŪE exp

[
− (θ − zE)

2

4a2E

]
. (C4)

First, we substitute it into the divisive normalization (Eq. C2), yielding the following expression for
the firing rate of E neurons,

r̄E(θ) =
[ū2

E(θ)]
2
+

1 + ρwEP

∫
[ūE(θ)]2+dθ

=
Ū2
E

1 + ρwEP Ū2
E

√
2πaE︸ ︷︷ ︸

R̄E

exp

[
− (θ − zE)

2

2a2E

]
. (C5)

Then we use the above E firing rate (Eq. C5) to calculate the recurrent input from the neuronal
population of type Y to the one with type X in the circuit model,

uXY (θ) = ρWXY ∗ rY (θ)

=
ρwXY RY√
2πaXY

∫
exp

[
− (θ′ − θ)2

2a2XY

− (θ′ − zY )
2

2a2Y

]
dθ′

= ρwXY RY
aY√

a2XY + a2Y
exp

[
− (θ − zY )

2

2(a2XY + a2Y )

]
.

(C6)

Specifically, based on Eq. (C6), the recurrent E population input is

uEE(θ) = ρWEE ∗ rE(θ) =
ρ√
2
wEERE︸ ︷︷ ︸
UEE

exp

[
− (θ − zE)

2

4a2E

]
, (C7)

and the feedforward population input is,

uEF (θ) = ρWEF ∗ rF (θ) =
ρ√
2
wEFRF︸ ︷︷ ︸
UEF

exp

[
− (θ − µz)

2

4a2E

]
. (C8)

It can be checked the proposed Gausian ansatz (Eq. C4) is indeed the sum of the recurrent input (Eq.
C7) and the feedforward input (Eq. C8), i.e.,

ūE(θ) = uEE(θ) + uEF (θ)

ŪE exp

[
− (θ − zE)

2

4a2E

]
= UEE exp

[
− (θ − zE)

2

4a2E

]
+ UEF exp

[
− (θ − µz)

2

4a2E

]
and implies

rE(θ, t) = UEE + UEF , zE = µz.

This completes the recurrent loop of the dynamics, and verify the validity of the Gaussian ansatz (Eq.
2).
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C.3 DIMENSIONALITY REDUCTION BY PROJECTING ON DOMINANT MODES

We substitute Eqs. (C4-C8) into the Eq. (C1),

τU̇E exp

[
− (θ − zE)

2

4a2E

]
+

τUE

2aE
żE

(
θ − zE
aE

)
exp

[
− (θ − zE)

2

4a2E

]
= − UE exp

[
− (θ − zE)

2

4a2E

]
+

ρ√
2
wEERE exp

[
− (θ − zE)

2

4a2E

]
+

ρ√
2
wEFRF exp

[
− (θ − µ)2

4a2E

]
+
√
τFUE exp

[
− (θ − zE)

2

8a2E

]
ξ(θ, t)

(C9)

Previous studies analytically calculated the first two dominant eigenvectors (modes) (Wu et al., 2016;
Fung et al., 2010), corresponding to the change of the position and height of the Gaussian ansatz
respectively,

Position : ϕ1(θ|zE) ∝ ∇zūE(θ) ∝ (θ − zE) exp[−(θ − zE)
2/4a2], (C10a)

Height : ϕ2(θ|zE) ∝ ūE(θ) ∝ exp[−(θ − zE)
2/4a2]. (C10b)

Projecting the dynamics Eq. (C9) into these 2 motion modes (Eq. C10), which means calculate the
inner product

∫
f(θ)ϕ(θ|zE)dθ with f(θ) a term in Eq. (C9),

τUE żE =
ρ√
2
wEFRF (µ− zE) exp

[
− (µ− zE)

2

8a2E

]
+ σz

√
τUEξ

τU̇E = −UE +
ρ√
2
wEERE +

ρ√
2
wEFRF exp

[
− (µ− zE)

2

8a2E

]
+ σU

√
τUEξ

where

σ2
z =

8aF

3
√
3π

, σ2
U =

F√
3πa

. (C11)

When the bump position zE is near the input position, i.e., µ− zE ≪ aE , which is usually the case
in the circuit model, the exponential term exp[−(µ− zE)

2/8a2E ] is close to one and can be safely
ignored,

żE = (τUE)
−1 ρ√

2
wEFRF (µz − zE) + σz(τUE)

−1/2ξt (C12)

U̇E = τ−1[−UE +
ρ√
2
(wEERE + wEFRF )] + σU (τ

−1UE)
1/2ξt. (C13)

Furthermore, by using the notation

UEF = ρwEFRF /
√
2, UEE = ρwEERE/

√
2,

we arrive at Eqs. (3a and 3b) in the main text.

C.4 THE PROBABILISTIC GENERATIVE MODEL EMBEDDED IN THE CIRCUIT MODEL

C.4.1 THE STIMULUS LIKELIHOOD

We study how feedforward input defines the latent stimulus likelihood, i.e., L(z) ∝ p(rF |z). From
the Eq. (1e), the feedforward input rF is modeled as a set of independent Poisson spike trains, where
each neuron’s firing rate is Gaussian-tuned to the stimulus (Ma et al., 2006):

rF (θ|z) ∼ Poisson[λF (θ|z)], λF (θ|z) = RF exp[−(θ − z)2/2a2], (C14)

where λF (θ|z) is the mean firing rate of the neuron with stimulus preference θ. rF denotes the peak
input rate, and a specifies the tuning width. Explicitly writing the Poisson distribution of feedforward
input spikes (we discretize the continuous θ into equally spaced θj),

p(r|z) =
∏NE

j=1 Poisson (rj |λj∆t) =
∏NE

j=1
(λj∆t)rj

rj !
exp(−λj∆t). (C15)
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Taking the logarithm,
ln p(r|z) =

∑
j

[
rj ln(λj∆t)− ln(rj !)− λj

]
,

=
∑

j rj ln(λj∆t) + const.
(C16)

The const. in the above equation is under the assumption that the sum of population firing rate
∑

j λj

is a constant irrelevant to latent stimulus z , which is true in a homogeneous population with a large
number of neurons. Substituting the expression of the Gaussian tuning,

ln p(r|z) = −
∑
j

rj
(θ − z)2

2a2
+ const = −1

2
Λ(z − µz)

2 + const, (C17)

where

µz =

∑
j r(θj)θj∑
j r(θj)

, Λ = a−2
∑
j

r(θj) ≈
√
2πρa−1RF . (C18)

This implies the latent stimulus likelihood for the latent stimulus feature z given an observed
feedforward input rF is derived as a Gaussian distribution,

L(z) = N (z|µz,Λ
−1),

which is the Eq. (8) in the main text. Notably, the Gaussian distribution comes from the profile of the
Gaussian tuning (Eq. C14) (Ma et al., 2006).

C.4.2 UNIFORM STIMULUS PRIOR IN THE CIRCUIT

Comparing the E bump position dynamics (Eq. C12) with the Langevin sampling dynamics (Eq. B3),
it immediately suggests that the circuit stores a uniform (uninformative) stimulus prior, i.e., p(z) is
uniform. This is because the gradient of the log-likelihood (∇L(z), Eq. 8) has the same form with
the drift term in the E position dynamics

Likelihood gradient: ∇ lnL(z) = Λ(µz − z)

E bump position drift term: UEF (µz − zE)

suggesting the gradient of the prior is zero, i.e., ∇ ln p(z) = 0. This uniform prior arises from the
circuit’s homogeneous neurons (uniformly distributed in feature space) and its translation-invariant
connection profile. Consequently, for the circuit to store a non-uniform prior, it must break this
inherent symmetry in its neural organization and connectivity.

C.5 CONDITIONS FOR REALIZING LANGEVIN SAMPLING IN THE CIRCUIT

The circuit sampling of the likelihood means the equilibrium distribution of the bump position (Eq.
C12) should match with the likelihood (Eq. 8). We copy the circuit bump position dynamics and the
likelihood Langevin sampling dynamics in below for comparison,

Circuit: żE = (τUE)
−1 ρwEFRF√

2Λ︸ ︷︷ ︸
λz

Λ(µz − zE) + σz(τUE)
−1/2ξt,

Langevin: żt = τ−1
L Λ(µz − z) + (2τ−1

L )1/2ξt.

The σz is a constant that doesn’t change with neuronal activities. Therefore, the likelihood Langevin
sampling in the circuit can be realized by setting the feedforward weight wEF appropriately to make
the ratio of the drift and diffusion coefficients the same as the Langevin sampling dynamics. The
optimal feedforward weight can be found as (by using Eq. C18)

σ2
z

λz
= 2 ⇔ wEF =

σ2
z√
2ρ

Λ

RF
=

(
2√
3

)3

F (C19)

Furthermore, the time constant of the zE dynamics is

τz = λ−1
z τUE =

2
√
π

awEF
τUE , (C20)

which is proportional to the E bump height UE . Finally, the equation of bump position (Eq. C12) can
be converted into the same form with a standard Langevin sampling,

żE = τ−1
z Λ(µ− zE) + (2τ−1

z )1/2ξt
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C.6 NATURAL GRADIENT SAMPLING IN THE CIRCUIT

The natural gradient Langevin sampling utilizes the Fisher information to determine the sampling
time constant (Eq. B3). We verify whether this can be realized in the circuit dynamics. Firstly, the
Fisher information of the likelihood is (Eqs. B4 and C17),

G(z) = −E
[
∇2 logL(z)

]
, where L(z) = N (z|µz,Λ

−1),

= Λ

=
√
2πρa−1RF

(C21)

Meanwhile, the time constant of the circuit sampling dynamics τz is proportional to the bump height
UE (Eq. C20). From the Eq. (C13), the equilibrium mean of the bump height can be calculated as

ŪE =
ρ√
2
wEER̄E︸ ︷︷ ︸
UEE

+
ρ√
2
wEFRF︸ ︷︷ ︸
UEF

= UEE +
awEF

2
√
π︸ ︷︷ ︸

λz

G(z).
(C22)

And therefore the circuit’s sampling time constant is

Circuit: τz = λ−1
z τUE = τ

[
G(z) + λ−1

z UEE

]
, (C23)

Natural gradient: τL = η[G(z) + α] (C24)

It clearly shows the bump height ŪE increases with the Fisher information G(z). Moreover, the
recurrent E input UEE acts as the regularization term to increase the numerical stability of inverting
the Fisher information (similar to the role of α in Eq. B3). This proves the reduced circuit with E and
PV neurons indeed implements natural gradient Langevin sampling from the likelihood.

D COUPLED NEURAL CIRCUITS AND MULTIVARIATE POSTERIOR SAMPLING:
THEORY

D.1 THEORETICAL ANALYSIS OF THE COUPLED CIRCUIT DYNAMICS

We present the math about coupled canonical neural circuits implementing multivariate stimulus
posterior inference via natural gradient Langevin sampling (Zhang et al., 2016; 2023; Raju & Pitkow,
2016). The model we consider is composed of M reciprocally connected coupled circuit, with
each the same as a single canonical circuit in Sec. C. Each circuit m receives a feedforward input
independently generated from the corresponding latent stimulus sm (Fig. 3), and eventually draw the
stimulus zm from the multivariate posterior. Therefore, the number of coupled circuits in the model
is determined by the dimension of the multivariate posteriors.

The dynamics of the coupled circuits is written as (we raise the subscript of capital latter denoting
neuron and input types to the superscript, and the new subscripts of lowercase letters denote the E
population indices),

τ
∂uE

m(θ, t)

∂t
= −uE

m(θ, t) + ρ
∑

X=E,F

M∑
n=1

(WEX
mn ∗ rXn )(θ, t) +

√
τF[uE

m(θ, t)]+ξm(θ, t) (D1)

Each circuit uE
m(θ) receives a feedforward input rFm(θ) that is independently generated from a latent

stimulus sm via the same way in the single circuit (Fig. 3, Eq. C14),

rFm(θ|z) ∼ Poisson[λF
m(θ|zm)], λF

m(θ|zm) = RF
m exp[−(θ − zm)2/2a2],

For simplicity, we consider the feedforward connection weight wEF
mm of each circuit is the same.

Similar to the one-dimensional case (Eq. C4), we consider the Gaussian ansatz for the population
synaptic input at each circuit m,

uE
m(θ, t) = ŪE

m(t) exp

[
− (θ − zEm)2

4a2

]
.
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Performing similar calculations by substituting the Gaussian ansatz of each circuit into the dynamics
of the coupled circuits (Eq. D1),

τ
UE,m

2a

dzmt

dt

θ − zmt

a
e−(θ−zmt)

2/4a2

+
τ

2a

dUE,m

dt
e−(θ−zmt)

2/4a2

,

=− UE,me−(θ−zmt)
2/4a2

+
ρ√
2

∑
n

wEE
mnR

E
n e

−(θ−znt)
2/4a2

,

+
ρ√
2
wEF

mmRF
me−(θ−µm)2/4a2

+
√
τFUE

me−(θ−zmt)
2/8a2

ξmt.

(D2)

Projecting the above dynamics onto the two eigenfunctions (C10), and assume the differences between
the bump positions of different circuits are small enough compared with the tuning width a, i.e.,
|zn − zm| ≪ a,

Position:
dzmt

dt
=

ρ√
2

(
τUE

m

)−1
[∑

n

wEE
mnR

E
n (znt − zmt) + wEF

mmRF
m(µm − zmt)

]
+ σz

(
τUE

m

)−1/2
ξmt

Height: τ
dUE

m

dt
= −UE

m +
ρ√
2

∑
n

wEE
mnR

E
n +

ρ√
2
wEF

mmRF
m + σU

(
τUE

m

)1/2
ξmt.

where σz and σU are the same as Eq. (C11). Reorganizing the above equation into the matrix form,

Position: żE = (τDU)−1
[
− LzE +UEF ◦ (µ− zE)

]
+ σz(τDU)−1/2ξt, (D3a)

Height: U̇E = τ−1
(
−UE +UEE +UEF

)
+ σU (τ

−1DU)1/2ξt. (D3b)

where ◦ denotes the element-wise multiplication, and

UE = {UE
m}Mm=1, zE = {zm}Mm=1,

UEE = {UEE
m }Mm=1, with UEE

m =
∑
n

UEE
mn =

∑
n

ρ√
2
wEE

mnR
E
n ,

UEF = {UEF
m }Mm=1, with UEF

m =
ρ√
2
wEF

mmRF
m,

Matrix L : [L]mn = −UEE
mn (m ̸= n), and [L]mm = −

∑
n ̸=m[L]mn,

Matrix DU = diag(UE)

(D4)

We obtain the bump position and height dynamics embedded in neural dynamics as presented in Eqs.
(12a-12b) in the main text.

D.2 THE GENERATIVE MODEL OF MULTIVARIATE STIMULUS STORED IN THE CIRCUIT

We present the math analysis in identifying the generative model especially the subjective stimulus
prior stored in the circuit. Generally, the multivariate stimulus posteriors given received feedforward
inputs are,

π(z) ≡ p
(
z|{rFm}Mm=1

)
∝ p
(
{rFm}Mm=1|z

)
p(z)

=
[∏M

m=1 p
(
rFm|zm

)]
p(z)

=
[∏M

m=1 N (zm|µm,Λ−1
m

]
p(z),

= N (z|µ,Λ)p(z)

where the second last equality comes from by using the same derivations as the Sec. C.4.1 on each
feedforward input rFm. And

Λ = diag(Λ1,Λ2, · · · ,ΛM ), where Λm =
√
2πρa−1RF

m

is the likelihood precision matrix. Note that the stimulus prior p(z) is still unspecified at this moment.
We will determine it in the following.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Subjective prior stored in the coupled circuits

Utilizing the Langevin sampling dynamics to sample the posterior

żt = τ−1
L ∇ lnπ(z) + (2τ−1

L )1/2ξt,

= τ−1
L [∇ ln p(z) +Λ ◦ (µ− z)] + (2τ−1

L )1/2ξt,

Meanwhile, the coupled circuits’ bump position dynamics is

żE = (τDU)−1
[
− LzE +UEF ◦ (µ− zE)

]
+ σz(τDU)−1/2ξt,

Using the definition of UEF (Eq. D4) and the feedforward input intensity with the likelihood
precision (Eq. C18),

UEF =
wEF

mma

2
√
π︸ ︷︷ ︸

λz

Λ

It is straightforward to regard the Lz term as the gradient from the stimulus prior,

∇ ln p(z) = −λ−1
z Lz ⇔ p(z) ∝ exp(−z⊤Lz/2λz) (D5)

Specifically, the prior precision matrix λ−1
z L is a generalized Laplacian matrix (Eq. D4, whose

determinant is zero, i.e., |L| = 0, suggesting the marginal prior of each stimulus is uniform, i.e.,
p(zm) is uniform. As an example, for M = 2, the prior p(z =

(
z1, z2)

⊤) is written as,

p(z) = exp

[
−L12

2
z⊤
(

1 −1
−1 1

)
z

]
= exp

[
−L12

2
(z1 − z2)

2

]
, (D6)

where L12 characterizes the correlation between z1 and z2. It can be checked each marginal stimulus
prior is uniform.

Subjective multivariate stimulus posterior in the circuit
Based on the identified stimulus prior stored in the circuit (Eq. D5), the (subjective) stimulus posterior
is calculated as

π(z) ≡ p
(
z|{rFm}Mm=1

)
= N (z|µ,Λ)N (z|0, λzL

−1)

≡ N (z|µz,Ω
−1)

where

Ω = Λ+ λ−1
z L, µz = Ω−1Λµ. (D7)

D.3 NATURAL GRADIENT SAMPLING VIA DIAGONAL APPROXIMATION OF FISHER
INFORMATION MATRIX

Eq. (D3a) suggests the time constant of the circuit’s sampling dynamics (bump position) is determined
by the matrix DU.

DU = diag(ŪE) where ŪE = UEE +UEF

We next analyze its relation with the Fisher information to verify whether the circuit implement
natural gradient sampling for multivariate posteriors.

FISHER INFORMATION OF THE MULTIVARIATE STIMULUS

Based on the (subjective) multivariate posterior calculated by the circuits (Eq. D7), the Fisher
information matrix of the multivariate stimulus is,

G(z) = Ω = λ−1
z L+Λ = λ−1

z [L+ diag(UEF )] (D8)
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In particular, by using the definition of the prior precision matrix (Eq. D5) and the posterior precision
(Eq. D7),

diag(G(z)) = λ−1
z (diag(L) +UEF ),

= λ−1
z [diag(UEE) + diag(UEF )],

= λ−1
z diag(ŪE),

which clearly shows the circuit’s sampling time constant DU is the diagonal matrix of the full Fisher
information matrix, giving rise to the Eq. (14) in the main text.

E NATURAL GRADIENT HAMILTONIAN SAMPLING IN THE CIRCUIT WITH
SOM NEURONS

E.1 CIRCUIT DYNAMICS

We also copy the dynamics of a single augmented circuit with SOM neurons (Eq. 1a and Eq. 1c)
below.

τ u̇E(θ, t) = −uE(θ, t) + ρ
∑

X=E,F,S(WEX ∗ rX)(θ, t) +
√

τF[uE(θ, t)]+ξ(θ, t)

τ u̇S(θ, t) = −uS(θ, t) + ρ(WSE ∗ rE)(θ, t); rS(θ, t) = gS · [uS(θ, t)]+,
(E1)

Similar to the Gaussian ansatz presented in Eqs. (C4-C8), we also propose the same Gaussian ansatz
for the synaptic inputs of E and SOM neurons respectively. Specifically, since SOM neurons have
different activation function with the E neurons, the population firing rate of SOM neurons is,

r̄S(θ) = gS · uS(θ, t) = gSUS︸ ︷︷ ︸
RS

exp

[
− (θ − zS)

2

4a2S

]
. (E2)

Substituting the Gaussian ansatz of E and SOM neurons into the circuit dynamics (Eqs. E1),

UE exp

[
− (θ − zE)

2

4a2E

]
=

ρ√
2

(
wEERE exp

[
− (θ − zE)

2

4a2E

]
+ wEFRF exp

[
(θ − µz)

2

4a2E

]

+
ρ√
2
wESRS

aS
aE

exp

[
− (θ − zS)

2

4a2E

])
,

US exp

[
− (θ − zS)

2

4a2S

]
= ρwSERE

aE√
a2SE + a2E

exp

[
− (θ − zE)

2

2(a2SE + a2E)

]
,

(E3)

Since the above equations are summations of Gaussian functions, it can be checked that when the
positions of Gaussian functions are the same, i.e., zE = zS = µz , the sum of two Gaussian functions
will also be a Gaussian function. In addition, to validate the Gaussian ansatz, we need the width
fulfilling the following constrain of the connection width,

2a2S = a2SE + a2E

a2E = a2ES + a2SE .

Similar to the two motion modes for E neuron, the SOM also have two motion nodes (Sale & Zhang,
2024),

Position : ϕ1(θ|zS) ∝ ∇zūS(θ) ∝ (θ − zS) exp[−(θ − zS)
2/4a2S ], (E4a)

Height : ϕ2(θ|zS) ∝ ūS(θ) ∝ exp[−(θ − zS)
2/4a2S ]. (E4b)

We project the dynamics of uE and uS onto their respective position modes (Eq. C10 and Eq. E4
respectively). From here, we assume the difference between neuronal populations’ positions is small
enough compared to the connection width a, i.e., |zE − zS | and |µz − zE | ≪ 4aX . In this case, the
projected circuit dynamics can be simplified by ignoring exponential terms in Eq. (E3),

τUE żE =
ρ√
2

[
wESRS

aS
aE

(zS − zE) + wEFRF (µz − zE)

]
+ σz

√
τUEηt

τUS żS =
ρ√
2

aE
aS

wSERE(zE − zS)
(E5)
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Similarly, we project the E and SOM’s dynamics on their respective height modes,

τU̇E = −UE +
ρ√
2
wEERE +

ρ√
2

aS
aE

wESRS +
ρ√
2
wEFRF + σU

√
τUEξt (E6)

τU̇S = −US +
ρ√
2

aE
aS

wSERE . (E7)

Similarly, to simplify notations, we define

UXY =
ρaY√
2aX

wXY RY , (E8)

and σz and σU are the same as Eq. (C11). The Eq. (E5) is simplified into,

τUE żE = UES(zS − zE) + UEF (µz − zE) + σz

√
τUEηt,

τUS żS = USE(zE − zS),
(E9)

Reorganizing the bump position dynamcis into the matrix form,

ż = (τDU)−1(F1z+M1) + (τDU)−1/2Σ1ξt (E10)

where

z = (zE , zS)
⊤, DU = diag(UE , US),

F1 =

(
−UEF − UES UES

USE −USE

)
, M1 =

(
UEFµz

0

)
, Σ1 =

(
σz 0
0 0

) (E11)

E.2 HAMILTONIAN SAMPLING IN THE CIRCUIT

In the present study, we consider a Hamiltonian sampling with friction, because it can be mapped to
the proposed circuit with a diversity of interneurons. Hamiltonian sampling can sample the desired
distribution π(z) (with π(z) as the equilibrium distribution), which is defined as,

π(z, p) = exp[−H(z, p)] = exp[− lnπ(z)− lnπ(p|z)] (E12)

The previous study suggested the zE dynamics is a mixture of the Langevin sampling and the
Hamiltonian sampling (Sale & Zhang, 2024), and thus inspires us to decompose it into two parts,

τUE żE = [UES(zS − zE) + (1− αL)UEF (µz − zE)]︸ ︷︷ ︸
Momentum p, (Hamiltonian part)

+ [αLUEF (µz − zE) + σz

√
τUEξt]︸ ︷︷ ︸

Langevin part

,

where αL ∈ [0, 1] denotes the proportion of Langevin sampling component. In this way, we can
define the transformation matrix and rewrite,

zH ≡
(
z

p

)
=

(
1 0

−[UES + (1− αL)UEF ] UES

)
︸ ︷︷ ︸

T

z+

(
0

(1− αL)UEFµz

)
︸ ︷︷ ︸

M2

(E13)

We are interested in zH dynamics, and investigate how the circuit parameters can be set to fulfill the
Hamiltonian sampling. Without loss of generality, we consider a case of µz = 0 that simplify the
derivation of the zH dynamics, which will make M1 = M2 = 0. And then,

z = T−1zH where T−1 =
1

UES

(
UES 0

UES + (1− αL)UEF 1

)
Then we can derive the dynamics of zH ,

żH = Tż,

= T[(τDU)−1F1z+ (τDU)−1/2Σ1ξt],

=
[
T(τDU)−1F1T

−1
]
· zH +T(τDU)−1/2Σ1ξt,

(E14)
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where

T(τDU)−1F1T
−1 = −

(
αLUEF (τUE)

−1 −(τUE)
−1

βE βp

)
,

T(τDU)−1/2Σ1 =

(
σz(τUE)

−1/2 0
σp 0

) (E15)

and

βE = −(τUE)
−1[UES + (1− αL)UEF ]αLUEF + (1− αL)(τUS)

−1USEUEF ,

βp = (τUE)
−1[UES + (1− αL)UEF ] + (τUS)

−1USE ,

σ2
p = (τUE)

−1[UES + (1− αL)UEF ]
2σ2

z

(E16)

Standard form of the Hamiltonian sampling dynamics

We further convert the Eq. (E14) into the standard form of Hamiltonian sampling dynamics (Eq. 7),
which corresponds to multiply the zE with the posterior precision Λ and then compensate the Λ−1

into the preceding matrix,(
żE
ṗ

)
= −

(
αLUEF (τUE)

−1Λ−1 −(τUE)
−1

βEΛ
−1 βp

)(
ΛzE
p

)
+

(
σp 0
0 0

)
ξt,

= −
(
αLUEF (τUE)

−1Λ−1 −βEΛ
−1

βEΛ
−1 τUEβpβEΛ

−1

)(
ΛzE

(τUEβE)
−1Λp

)
+

(
σz(τUE)

−1/2 0
σp 0

)
ξt

The second equality comes from we have the freedom of determining the momentum p’s precision,
and then we could choose a momentum precision to make sure the first matri on the RHS is anti-
symmetric. Eventually, by using

UEF = λzΛ, ΛzE = −∇z lnπ(zE), τX = τUX (X = E,S),

We can convert the (zE , p) dynamics into the standard form of Hamiltonian sampling dynamics as
shown in the main text (Eq. 16), i.e.,

d

dt

[
zE
p

]
= −

[
αLλz(τUE)

−1 −βEΛ
−1

βEΛ
−1 τEβpβEΛ

−1

] [
−∇z lnπ(zE)
(τEβE)

−1Λ · p

]
+

[
σz(τE)

−1/2

σp

]
ξt (E17)

E.3 CONDITIONS FOR REALIZING HAMILTONIAN SAMPLING IN THE CIRCUIT

Realizing Hamiltonian sampling in the circuit requires we set the ratio between drift and diffusion
terms appropriately in Eq. (E17).

αLλzτ
−1
E = σ2

zτ
−1
E /2 (E18a)

τEβpβEΛ
−1 = σ2

p/2 (E18b)

Solving Eq. (E18a),

wEF =

(
2√
3

)3

Fα−1
L (E19)

Solving Eq. (E18b) by substituting Eq. (E16)

Λ−1UEF

[
− (τUE)

−1[UES + (1− αL)UEF ]αL + (1− αL)(τUS)
−1USE

]
× [(τUE)

−1[UES + (1− αL)UEF ] + (τUS)
−1USE ]

= τ−2
E [UES + (1− αL)UEF ]

2σ2
z/2.

To simplify notations, we define two intermediate variables about common factors in the above
equation

hE ≡ τ−1
E [UES + (1− αL)UEF ]; hS ≡ τ−1

S USE . (E20)

And utilizing the Eq. (E18a), it simplifies the equation into

[−hEαL + (1− αL)hS ](hE + hS) = αLh
2
E
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Reorganizing the above equation into a quadratic equation of hE ,

2αL · h2
E + (2αL − 1) · hShE + (αL − 1)h2

S = 0,

Then the root of the hE is

hE = hS
(1− 2αL)±

√
1 + 4αL − 4α2

L

4αL
≡ Q(αL) · hS (E21)

Combining the expression of hE in Eq. (E20),

τ−1
E [UES + (1− αL)UEF ] = Q(αL) · τ−1

S USE

Then substituting the detailed expression of UEF , USE , τE , and τS into the above equation, we have(
U−1
E RS

)
· wES −

[
(1− αL)U

−1
E RF

]
· wEF =

[
Q(αL)U

−1
S RE

]
· wSE , (E22)

which is the Eq. (17) in the main text.

E.4 NATURAL GRADIENT HAMILTONIAN: DETERMINING THE MOMENTUM PRECISION IN THE
CIRCUIT

Eq. (E17) suggests the momentum precision in the circuit dynamics is

Λp ≡ (τEβE)
−1Λ,

which should be proportional to the inverse of the Fisher inforamtion of the stimulus, G(z) (Eq. 7).
We next verify whether this can be satisfied in the circuit dynamics.

Substituting the expression of βE in Eq. (E16) into the above equation and using the simplified
notation hE (Eq. E20), we have

Λp = τ−1
E Λ ([−αLhE + (1− αL)hS ]UEF )

−1

Utilizing the relation between hE and hS in Eq. (E21),

Λp = τ−1
E Λ ([−αLQ(αL) + (1− αL)]hSUEF )

−1
,

=
1

[−αLQ(αL) + (1− αL)]︸ ︷︷ ︸
≈ const.

Λ

UEF︸ ︷︷ ︸
λ−1
z

1

τEhS
.

Here the first term of αL about the proportion of Langevin sampling can be treated as a constant,
and the λz is also a constant that doesn’t change with the network activity. Substituting the detailed
expression of τE and hS (Eq. E20)

Λp ∝ (τEhs)
−1 =

US

UEUSE
= U−1

E ,

where the last equality comes from US = USE in the equilibrum state (Eq. (E7)) Furthermore, from
the bump height dynamics in the augmented circuit with SOM (Eq. E6), and using similar analysis in
Eq. (C22)

UE = (UEE + UES) + UEF ,

= (UEE + UES) + λzG(z),

which clearly shows the UE in the augmented circuit increases with the Fisher information of the
stimulus G(z). Since the momentum precision Λp is inversely proportional to UE , it decreases with
the stimulus Fisher information G(z), which is consistent with the natural gradient Hamiltonian
sampling (Eq. 7).

F CIRCUIT SIMULATION PARAMETERS AND DETAILS

F.1 CRITICAL WEIGHT

To scale the connection strengths in our network model, we use a critical recurrent connection strength
as a reference point. This critical strength is defined as the smallest value that allows the network to
maintain persistent activity even when there is no feedforward input.
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Table 1: PARAMETERS FOR HAMILTONIAN SAMPLING

PARAMETER VARIABLE VALUE

E time constant τ 1
Connection width aE 40◦

Num. of E neurons NE 180
Fano factor F 0.5
Normalization wEP 5× 10−4

Feedforward weight wEF
mm 0.2

√
2wc

Coupling Weight wEE
mn 0.8wc

In the absence of feedforward input, the stationary state of circuit’s bump height satisfies (Eqs. E6 -
E7),

UE =
ρ√
2
RE

[
wEE +

ρ√
2
wESgSwSE

]
,

US =
ρ√
2

aE
aS

wSERE .
(F1)

Furthermore, the firing rate of the E population, RE , is related to its input UE by the activation
function defined in Eq. (C5). Substituting this expression for RE into Eq. (F1) allows us to write an
equation solely in terms of UE :

UE =
ρU2

E√
2 + 2

√
πkρaEU2

E

[
wEE +

ρ√
2
wESwSEgS

]
.

Assuming UE ̸= 0 (for persistent activity), we can divide by UE and rearrange the equation into a
quadratic form for UE :

2
√
πkρaEU

2
E − ρ

[
wEE +

ρ√
2
wESwSEgS

]
UE +

√
2 = 0.

Let wc = wEE + ρ√
2
wESwSEgS . This quadratic equation for UE has real solutions if and only if

its discriminant is non-negative (ρ2w2
c − 8

√
2πkρaE ≥ 0). The smallest value of wc that permits

non-zero persistent activity occurs when the discriminant is zero, i.e.,

w2
c =

8
√
2πkaE
ρ

. (F2)

The network parameters used in our simulations are provided in Table 1. This includes parameters like
the number of neurons (NE = 180, NS = 180) distributed over a feature space of width wz = 360◦,
leading to a neuronal density ρ = N/wz . So the critical weight value is calculated as:

wc = 2
√
2(2π)1/4

√
ka/ρ ≈ 0.896. (F3)

The intensity of the feedforward input is then scaled relative to Uc, which is the peak synaptic input
to the E population that is self-sustained by the E recurrent connections at their critical strength wc,
in the absence of feedforward input and SOM inhibition. Uc is given by:

Uc =
wc

2
√
πka

. (F4)

F.2 PARAMETERS FOR NETWORK SIMULATION

For the reduced network with only PV and excitatory neuron, the network parameters is set as
following. This parameter set applies for a single circuit sampling a 1D stimulus posterior, and
coupled circuits sampling multivariate stimulus posteriors. For 1D and 2D, the parameters are the
same aside there are not couping weight for 1d case.

For the equilibrium state analysis depicted in Figure 2, the network is first initialized using an
input intensity identical to that of subsequent simulation phases, in order to remove the influence of
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Table 2: Parameters for network

PARAMETER VARIABLE VALUE

Number of trials 500
Simulation time T 500.0
Time step dt 0.01
Recording start tsteady 50
Input position µ 0
Initial mean eq µ0 0
Initial var eq V0 30

Table 3: PARAMETERS FOR HAMILTONIAN SAMPLING

PARAMETER VARIABLE VALUE

Num. of SOM NS 180
SOM time constant τS 1.0
SOM connection width aS 37.4◦

E to SOM connection width aSE 34.6◦

SOM to E connection width aES 20◦

SOM to E connection weight wES 0.6wc

non-equilibrium bump height. During this initialization, the input position varies across trials, drawn
from a Gaussian distribution with mean µ0 and variance V0.

After allowing the network’s bump height to reach equilibrium post-initialization, the input position
is then set to match the mean of the network’s activity bump. The simulation proceeds for a duration
of 50τ , using an integration time step of 0.01 time units. The first 20 time steps of this period are
discarded to avoid transient effects. Following this, the input position is fixed at 0, and the network is
simulated for an additional 450τ with the same integration step.

Throughout the latter 450τ simulation, the bump position is recorded to calculate the KL divergence
between the network’s evolving state and a target posterior distribution. The network state at the end
of the initialization phase serves as the reference for the initial KL divergence value.

For comparison, a separate Langevin sampling process is performed. This sampling is initialized
using the network’s bump position from the end of its initialization phase. The Langevin sampling
then runs for a duration of 450τ , also using an integration time step of 0.01 time units.

For the non-equilibrium state depicted in Figure 2, the network is initially prepared by applying a
substantially smaller input signal, denoted as scaleini. This input is administered uniformly to all
neurons for a duration of 20τ to initialize the network. After this initialization phase, the input to
each neuron is then adjusted to its designated operational value.

For the natural gradient (NG) sampling procedure, the starting position is set to the ’bump’ location
observed at the final step of the Continuous Attractor Neural Network (CANN) model’s initialization.

For the different recurrent weight, we fix input intensity RF = 3. We get time constant by getting the
cross-corelation of bump postion simulated from the network and fit the exponential function to get
the time constant.

Hamiltonian sampling parameters mostly mirror the previous set, but differ by including connection
parameters that define interactions between SOM and excitatory neurons. For 500 trials and simulation
500τ , it takes 2 hours on the 512GB cpu hpc.

F.2.1 NUMERICAL ESTIMATE OF THE STIMULUS PRIOR IN COUPLED CIRCUITS

We numerically estimate the subjective bivariate stimulus prior stored in the coupled circuits. Given a
combination of circuit parameters, we ran a large ensemble of stochastic network simulations. From
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the spatio-temporal firing rate patterns in each circuit rm, we decoded instantaneous population
vectors zm in each time bin in each trial. Then we concatenate the zm from two circuits together,
z = (z1, z2), and estimate its mean µz and covariance Σz, which are used to parameterize the
Gaussian sampling distribution, i.e., p (z) = N (µz,Σz).

And then we search the prior precision matrix L under which the posterior is closet to the sampling
distribution p(z),

L̂ = argmin
L

DKL [π(z)∥p (z)]

where the posterior π(z) is calculated based on the parameter L to be estimated,

π(z) = N
(
µz,Ω

−1
)
, with Ω = Λ+ L, µz = Ω−1Λµ,

and the likelihood mean µ and precision Λ are directly estimated from the received feedforward
inputs (Eq. C18),

µz,m =

∑
j rm(θj)θj∑
j rm(θj)

, Λm = a−2
∑
j

rm(θj) ≈
√
2πρa−1RF

m. (F5)

F.2.2 THE VECTOR FIELD (DRIFT TERM) OF CIRCUITS’ SAMPLING DYNAMICS

For both the diagonal-Fisher natural-gradient Langevin sampler and the full-Fisher method, we
can directly compute the gradient at each point in parameter space, evaluate the Fisher information
(either the full matrix or just its diagonal), and then derive the corresponding vector field from this
information.

In the case of our CANN (Continuous Attractor Neural Network) model, constructing the equilibrium
vector field requires a slightly different approach. The goal is to observe how the position of the
bump (i.e., the localized peak of neural activity) shifts in response to changes in the input. To do
this, we first stabilize the bump at a reference location. Specifically, we apply a fixed external input
centered at (x0, y0) and run the CANN dynamics until the bump height reaches equilibrium. In our
experiments, this equilibration phase lasted for 20 time constants (20τ) .

Once the bump has stabilized, we perturb the input by shifting it to a new position (x1, y1), and
observe how the bump position responds. The resulting displacement of the bump provides the vector
at the new point, essentially showing how the internal state of the network changes in response to
this small input shift. Analytically, this shift can be expressed as moving the input from (x0, y0)
to (x2, y2) = (x0, y0) + Λ−1Ω (x1− x0, y1 − y0), where Λ−1Ω captures the relationship between
input space and the internal dynamics of the bump.

Because our 2D network structure implicitly encodes a prior, shifting the bump corresponds to
translating the mean of the posterior distribution. Repetition of this process across a grid of input
locations (x2, y2), we can scan the whole bump position grid and then we can systematically map out
the equilibrium vector field of the CANN. This field describes how the network’s internal estimate-the
bump position-evolves in response to perturbations in the input.

F.3 PARAMETERS FITTING

In our attractor network, the bump position z(t) = (zE(t), zS(t))
⊤ is determined by the connection

between Excitoory and SOM populations. The dynamics are described by equations(E10).

By introducing a compact notation and collecting terms into matrix-vector form, we specifically
define the state as z = (zE , zS)

⊤ and the 2D dynamics as:

ż = D−1
U F1z+D−1

u M1 +Σ1ξt (F6)

where D−1
U F ∈ R2 which is the drift matrix, M1 ∈ R2 is a constant input, and Σξt is noise term.

Convert into the form of transition probability:

zt+∆t ∼ N
(
(I+D−1

u F1∆t)zt +D−1
u M1∆t,Q

)
, (F7)
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where

D−1
u F1 =

[
hES + hEF −hES

hSE −hSE

]
,Q = Σ1∆t (F8)

and hES = −U−1
E UES , hEF = −U−1

E UEF , hSE = −U−1
S USE are time-rescaled synaptic

coefficients.

Because the noise enters the network only through the excitatory population. We therefore estimate
the four unknown parameters

{
hSE , hES , hEF , σz

}
in two consecutive steps.

From the noiseless second equation, we have żS = USE (zE − zS) with the closed-form discrete
update zS(t+∆t)− zS(t) = USE [ zE(t)− zS(t) ]∆t. Averaging over a trajectory of length T gives
an unbiased estimator

ÛSE =

〈
zS(t+∆t)− zS(t)

〉
t

∆t
〈
zE(t)− zS(t)

〉
t

, (F9)

so no optimization is required.

Conditioned on zS , the excitatory coordinate follows a scalar Ornstein–Uhlenbeck process

zE(t+∆t) = zE(t) + ∆t
[
(hES + hEF )zE(t)− hSEzS(t)

]
+ σz

√
∆t ξt. (F10)

Then we used maximum likelihood estimation (MLE) to estimate the parameters of{
hSE , hES , hEF , σz

}
in the above equation. All parameters are regressed on a data segment

of 1000 samples, corresponding to 10 τ . The parameters are explicitly reparameterized in terms of
their biological interpretation and optimized via stochastic gradient descent (Adam), enabling stable
and interpretable system identification.

After obtaining the MLE estimate of
{
hSE , hES , hEF , σz

}
for each data set, we numerically find

the transformation T matrix (Eq. E13) by directly estimating the values of UE , US and αL from
network activities. Eventually, we use the estimated T matrix to convert the (zE , zS) into (zE , p) as
described in Eq. (E13).

We evaluated Λp under 11 values of feedforward input intensity, RF ∈ {11, 13, . . . , 23}, and found
the decreasing tread of kinetic energy. The decreasing trend confirms the theoretical prediction that a
stronger external drive reduces the effective momentum budget required for accurate sampling. All
experiments were performed on a compute node equipped with 40 CPU cores and one NVIDIA A100
GPU; the full pipeline completed in about 26 hours.

F.4 EMBEDDING CANONICAL CIRCUITS AS A LATENT SPACE SAMPLER IN VAE FRAMEWORK

Dataset and augmentation. As a proof-of-concept example, we consider the MNIST handwritten
digit dataset. To mimic a simple physical stimulus space, each grayscale image was augmented by a
rotation and a contrast rescaling. Let x0 denote the original 28× 28 image (pixel values in [0, 1]).
For each training sample we drew

z ∼ U [−zmax, zmax], c ∼ U [cmin, cmax], (F11)

with zmax = 180◦, cmin = 0.1, cmax = 1.0. We then applied a rotation by angle θ followed by a
contrast adjustment with factor c using bilinear interpolation and zero padding.

Model architecture. We connect the encoder, canonical circuit, and decoder in serial (Fig. 5A).
Given an input image x, we pass it into the encoder that is a multi-layer perception (MLP) and is
supposed to output normalized latent variables:

(ẑ, ĉ) = fEncoder(x), (F12)

where ẑ and ĉ represent the estimated orientation and the contrast, respectively. Then we pass them
into Eq. (1e) to generate a population feedforward input rF to canonical circuit,

rF (θ) = ĉRF exp[−(θ − ẑ)2/2a2]. (F13)

Next, the feedforward input rF is fed into the canonical circuit dynamics (Eqs. 1a-1b) that produces
the bump population firing rate rE(θ, t) over time. After the circuit dynamics enters the equilibrium,
we read out the bump response location zE and height RE from the rE(θ, t), where zE is regarded
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as a sample drawn from the orientation likelihood. Then (zE , RE) forms the input to the decoder
that is supposed to output a reconstructed image,

x̂ = fDecoder(zE , RE) (F14)

In our example, both encoder and decoder are MLPs with two hidden layers and ReLU activation
function.

Training the encoder and decoder. Since the latent sampler is given in VAE and it will be
implemented by our canonical recurrent circuit, we don’t train the recurrent circuit while only train
the encoder and decoder. We trained the encoder in a purely supervised fashion by minimizing the
mean-squared error between predicted latent variable, (ẑ, ĉ), and the target latent (z, c). Similarly,
the decoder also undergoes supervised training that reconstructs the augmented images x̂ given the
true latent parameters (ẑ, ĉ), minimizing the pixel-wise Bernoulli negative log-likelihood. During
training, we optionally replaced the ground-truth (z, c) by the well-trained encoder predictions (ẑ, ĉ),
effectively training a full autoencoder.

All models were implemented in PyTorch. For both the encoder and decoder, we used ReLU
nonlinearities and trained with Adam optimizer (learning rate 10−3, default momentum parameters).
The encoder was trained for 100 epochs with batch size 128, and the decoder for 200 epochs with
batch size 256.

G GENERALIZATION

G.1 NON-FLAT PRIOR

If we want to store a non-uniform marginal prior needs to break the symmetry of E neurons, i.e.,
the tuning curves of all E neurons (Fig. A1C) cannot be homogeneous (aligned after translation in
stimulus subspace) and uniformly cover the stimulus subspace. Previous studies suggested we can
introduce the heterogeneity of tuning height, width and tuning’s distribution on the stimulus subspace
to store non-uniform marginal priors. Regarding the circuit mechanism, the tuning heterogeneity
for non-uniform marginal prior may come from 1) an external prior input that may from higher
cortex, or 2) internally stored in the recurrent weights in the network model which can be realized
by introducing an extra heterogeneous recurrent weight component superimposed on the translation-
invariant recurrent weight matrix. We provide brief analysis of the possibility 1) by showing an
external prior input can still maintain the relation between bump height and the FI. For simplicity, we
consider the external prior input is constant over time and it also has a Gaussian profile that is added
into the circuit dynamics (Eq.1a),

ρ
∑

X(WEP ∗ rP )(θ, t), rP (θ, t) = RP exp[−(θ − zP )
2/2a2]

It will become,

τ u̇E(θ, t) = −uE(θ, t)+ρ
∑

X(WEX∗rX)(θ, t)+ρ
∑

X(WEP ∗rP )(θ, t)+
√
τF[uE(θ, t)]+ξ(θ, t).

Mathematically, the external prior input is similar to the feedforward input. By performing the same
math calculations, the Eqs. 3a and 3b are updated into with a new term,

Position : żE ≈ (τUE)
−1UEF (µz − zE) + (τUE)

−1UEP (µp − zE) + σz(τUE)
−1/2ξt (G1a)

Height : U̇E ≈ τ−1[−UE + UEE + UEF + UEP ] + σU (τ
−1UE)

1/2ξt, (G1b)

where the UEP and µp characterizes the precision and mean of the non-uniform marginal prior.
Since the drift term of zE dynamics contains feedforward input (1st RHS term) and the prior input
(2nd RHS term), circuit can sample the posterior with non-uniform marginal prior. When z reaches
equilibirum, the distribution will be the posterior,

p(z) ∝ exp[
√
2πρRfa

−1(µz − zE)
2 +

√
2πρRpa

−1(µp − zE)
2]

In addition, the updated UE dynamics also receives the UEP representing the prior precision, suggest-
ing the bump height UE still encodes the updated posterior FI. Because the log-posterior and its Fisher
information are additive (Gposterior = Glikelihood + Gprior), the total bump height UE naturally
becomes the sum of the input heights (e.g., UEF + UEP ∝ FI), with each height representing its
component of the total information.
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G.2 VON MISES CASE

Continuing the above modification of the recurrent circuit, we can further investigate how the circuit
can implement NG sampling of 1D von Mises likelihoods (the circuit still stores a uniform prior),
e.g., p(µz|z) ∝ exp[κ cos(z − µz)].

The Fisher information (FI) under the von Mises posterior is

G(z) = Ep(µz|z)[−∇2
z ln p(µz|z)] =

∫
[−∇2

z ln p(µz|z)]p(µz|z)dµz

where the negative Hessian of the log-likelihood is

−∇2
z ln p(µz|z) = κ cos(z − µz)

and thus the FI is

G(z) =

∫
κ cos(z − µz)

exp[κ cos(z − µz)]

2πI0(κ)
dµz = κ

I1(κ)

I0(κ)

where I0(κ) and I1(κ) are modified Bessel function of the first kind with zeroth and first order
respectively.

Although we see the FI of the von Mises likelihood doesn’t depend on z , i.e., the local geometry.
Our preliminary analysis find the recurrent circuit dynamics in response to an observed feature µz

within a trial is not able to evaluate the expectation over µz . Instead, we find within a trial, the circuit
corresponds to approximating the observed FI by using the mean of the likelihood, i.e.,

G(z) = Ep(µz|z)[κ cos(z − µz)] ≈ κ cos(z − x)
∣∣
x=µz

= κ cos(z − µz)

Therefore, within a trial the approximated FI is dependent on local geometry. Once we follow the
same theoretical protocols and update the bump height UE dynamics in the case of von Mises kernel,
we find the UE is a function of κ cos(z − µz) shown as the last term of the following equation, i.e.,

UE =
ρwEE

ea/2
I0(a)

I0(a/2)2
R+

8 + a

8I0(a)
RF +

a cos (µz − z)

8I0(a)
RF
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