

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NATURAL GRADIENT BAYESIAN SAMPLING AUTOMATI- CALLY EMERGES IN CANONICAL CORTICAL CIRCUITS

**Anonymous authors**

Paper under double-blind review

## ABSTRACT

Accumulating evidence suggests the canonical cortical circuit, consisting of excitatory (E) and diverse classes of inhibitory (I) interneurons, implements Bayesian posterior sampling. However, most of the identified circuits' sampling algorithms are simpler than the nonlinear circuit dynamics, suggesting complex circuits may implement more advanced algorithms. Through comprehensive theoretical analyses, we discover the canonical circuit innately implements natural gradient Bayesian sampling, which is an advanced sampling algorithm that adaptively adjusts the sampling step size based on the local geometry of stimulus posteriors measured by Fisher information. Specifically, the nonlinear circuit dynamics can implement natural gradient Langevin and Hamiltonian sampling of uni- and multi-variate stimulus posteriors, and these algorithms can be switched by interneurons. We also find that the non-equilibrium circuit dynamics when transitioning from the resting to evoked state can further accelerate natural gradient sampling, and analytically identify the neural circuit's annealing strategy. Remarkably, we identify the approximated computational strategies employed in the circuit dynamics, which even resemble the ones widely used in machine learning. Our work provides an overarching connection between canonical circuit dynamics and advanced sampling algorithms, deepening our understanding of the circuit algorithms of Bayesian sampling.

## 1 INTRODUCTION

The brain lives in a world of uncertainty and ambiguity, necessitating the inference of unobserved world states. The Bayesian inference provides a normative framework for this process, and extensive studies have suggested that neural computations across domains aligns with Bayesian principles, giving rise to the concept of the “Bayesian brain” (Knill & Pouget, 2004). These include visual processing (Yuille & Kersten, 2006), multi-sensory integration (Ernst & Banks, 2002), decision-making (Beck et al., 2008), sensorimotor learning (Körding & Wolpert, 2004), etc. Recent studies suggested the canonical cortical circuit may naturally implement sampling-based Bayesian inference to compute the posterior (Hoyer & Hyvärinen, 2003; Buesing et al., 2011; Aitchison & Lengyel, 2016; Haefner et al., 2016; Orbán et al., 2016; Echeveste et al., 2020; Zhang et al., 2023; Terada & Toyoizumi, 2024; Masset et al., 2022; Sale & Zhang, 2024), in that the large cortical response variability is consistent with the stochastic nature of sampling algorithms.

The canonical cortical circuit (Fig. 1A) – the fundamental computational building block of the cerebral cortex – consists of excitatory (E) neurons and various inhibitory interneurons (I) including neurons of parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) (Adesnik et al., 2012; Fishell & Kepcs, 2020; Niell & Scanziani, 2021; Campagnola et al., 2022). Different interneuron classes have different intrinsic electrical properties and form specific connectivity patterns (Fig. 1B). The canonical circuit is highly conserved across a wide spectrum of vertebrate species and likely represents a common network architecture solution discovered by evolution over millions of years. Therefore, studying the algorithms underlying canonical circuits not only advances our understanding of neural computations, but also positions these circuits as building blocks for next-generation deep network models, with their clear algorithmic understanding enabling full interpretability.

The field has started to identify the algorithm of the canonical circuit. For example, a very recent study has identified the Bayesian sampling algorithm in reduced canonical circuit motifs (Sale & Zhang, 2024): the reduced circuit of only E and PV neurons can implement Langevin posterior

054 sampling in the stimulus feature manifold. And incorporating SOM into the circuit introduces  
 055 oscillations that accelerate sampling by upgrading Langevin sampling into more efficient Hamiltonian  
 056 sampling. Nevertheless, a significant gap remains between identified Bayesian sampling algorithms  
 057 and the complex, nonlinear canonical circuit dynamics. A notable distinction is that canonical  
 058 circuit dynamics is inherently non-linear and substantially more complex than the linear dynamics  
 059 of Langevin and Hamiltonian samplings identified in previous circuit models and used in machine  
 060 learning (ML) research. Rather than dismissing the added complexity as incidental to neural dynamics  
 061 without computational purpose, we explore whether these nonlinear circuit dynamics may serve some  
 062 advanced function. This raises a compelling question: Can nonlinear circuit dynamics implement  
 063 more advanced and efficient sampling algorithms? If so, what are advanced circuit algorithms?

064 To address this question, we perform comprehensive theoretical analyses of the canonical circuit  
 065 model composed of E neurons and two classes of interneurons (PV and SOM). Our analysis reveals  
 066 that canonical circuit dynamics not only implements standard Langevin and Hamiltonian sampling as  
 067 revealed in Sale & Zhang (2024), but innately incorporate the **natural gradient** (NG) to automatically  
 068 adjust the step size (or the “temperature”) in the circuit’s **Langevin** and **Hamiltonian** sampling based  
 069 on the local geometry of the posterior distribution measured by the Fisher information (FI).

070 Specifically, we find the total activity of E neurons monotonically increases with posteriors’ FI, and  
 071 dynamically control the effective sampling step size in the low-dimensional stimulus feature manifold.  
 072 Remarkably, the NG sampling in canonical circuit dynamics exhibits computational strategies  
 073 analogous to established numerical techniques in ML (Hwang, 2024; Girolami & Calderhead, 2011;  
 074 Marceau-Caron & Ollivier, 2017). These include, **1**) the recurrent E input acts as a regularization  
 075 analogous to adding a small number during FI inversion to prevent numerical instabilities (Eq. 5,  
 076  $\alpha$ ) – a common practice in NG sampling algorithms; **2**) When coupling multiple canonical circuits  
 077 interact to sample multivariate stimulus posteriors, the coupled circuit approximates the full FI matrix  
 078 with its diagonal elements (Sec. 5), similar to the diagonal approximation used in scalable NG  
 079 samplings. In addition, our analysis reveals that when the circuit transitions from resting state (no  
 080 feedforward input) to evoked state (with feedforward input), the non-equilibrium circuit dynamics  
 081 further accelerates sampling beyond the efficiency of standard NG sampling. We analytically identify  
 082 the **neural annealing** strategy within canonical circuit dynamics (Fig. 2J, Eq. 3b). We also show that  
 083 the canonical circuit with clear algorithm understanding can serve as a latent space sampler in deep  
 084 generative models, moving a step toward biologically plausible and interpretable deep networks.

085 **Significance.** The present study provides the first demonstration that canonical cortical circuits  
 086 with diverse classes of interneurons naturally implement natural gradient Langevin and Hamiltonian  
 087 sampling. We establish a precise mapping between circuit components and computational elements  
 088 of advanced sampling algorithms, bridging computational neuroscience and ML. And the canonical  
 089 cortical circuit may inspire the new building block for more efficient, interpretable deep networks.

## 090 2 BACKGROUND: THE CANONICAL CORTICAL CIRCUIT MODEL

091 We consider a nonlinear canonical circuit model consisting of E neurons and two classes of interneurons  
 092 (PV and SOM) (Fig. 1A), whose dynamics is adopted from a recent circuit modeling study (Sale  
 093 & Zhang, 2024). This model is *biologically plausible* by reproducing tuning curves of different types  
 094 of neurons (Fig. A1A-C), and is *analytically tractable* so we can directly identify the nonlinear  
 095 circuit’s algorithm. Briefly, each of the  $N_E$  E neurons is tuned to a preferred 1D stimulus  $z = \theta_j$ .  
 096 The full set of these preferences,  $\{\theta_j\}_{j=1}^{N_E}$ , uniformly covers the whole stimulus space. E neurons  
 097 are recurrently connected with a Gaussian kernel in the stimulus space (Eq. 1d). Both PV and SOM  
 098 neurons are driven by E neurons but with different interactions: PV neurons deliver global, divisive  
 099 normalization to E neurons (Eq. 1b), whereas SOM neurons provide local, subtractive inhibition (Eq.  
 100 1c). The whole circuit dynamics is (Sec. C for detailed explanation and construction rationale).

$$102 \quad E: \quad \tau \dot{\mathbf{u}}_E(\theta, t) = -\mathbf{u}_E(\theta, t) + \rho \sum_X (\mathbf{W}_{EX} * \mathbf{r}_X)(\theta, t) + \sqrt{\tau \mathcal{F}[\mathbf{u}_E(\theta, t)]_+} \xi(\theta, t), \quad (1a)$$

$$103 \quad \text{Div. norm. : } \mathbf{r}_E(\theta, t) = [\mathbf{u}_E(\theta, t)]_+^2 / (1 + \rho w_{EP} r_P); \quad PV: \quad r_P = \int [\mathbf{u}_E(\theta', t)]_+^2 d\theta', \quad (1b)$$

$$104 \quad \text{SOM: } \tau \dot{\mathbf{u}}_S(\theta, t) = -\mathbf{u}_S(\theta, t) + \rho (\mathbf{W}_{SE} * \mathbf{r}_E)(\theta, t); \quad \mathbf{r}_S(\theta, t) = g_S \cdot [\mathbf{u}_S(\theta, t)]_+, \quad (1c)$$

$$106 \quad \text{Rec. weight: } \mathbf{W}_{YX}(\theta - \theta') = w_{YX} (\sqrt{2\pi} a_{XY})^{-1} \exp(-(\theta - \theta')^2 / 2a_{XY}^2), \quad (1d)$$

$$107 \quad \text{Feedfwd.: } \mathbf{r}_F(\theta, t) \sim \text{Poisson}[\lambda_F(\theta|z_t)], \quad \lambda_F(\theta|z_t) = R_F \exp[-(\theta - z_t)^2 / 2a^2]. \quad (1e)$$



Figure 1: (A) The canonical circuit of E and diverse types of interneurons and sampling-based Bayesian inference. (B) The circuit model in the present study consists of E and two types of interneurons (PV and SOM). (C) The recurrent connection kernel between E neurons. (D) Feedforward input represented as a continuous approximation of Poisson spike trains with Gaussian tuning across the stimulus feature. (E) The feedforward input parametrically encodes the stimulus feature likelihood. (F) The population responses of E (top) and SOM neurons (bottom). (G) Stimulus feature values sampled by the E and SOM neurons respectively. (H) The network’s sampling distribution read out from E and SOM neurons. The E neuron’s position is regarded as stimulus feature sample  $z_E$ , while the sample of SOM neurons  $z_S$  contributes to the auxiliary momentum variable in Hamiltonian sampling. The distribution of  $z_E$  (top marginal) will be used to approximate the posterior.

$\mathbf{u}_X$  and  $\mathbf{r}_X$  represent the synaptic inputs and firing rates of neurons of type  $X$  respectively. In Eq. (1a), the neuronal types  $X \in \{E, F, S\}$  representing inputs from E neurons, sensory feedforward inputs (Eq. 1e), and SOM neurons (Eq. 1c) respectively.  $[x]_+ = \max(x, 0)$  is the negative rectification. E neurons receive internal Poisson variability with Fano factor  $F$ , mimicking stochastic spike generation that can provide appropriate internal variability for circuit sampling (Zhang et al., 2023). In particular,  $g_S$  is the “gain” of SOM neurons and can be modulated (see Discussion), which is the key circuit mechanism to flexibly switch between static inference and dynamic inference with various speeds.

To facilitate math analysis, the above dynamics consider infinite number of neurons in theory ( $N_E \rightarrow \infty$ ), then the summation of inputs from other neurons  $\theta_j$  becomes an integration (convolution) over  $\theta$ , e.g.,  $(\mathbf{W} * \mathbf{r})(\theta) = \int \mathbf{W}(\theta - \theta') \mathbf{r}(\theta') d\theta'$ , while our simulations take finite number of neurons.  $\rho = N_E/2\pi$  is the neuronal density in the stimulus feature space, a factor in discretizing the integral.

## 2.1 THEORETICAL ANALYSIS OF THE CANONICAL CIRCUIT DYNAMICS

It has established theoretical approach to obtain **analytical** solutions of the nonlinear recurrent circuit dynamics considered in the present study (Fung et al., 2010; Wu et al., 2016; Zhang & Wu, 2012; Sale & Zhang, 2024), including attractor states, full eigenspectrum of the perturbation dynamics, and the projected dynamics onto the dominant eigenmodes. These analytical solutions are essential to identify the circuit’s Bayesian algorithms. Below, we briefly introduce the key steps and results of the theoretical analysis, with detailed math calculations in Sec. C.

**Attractors.** E neurons in canonical circuit dynamics have the following attractor states with a bump profile over the stimulus feature space (Fig. A1; Sec. C),

$$\bar{\mathbf{u}}_E(\theta) = \bar{U}_E \exp[-(\theta - \bar{z}_E)^2/4a^2], \quad \bar{\mathbf{r}}_E(\theta) = \bar{R}_E \exp[-(\theta - \bar{z}_E)^2/2a^2]. \quad (2)$$

Similar bump attractor states exist for SOM neurons (Eq. E2). In contrast, PV neurons don’t have a spatial bump profile since their interactions with E neurons are unstructured (Eq. 1b).

**Dimensionality reduction for stimulus sampling dynamics.** The perturbation analysis reveals that the first two dominant eigenmodes of the circuit dynamics correspond to the change of bump position  $z_E$  and the bump height  $U_E$  respectively (Sec. C, (Fung et al., 2010; Wu et al., 2016)), and similarly for SOM neurons. We project the E dynamics (Eq. 1a) onto the above two dominant eigenvectors (calculating the inner product of the circuit dynamics and the eigenvectors), yielding the governing dynamics of the  $z_E$  and  $U_E$  (the projection of SOM neurons will be shown later in Sec. 6 and E),

$$\text{Position : } \dot{z}_E \approx (\tau U_E)^{-1} U_{EF}(\mu_z - z_E) + \sigma_z (\tau U_E)^{-1/2} \xi_t, \quad (U_{XY} = \rho w_{XY} R_Y / \sqrt{2}) \quad (3a)$$

$$\text{Height : } \dot{U}_E \approx \tau^{-1} [-U_E + U_{EE} + U_{EF}] + \sigma_U (\tau^{-1} U_E)^{1/2} \xi_t, \quad (3b)$$

where  $U_{XY}$  is the population input height from population  $Y$  to  $X$ .  $\sigma_z^2 = 8aF/(3\sqrt{3\pi})$  and  $\sigma_U^2 = F/(\sqrt{3\pi}a)$  are constants that don’t change with network activities. The approximation comes

162 from omitting negligible nonlinear terms in the circuit dynamics (Sec. C.3). Our following theoretical  
 163 analysis on circuit algorithms will be based on the above two equations.  
 164

## 165 2.2 BACKGROUND: NATURAL GRADIENT BAYESIAN SAMPLING

167 Amari’s natural gradient is a well-known method to adaptively adjust the sampling step size based  
 168 on the local geometry characterized by the Fisher information (FI)  $G(z)$  (Amari, 1998; Amari &  
 169 Douglas, 1998; Amari, 2016; Girolami & Calderhead, 2011) (see details in Sec. (B.2),

$$170 \quad G(z) = -\mathbb{E}_{p(\mathbf{r}_F|z)}[\nabla_z^2 \ln \pi(z)] \quad (4)$$

171 For a Gaussian distribution  $\mathcal{N}(z|\mu, \Lambda^{-1})$ , the FI will be its precision  $\Lambda$  and doesn’t depend on  $z$ .

173 **Natural gradient Langevin sampling (NGLS).** The FI is used to determine the step size of the  
 174 Langevin sampling dynamics to sample the posterior  $\pi(z)$  (Girolami & Calderhead, 2011),

$$175 \quad \dot{z} = \tau_L^{-1} \nabla \ln \pi(z) + (2\tau_L^{-1})^{1/2} \xi_t, \quad \text{where } \tau_L = \eta[G(z) + \alpha]. \quad (5)$$

177  $\alpha$  is a small positive constant acting as a regularization term to improve numerical stability in inverting  
 178 the FI (Hwang, 2024; Marceau-Caron & Ollivier, 2017; Wu et al., 2024), which is widely used in  
 179 ML.  $\eta$  is a small constant similar to the inverse of “learning rate”. In the naive Langevin sampling,  
 180  $\tau_L$  is fixed rather than proportional to the FI. In the NG Langevin sampling, the  $\tau_L$  scales with the  
 181 FI. If the distribution is widely spread out, the sampling step size will be larger, allowing for faster  
 182 exploration of the space. Conversely, if the distribution is sharply peaked, the sampling step size will  
 183 be smaller to explore the local region more thoroughly.

184 **Natural gradient Hamiltonian sampling (NGHS).** It defines a Hamiltonian function  $H(z, p)$  where  
 185 the momentum distribution  $\pi(p|z)$ ’s variance (rather than precision) is proportional to the FI  $G(z)$ .

$$186 \quad H(z, p) = -\ln \pi(z) - \ln \pi(p|z), \quad \pi(p|z) = \mathcal{N}[p|0, G(z)]. \quad (6)$$

187 The NGHS dynamics with **friction** is governed by (Girolami & Calderhead, 2011; Ma et al., 2015),

$$189 \quad \frac{d}{dt} \begin{bmatrix} z \\ p \end{bmatrix} = - \begin{bmatrix} 0 & -\tau_H^{-1} \\ \tau_H^{-1} & \gamma \end{bmatrix} \begin{bmatrix} \nabla_z H \\ \nabla_p H \end{bmatrix} + \sqrt{2} \begin{bmatrix} 0 \\ \gamma^{1/2} \end{bmatrix} \xi_t \quad (7)$$

191 where  $\tau_H$  is the time constant of the Hamiltonian sampling, and  $\gamma$  is the **friction** that dampens  
 192 momentum. The Hamiltonian dynamics with **friction** can be interpreted as a Langevin dynamics  
 193 added into the momentum dynamics (Chen et al., 2014; Ma et al., 2015). When  $\gamma = 0$ , Eq. (7)  
 194 reduces into the naive Hamiltonian dynamics. Our following analysis will show the canonical circuit  
 195 can automatically implement the natural gradient Langevin sampling and Hamiltonian sampling.

## 197 3 FROM CIRCUIT DYNAMICS TO BAYESIAN SAMPLING

199 In our framework, the stage from external stimulus  $z$  to the feedforward input  $\mathbf{r}_F$  is regarded as a  
 200 generative process (Fig. 1A), and then the circuit dynamics (Eqs. 1a and 1c) effectively performs  
 201 Bayesian sampling dynamics to compute the stimulus posterior,  $\pi(z) \equiv p(z|\mathbf{r}_F) \propto p(\mathbf{r}_F|z)p(z)$ . We  
 202 hypothesize that the circuit computes **subjective** posterior distributions  $\pi(z)$  based on its internal  
 203 generative model (Lange et al., 2023), implicitly assuming the subjective prior in brain’s neural  
 204 circuits matches the *objective* prior (usually not known precisely) of the world. With this hypothesis,  
 205 we treat the canonical circuit, strongly supported by experiments, as a “ground truth”, and aim to  
 206 identify the circuit’s internal generative model and its Bayesian sampling algorithms.

207 **Subjective prior  $p(z)$ .** We will leave the subjective prior  $p(z)$  unspecific for now and will find it  
 208 through the analysis of the circuit dynamics. This will be shown later in the Eqs. (10 and 13).

209 **Stimulus likelihood  $L(z)$ .** The stochastic feedforward input from the stimulus  $z$  (Eq. 1e) naturally  
 210 specifies the stimulus likelihood that is calculated as a Gaussian likelihood (see Sec. C.4),

$$212 \quad \mathcal{L}(z) \propto p(\mathbf{r}_F|z) = \prod_{\theta} \text{Poisson}[\lambda_F(\theta|z)] \propto \mathcal{N}(z|\mu_z, \Lambda^{-1}), \quad (8)$$

$$213 \quad \text{where } \mu_z = \sum_j \mathbf{r}_F(\theta_j) \theta_j / \sum_j \mathbf{r}_F(\theta_j), \quad \Lambda = a^{-2} \sum_j \mathbf{r}_F(\theta_j) = \sqrt{2\pi} \rho a^{-1} R_F.$$

215 The mean  $\mu_z$  and precision  $\Lambda$  are geometrically regarded as  $\mathbf{r}_F$ ’s location and height respectively  
 (Fig. 1D-E). A single snapshot of  $\mathbf{r}_F$  *parametrically* conveys the stimulus likelihood  $p(\mathbf{r}_F|z)$ , in



Figure 2: NG Langevin sampling in the reduced circuit (E and PV). (A) The need for adaptive step size to sample different posteriors. (B) The reduced circuit with fixed weights flexibly samples posteriors with different uncertainties. (C-D) E bump height  $U_E$  increases with posterior FI (C) and determines the sampling time constant in the stimulus feature manifold. (E-F) The sampling convergence with recurrent weight  $w_{EE}$  that acts as a regularizer (Eq. 5). (G-H) The sampling convergence at different posterior uncertainties. (I-K) Non-equilibrium sampling further accelerates convergence. The non-equilibrium population responses (I), bump height (J), and the KL divergence (K) from the resting state (no feedforward input) to evoked state.

that all likelihood parameters are read out from  $\mathbf{r}_F$ . In particular, the Gaussian stimulus likelihood resulted from the Gaussian profile of feedforward input tuning  $\lambda_F(\theta|z)$  (Eq. 1e, Ma et al. (2006)).

**Circuit’s stimulus posterior FI** comes from the likelihood (Eq. 8) and the prior (unspecified now),

$$G(z) = \Lambda + \nabla_z^2 \ln p(z) = \sqrt{2\pi\rho}a^{-1}R_F + \nabla_z^2 \ln p(z). \quad (9)$$

Our following analysis will focus on connecting the circuit dynamics on the position and height subspace (Eqs. 3a and 3b) to the NG sampling dynamics (Sec. 2.2), to identify how the circuit implements NG Langevin and Hamiltonian sampling. To facilitate understanding, we will start from the reduced circuit model without SOM neurons (Sec. 4 - 5) and then add the SOM back (Sec. 6).

## 4 A REDUCED CIRCUIT WITH E AND PV NEURONS: NG LANGEVIN SAMPLING

To facilitate understanding, we first present how the circuit realizes the naive Langevin sampling (Sale & Zhang, 2024), then conduct further analyses to reveal its mechanism of NG Langevin samplings.

### 4.1 NAIVE LANGEVIN SAMPLING IN THE REDUCED CIRCUIT

To analyze the circuit Langevin sampling, we convert the bump position  $z_E$  dynamics (Eq. 3a) into a Langevin sampling form by expressing its drift term as the log-likelihood gradient,

$$\dot{z}_E = (\tau U_E)^{-1} \lambda_z \nabla \ln \mathcal{L}(z_E) + \sigma_z (\tau U_E)^{-1/2} \xi_t, \text{ with } \nabla \ln \mathcal{L}(z) = \Lambda(\mu_z - z), \lambda_z = \frac{w_{EF}a}{2\sqrt{\pi}}, \quad (10)$$

where the feedforward input strength  $U_{EF}$  (Eq. 3a) is proportional to the likelihood precision  $\Lambda$ , i.e.,  $U_{EF} \propto w_{EF}R_F \propto w_{EF}\Lambda$  (Eq. 8). Notably, the drift and diffusion terms in Eq. (10) share the same factor  $\tau U_E$ , a necessary condition for Langevin sampling (Eq. 5). Then we investigate how the circuit realizes Langevin sampling by comparing Eqs. (10 and 5), and study its sampling structure.

**Uniform (uninformative) circuit prior.** It is uniform because the drift term in Eq. (10) is the stimulus likelihood  $\mathcal{L}(z)$  gradient, due to the translation-invariant recurrent weights (Eq. 1d). This result is consistent with the previous study (Zhang et al. (2023); Sale & Zhang (2024); see Discussion).

**The circuit sampling only constrains feedforward weight  $w_{EF}$ .** It requires the ratio  $\sigma_z^2/\lambda_z = 2$  in Eq. (10) which only constrains the feedforward weight as  $w_{EF}^* = \sqrt{\pi}\sigma_z^2/a = (2/\sqrt{3})^3F$ , irrelevant with other circuit weights like  $w_{EE}$  and  $w_{EP}$  as long as the circuit dynamics is stable. This suggests the *robust* circuit sampling and *no fine-tuning* of circuit parameters is needed.

270 **Flexible sampling the whole likelihood family.** Once the feedforward weight is set at  $w_{EF}^*$ ,  
 271 the circuit with fixed weights flexibly samples likelihoods with different means and uncertainties,  
 272 because in Eq. (10) the  $\lambda_z$  and  $\sigma_z$  are invariant with circuit activities, and  $\tau U_E$  is a free parameter  
 273 without changing the equilibrium sampling distribution. And then the bump position  $z_E$  dynamics  
 274 will automatically sample the corresponding likelihood that is parametrically represented by the  
 275 *instantaneous* feedforward input  $\mathbf{r}_F$  (Eq. 8). This is also confirmed by our simulation (Fig. 2B).  
 276

## 277 4.2 NATURAL GRADIENT LANGEVIN SAMPLING IN THE REDUCED CIRCUIT

279 The NG Langevin sampling requires the sampling time constant increases with the FI  $G(z)$  (Eq.  
 280 5). Meanwhile, the time constant of the circuit’s bump position  $z_E$  dynamics is proportional to the  
 281 bump height  $U_E$  (Eq. 3b and 10) and is confirmed by circuit simulation (Fig. 2D). Thus we analyze  
 282 the relation between  $U_E$  and the FI. For simplicity, we first focus on the equilibrium mean of  $U_E$   
 283 (averaging Eq. 3b), and the identified NGLS parameters in the circuit are shown in Fig. 4E.

$$284 \bar{U}_E = U_{EE} + U_{EF}, \quad U_{EF} = \rho w_{EF} R_F / \sqrt{2} = \lambda_z \cdot G(z) = \lambda_z \Lambda. \quad (11)$$

285 **E bump height  $U_E$  encodes Fisher information.** The feedforward input height  $U_{EF}$  is proportional  
 286 to the likelihood FI  $G(z)$  (Eq. 9, uniform prior), making the mean bump height  $\bar{U}_E$  increase with  
 287  $G(z)$ . This is also confirmed by the circuit simulation (Fig. 2C). Consequently, the bump height  $\bar{U}_E$   
 288 effectively represents the stimulus FI and in turn scales the time constant of the circuit sampling  $z_E$   
 289 dynamics (Eq. 10, Fig. 2D), enabling the NGLS in the circuit.

290 **The recurrent E input (weight) acts as a regularizer.** Comparing Eqs. (11 and 5), the recurrent  
 291 input strength  $U_{EE}$  acts as a role of the regularization coefficient  $\alpha$ , improving the numerical stability  
 292 in inverting the FI when it is small or ill-conditioned (Hwang, 2024; Marceau-Caron & Ollivier, 2017;  
 293 Wu et al., 2024). Without recurrent E weight ( $U_{EE} = 0$  via setting  $w_{EE} = 0$ ), the circuit sampling  
 294 behaves similarly with the NGLS (Fig. 2E). Including recurrent weights enlarges the sampling  
 295 time constant, slowing down the sampling as suggested by our theory (Fig. 2E). Nevertheless,  
 296 with extremely small FI, the circuits with higher recurrent weights have faster convergence (Fig. 2F,  
 297 leftmost part), because the recurrent E input stabilizes the inversion of very small FI. Moreover, NGLS  
 298 is characterized by the invariant temporal correlation of samples with the posterior uncertainties  
 299 (controlled by input intensity  $R_F$ ), which is also confirmed in the circuit simulation (Fig. 2G).

300 **The flexible scaling with various posterior FI.** The canonical circuit model with fixed weights  
 301 flexibly scales its sampling time constant (determined by  $\bar{U}_E$ , Eq. 3a) with various posteriors FI  
 302 (controlled by the feedforward input rate  $R_F$ ), all of which is *automatically* completed by the  
 303 recurrent dynamics without the need of changing circuit parameters. For example, increasing  $R_F$   
 304 increases the bump height  $U_E$  (Eq. 3b) that leads to a larger sampling time constant, and meanwhile  
 305 it changes the equilibrium sampling distribution of the circuit (Eqs. 8 and 3a).

## 306 4.3 NON-EQUILIBRIUM CIRCUIT DYNAMICS ACCELERATES NATURAL GRADIENT SAMPLING.

308 Our analysis so far concentrates on the equilibrium mean  $\bar{U}_E$  (Eq. 11). We now extend to the  
 309 non-equilibrium dynamics (Eq. 3b), particularly during the transient response immediately following  
 310 the onset of a stimulus. After receiving a  $\mathbf{r}_F$ , the  $U_E$  will gradually grow up until the equilibrium  
 311 state (Fig. 2I-J). And meanwhile, the sampling step size will gradually decrease in that a larger  $U_E$   
 312 leads to larger sampling constant and therefore smaller step size. This is similar to the **annealing** in  
 313 stochastic computation. The larger sampling step size during the non-equilibrium implies the circuit  
 314 can sample faster than the equilibrium state, confirmed by simulation (Fig. 2K). Furthermore,  $U_E$   
 315 temporal trajectory (Fig. 2J) describes circuit’s **annealing strategy**, governed by Eq. (3b). This  
 316 intrinsic annealing schedule is an emergent property of the circuit’s nonlinear dynamics.

## 317 5 COUPLED CIRCUITS: NGLS OF MULTIVARIATE POSTERIORS

320 The brain needs to sample multivariate stimulus posteriors, which can be implemented by a **decentralized**  
 321 system consisting of multiple coupled canonical circuit modules (Fig. 3A, Zhang et al. (2016;  
 322 2023); Raju & Pitkow (2016)). Each circuit module  $m$  receives a feedforward input stochastically  
 323 evoked by a 1D stimulus  $z_m$  (Fig. 3), and the cross-talk between circuits enables them to read out the  
 circuit prior, and eventually each circuit  $m$  samples the corresponding stimulus  $z_m$  distributedly. As



Figure 3: Coupled canonical circuits sample multivariate posteriors, with each circuit  $m$  sampling the corresponding marginal posterior of  $z_m$ . (A) The structure of decentralized circuit with each consisting of E and PV neurons (the same as Fig. 2B). (B-C) The spatiotemporal E neuronal responses in two circuits (B) and the decoded stimulus samples (C). (D) When concatenating the samples from two circuits together, we recover the bivariate sampling distribution. Vector field: the drift term of the sampling dynamics in the circuit. (E) The vector field of natural gradient sampling with full FIM and diagonal FIM approximation. (F) The convergence speed in the decentralized circuit. The diagonal FIM approximation is scalable in high dimensions, while paying the cost of slower sampling speed.

a proof of concept, we consider the *smallest* decentralized system of two coupled circuits to sample bivariate posteriors (Fig. 3A). The sampling of higher dim. posteriors can be extended by inserting more circuit modules, with the number of circuit modules determined by the stimulus dimension.

We investigate how the coupled circuits implement bivariate posteriors’ NGLS, and what kind of approximation, if there is any, is used in the circuit. The theoretical analysis of the two coupled circuits is similar to a single circuit module, but we perform the analysis on each circuit module individually, yielding the new position and height dynamics (details at Sec. D),

$$\text{Position : } \dot{\mathbf{z}}_E = (\tau \mathbf{D}_U)^{-1} [ -\mathbf{L}\mathbf{z}_E + \mathbf{U}_{EF} \circ (\boldsymbol{\mu}_z - \mathbf{z}_E) ] + \sigma_z (\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\xi}_t. \quad (12a)$$

$$\text{Height : } \dot{\mathbf{U}}_E = \tau^{-1} ( -\mathbf{U}_E + \mathbf{U}_{EE} + \mathbf{U}_{EF} ) + \sigma_U (\tau^{-1} \mathbf{D}_U)^{1/2} \boldsymbol{\xi}_t. \quad (12b)$$

$\mathbf{z}_E = (z_1, z_2)^\top$  is two circuits’ E bump positions. Similarly for  $\boldsymbol{\mu}_z$  and  $\mathbf{R}_F$  (feedfwd. input position and intensity respectively), and  $\mathbf{U}_E$  and  $\mathbf{R}_E$  (bump height of synaptic input and firing rate respectively).  $\mathbf{D}_U = \text{diag}(\mathbf{U}_E)$  is a diagonal matrix of  $\mathbf{U}_E$ . The  $\circ$  denotes the element-wise product.

**The associative bivariate stimulus prior.** The  $\mathbf{z}_E$  dynamics (Eq. 12a) has a new term, i.e.,  $-\mathbf{L}\mathbf{z}_E$ , which can be linked to the internal stimulus prior (omitting the subscript  $EE$  of  $U$  for clarity below).

$$\nabla \ln p(\mathbf{z}) = -\mathbf{L}\mathbf{z}_E, \quad \mathbf{L} = \begin{pmatrix} U_{12} & -U_{12} \\ -U_{21} & U_{21} \end{pmatrix} \Leftrightarrow p(\mathbf{z}) \propto \exp(-\mathbf{z}_E^\top \mathbf{L} \mathbf{z}_E / 2). \quad (13)$$

Hence the coupling matrix  $\mathbf{L}$  is the prior’s precision matrix (see Sec. D.2). For ease of understanding, we expand the bivariate prior as  $p(z_1, z_2) \propto \exp[-\Lambda_{12}(z_1 - z_2)^2 / 2]$ , with  $\Lambda_{12} \propto (U_{12} + U_{21}) / 2$ . The coupled circuit stores an associative (correlational) stimulus prior with each marginal uniform, consistent with previous studies (Sale & Zhang, 2024; Zhang et al., 2023). The identified correlational prior is confirmed by numerical simulation, where the actual sampling distribution of the circuit dynamics matches the subjective posterior predicted via the identified prior (Fig. A2).

**Diagonal Fisher information approximation.** Given the identified circuit’s prior, we calculate the Fisher information matrix (FIM)  $\mathbf{G}(\mathbf{z})$  and compare it with the actual sampling time constants,

$$\text{FI: } \mathbf{G}(\mathbf{z}) = \lambda_z^{-1} \begin{pmatrix} U_1 & -U_{12} \\ -U_{21} & U_2 \end{pmatrix} \quad \text{vs.} \quad \text{Circuit: } \mathbf{D}_U = \begin{pmatrix} U_1 & \\ & U_2 \end{pmatrix}. \quad (14)$$

The time constant matrix  $\mathbf{D}_U$  in the circuit dynamics is proportional to the diagonal elements of the FIM, i.e.,  $\mathbf{D}_U \propto \text{diag}[\mathbf{G}(\mathbf{z})]$ , suggesting the circuits utilize the **diagonal approximation** of the FIM to scale the Langevin sampling step size. The diagonal FIM approximation is widely used in ML, as a trade-off of computational efficiency and accuracy (Amari, 1998; Amari & Douglas, 1998; Amari, 2016; Wu et al., 2024), where the full FIM is hard to estimate.

To illustrate the effect of diagonal FIM approximation on sampling dynamics, we plot the vector field of NGLS with full FIM and diagonal FIM respectively (Fig. 3D). All vector fields under full FIM directly point to the posterior mean, while the ones under diagonal FIM are curled along the long axis



Figure 4: Natural gradient Hamiltonian sampling in the augmented circuit with E, PV, and SOM neurons. (A) The circuit structure. (B) The decoded trajectory of stimulus sample  $z_E$  and momentum  $p$  exhibits an oscillation pattern, which is a characteristic of Hamiltonian sampling. The momentum  $p$  is a weighted average of sample  $z_E$  and  $z_S$  as shown in Fig. 1H. (C) The circuit with fixed weights can sample posteriors with different uncertainties. (D) The momentum precision decreases with the Fisher information controlled by feedforward input strength, satisfying the requirement of natural gradient Hamiltonian sampling. (E) A table summarizing the circuit' sampling parameters.

of the posterior. Meanwhile, the curled vector fields also exist in coupled circuits' sampling dynamics, confirming diagonal FIM approximation in the circuit (Fig. 3C). The diagonal FIM simplifies the computation, while paying the cost of sampling speed (Fig. 3E and Fig.A4).

## 6 THE CIRCUIT WITH SOM NEURONS: NG HAMILTONIAN SAMPLING

We investigate the Bayesian sampling in the augmented circuit model with SOM neurons providing structured inhibition to E neurons (Eq. 1a). The SOM's structured inhibition can add the Hamiltonian sampling component in the circuit (Sale & Zhang, 2024). We further analyze whether the augmented circuit with SOM neurons implements the natural gradient Hamiltonian sampling (NGHS). For simplicity, we consider a augmented circuit model to sample a univariate stimulus posterior. Similarly, we derive the eigenvectors of the SOM's dynamics and then project the dynamics on dominant eigenvectors (see details in Sec. E). The position dynamics of the E and SOM neurons are,

$$E: \tau_E \dot{z}_E = \underbrace{[U_{ES}(z_S - z_E) + \alpha_H U_{EF}(\mu_z - z_E)]}_{\text{Momentum } p, \text{ (Hamiltonian part)}} + \underbrace{[\alpha_L U_{EF}(\mu_z - z_E) + \sigma_z \sqrt{\tau_E} \xi_t]}_{\text{Langevin part}}, \quad (15a)$$

$$\text{SOM: } \tau_S \dot{z}_S \approx U_{SE}(z_E - z_S), \quad (\tau_X = \tau U_X) \quad (15b)$$

To understand the circuit's sampling dynamics, the  $z_E$  dynamics (Eq. 15a) is decomposed into the drift terms from Langevin and Hamiltonian parts with  $\alpha_H + \alpha_L = 1$ , and the momentum  $p$  is defined as a mixture of  $z_E$  and  $z_S$ . Transforming the  $(z_E, z_S)$  dynamics (Eqs. 15a - 15b, Fig. 1H) into the  $(z_E, p)$  dynamics (Fig. 4B) shows a mixture of Langevin and Hamiltonian sampling in the circuit,

$$\frac{d}{dt} \begin{bmatrix} z_E \\ p \end{bmatrix} = - \begin{bmatrix} \alpha_L \lambda_z \tau_E^{-1} & -\beta_E \Lambda^{-1} \\ \beta_E \Lambda^{-1} & \tau U_E \beta_p \beta_E \Lambda^{-1} \end{bmatrix} \begin{bmatrix} -\nabla_z \ln \pi(z_E) \\ (\tau_E \beta_E)^{-1} \Lambda \cdot p \end{bmatrix} + \begin{bmatrix} \sigma_z \tau_E^{-1/2} \\ \sigma_p \end{bmatrix} \xi_t \quad (16)$$

where  $\beta_p$ ,  $\beta_E$  and  $\sigma_p$  are functions of the coefficients in Eq. (15a) (details at Eq. E16). And the momentum  $p$  dynamics has a friction term (Eq. 16), corresponding to a Langevin component.

**A line manifold in weight space for Hamiltonian sampling.** It requires the ratio between the drift and diffusion coefficients are the same as the Langevin (Eq. 5) and Hamiltonian sampling (Eq. 7). Specifically, it requires 1)  $\alpha_L \lambda_z \tau_E^{-1} = \sigma_z^2 \tau_E^{-1} / 2$  and 2)  $\tau_E \beta_p \beta_E \Lambda^{-1} = \sigma_p^2 / 2$ . Solving the two constraints, we can derive the requirement of circuit weights for Hamiltonian sampling,

$$(U_E^{-1} R_S) \cdot w_{ES} - [(1 - \alpha_L) U_E^{-1} R_F] \cdot w_{EF} = [Q(\alpha_L) U_S^{-1} R_E] \cdot w_{SE}. \quad (17)$$

$Q(\alpha_L)$  is nonlinear with  $\alpha_L$  and is invariant with network activities (Eq. E21).  $U_X$  and  $R_X$  are the height of the population synaptic input and firing rate of neurons  $X$  (Eq. 2). Eq. (17) suggests a **line manifold** in the circuit's weight space  $(w_{ES}, w_{EF})$  for correct posterior sampling, confirmed by numerical simulation (Fig. A3). Moreover, once circuit weights are set within the line manifold, the circuit with fixed weights can flexibly sample posteriors with various uncertainties (Fig. 4C).

**Natural gradient Hamiltonian sampling.** Implementing NGHS requires the precision of the momentum  $p$  to be inversely proportional to posterior's FI,  $G(z)$  (Eq. 7). To verify this, we calculate



Figure 5: Canonical circuit sampling in an autoencoder’s latent space. (A) The network structure. The encoder and decoder may refer to the feedforward and feedback neural pathways in the cortical hierarchy. Each stimulus feature sample can be fed into the decoder to generate the image reconstruction. (B-C) The E population responses (B) and the decoded stimulus samples (C). (D) An example image from MNIST dataset with different contrast, and the reconstructed images. (E-G) Increasing the contrast increases the feedforward input intensity (E), sampling precision in the canonical circuit (F) and meanwhile decreases the sampling step size (G).

the momentum distribution  $\pi(p|z)$  in the circuit (comparing Eqs. 16 and 7),

$$-\nabla \ln \pi(p|z) = (\tau_E \beta_E)^{-1} \Lambda \cdot p \Rightarrow \pi(p|z) = \mathcal{N}(p|0, \Lambda_p^{-1}), \text{ where } \Lambda_p = (\tau_E \beta_E)^{-1} \Lambda \quad (18)$$

We analyze the momentum precision  $\Lambda_p$  in the circuit dynamics. Since  $\beta_E$  is a complex, quadratic function of neuronal responses, we then use *order* analysis to provide insight (details at Sec. E.4). In the circuit dynamics, we calculate  $\beta_E \sim \mathcal{O}(G(z))$ ,  $U_E \sim \mathcal{O}(G(z))$ , and  $G(z) = \Lambda$ , and then we have  $\Lambda_p \propto \mathcal{O}(G(z)^{-1})$ , suggesting the momentum precision  $\Lambda_p$  decreases with posterior’s FI and satisfies the requirement of NGHS. This is confirmed by simulation results (Fig. 4D).

## 7 CANONICAL CIRCUIT: NG LATENT SPACE SAMPLER IN AUTOENCODERS

The exact, analytical mapping between nonlinear canonical circuit dynamics and the sampling algorithm not only enhances our algorithmic understanding of circuit computation, but also the canonical circuit model can be a novel, biologically plausible building block for machine learning models. As a proof-of-concept example, we embed the Gaussian posterior sampling canonical circuits (Fig. 2B) into the latent space of deep generative models like variational autoencoders (VAE) (Kingma & Welling, 2013) (Fig. 5A). In the autoencoder framework, its encoder and decoder can be regarded as the feedforward and feedback neural pathways in the cortical hierarchy, which link the data with complex distributions into simple Gaussian distributions in the latent space.

Since the latent space sampling in VAE is directly given without training, we can directly connect our handcrafted canonical circuit (Fig. 2B) with an encoder and a decoder, avoiding the time-consuming training of the recurrent circuit. Given the canonical circuit and its parametric form of feedforward input (Eqs. 1a - 1e), we directly train an encoder in a supervised way that transforms MNIST hand-written digit images into the two parameters of feedforward neural inputs, i.e., input strength  $R_F$  (Eq. 1e) and location  $\mu_z$  (Eq. 8) which represent the physical attributes of image contrast and orientation respectively. This is supported by neuroscience studies that the V1 population bump responses’ strength increases with image contrast, while their bump response location represents orientation (Ben-Yishai et al., 1995; Rubin et al., 2015). Then we separately train the decoder that converts E neurons’ firing rate  $r_E(\theta)$  into reconstructed images (see Appendix Sec. F.4 for details).

The discovered natural gradient sampling in canonical circuits still functions in the autoencoder framework. Increasing the image contrast increases the feedforward input strength (Fig. 5E), which in turn increases the likelihood precision and the E neuronal firing rate in the circuits (Fig. 5D). And the model successfully reconstructs the images with different contrasts. When examining the sampling in the canonical circuit in the latent space (Fig. 5B-C), we find the precision of the samples generated in the circuit increases with image contrast (Fig. 5F), and importantly, the sampling step size decreases with the contrast (Fig. 5G), suggesting the natural gradient sampling is reserved.

486 **8 CONCLUSION AND DISCUSSION**

487

488 The present theoretical study for the first time discovers that the canonical circuit dynamics with  
 489 E and two classes of interneurons (PV and SOM) innately implement **natural gradient** sampling  
 490 of stimulus posteriors, deepening our understanding of circuit computations. The circuit samples  
 491 stimulus posterior in the stimulus manifold that is geometrically regarded as the E neurons' bump  
 492 position. And we find the E bump height encodes the FI of the stimulus posterior, and determine the  
 493 time constant of bump position's sampling dynamics. We find the **non-equilibrium** dynamics of the  
 494 E bump height can further accelerate sampling, and explicitly identify the circuit **annealing** strategy  
 495 (Eq. 3b). Remarkably, we discover the circuit dynamics also utilizes computational approximations  
 496 widely used in ML algorithms, including the regularization coefficient for inverting FI (Eq. 11)  
 497 and the diagonal FI matrix approximation in multivariate cases (Eq. 12b), which provides a direct  
 498 evidence to validate the biological plausibility of artificial ML algorithms. Our work unprecedentedly  
 499 links the canonical circuit with classes of interneurons to natural gradient sampling and related  
 500 approximation strategies, providing deep, mechanistic insight into circuit sampling algorithms. At  
 501 last, our proof-of-concept example suggests the canonical circuit can be a biologically plausible and  
 502 interpretable building block for latent space sampling in deep generative models.

503 **Preliminary experimental support of NG sampling.** Our NG sampling circuit specifically predicts  
 504 that the magnitude of the E neurons' responses (the bump height  $U_E$ , Eq. 3b), is inversely proportional  
 505 to the step size of the trajectory in the stimulus feature subspace (bump position  $z_E$ , Eq. 3a). This is  
 506 supported by experiments from hippocampal place cells where the step size of the decoded spatial  
 507 trajectories (akin to our  $z_E$ ) was found to be negatively correlated with population firing rate (Pfeiffer  
 508 & Foster, 2015), providing a necessary condition for validating circuit NG sampling.

509 **Comparison with previous studies. First,** In our best knowledge, only one study investigated  
 510 the NG sampling in recurrent networks (Masset et al., 2022), while it is difficult to make direct  
 511 and "fair" comparison since the network models in two studies are different: The previous study  
 512 considers a spiking network without explicit defining neuron types, while the present study considers  
 513 a rate-based network with diverse classes of interneurons (PV and SOM) that has rich repertoire of  
 514 realizing various NG sampling algorithms (Langevin and Hamiltonian). From functional perspective,  
 515 our circuit with *fixed weights* can flexibly realize NG sampling for posteriors with different mean  
 516 and uncertainties, whereas it remains unknown whether this flexibility holds in the previous study.  
 517 **Second**, our circuit model builds upon a recent work (Sale & Zhang, 2024) that discovered the  
 518 conventional Langevin and Hamiltonian sampling in the canonical circuit. Our work takes one step  
 519 further and finds the same circuit can innately realize NG Langevin and Hamiltonian sampling, which  
 520 is a fundamentally deeper result after more comprehensive theoretical analysis of the circuit by  
 521 additionally projecting the circuit dynamics onto the second dominant height mode (Eq. 3b).

522 **Limitations, generalizations, and future directions.** **First**, the proposed circuit model doesn't  
 523 include VIP neurons (Fig. 1), which are likely act as a "knob" modulating the SOM gain ( $g_S$ , Eq. 1c)  
 524 to adjust circuit sampling speed and the momentum (Sec. E.4). **Second**, Our canonical circuit model,  
 525 widely used in neuroscience, only stores a uniform (marginal) prior for each stimulus as a result  
 526 of an ideal case that neurons are uniformly tiling the stimulus manifold and translation-invariant  
 527 recurrent weights (Eq. 1d). This implies the circuit has to break the neuronal homogeneity on the  
 528 stimulus manifold to store a non-uniform (marginal) prior (Ganguli & Simoncelli, 2010). Regarding  
 529 the circuit mechanism, the tuning heterogeneity for non-uniform marginal prior may come from 1) an  
 530 external prior input that may from higher cortex (Appendix Sec.G.1), or 2) internally stored in the  
 531 recurrent weights in the network model which can be realized by introducing an extra heterogeneous  
 532 recurrent weight component superimposed on the translation-invariant recurrent weight matrix. **Third**,  
 533 although our circuit with fixed weights automatically scale its sampling time constant with various  
 534 posteriors' FI, for each posterior it uses a globally homogeneous FI because the Gaussian posteriors  
 535 have homogeneous curvature. In principle, we can change the profile of the recurrent kernel, and then  
 536 the circuit can sample other posteriors in the exponential family with locally dependent FI. We show  
 537 a von Mises case in Sec. G.2. **Fourth**, we can introduce bump height  $U_E$  oscillations with larger PV  
 538 inhibitory weight  $w_{EP}$ , and then the circuit has the potential to implement cosine-profile annealing.  
 539 **Fifth**, to implement the NG sampling of general distributions, one possibility is our circuit samples  
 baseline Gaussian distributions, and a feedforward decoder network map the base distribution into  
 arbitrary distributions. Preserving the NG sampling in the space of arbitrary distribution probably  
 requires the diffeomorphism of the decoder network. All of these form our future research.

---

**540 9 REPRODUCIBILITY STATEMENT**  
541

542 All analytical calculations of the nonlinear circuit dynamics are detailed from Appendix Sec. B - E.  
543 Below is a list of the Appendix sections and their associated sections in the main text.

544

- 545 1) **Circuit models and theoretical analysis:** is presented in Sec. 2 in the main text and the detailed  
546 introduction and rationale are presented in Appendix Sec. C
- 547 2) **1D NG Langevin sampling:** is presented in Sec. 4 in the main text and the detailed calculations  
548 are in Appendix Sec. C.
- 549 3) **Multivariate NG Langevin in coupled circuits:** is presented in Sec. 5 in the main text and the  
550 detailed calculations are in Appendix Sec. D.
- 551 4) **1D NG Hamiltonian sampling:** is presented in Sec. 6 in the main text and the detailed calcula-  
552 tions are in Appendix Sec. E.
- 553 5) **Numerical simulation details:** is presented in Appendix Sec. F including the parameters for  
554 each figure. The complete code of simulation is provided in the supplementary files with detailed  
555 usage instructions.
- 556 6) **Generalization** is presented in Appendix Sec.G including the non-flat prior and Von Mises case.

557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593

594 REFERENCES  
595

596 Hillel Adesnik, William Bruns, Hiroki Taniguchi, Z Josh Huang, and Massimo Scanziani. A neural  
597 circuit for spatial summation in visual cortex. *Nature*, 490(7419):226–231, 2012.

598 Laurence Aitchison and Máté Lengyel. The hamiltonian brain: efficient probabilistic inference with  
599 excitatory-inhibitory neural circuit dynamics. *PLoS computational biology*, 12(12), 2016.

600

601 Shun-ichi Amari. Natural gradient works efficiently in learning. *Neural Computation*, 10(2):251–276,  
602 1998. doi: 10.1162/089976698300017746.

603

604 Shun-ichi Amari. *Information geometry and its applications*, volume 194. Springer, 2016. doi:  
605 10.1007/978-4-431-55978-8.

606

607 Shun-ichi Amari and Scott C Douglas. Why natural gradient? In *Proceedings of the 1998 IEEE  
608 International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No.  
98CH36181)*, volume 2, pp. 1213–1216, 1998. doi: 10.1109/ICASSP.1998.675489.

609

610 Jeffrey M Beck, Wei Ji Ma, Roozbeh Kiani, Tim Hanks, Anne K Churchland, Jamie Roitman,  
611 Michael N Shadlen, Peter E Latham, and Alexandre Pouget. Probabilistic population codes for  
612 bayesian decision making. *Neuron*, 60(6):1142–1152, 2008.

613

614 R Ben-Yishai, R Lev Bar-Or, and H Sompolinsky. Theory of orientation tuning in visual cortex.  
Proceedings of the National Academy of Sciences, 92(9):3844–3848, 1995.

615

616 Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dynamics as sampling:  
617 a model for stochastic computation in recurrent networks of spiking neurons. *PLoS computational  
618 biology*, 7(11):e1002211, 2011.

619

620 Luke Campagnola, Stephanie C Seeman, Thomas Chartrand, Lisa Kim, Alex Hoggarth, Clare Gamlin,  
621 Shinya Ito, Jessica Trinh, Pasha Davoudian, Cristina Radaelli, et al. Local connectivity and synaptic  
622 dynamics in mouse and human neocortex. *Science*, 375(6585):eabj5861, 2022.

623

624 Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In  
International conference on machine learning, pp. 1683–1691. PMLR, 2014.

625

626 Xingsi Dong, Zilong Ji, Tianhao Chu, Tiejun Huang, Wenhao Zhang, and Si Wu. Adaptation  
627 accelerating sampling-based bayesian inference in attractor neural networks. *Advances in Neural  
Information Processing Systems*, 35:21534–21547, 2022.

628

629 Rodrigo Echeveste, Laurence Aitchison, Guillaume Hennequin, and Máté Lengyel. Cortical-like  
630 dynamics in recurrent circuits optimized for sampling-based probabilistic inference. *Nature  
631 Neuroscience*, 2020. ISSN 15461726. doi: 10.1038/s41593-020-0671-1.

632

633 Marc O Ernst and Martin S Banks. Humans integrate visual and haptic information in a statistically  
optimal fashion. *Nature*, 415(6870):429–433, 2002.

634

635 Gord Fishell and Adam Kepecs. Interneuron types as attractors and controllers. *Annual review of  
636 neuroscience*, 43:1–30, 2020.

637

638 C. C Alan Fung, K. Y. Michael Wong, and Si Wu. A moving bump in a continuous manifold: A  
639 comprehensive study of the tracking dynamics of continuous attractor neural networks. *Neural  
Computation*, 22(3):752–792, 2010.

640

641 Deep Ganguli and Eero P Simoncelli. Implicit encoding of prior probabilities in optimal neural  
642 populations. *Advances in neural information processing systems*, 2010:658, 2010.

643

644 Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo  
645 methods. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(2):  
123–214, 2011. doi: 10.1111/j.1467-9868.2010.00765.x.

646

647 Ralf M Haefner, Pietro Berkes, and József Fiser. Perceptual decision-making as probabilistic inference  
by neural sampling. *Neuron*, 90(3):649–660, 2016.

648 Patrik O Hoyer and Aapo Hyvärinen. Interpreting neural response variability as monte carlo sampling  
 649 of the posterior. In *Advances in neural information processing systems*, pp. 293–300, 2003.  
 650

651 Dongseong Hwang. Fadam: Adam is a natural gradient optimizer using diagonal empirical fisher  
 652 information, 2024. URL <https://arxiv.org/abs/2405.12807>.  
 653

654 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*  
 655 *arXiv:1312.6114*, 2013.  
 656

657 David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding  
 658 and computation. *TRENDS in Neurosciences*, 27(12):712–719, 2004.  
 659

660 Konrad P Kording and Daniel M Wolpert. Bayesian integration in sensorimotor learning. *Nature*,  
 661 427(6971):244–247, 2004.  
 662

663 Richard D Lange, Sabyasachi Shivkumar, Ankani Chattoraj, and Ralf M Haefner. Bayesian encoding  
 664 and decoding as distinct perspectives on neural coding. *Nature Neuroscience*, 26(12):2063–2072,  
 665 2023.  
 666

667 Wei Ji Ma, Jeffrey M Beck, Peter E Latham, and Alexandre Pouget. Bayesian inference with  
 668 probabilistic population codes. *Nature Neuroscience*, 9(11):1432–1438, 2006.  
 669

670 Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient mcmc. *Advances*  
 671 *in neural information processing systems*, 28, 2015.  
 672

673 Gaétan Marceau-Caron and Yann Ollivier. Natural langevin dynamics for neural networks. In  
 674 *International Conference on Geometric Science of Information*, pp. 451–459. Springer, 2017.  
 675

676 Paul Masset, Jacob Zavatone-Veth, J Patrick Connor, Venkatesh Murthy, and Cengiz Pehlevan.  
 677 Natural gradient enables fast sampling in spiking neural networks. *Advances in neural information*  
 678 *processing systems*, 35:22018–22034, 2022.  
 679

680 Christopher M Niell and Massimo Scanziani. How cortical circuits implement cortical computations:  
 681 mouse visual cortex as a model. *Annual Review of Neuroscience*, 44:517–546, 2021.  
 682

683 Gergő Orbán, Pietro Berkes, József Fiser, and Máté Lengyel. Neural variability and sampling-based  
 684 probabilistic representations in the visual cortex. *Neuron*, 92(2):530–543, 2016.  
 685

686 Brad E Pfeiffer and David J Foster. PLACE CELLS. autoassociative dynamics in the generation of  
 687 sequences of hippocampal place cells. *Science*, 349(6244):180–183, July 2015.  
 688

689 Rajkumar Vasudeva Raju and Zachary Pitkow. Inference by reparameterization in neural population  
 690 codes. In *Advances in Neural Information Processing Systems*, pp. 2029–2037, 2016.  
 691

692 Daniel B Rubin, Stephen D Van Hooser, and Kenneth D Miller. The stabilized supralinear network: a  
 693 unifying circuit motif underlying multi-input integration in sensory cortex. *Neuron*, 85(2):402–417,  
 694 2015.  
 695

696 Eryn Sale and Wenhao Zhang. The bayesian sampling in a canonical recurrent circuit with a diversity  
 697 of inhibitory interneurons. In *The Thirty-eighth Annual Conference on Neural Information*  
 698 *Processing Systems*, 2024.  
 699

700 Yu Terada and Taro Toyoizumi. Chaotic neural dynamics facilitate probabilistic computations through  
 701 sampling. *Proceedings of the National Academy of Sciences*, 121(18):e2312992121, 2024.  
 702

703 Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In  
 704 *Proceedings of the 28th international conference on machine learning (ICML-11)*, pp. 681–688,  
 705 2011.  
 706

707 Si Wu, KY Michael Wong, CC Alan Fung, Yuanyuan Mi, and Wenhao Zhang. Continuous at-  
 708 tractor neural networks: candidate of a canonical model for neural information representation.  
 709 *F1000Research*, 5, 2016.  
 710

702 Xiaodong Wu, Wenyi Yu, Chao Zhang, and Phil Woodland. An improved empirical fisher approx-  
703 imation for natural gradient descent. *Advances in Neural Information Processing Systems*, 37:  
704 134151–134194, 2024.

705

706 Alan Yuille and Daniel Kersten. Vision as bayesian inference: analysis by synthesis? *Trends in*  
707 *cognitive sciences*, 10(7):301–308, 2006.

708

709 Wen-Hao Zhang and Si Wu. Neural information processing with feedback modulations. *Neural*  
710 *Computation*, 24(7):1695–1721, 2012.

711

712 Wen-Hao Zhang, Aihua Chen, Malte J Rasch, and Si Wu. Decentralized multisensory information  
713 integration in neural systems. *The Journal of Neuroscience*, 36(2):532–547, 2016.

714

715 Wen-Hao Zhang, Si Wu, Krešimir Josić, and Brent Doiron. Sampling-based bayesian inference in  
716 recurrent circuits of stochastic spiking neurons. *Nature Communications*, 14(1):7074, 2023.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

|     |                                                                                       |           |
|-----|---------------------------------------------------------------------------------------|-----------|
| 756 | APPENDIX                                                                              |           |
| 757 |                                                                                       |           |
| 758 |                                                                                       |           |
| 759 | <b>A Appendix Figures</b>                                                             | <b>16</b> |
| 760 |                                                                                       |           |
| 761 | <b>B Natural gradient Langevin sampling</b>                                           | <b>17</b> |
| 762 | B.1 Langevin Dynamics . . . . .                                                       | 17        |
| 763 | B.2 Natural gradient sampling via Fisher information (matrix) . . . . .               | 17        |
| 764 | B.3 Sampling speed measured by the decaying speed of KL divergence . . . . .          | 18        |
| 765 |                                                                                       |           |
| 766 |                                                                                       |           |
| 767 | <b>C A single canonical circuit and 1D natural gradient sampling: theory</b>          | <b>18</b> |
| 768 | C.1 Continuous attractor network dynamics . . . . .                                   | 18        |
| 769 | C.2 Network’s attractor states . . . . .                                              | 19        |
| 770 | C.3 Dimensionality reduction by projecting on dominant modes . . . . .                | 20        |
| 771 | C.4 The probabilistic generative model embedded in the circuit model . . . . .        | 20        |
| 772 | C.4.1 The stimulus likelihood . . . . .                                               | 20        |
| 773 | C.4.2 Uniform stimulus prior in the circuit . . . . .                                 | 21        |
| 774 | C.5 Conditions for realizing Langevin sampling in the circuit . . . . .               | 21        |
| 775 | C.6 Natural gradient sampling in the circuit . . . . .                                | 22        |
| 776 |                                                                                       |           |
| 777 |                                                                                       |           |
| 778 | <b>D Coupled neural circuits and multivariate posterior sampling: theory</b>          | <b>22</b> |
| 779 | D.1 Theoretical analysis of the coupled circuit dynamics . . . . .                    | 22        |
| 780 | D.2 The generative model of multivariate stimulus stored in the circuit . . . . .     | 23        |
| 781 | D.3 Natural gradient sampling via diagonal approximation of Fisher information matrix | 24        |
| 782 |                                                                                       |           |
| 783 |                                                                                       |           |
| 784 | <b>E Natural gradient Hamiltonian sampling in the circuit with SOM neurons</b>        | <b>25</b> |
| 785 | E.1 Circuit dynamics . . . . .                                                        | 25        |
| 786 | E.2 Hamiltonian sampling in the circuit . . . . .                                     | 26        |
| 787 | E.3 Conditions for realizing Hamiltonian sampling in the circuit . . . . .            | 27        |
| 788 | E.4 Natural gradient Hamiltonian: determining the momentum precision in the circuit . | 28        |
| 789 |                                                                                       |           |
| 790 |                                                                                       |           |
| 791 |                                                                                       |           |
| 792 | <b>F Circuit simulation parameters and details</b>                                    | <b>28</b> |
| 793 | F.1 Critical weight . . . . .                                                         | 28        |
| 794 | F.2 Parameters for network simulation . . . . .                                       | 29        |
| 795 | F.2.1 Numerical estimate of the stimulus prior in coupled circuits . . . . .          | 30        |
| 796 | F.2.2 The vector field (drift term) of circuits’ sampling dynamics . . . . .          | 31        |
| 797 | F.3 Parameters fitting . . . . .                                                      | 31        |
| 798 | F.4 Embedding canonical circuits as a latent space sampler in VAE framework . . . . . | 32        |
| 799 |                                                                                       |           |
| 800 |                                                                                       |           |
| 801 |                                                                                       |           |
| 802 |                                                                                       |           |
| 803 | <b>G Generalization</b>                                                               | <b>33</b> |
| 804 | G.1 Non-flat prior . . . . .                                                          | 33        |
| 805 | G.2 Von Mises Case . . . . .                                                          | 34        |
| 806 |                                                                                       |           |
| 807 |                                                                                       |           |
| 808 |                                                                                       |           |
| 809 |                                                                                       |           |

810 A APPENDIX FIGURES  
811

820 Figure A1: Supplementary figure of Fig. 1. (A-B) The tuning curve of an example E neuron in control  
821 state compared with enhancing PV neurons (A) and SOM neurons (B). It shows the PV neurons  
822 provide divisive inhibition to the E neuron, while the SOM provides subtractive inhibition to the E  
823 neuron. (C) The tuning curves of all E neurons in the circuit tile the whole stimulus feature space  $z$ .  
824 (D-E) The temporally averaged Gaussian profile of the firing rate  $r_E(\theta)$  (D) and synaptic input  $u_E(\theta)$   
825 (E), supporting the Gaussian ansatz of the attractor states in Eqs. (2)



840 Figure A2: Supplementary figure of Fig. 3. (A) The joint correlational prior of the stimulus  $z_1$  and  $z_2$   
841 stored in the coupled circuits presented in Fig. 3. The correlation between two stimuli is determined  
842 by width of the diagonal band . (B) The prior precision  $\lambda_s$  increases with the coupling weight  
843 between two circuits. (C-D) The coupled circuits sample the posterior by using its internal subjective  
844 prior. Comparison of the sampling mean (C) and the prior precision (D) stored in the network with  
845 theoretical predictions. Each point represents results from a random combination of feedforward  
846 inputs, connection weights. (D) The picture shows the off-diagonal term of prior precision i.e. the  
847 joint part of posterior. (E) The sampling step size of coupled network changes with posterior FI



860 Figure A3: Supplementary figure of Fig. 4. The augmented circuit with E, PV and SOM neurons  
861 have a line manifold in the parameter space to sample posteriors correctly, suggesting no fine-tuning  
862 is needed. The parameter space is spanned by feedforward weight  $w_{EF}$  and the inhibitory weight  
863 from SOM to E neurons  $w_{ES}$ . The red dot shows the network parameters we use for simulation



874  
875  
876  
877  
878  
879  
880

Figure A4: Supplementary figure of Fig. 3. Convergence time for multivariate posterior sampling coupled networks with the posterior dimensions. (A) At a dimension of 5, Natural gradient Langevin sampling with a diagonal Fisher information matrix converges more slowly than the full Fisher variant. (B) To determine the convergence time constant across dimensions, we fitted an exponential function to the KL divergence trajectories, excluding the noisy tails. These simulation results demonstrate that the full Fisher method maintains a consistent convergence time constant across dimensions, whereas the diagonal method is slower, whose convergence times increase with the posterior dimension.



890  
891  
892  
893  
894  
895  
896  
897

Figure A5: Supplementary figure of Fig. 2J-K. Non-equilibrium sampling in neural circuits (red and orange lines) whose sampling time constant  $U_E$  gradually increases (panel A) compared with equilibrium sampling of simulating the bump position dynamics (Eq. 3a) but with deliberately clamped lower  $U_E$  (blue line, panel A). Although the latter equilibrium bump position sampling (blue) is faster than the former non-equilibrium circuit sampling (red and orange), the latter is **infeasible** in neural circuit dynamics. This is because the circuit dynamics is automatic and has its intrinsic way to evolve the  $U_E$  that lives in a subspace of the population activity, and it is infeasible to clamp  $U_E$  in the circuit dynamics without affecting other subspaces.

## B NATURAL GRADIENT LANGEVIN SAMPLING

### B.1 LANGEVIN DYNAMICS

The dynamics of Langevin sampling performs stochastic gradient ascent on the manifold of the log-posterior of stimulus features (Welling & Teh, 2011), which is written as,

$$\dot{\mathbf{z}}_t = \tau_L^{-1} \nabla \ln p(\mathbf{z}_t | \mathbf{r}_F) + (2\tau_L^{-1})^{1/2} \boldsymbol{\xi}_t, \quad (\nabla \equiv d/dz) \quad (B1)$$

907  
908 where  $\boldsymbol{\xi}_t$  is a multivariate independent Gaussian-white noise, satisfying  $\langle \boldsymbol{\xi}_t \boldsymbol{\xi}_{t'}^\top \rangle = \mathbf{I} \delta(t - t')$ , with  $\mathbf{I}$  the identity matrix and  $\delta(t - t')$  the Dirac delta function, and

909  
910  $\tau_L$  is a positive-definite matrix (or a positive scalar in the 1D case) determining the sampling time  
911 constant, which is also called the pre-conditioning matrix. Importantly,  $\tau_L$  is a free parameter of the  
912 sampling in that it doesn't change the equilibrium distribution of  $\mathbf{z}_t$ .

### B.2 NATURAL GRADIENT SAMPLING VIA FISHER INFORMATION (MATRIX)

913  
914  
915 Amari proposed the natural gradient method to utilize the geometry of the distribution to adaptively  
916 determine the sampling time constant  $\tau_L$  that controls the sampling step size (Amari, 1998). Intuitively,  
917 for a widely spread distribution, we should choose a small time constant (large step size) that can  
918 speed up the convergence of the sampling. Vice versa, for a narrowly distributed latent variable, a

large time constant (small step size) is favoured to avoid instability of the sampling. Specifically, Amari's natural gradient method proposed the sampling time constant can be determined by using the Fisher information that is a measure of the local curvature of the distribution. In the framework of information geometry (Amari, 2016), the Fisher information matrix serves as a Riemannian metric on the statistical manifold of  $\mathbf{z}$ . Consider two neighboring (posterior) distributions  $\pi(\mathbf{z})$  and  $\pi(\mathbf{z} + \mathbf{d})$  with an infinitesimal displacement  $\mathbf{d}$ , a second-order Taylor series approximation reveals the Fisher information as the underlying distance metric.

$$D_{KL} [\pi(\mathbf{z}) \| \pi(\mathbf{z} + \mathbf{d})] \approx \frac{1}{2} \mathbf{d}^\top \mathbf{G}(\mathbf{z}) \mathbf{d}$$

While the Fisher Information is often introduced in the context of the likelihood function in frequentist statistics, its definition can be generalized. For any probability distribution, its Fisher Information matrix measures the expected curvature of its logarithm. For the posterior  $\pi(\mathbf{z}) \equiv p(\mathbf{z}|\mathbf{r}_F)$  to be sampled, we get the posterior information matrix (or Bayesian Fisher Information)(Amari, 2016),

$$G(\mathbf{z}) = -\mathbb{E}_{p(\mathbf{r}_F|\mathbf{z})} [\nabla_{\mathbf{z}} \log \pi(\mathbf{z}) \nabla_{\mathbf{z}} \log \pi(\mathbf{z})^\top]. \quad (\text{B2})$$

It is symmetric and positive semi-definite. Then the posterior information matrix acts as a precondition to set up the time constant of the sampling(Girolami & Calderhead, 2011):

$$\dot{\mathbf{z}}_t = \tau_L^{-1} \nabla \ln \pi(\mathbf{z}) + (2\tau_L^{-1})^{1/2} \xi_t, \quad \tau_L = \eta[\mathbf{G}(\mathbf{z}) + \alpha] \quad (\text{B3})$$

Here, the time constant increases with  $\mathbf{G}(\mathbf{z})$ , which ensures a smaller step size (larger time constant) when the posterior is more curved (larger Fisher information). This adaptation improves sampling efficiency, as it accounts for anisotropies in the posterior, preventing slow mixing along directions of low curvature. The  $\alpha$  is a regularization term that increases the numerical stability when inverting the time constant with a very small Fisher information  $\mathbf{G}(\mathbf{z})$ .

With more details, the Fisher information is the expected value of the negative Hessian matrix. It represents the curvature of the posterior on the statistical manifold where the latent variable  $\mathbf{z}$  reside.

$$\mathbf{G}(\mathbf{z}) = -\mathbb{E}_{p(\mathbf{r}_F|\mathbf{z})} [\nabla_{\mathbf{z}}^2 \log \pi(\mathbf{z})] \quad (\text{B4})$$

In many practical applications, a "flat" or "non-informative" prior is used for some or all parameters. The posterior information matrix simplifies to become identical to the likelihood's Fisher information matrix. If prior is flat, this metric tensor of posterior manifold becomes,

$$\mathbf{G}(\mathbf{z}) = -\mathbb{E}_{p(\mathbf{r}_F|\mathbf{z})} (p(\mathbf{r}_F|\mathbf{z}) - \mathbb{E}_{p(\mathbf{r}_F|\mathbf{z})} (p(\mathbf{z}))) = -\mathbb{E}_{p(\mathbf{r}_F|\mathbf{z})} (p(\mathbf{r}_F|\mathbf{z}))$$

### B.3 SAMPLING SPEED MEASURED BY THE DECAYING SPEED OF KL DIVERGENCE

It has been proved that the upper-bound of the KL-divergence between the distribution of sample  $p_t(\mathbf{z}) = T^{-1} \sum_t \delta(\mathbf{z} - \mathbf{z}_t)$  and the equilibrium distribution  $p_\infty(\mathbf{z})$  decreases exponentially (Dong et al., 2022), i.e.,

$$D_{KL} [p_t(\mathbf{z}) \| p_\infty(\mathbf{z})] \leq D_{KL} [p_0(\mathbf{z}) \| p_\infty(\mathbf{z})] \exp(-ht)$$

where  $p_0(\mathbf{z})$  denotes the initial distribution at  $t = 0$ , and  $h$  denotes the smallest real-part of all eigenvalues of the drift matrix.

## C A SINGLE CANONICAL CIRCUIT AND 1D NATURAL GRADIENT SAMPLING: THEORY

We present the math of theoretical analyses of the reduced recurrent circuit model consisting of E and PV neurons based on continuous attractor network dynamics.

### C.1 CONTINUOUS ATTRACTOR NETWORK DYNAMICS

To simplify the reading, we copy the network dynamics of E neurons (Eq. 1a),

$$\tau \frac{\partial \mathbf{u}_E(\theta, t)}{\partial t} = -\mathbf{u}_E(\theta, t) + \rho \sum_{X=E, F} (\mathbf{W}_{EX} * \mathbf{r}_X)(\theta, t) + \sqrt{\tau F[\mathbf{u}_E(\theta, t)]_+} \xi(\theta, t), \quad (\text{C1})$$

972 and the divisive normalization provided by PV neurons (Eq. 1b),  
 973

$$974 \quad \mathbf{r}_E(\theta) = \frac{[\mathbf{u}_E(\theta)]_+^2}{1 + \rho w_{EP} \int_{-\pi}^{\pi} [\mathbf{u}_E(\theta)]_+^2 d\theta}, \quad (C2)$$

$$975$$

$$976$$

977 and the recurrent connection kernel  $\mathbf{W}_{EX}$  (Eq. 1d)  
 978

$$979 \quad \mathbf{W}_{YX}(\theta) = w_{YX} (\sqrt{2\pi} a_{XY})^{-1} \exp(-\theta^2/2a_{XY}^2). \quad (C3)$$

$$980$$

## 981 C.2 NETWORK'S ATTRACTOR STATES

$$982$$

983 We verify the proposed Gaussian ansatz of the attractor states of E neurons (Eq. 2),  
 984

$$985 \quad \bar{\mathbf{u}}_E(\theta) = \bar{U}_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right]. \quad (C4)$$

$$986$$

987 First, we substitute it into the divisive normalization (Eq. C2), yielding the following expression for  
 988 the firing rate of E neurons,  
 989

$$990 \quad \bar{\mathbf{r}}_E(\theta) = \frac{[\bar{\mathbf{u}}_E(\theta)]_+^2}{1 + \rho w_{EP} \int [\bar{\mathbf{u}}_E(\theta)]_+^2 d\theta} = \underbrace{\frac{\bar{U}_E^2}{1 + \rho w_{EP} \bar{U}_E^2 \sqrt{2\pi} a_E}}_{\bar{R}_E} \exp \left[ -\frac{(\theta - z_E)^2}{2a_E^2} \right]. \quad (C5)$$

$$991$$

$$992$$

$$993$$

994 Then we use the above E firing rate (Eq. C5) to calculate the recurrent input from the neuronal  
 995 population of type Y to the one with type X in the circuit model,  
 996

$$997 \quad \mathbf{u}_{XY}(\theta) = \rho \mathbf{W}_{XY} * \mathbf{r}_Y(\theta)$$

$$998 \quad = \frac{\rho w_{XY} R_Y}{\sqrt{2\pi} a_{XY}} \int \exp \left[ -\frac{(\theta' - \theta)^2}{2a_{XY}^2} - \frac{(\theta' - z_Y)^2}{2a_Y^2} \right] d\theta' \quad (C6)$$

$$999$$

$$1000 \quad = \rho w_{XY} R_Y \frac{a_Y}{\sqrt{a_{XY}^2 + a_Y^2}} \exp \left[ -\frac{(\theta - z_Y)^2}{2(a_{XY}^2 + a_Y^2)} \right].$$

$$1001$$

$$1002$$

1003 Specifically, based on Eq. (C6), the recurrent E population input is  
 1004

$$1005 \quad \mathbf{u}_{EE}(\theta) = \rho \mathbf{W}_{EE} * \mathbf{r}_E(\theta) = \underbrace{\frac{\rho}{\sqrt{2}} w_{EE} R_E}_{U_{EE}} \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right], \quad (C7)$$

$$1006$$

$$1007$$

$$1008$$

1009 and the feedforward population input is,  
 1010

$$1011 \quad \mathbf{u}_{EF}(\theta) = \rho \mathbf{W}_{EF} * \mathbf{r}_F(\theta) = \underbrace{\frac{\rho}{\sqrt{2}} w_{EF} R_F}_{U_{EF}} \exp \left[ -\frac{(\theta - \mu_z)^2}{4a_E^2} \right]. \quad (C8)$$

$$1012$$

$$1013$$

$$1014$$

1015 It can be checked the proposed Gaussian ansatz (Eq. C4) is indeed the sum of the recurrent input (Eq.  
 1016 C7) and the feedforward input (Eq. C8), i.e.,  
 1017

$$1018 \quad \bar{\mathbf{u}}_E(\theta) = \mathbf{u}_{EE}(\theta) + \mathbf{u}_{EF}(\theta)$$

$$1019 \quad \bar{U}_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] = U_{EE} \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] + U_{EF} \exp \left[ -\frac{(\theta - \mu_z)^2}{4a_E^2} \right]$$

$$1020$$

1021 and implies  
 1022

$$1023 \quad \mathbf{r}_E(\theta, t) = U_{EE} + U_{EF}, \quad z_E = \mu_z.$$

$$1024$$

1025 This completes the recurrent loop of the dynamics, and verify the validity of the Gaussian ansatz (Eq.  
 2).

1026 C.3 DIMENSIONALITY REDUCTION BY PROJECTING ON DOMINANT MODES  
10271028 We substitute Eqs. (C4-C8) into the Eq. (C1),  
1029

$$\begin{aligned}
1030 \quad & \tau \dot{U}_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] + \frac{\tau U_E}{2a_E} \dot{z}_E \left( \frac{\theta - z_E}{a_E} \right) \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] \\
1031 \quad & = -U_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] + \frac{\rho}{\sqrt{2}} w_{EE} R_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] \\
1032 \quad & + \frac{\rho}{\sqrt{2}} w_{EF} R_F \exp \left[ -\frac{(\theta - \mu)^2}{4a_E^2} \right] + \sqrt{\tau F U_E} \exp \left[ -\frac{(\theta - z_E)^2}{8a_E^2} \right] \xi(\theta, t) \\
1033 \quad & \\
1034 \quad & \\
1035 \quad & \\
1036 \quad & 
\end{aligned} \tag{C9}$$

1037 Previous studies analytically calculated the first two dominant eigenvectors (modes) (Wu et al., 2016;  
1038 Fung et al., 2010), corresponding to the change of the position and height of the Gaussian ansatz  
1039 respectively,  
1040

1041 Position :  $\phi_1(\theta|z_E) \propto \nabla_z \bar{\mathbf{u}}_E(\theta) \propto (\theta - z_E) \exp[-(\theta - z_E)^2/4a^2]$ ,  
1042

1043 Height :  $\phi_2(\theta|z_E) \propto \bar{\mathbf{u}}_E(\theta) \propto \exp[-(\theta - z_E)^2/4a^2]$ .  
1044

1045 Projecting the dynamics Eq. (C9) into these 2 motion modes (Eq. C10), which means calculate the  
1046 inner product  $\int f(\theta) \phi(\theta|z_E) d\theta$  with  $f(\theta)$  a term in Eq. (C9),  
1047

$$\begin{aligned}
1046 \quad & \tau U_E \dot{z}_E = \frac{\rho}{\sqrt{2}} w_{EF} R_F (\mu - z_E) \exp \left[ -\frac{(\mu - z_E)^2}{8a_E^2} \right] + \sigma_z \sqrt{\tau U_E} \xi \\
1047 \quad & \\
1048 \quad & \tau \dot{U}_E = -U_E + \frac{\rho}{\sqrt{2}} w_{EE} R_E + \frac{\rho}{\sqrt{2}} w_{EF} R_F \exp \left[ -\frac{(\mu - z_E)^2}{8a_E^2} \right] + \sigma_U \sqrt{\tau U_E} \xi \\
1049 \quad & \\
1050 \quad & 
\end{aligned}$$

1051 where  
1052

1053  $\sigma_z^2 = \frac{8aF}{3\sqrt{3\pi}}, \quad \sigma_U^2 = \frac{F}{\sqrt{3\pi}a}$ .  
1054

1055 When the bump position  $z_E$  is near the input position, i.e.,  $\mu - z_E \ll a_E$ , which is usually the case  
1056 in the circuit model, the exponential term  $\exp[-(\mu - z_E)^2/8a_E^2]$  is close to one and can be safely  
1057 ignored,  
1058

1059  $\dot{z}_E = (\tau U_E)^{-1} \frac{\rho}{\sqrt{2}} w_{EF} R_F (\mu - z_E) + \sigma_z (\tau U_E)^{-1/2} \xi_t$   
1060

1061  $\dot{U}_E = \tau^{-1} [-U_E + \frac{\rho}{\sqrt{2}} (w_{EE} R_E + w_{EF} R_F)] + \sigma_U (\tau^{-1} U_E)^{1/2} \xi_t$ .  
1062

1063 Furthermore, by using the notation  
1064

1065  $U_{EF} = \rho w_{EF} R_F / \sqrt{2}, \quad U_{EE} = \rho w_{EE} R_E / \sqrt{2}$ ,

1066 we arrive at Eqs. (3a and 3b) in the main text.  
10671068 C.4 THE PROBABILISTIC GENERATIVE MODEL EMBEDDED IN THE CIRCUIT MODEL  
1069

## 1070 C.4.1 THE STIMULUS LIKELIHOOD

1071 We study how feedforward input defines the latent stimulus likelihood, i.e.,  $\mathcal{L}(z) \propto p(\mathbf{r}_F|z)$ . From  
1072 the Eq. (1e), the feedforward input  $\mathbf{r}_F$  is modeled as a set of independent Poisson spike trains, where  
1073 each neuron's firing rate is Gaussian-tuned to the stimulus (Ma et al., 2006):  
1074

1075  $\mathbf{r}_F(\theta|z) \sim \text{Poisson}[\lambda_F(\theta|z)], \quad \lambda_F(\theta|z) = R_F \exp[-(\theta - z)^2/2a^2]$ ,  
1076

1077 where  $\lambda_F(\theta|z)$  is the mean firing rate of the neuron with stimulus preference  $\theta$ .  $\mathbf{r}_F$  denotes the peak  
1078 input rate, and  $a$  specifies the tuning width. Explicitly writing the Poisson distribution of feedforward  
1079 input spikes (we discretize the continuous  $\theta$  into equally spaced  $\theta_j$ ),  
1080

1081  $p(\mathbf{r}|z) = \prod_{j=1}^{N_E} \text{Poisson}(\mathbf{r}_j | \lambda_j \Delta t) = \prod_{j=1}^{N_E} \frac{(\lambda_j \Delta t)^{\mathbf{r}_j}}{\mathbf{r}_j!} \exp(-\lambda_j \Delta t)$ .  
1082

1080 Taking the logarithm,  
 1081  
 1082  
 1083

$$\begin{aligned} \ln p(\mathbf{r}|z) &= \sum_j [\mathbf{r}_j \ln(\lambda_j \Delta t) - \ln(\mathbf{r}_j!) - \lambda_j], \\ &= \sum_j \mathbf{r}_j \ln(\lambda_j \Delta t) + \text{const.} \end{aligned} \quad (\text{C16})$$

1084 The const. in the above equation is under the assumption that the sum of population firing rate  $\sum_j \lambda_j$   
 1085 is a constant irrelevant to latent stimulus  $z$ , which is true in a homogeneous population with a large  
 1086 number of neurons. Substituting the expression of the Gaussian tuning,  
 1087

$$\ln p(\mathbf{r}|z) = - \sum_j \mathbf{r}_j \frac{(\theta - z)^2}{2a^2} + \text{const} = - \frac{1}{2} \Lambda(z - \mu_z)^2 + \text{const}, \quad (\text{C17})$$

1090 where  
 1091  
 1092

$$\mu_z = \frac{\sum_j \mathbf{r}(\theta_j) \theta_j}{\sum_j \mathbf{r}(\theta_j)}, \quad \Lambda = a^{-2} \sum_j \mathbf{r}(\theta_j) \approx \sqrt{2\pi} \rho a^{-1} R_F. \quad (\text{C18})$$

1093 This implies the latent stimulus likelihood for the latent stimulus feature  $z$  given an observed  
 1094 feedforward input  $\mathbf{r}_F$  is derived as a Gaussian distribution,  
 1095

$$\mathcal{L}(z) = \mathcal{N}(z|\mu_z, \Lambda^{-1}),$$

1096 which is the Eq. (8) in the main text. Notably, the Gaussian distribution comes from the profile of the  
 1097 Gaussian tuning (Eq. C14) (Ma et al., 2006).  
 1098

#### 1100 C.4.2 UNIFORM STIMULUS PRIOR IN THE CIRCUIT

1101 Comparing the E bump position dynamics (Eq. C12) with the Langevin sampling dynamics (Eq. B3),  
 1102 it immediately suggests that the circuit stores a uniform (uninformative) stimulus prior, i.e.,  $p(z)$  is  
 1103 uniform. This is because the gradient of the log-likelihood ( $\nabla \mathcal{L}(z)$ , Eq. 8) has the same form with  
 1104 the drift term in the E position dynamics

$$\text{Likelihood gradient: } \nabla \ln \mathcal{L}(z) = \Lambda(\mu_z - z)$$

$$\text{E bump position drift term: } U_{EF}(\mu_z - z_E)$$

1105 suggesting the gradient of the prior is zero, i.e.,  $\nabla \ln p(z) = 0$ . This uniform prior arises from the  
 1106 circuit's homogeneous neurons (uniformly distributed in feature space) and its translation-invariant  
 1107 connection profile. Consequently, for the circuit to store a non-uniform prior, it must break this  
 1108 inherent symmetry in its neural organization and connectivity.  
 1109

#### 1112 C.5 CONDITIONS FOR REALIZING LANGEVIN SAMPLING IN THE CIRCUIT

1113 The circuit sampling of the likelihood means the equilibrium distribution of the bump position (Eq.  
 1114 C12) should match with the likelihood (Eq. 8). We copy the circuit bump position dynamics and the  
 1115 likelihood Langevin sampling dynamics in below for comparison,  
 1116

$$\text{Circuit: } \dot{z}_E = (\tau U_E)^{-1} \underbrace{\frac{\rho w_{EF} R_F}{\sqrt{2} \Lambda}}_{\lambda_z} \Lambda(\mu_z - z_E) + \sigma_z (\tau U_E)^{-1/2} \xi_t,$$

$$\text{Langevin: } \dot{z}_t = \tau_L^{-1} \Lambda(\mu_z - z) + (2\tau_L^{-1})^{1/2} \xi_t.$$

1117 The  $\sigma_z$  is a constant that doesn't change with neuronal activities. Therefore, the likelihood Langevin  
 1118 sampling in the circuit can be realized by setting the feedforward weight  $w_{EF}$  appropriately to make  
 1119 the ratio of the drift and diffusion coefficients the same as the Langevin sampling dynamics. The  
 1120 optimal feedforward weight can be found as (by using Eq. C18)  
 1121

$$\frac{\sigma_z^2}{\lambda_z} = 2 \Leftrightarrow w_{EF} = \frac{\sigma_z^2}{\sqrt{2} \rho} \frac{\Lambda}{R_F} = \left( \frac{2}{\sqrt{3}} \right)^3 F \quad (\text{C19})$$

1122 Furthermore, the time constant of the  $z_E$  dynamics is  
 1123

$$\tau_z = \lambda_z^{-1} \tau U_E = \frac{2\sqrt{\pi}}{a w_{EF}} \tau U_E, \quad (\text{C20})$$

1124 which is proportional to the E bump height  $U_E$ . Finally, the equation of bump position (Eq. C12) can  
 1125 be converted into the same form with a standard Langevin sampling,  
 1126

$$\dot{z}_E = \tau_z^{-1} \Lambda(\mu - z_E) + (2\tau_z^{-1})^{1/2} \xi_t$$

1134 C.6 NATURAL GRADIENT SAMPLING IN THE CIRCUIT  
1135

1136 The natural gradient Langevin sampling utilizes the Fisher information to determine the sampling  
1137 time constant (Eq. B3). We verify whether this can be realized in the circuit dynamics. Firstly, the  
1138 Fisher information of the likelihood is (Eqs. B4 and C17),

$$1139 \quad \begin{aligned} G(z) &= -\mathbb{E} [\nabla^2 \log \mathcal{L}(z)], \quad \text{where } \mathcal{L}(z) = \mathcal{N}(z|\mu_z, \Lambda^{-1}), \\ 1140 &= \Lambda \\ 1141 &= \sqrt{2\pi}\rho a^{-1} R_F \\ 1142 \end{aligned} \quad (C21)$$

1144 Meanwhile, the time constant of the circuit sampling dynamics  $\tau_z$  is proportional to the bump height  
1145  $U_E$  (Eq. C20). From the Eq. (C13), the equilibrium mean of the bump height can be calculated as

$$1146 \quad \bar{U}_E = \underbrace{\frac{\rho}{\sqrt{2}} w_{EE} \bar{R}_E}_{U_{EE}} + \underbrace{\frac{\rho}{\sqrt{2}} w_{EF} R_F}_{U_{EF}} = U_{EE} + \underbrace{\frac{a w_{EF}}{2\sqrt{\pi}} G(z)}_{\lambda_z}. \quad (C22)$$

1149 And therefore the circuit's sampling time constant is

$$1151 \quad \text{Circuit: } \tau_z = \lambda_z^{-1} \tau U_E = \tau [G(z) + \lambda_z^{-1} U_{EE}], \quad (C23)$$

$$1153 \quad \text{Natural gradient: } \tau_L = \eta [G(z) + \alpha] \quad (C24)$$

1154 It clearly shows the bump height  $\bar{U}_E$  increases with the Fisher information  $G(z)$ . Moreover, the  
1155 recurrent E input  $U_{EE}$  acts as the regularization term to increase the numerical stability of inverting  
1156 the Fisher information (similar to the role of  $\alpha$  in Eq. B3). This proves the reduced circuit with E and  
1157 PV neurons indeed implements natural gradient Langevin sampling from the likelihood.

1158  
1159 D COUPLED NEURAL CIRCUITS AND MULTIVARIATE POSTERIOR SAMPLING:  
1160 THEORY  
1161

## 1162 D.1 THEORETICAL ANALYSIS OF THE COUPLED CIRCUIT DYNAMICS

1164 We present the math about coupled canonical neural circuits implementing multivariate stimulus  
1165 posterior inference via natural gradient Langevin sampling (Zhang et al., 2016; 2023; Raju & Pitkow,  
1166 2016). The model we consider is composed of  $M$  reciprocally connected coupled circuit, with  
1167 each the same as a single canonical circuit in Sec. C. Each circuit  $m$  receives a feedforward input  
1168 independently generated from the corresponding latent stimulus  $s_m$  (Fig. 3), and eventually draw the  
1169 stimulus  $z_m$  from the multivariate posterior. Therefore, the number of coupled circuits in the model  
1170 is determined by the dimension of the multivariate posteriors.

1171 The dynamics of the coupled circuits is written as (we raise the subscript of capital latter denoting  
1172 neuron and input types to the superscript, and the new subscripts of lowercase letters denote the E  
1173 population indices),

$$1175 \quad \tau \frac{\partial \mathbf{u}_m^E(\theta, t)}{\partial t} = -\mathbf{u}_m^E(\theta, t) + \rho \sum_{X=E, F} \sum_{n=1}^M (\mathbf{W}_{mn}^{EX} * \mathbf{r}_n^X)(\theta, t) + \sqrt{\tau \mathbf{F}[\mathbf{u}_m^E(\theta, t)]_+} \xi_m(\theta, t) \quad (D1)$$

1178 Each circuit  $\mathbf{u}_m^E(\theta)$  receives a feedforward input  $\mathbf{r}_m^F(\theta)$  that is independently generated from a latent  
1179 stimulus  $s_m$  via the same way in the single circuit (Fig. 3, Eq. C14),

$$1180 \quad \mathbf{r}_m^F(\theta|z) \sim \text{Poisson}[\lambda_m^F(\theta|z_m)], \quad \lambda_m^F(\theta|z_m) = R_m^F \exp[-(\theta - z_m)^2/2a^2],$$

1182 For simplicity, we consider the feedforward connection weight  $w_{mm}^{EF}$  of each circuit is the same.

1184 Similar to the one-dimensional case (Eq. C4), we consider the Gaussian ansatz for the population  
1185 synaptic input at each circuit  $m$ ,

$$1186 \quad \mathbf{u}_m^E(\theta, t) = \bar{U}_m^E(t) \exp \left[ -\frac{(\theta - z_m^E)^2}{4a^2} \right].$$

Performing similar calculations by substituting the Gaussian ansatz of each circuit into the dynamics of the coupled circuits (Eq. D1),

$$\begin{aligned} & \tau \frac{U_{E,m}}{2a} \frac{d z_{mt}}{dt} \frac{\theta - z_{mt}}{a} e^{-(\theta - z_{mt})^2/4a^2} + \frac{\tau}{2a} \frac{d U_{E,m}}{dt} e^{-(\theta - z_{mt})^2/4a^2}, \\ & = - U_{E,m} e^{-(\theta - z_{mt})^2/4a^2} + \frac{\rho}{\sqrt{2}} \sum_n w_{mn}^{EE} R_n^E e^{-(\theta - z_{nt})^2/4a^2}, \\ & + \frac{\rho}{\sqrt{2}} w_{mm}^{EF} R_m^F e^{-(\theta - \mu_m)^2/4a^2} + \sqrt{\tau F U_m^E} e^{-(\theta - z_{mt})^2/8a^2} \xi_{mt}. \end{aligned} \quad (D2)$$

Projecting the above dynamics onto the two eigenfunctions (C10), and assume the differences between the bump positions of different circuits are small enough compared with the tuning width  $a$ , i.e.,  $|z_n - z_m| \ll a$ ,

$$\begin{aligned}
\text{Position: } \frac{dz_{mt}}{dt} &= \frac{\rho}{\sqrt{2}} (\tau U_m^E)^{-1} \left[ \sum_n w_{mn}^{EE} R_n^E (z_{nt} - z_{mt}) + w_{mm}^{EF} R_m^F (\mu_m - z_{mt}) \right] \\
&\quad + \sigma_z (\tau U_m^E)^{-1/2} \xi_{mt} \\
\text{Height: } \tau \frac{dU_m^E}{dt} &= -U_m^E + \frac{\rho}{\sqrt{2}} \sum_n w_{mn}^{EE} R_n^E + \frac{\rho}{\sqrt{2}} w_{mm}^{EF} R_m^F + \sigma_U (\tau U_m^E)^{1/2} \xi_{mt}.
\end{aligned}$$

where  $\sigma_z$  and  $\sigma_U$  are the same as Eq. (C11). Reorganizing the above equation into the matrix form,

$$\text{Position: } \dot{\mathbf{z}}_E = (\tau \mathbf{D}_U)^{-1} \left[ -\mathbf{L} \mathbf{z}_E + \mathbf{U}_{EF} \circ (\boldsymbol{\mu} - \mathbf{z}_E) \right] + \sigma_z (\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\xi}_t, \quad (\text{D3a})$$

$$\text{Height: } \dot{\mathbf{U}}_E = \tau^{-1}(-\mathbf{U}_E + \mathbf{U}_{EE} + \mathbf{U}_{EF}) + \sigma_U(\tau^{-1}\mathbf{D}_U)^{1/2}\xi_t. \quad (\text{D3b})$$

where  $\circ$  denotes the element-wise multiplication, and

$$\begin{aligned} \mathbf{U}_E &= \{U_m^E\}_{m=1}^M, \quad \mathbf{z}_E = \{z_m\}_{m=1}^M, \\ \mathbf{U}_{EE} &= \{U_m^{EE}\}_{m=1}^M, \quad \text{with} \quad U_m^{EE} = \sum_n U_{mn}^{EE} = \sum_n \frac{\rho}{\sqrt{2}} w_{mn}^{EE} R_n^E, \\ \mathbf{U}_{EF} &= \{U_m^{EF}\}_{m=1}^M, \quad \text{with} \quad U_m^{EF} = \frac{\rho}{\sqrt{2}} w_{mm}^{EF} R_m^F, \end{aligned} \quad (D4)$$

Matrix  $\mathbf{L}$ :  $[\mathbf{L}]_{mn} = -U_{mn}^{EE}$  ( $m \neq n$ ), and  $[\mathbf{L}]_{mm} = -\sum_{m \neq n} [\mathbf{L}]_{mn}$ ,

Matrix  $D_{II} \equiv \text{diag}(U_E)$

We obtain the bump position and height dynamics embedded in neural dynamics as presented in Eqs. (12a-12b) in the main text.

## D.2 THE GENERATIVE MODEL OF MULTIVARIATE STIMULUS STORED IN THE CIRCUIT

We present the math analysis in identifying the generative model especially the subjective stimulus prior stored in the circuit. Generally, the multivariate stimulus posteriors given received feedforward inputs are,

$$\begin{aligned}\pi(\mathbf{z}) &\equiv p(\mathbf{z}|\{\mathbf{r}_m^F\}_{m=1}^M) \\ &\propto p(\{\mathbf{r}_m^F\}_{m=1}^M|\mathbf{z})p(\mathbf{z}) \\ &= \left[ \prod_{m=1}^M p(\mathbf{r}_m^F|z_m) \right] p(\mathbf{z}) \\ &= \left[ \prod_{m=1}^M \mathcal{N}(z_m|\mu_m, \Lambda_m^{-1}) \right] p(\mathbf{z}), \\ &\equiv \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Lambda})p(\mathbf{z})\end{aligned}$$

where the second last equality comes from by using the same derivations as the Sec. C.4.1 on each feedforward input  $\mathbf{r}_i^F$ . And

$$\Lambda \equiv \text{diag}(\Lambda_1, \Lambda_2, \dots, \Lambda_M) \quad \text{where} \quad \Lambda_m \equiv \sqrt{2\pi} \rho a^{-1} B^F$$

is the likelihood precision matrix. Note that the stimulus prior  $p(\mathbf{z})$  is still unspecified at this moment. We will determine it in the following.

1242 **Subjective prior stored in the coupled circuits**  
12431244 Utilizing the Langevin sampling dynamics to sample the posterior  
1245

1246 
$$\begin{aligned}\dot{\mathbf{z}}_t &= \tau_L^{-1} \nabla \ln \pi(\mathbf{z}) + (2\tau_L^{-1})^{1/2} \boldsymbol{\xi}_t, \\ 1247 &= \tau_L^{-1} [\nabla \ln p(\mathbf{z}) + \boldsymbol{\Lambda} \circ (\boldsymbol{\mu} - \mathbf{z})] + (2\tau_L^{-1})^{1/2} \boldsymbol{\xi}_t,\end{aligned}$$

1248 Meanwhile, the coupled circuits' bump position dynamics is  
1249

1250 
$$\dot{\mathbf{z}}_E = (\tau \mathbf{D}_U)^{-1} [-\mathbf{L}\mathbf{z}_E + \mathbf{U}_{EF} \circ (\boldsymbol{\mu} - \mathbf{z}_E)] + \sigma_z (\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\xi}_t,$$

1251 Using the definition of  $\mathbf{U}_{EF}$  (Eq. D4) and the feedforward input intensity with the likelihood  
1252 precision (Eq. C18),  
1253

1254 
$$\mathbf{U}_{EF} = \underbrace{\frac{w_{mm}^{EF} a}{2\sqrt{\pi}}}_{\lambda_z} \boldsymbol{\Lambda}$$
  
1255  
1256  
1257

1258 It is straightforward to regard the  $\mathbf{L}\mathbf{z}$  term as the gradient from the stimulus prior,  
1259

1260 
$$\nabla \ln p(\mathbf{z}) = -\lambda_z^{-1} \mathbf{L}\mathbf{z} \Leftrightarrow p(\mathbf{z}) \propto \exp(-\mathbf{z}^\top \mathbf{L}\mathbf{z}/2\lambda_z) \quad (D5)$$

1261 Specifically, the prior precision matrix  $\lambda_z^{-1} \mathbf{L}$  is a generalized Laplacian matrix (Eq. D4, whose  
1262 determinant is zero, i.e.,  $|\mathbf{L}| = 0$ , suggesting the marginal prior of each stimulus is uniform, i.e.,  
1263  $p(z_m)$  is uniform. As an example, for  $M = 2$ , the prior  $p(\mathbf{z} = (z_1, z_2)^\top)$  is written as,  
1264

1265 
$$p(\mathbf{z}) = \exp \left[ -\frac{\mathbf{L}_{12}}{2} \mathbf{z}^\top \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \mathbf{z} \right] = \exp \left[ -\frac{\mathbf{L}_{12}}{2} (z_1 - z_2)^2 \right], \quad (D6)$$
  
1266  
1267

1268 where  $\mathbf{L}_{12}$  characterizes the correlation between  $z_1$  and  $z_2$ . It can be checked each marginal stimulus  
1269 prior is uniform.  
1270**Subjective multivariate stimulus posterior in the circuit**1271 Based on the identified stimulus prior stored in the circuit (Eq. D5), the (subjective) stimulus posterior  
1272 is calculated as  
1273

1274 
$$\begin{aligned}\pi(\mathbf{z}) &\equiv p(\mathbf{z} | \{\mathbf{r}_m^F\}_{m=1}^M) \\ 1275 &= \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}, \boldsymbol{\Lambda}) \mathcal{N}(\mathbf{z} | \mathbf{0}, \lambda_z \mathbf{L}^{-1}) \\ 1276 &\equiv \mathcal{N}(\mathbf{z} | \boldsymbol{\mu}_z, \boldsymbol{\Omega}^{-1})\end{aligned}$$
  
1277

1278 where  
1279

1280 
$$\boldsymbol{\Omega} = \boldsymbol{\Lambda} + \lambda_z^{-1} \mathbf{L}, \quad \boldsymbol{\mu}_z = \boldsymbol{\Omega}^{-1} \boldsymbol{\Lambda} \boldsymbol{\mu}. \quad (D7)$$

1281 **D.3 NATURAL GRADIENT SAMPLING VIA DIAGONAL APPROXIMATION OF FISHER  
1282 INFORMATION MATRIX**  
12831284 Eq. (D3a) suggests the time constant of the circuit's sampling dynamics (bump position) is determined  
1285 by the matrix  $\mathbf{D}_U$ .  
1286

1287 
$$\mathbf{D}_U = \text{diag}(\bar{\mathbf{U}}_E) \quad \text{where} \quad \bar{\mathbf{U}}_E = \mathbf{U}_{EE} + \mathbf{U}_{EF}$$

1288 We next analyze its relation with the Fisher information to verify whether the circuit implement  
1289 natural gradient sampling for multivariate posteriors.  
12901291 **FISHER INFORMATION OF THE MULTIVARIATE STIMULUS**  
12921293 Based on the (subjective) multivariate posterior calculated by the circuits (Eq. D7), the Fisher  
1294 information matrix of the multivariate stimulus is,  
1295

1296 
$$\mathbf{G}(\mathbf{z}) = \boldsymbol{\Omega} = \lambda_z^{-1} \mathbf{L} + \boldsymbol{\Lambda} = \lambda_z^{-1} [\mathbf{L} + \text{diag}(\mathbf{U}_{EF})] \quad (D8)$$

1296 In particular, by using the definition of the prior precision matrix (Eq. D5) and the posterior precision  
 1297 (Eq. D7),  
 1298

$$\begin{aligned} \text{diag}(\mathbf{G}(\mathbf{z})) &= \lambda_z^{-1}(\text{diag}(\mathbf{L}) + \mathbf{U}_{EF}), \\ &= \lambda_z^{-1}[\text{diag}(\mathbf{U}_{EE}) + \text{diag}(\mathbf{U}_{EF})], \\ &= \lambda_z^{-1}\text{diag}(\bar{\mathbf{U}}_E), \end{aligned}$$

1302 which clearly shows the circuit's sampling time constant  $\mathbf{D}_U$  is the diagonal matrix of the full Fisher  
 1303 information matrix, giving rise to the Eq. (14) in the main text.  
 1304

## 1305 E NATURAL GRADIENT HAMILTONIAN SAMPLING IN THE CIRCUIT WITH 1306 SOM NEURONS

### 1308 E.1 CIRCUIT DYNAMICS

1310 We also copy the dynamics of a single augmented circuit with SOM neurons (Eq. 1a and Eq. 1c)  
 1311 below.

$$\begin{aligned} \tau \dot{\mathbf{u}}_E(\theta, t) &= -\mathbf{u}_E(\theta, t) + \rho \sum_{X=E,F,S} (\mathbf{W}_{EX} * \mathbf{r}_X)(\theta, t) + \sqrt{\tau \mathbf{F}[\mathbf{u}_E(\theta, t)]_+} \xi(\theta, t) \\ \tau \dot{\mathbf{u}}_S(\theta, t) &= -\mathbf{u}_S(\theta, t) + \rho (\mathbf{W}_{SE} * \mathbf{r}_E)(\theta, t); \quad \mathbf{r}_S(\theta, t) = g_S \cdot [\mathbf{u}_S(\theta, t)]_+, \end{aligned} \quad (\text{E1})$$

1315 Similar to the Gaussian ansatz presented in Eqs. (C4-C8), we also propose the same Gaussian ansatz  
 1316 for the synaptic inputs of E and SOM neurons respectively. Specifically, since SOM neurons have  
 1317 different activation function with the E neurons, the population firing rate of SOM neurons is,

$$\bar{\mathbf{r}}_S(\theta) = g_S \cdot \mathbf{u}_S(\theta, t) = \underbrace{g_S U_S}_{R_S} \exp \left[ -\frac{(\theta - z_S)^2}{4a_S^2} \right]. \quad (\text{E2})$$

1321 Substituting the Gaussian ansatz of E and SOM neurons into the circuit dynamics (Eqs. E1),

$$\begin{aligned} U_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] &= \frac{\rho}{\sqrt{2}} \left( w_{EE} R_E \exp \left[ -\frac{(\theta - z_E)^2}{4a_E^2} \right] + w_{EF} R_F \exp \left[ \frac{(\theta - \mu_z)^2}{4a_E^2} \right] \right. \\ &\quad \left. + \frac{\rho}{\sqrt{2}} w_{ES} R_S \frac{a_S}{a_E} \exp \left[ -\frac{(\theta - z_S)^2}{4a_E^2} \right] \right), \\ U_S \exp \left[ -\frac{(\theta - z_S)^2}{4a_S^2} \right] &= \rho w_{SE} R_E \frac{a_E}{\sqrt{a_{SE}^2 + a_E^2}} \exp \left[ -\frac{(\theta - z_E)^2}{2(a_{SE}^2 + a_E^2)} \right], \end{aligned} \quad (\text{E3})$$

1328 Since the above equations are summations of Gaussian functions, it can be checked that when the  
 1329 positions of Gaussian functions are the same, i.e.,  $z_E = z_S = \mu_z$ , the sum of two Gaussian functions  
 1330 will also be a Gaussian function. In addition, to validate the Gaussian ansatz, we need the width  
 1331 fulfilling the following constrain of the connection width,

$$\begin{aligned} 2a_S^2 &= a_{SE}^2 + a_E^2 \\ a_E^2 &= a_{ES}^2 + a_{SE}^2. \end{aligned}$$

1337 Similar to the two motion modes for E neuron, the SOM also have two motion nodes (Sale & Zhang,  
 1338 2024),

$$\text{Position : } \phi_1(\theta|z_S) \propto \nabla_z \bar{\mathbf{u}}_S(\theta) \propto (\theta - z_S) \exp[-(\theta - z_S)^2/4a_S^2], \quad (\text{E4a})$$

$$\text{Height : } \phi_2(\theta|z_S) \propto \bar{\mathbf{u}}_S(\theta) \propto \exp[-(\theta - z_S)^2/4a_S^2]. \quad (\text{E4b})$$

1342 We project the dynamics of  $\mathbf{u}_E$  and  $\mathbf{u}_S$  onto their respective position modes (Eq. C10 and Eq. E4  
 1343 respectively). From here, we assume the difference between neuronal populations' positions is small  
 1344 enough compared to the connection width  $a$ , i.e.,  $|z_E - z_S|$  and  $|\mu_z - z_E| \ll 4a_X$ . In this case, the  
 1345 projected circuit dynamics can be simplified by ignoring exponential terms in Eq. (E3),

$$\begin{aligned} \tau U_E \dot{z}_E &= \frac{\rho}{\sqrt{2}} \left[ w_{ES} R_S \frac{a_S}{a_E} (z_S - z_E) + w_{EF} R_F (\mu_z - z_E) \right] + \sigma_z \sqrt{\tau U_E} \eta_t \\ \tau U_S \dot{z}_S &= \frac{\rho}{\sqrt{2}} \frac{a_E}{a_S} w_{SE} R_E (z_E - z_S) \end{aligned} \quad (\text{E5})$$

1350 Similarly, we project the E and SOM's dynamics on their respective height modes,  
 1351

$$\tau \dot{U}_E = -U_E + \frac{\rho}{\sqrt{2}} w_{EE} R_E + \frac{\rho}{\sqrt{2}} \frac{a_S}{a_E} w_{ES} R_S + \frac{\rho}{\sqrt{2}} w_{EF} R_F + \sigma_U \sqrt{\tau U_E} \xi_t \quad (\text{E6})$$

$$\tau \dot{U}_S = -U_S + \frac{\rho}{\sqrt{2}} \frac{a_E}{a_S} w_{SE} R_E. \quad (\text{E7})$$

1356 Similarly, to simplify notations, we define  
 1357

$$U_{XY} = \frac{\rho a_Y}{\sqrt{2} a_X} w_{XY} R_Y, \quad (\text{E8})$$

1360 and  $\sigma_z$  and  $\sigma_U$  are the same as Eq. (C11). The Eq. (E5) is simplified into,  
 1361

$$\begin{aligned} \tau U_E \dot{z}_E &= U_{ES}(z_S - z_E) + U_{EF}(\mu_z - z_E) + \sigma_z \sqrt{\tau U_E} \eta_t, \\ \tau U_S \dot{z}_S &= U_{SE}(z_E - z_S), \end{aligned} \quad (\text{E9})$$

1364 Reorganizing the bump position dynamcis into the matrix form,  
 1365

$$\dot{\mathbf{z}} = (\tau \mathbf{D}_U)^{-1} (\mathbf{F}_1 \mathbf{z} + \mathbf{M}_1) + (\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\Sigma}_1 \boldsymbol{\xi}_t \quad (\text{E10})$$

1368 where

$$\begin{aligned} \mathbf{z} &= (z_E, z_S)^\top, \quad \mathbf{D}_U = \text{diag}(U_E, U_S), \\ \mathbf{F}_1 &= \begin{pmatrix} -U_{EF} - U_{ES} & U_{ES} \\ U_{SE} & -U_{SE} \end{pmatrix}, \quad \mathbf{M}_1 = \begin{pmatrix} U_{EF} \mu_z \\ 0 \end{pmatrix}, \quad \boldsymbol{\Sigma}_1 = \begin{pmatrix} \sigma_z & 0 \\ 0 & 0 \end{pmatrix} \end{aligned} \quad (\text{E11})$$

## 1374 E.2 HAMILTONIAN SAMPLING IN THE CIRCUIT

1375 In the present study, we consider a Hamiltonian sampling with friction, because it can be mapped to  
 1376 the proposed circuit with a diversity of interneurons. Hamiltonian sampling can sample the desired  
 1377 distribution  $\pi(z)$  (with  $\pi(z)$  as the equilibrium distribution), which is defined as,  
 1378

$$\pi(z, p) = \exp[-H(z, p)] = \exp[-\ln \pi(z) - \ln \pi(p|z)] \quad (\text{E12})$$

1380 The previous study suggested the  $z_E$  dynamics is a mixture of the [Langevin](#) sampling and the  
 1381 [Hamiltonian](#) sampling (Sale & Zhang, 2024), and thus inspires us to decompose it into two parts,  
 1382

$$\tau U_E \dot{z}_E = \underbrace{[U_{ES}(z_S - z_E) + (1 - \alpha_L)U_{EF}(\mu_z - z_E)]}_{\text{Momentum } p, \text{ (Hamiltonian part)}} + \underbrace{[\alpha_L U_{EF}(\mu_z - z_E) + \sigma_z \sqrt{\tau U_E} \xi_t]}_{\text{Langevin part}},$$

1386 where  $\alpha_L \in [0, 1]$  denotes the proportion of Langevin sampling component. In this way, we can  
 1387 define the transformation matrix and rewrite,  
 1388

$$\mathbf{z}_H \equiv \begin{pmatrix} z \\ p \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 \\ -[U_{ES} + (1 - \alpha_L)U_{EF}] & U_{ES} \end{pmatrix}}_{\mathbf{T}} \mathbf{z} + \underbrace{\begin{pmatrix} 0 \\ (1 - \alpha_L)U_{EF} \mu_z \end{pmatrix}}_{\mathbf{M}_2} \quad (\text{E13})$$

1393 We are interested in  $\mathbf{z}_H$  dynamics, and investigate how the circuit parameters can be set to fulfill the  
 1394 Hamiltonian sampling. Without loss of generality, we consider a case of  $\mu_z = 0$  that simplify the  
 1395 derivation of the  $\mathbf{z}_H$  dynamics, which will make  $\mathbf{M}_1 = \mathbf{M}_2 = 0$ . And then,

$$\mathbf{z} = \mathbf{T}^{-1} \mathbf{z}_H \quad \text{where} \quad \mathbf{T}^{-1} = \frac{1}{U_{ES}} \begin{pmatrix} U_{ES} & 0 \\ U_{ES} + (1 - \alpha_L)U_{EF} & 1 \end{pmatrix}$$

1399 Then we can derive the dynamics of  $\mathbf{z}_H$ ,

$$\begin{aligned} \dot{\mathbf{z}}_H &= \mathbf{T} \dot{\mathbf{z}}, \\ &= \mathbf{T}[(\tau \mathbf{D}_U)^{-1} \mathbf{F}_1 \mathbf{z} + (\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\Sigma}_1 \boldsymbol{\xi}_t], \\ &= [\mathbf{T}(\tau \mathbf{D}_U)^{-1} \mathbf{F}_1 \mathbf{T}^{-1}] \cdot \mathbf{z}_H + \mathbf{T}(\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\Sigma}_1 \boldsymbol{\xi}_t, \end{aligned} \quad (\text{E14})$$

1404 where

$$\begin{aligned} \mathbf{T}(\tau \mathbf{D}_U)^{-1} \mathbf{F}_1 \mathbf{T}^{-1} &= - \begin{pmatrix} \alpha_L U_{EF} (\tau U_E)^{-1} & -(\tau U_E)^{-1} \\ \beta_E & \beta_p \end{pmatrix}, \\ \mathbf{T}(\tau \mathbf{D}_U)^{-1/2} \boldsymbol{\Sigma}_1 &= \begin{pmatrix} \sigma_z (\tau U_E)^{-1/2} & 0 \\ \sigma_p & 0 \end{pmatrix} \end{aligned} \quad (E15)$$

1410 and

$$\begin{aligned} \beta_E &= -(\tau U_E)^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}] \alpha_L U_{EF} + (1 - \alpha_L) (\tau U_S)^{-1} U_{SE} U_{EF}, \\ \beta_p &= (\tau U_E)^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}] + (\tau U_S)^{-1} U_{SE}, \\ \sigma_p^2 &= (\tau U_E)^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}]^2 \sigma_z^2 \end{aligned} \quad (E16)$$

### 1416 Standard form of the Hamiltonian sampling dynamics

1417 We further convert the Eq. (E14) into the standard form of Hamiltonian sampling dynamics (Eq. 7),  
1418 which corresponds to multiply the  $z_E$  with the posterior precision  $\Lambda$  and then compensate the  $\Lambda^{-1}$   
1419 into the preceding matrix,

$$\begin{aligned} \begin{pmatrix} \dot{z}_E \\ \dot{p} \end{pmatrix} &= - \begin{pmatrix} \alpha_L U_{EF} (\tau U_E)^{-1} \Lambda^{-1} & -(\tau U_E)^{-1} \\ \beta_E \Lambda^{-1} & \beta_p \end{pmatrix} \begin{pmatrix} \Lambda z_E \\ p \end{pmatrix} + \begin{pmatrix} \sigma_p & 0 \\ 0 & 0 \end{pmatrix} \boldsymbol{\xi}_t, \\ &= - \begin{pmatrix} \alpha_L U_{EF} (\tau U_E)^{-1} \Lambda^{-1} & -\beta_E \Lambda^{-1} \\ \beta_E \Lambda^{-1} & \tau U_E \beta_E \Lambda^{-1} \end{pmatrix} \begin{pmatrix} \Lambda z_E \\ (\tau U_E \beta_E)^{-1} \Lambda p \end{pmatrix} + \begin{pmatrix} \sigma_z (\tau U_E)^{-1/2} & 0 \\ \sigma_p & 0 \end{pmatrix} \boldsymbol{\xi}_t \end{aligned}$$

1426 The second equality comes from we have the freedom of determining the momentum  $p$ 's precision,  
1427 and then we could choose a momentum precision to make sure the first matrix on the RHS is anti-  
1428 symmetric. Eventually, by using

$$1429 \quad U_{EF} = \lambda_z \Lambda, \quad \Lambda z_E = -\nabla_z \ln \pi(z_E), \quad \tau_X = \tau U_X \quad (X = E, S),$$

1430 We can convert the  $(z_E, p)$  dynamics into the standard form of Hamiltonian sampling dynamics as  
1431 shown in the main text (Eq. 16), i.e.,

$$1433 \quad \frac{d}{dt} \begin{bmatrix} z_E \\ p \end{bmatrix} = - \begin{bmatrix} \alpha_L \lambda_z (\tau U_E)^{-1} & -\beta_E \Lambda^{-1} \\ \beta_E \Lambda^{-1} & \tau_E \beta_p \beta_E \Lambda^{-1} \end{bmatrix} \begin{bmatrix} -\nabla_z \ln \pi(z_E) \\ (\tau_E \beta_E)^{-1} \Lambda \cdot p \end{bmatrix} + \begin{bmatrix} \sigma_z (\tau_E)^{-1/2} \\ \sigma_p \end{bmatrix} \boldsymbol{\xi}_t \quad (E17)$$

### 1436 E.3 CONDITIONS FOR REALIZING HAMILTONIAN SAMPLING IN THE CIRCUIT

1437 Realizing Hamiltonian sampling in the circuit requires we set the ratio between drift and diffusion  
1438 terms appropriately in Eq. (E17).

$$1440 \quad \alpha_L \lambda_z \tau_E^{-1} = \sigma_z^2 \tau_E^{-1} / 2 \quad (E18a)$$

$$1441 \quad \tau_E \beta_p \beta_E \Lambda^{-1} = \sigma_p^2 / 2 \quad (E18b)$$

1442 Solving Eq. (E18a),

$$1444 \quad w_{EF} = \left( \frac{2}{\sqrt{3}} \right)^3 \mathsf{F} \alpha_L^{-1} \quad (E19)$$

1447 Solving Eq. (E18b) by substituting Eq. (E16)

$$\begin{aligned} 1448 \quad &\Lambda^{-1} U_{EF} [ -(\tau U_E)^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}] \alpha_L + (1 - \alpha_L) (\tau U_S)^{-1} U_{SE} ] \\ 1449 \quad &\times [(\tau U_E)^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}] + (\tau U_S)^{-1} U_{SE} ] \\ 1450 \quad &= \tau_E^{-2} [U_{ES} + (1 - \alpha_L) U_{EF}]^2 \sigma_z^2 / 2. \end{aligned}$$

1452 To simplify notations, we define two intermediate variables about common factors in the above  
1453 equation

$$1454 \quad h_E \equiv \tau_E^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}]; \quad h_S \equiv \tau_S^{-1} U_{SE}. \quad (E20)$$

1456 And utilizing the Eq. (E18a), it simplifies the equation into

$$1457 \quad [-h_E \alpha_L + (1 - \alpha_L) h_S] (h_E + h_S) = \alpha_L h_E^2$$

1458 Reorganizing the above equation into a quadratic equation of  $h_E$ ,  
 1459  
 1460  $2\alpha_L \cdot h_E^2 + (2\alpha_L - 1) \cdot h_S h_E + (\alpha_L - 1) h_S^2 = 0$ ,

1461 Then the root of the  $h_E$  is  
 1462  
 1463  $h_E = h_S \frac{(1 - 2\alpha_L) \pm \sqrt{1 + 4\alpha_L - 4\alpha_L^2}}{4\alpha_L} \equiv Q(\alpha_L) \cdot h_S$  (E21)  
 1464

1465 Combining the expression of  $h_E$  in Eq. (E20),  
 1466

$$\tau_E^{-1} [U_{ES} + (1 - \alpha_L) U_{EF}] = Q(\alpha_L) \cdot \tau_S^{-1} U_{SE}$$

1467 Then substituting the detailed expression of  $U_{EF}$ ,  $U_{SE}$ ,  $\tau_E$ , and  $\tau_S$  into the above equation, we have  
 1468

$$(U_E^{-1} R_S) \cdot w_{ES} - [(1 - \alpha_L) U_E^{-1} R_F] \cdot w_{EF} = [Q(\alpha_L) U_S^{-1} R_E] \cdot w_{SE}, \quad (\text{E22})$$

1470 which is the Eq. (17) in the main text.  
 1471

#### 1472 E.4 NATURAL GRADIENT HAMILTONIAN: DETERMINING THE MOMENTUM PRECISION IN THE 1473 CIRCUIT

1474 Eq. (E17) suggests the momentum precision in the circuit dynamics is  
 1475

$$\Lambda_p \equiv (\tau_E \beta_E)^{-1} \Lambda,$$

1476 which should be proportional to the inverse of the Fisher information of the stimulus,  $G(z)$  (Eq. 7).  
 1477 We next verify whether this can be satisfied in the circuit dynamics.  
 1478

1479 Substituting the expression of  $\beta_E$  in Eq. (E16) into the above equation and using the simplified  
 1480 notation  $h_E$  (Eq. E20), we have  
 1481

$$\Lambda_p = \tau_E^{-1} \Lambda ([-\alpha_L h_E + (1 - \alpha_L) h_S] U_{EF})^{-1}$$

1482 Utilizing the relation between  $h_E$  and  $h_S$  in Eq. (E21),  
 1483

$$\begin{aligned} \Lambda_p &= \tau_E^{-1} \Lambda ([-\alpha_L Q(\alpha_L) + (1 - \alpha_L)] h_S U_{EF})^{-1}, \\ &= \underbrace{\frac{1}{[-\alpha_L Q(\alpha_L) + (1 - \alpha_L)]}}_{\approx \text{const.}} \underbrace{\frac{\Lambda}{U_{EF}}}_{\lambda_z^{-1}} \underbrace{\frac{1}{\tau_E h_S}}_{\lambda_z^{-1}}. \end{aligned}$$

1484 Here the first term of  $\alpha_L$  about the proportion of Langevin sampling can be treated as a constant,  
 1485 and the  $\lambda_z$  is also a constant that doesn't change with the network activity. Substituting the detailed  
 1486 expression of  $\tau_E$  and  $h_S$  (Eq. E20)  
 1487

$$\Lambda_p \propto (\tau_E h_S)^{-1} = \frac{U_S}{U_E U_{SE}} = U_E^{-1},$$

1488 where the last equality comes from  $U_S = U_{SE}$  in the equilibrium state (Eq. (E7)) Furthermore, from  
 1489 the bump height dynamics in the augmented circuit with SOM (Eq. E6), and using similar analysis in  
 1490 Eq. (C22)  
 1491

$$\begin{aligned} U_E &= (U_{EE} + U_{ES}) + U_{EF}, \\ &= (U_{EE} + U_{ES}) + \lambda_z G(z), \end{aligned}$$

1492 which clearly shows the  $U_E$  in the augmented circuit increases with the Fisher information of the  
 1493 stimulus  $G(z)$ . Since the momentum precision  $\Lambda_p$  is inversely proportional to  $U_E$ , it decreases with  
 1494 the stimulus Fisher information  $G(z)$ , which is consistent with the natural gradient Hamiltonian  
 1495 sampling (Eq. 7).  
 1496

## 1505 F CIRCUIT SIMULATION PARAMETERS AND DETAILS

### 1508 F.1 CRITICAL WEIGHT

1509 To scale the connection strengths in our network model, we use a critical recurrent connection strength  
 1510 as a reference point. This critical strength is defined as the smallest value that allows the network to  
 1511 maintain persistent activity even when there is no feedforward input.

Table 1: PARAMETERS FOR HAMILTONIAN SAMPLING

| PARAMETER          | VARIABLE      | VALUE              |
|--------------------|---------------|--------------------|
| E time constant    | $\tau$        | 1                  |
| Connection width   | $a_E$         | 40°                |
| Num. of E neurons  | $N_E$         | 180                |
| Fano factor        | F             | 0.5                |
| Normalization      | $w_{EP}$      | $5 \times 10^{-4}$ |
| Feedforward weight | $w_{mm}^{EF}$ | $0.2\sqrt{2}w_c$   |
| Coupling Weight    | $w_{mn}^{EE}$ | $0.8w_c$           |

In the absence of feedforward input, the stationary state of circuit's bump height satisfies (Eqs. E6 - E7),

$$U_E = \frac{\rho}{\sqrt{2}} R_E \left[ w_{EE} + \frac{\rho}{\sqrt{2}} w_{ES} g_S w_{SE} \right], \quad (F1)$$

$$U_S = \frac{\rho}{\sqrt{2}} \frac{a_E}{a_S} w_{SE} R_E.$$

Furthermore, the firing rate of the E population,  $R_E$ , is related to its input  $U_E$  by the activation function defined in Eq. (C5). Substituting this expression for  $R_E$  into Eq. (F1) allows us to write an equation solely in terms of  $U_E$ :

$$U_E = \frac{\rho U_E^2}{\sqrt{2} + 2\sqrt{\pi} k \rho a_E U_E^2} \left[ w_{EE} + \frac{\rho}{\sqrt{2}} w_{ES} w_{SE} g_S \right].$$

Assuming  $U_E \neq 0$  (for persistent activity), we can divide by  $U_E$  and rearrange the equation into a quadratic form for  $U_E$ :

$$2\sqrt{\pi} k \rho a_E U_E^2 - \rho \left[ w_{EE} + \frac{\rho}{\sqrt{2}} w_{ES} w_{SE} g_S \right] U_E + \sqrt{2} = 0.$$

Let  $w_c = w_{EE} + \frac{\rho}{\sqrt{2}} w_{ES} w_{SE} g_S$ . This quadratic equation for  $U_E$  has real solutions if and only if its discriminant is non-negative ( $\rho^2 w_c^2 - 8\sqrt{2\pi} k \rho a_E \geq 0$ ). The smallest value of  $w_c$  that permits non-zero persistent activity occurs when the discriminant is zero, i.e.,

$$w_c^2 = \frac{8\sqrt{2\pi} k a_E}{\rho}. \quad (F2)$$

The network parameters used in our simulations are provided in Table 1. This includes parameters like the number of neurons ( $N_E = 180$ ,  $N_S = 180$ ) distributed over a feature space of width  $w_z = 360^\circ$ , leading to a neuronal density  $\rho = N/w_z$ . So the critical weight value is calculated as:

$$w_c = 2\sqrt{2}(2\pi)^{1/4} \sqrt{ka/\rho} \approx 0.896. \quad (F3)$$

The intensity of the feedforward input is then scaled relative to  $U_c$ , which is the peak synaptic input to the E population that is self-sustained by the E recurrent connections at their critical strength  $w_c$ , in the absence of feedforward input and SOM inhibition.  $U_c$  is given by:

$$U_c = \frac{w_c}{2\sqrt{\pi} k a}. \quad (F4)$$

## F.2 PARAMETERS FOR NETWORK SIMULATION

For the reduced network with only PV and excitatory neuron, the network parameters is set as following. This parameter set applies for a single circuit sampling a 1D stimulus posterior, and coupled circuits sampling multivariate stimulus posteriors. For 1D and 2D, the parameters are the same aside there are not coupling weight for 1d case.

For the equilibrium state analysis depicted in Figure 2, the network is first initialized using an input intensity identical to that of subsequent simulation phases, in order to remove the influence of

Table 2: Parameters for network

| PARAMETER        | VARIABLE     | VALUE |
|------------------|--------------|-------|
| Number of trials |              | 500   |
| Simulation time  | $T$          | 500.0 |
| Time step        | $dt$         | 0.01  |
| Recording start  | $t_{steady}$ | 50    |
| Input position   | $\mu$        | 0     |
| Initial mean eq  | $\mu_0$      | 0     |
| Initial var eq   | $V_0$        | 30    |

Table 3: PARAMETERS FOR HAMILTONIAN SAMPLING

| PARAMETER                  | VARIABLE | VALUE    |
|----------------------------|----------|----------|
| Num. of SOM                | $N_S$    | 180      |
| SOM time constant          | $\tau_S$ | 1.0      |
| SOM connection width       | $a_S$    | 37.4°    |
| E to SOM connection width  | $a_{SE}$ | 34.6°    |
| SOM to E connection width  | $a_{ES}$ | 20°      |
| SOM to E connection weight | $w_{ES}$ | $0.6w_c$ |

non-equilibrium bump height. During this initialization, the input position varies across trials, drawn from a Gaussian distribution with mean  $\mu_0$  and variance  $V_0$ .

After allowing the network’s bump height to reach equilibrium post-initialization, the input position is then set to match the mean of the network’s activity bump. The simulation proceeds for a duration of  $50\tau$ , using an integration time step of 0.01 time units. The first 20 time steps of this period are discarded to avoid transient effects. Following this, the input position is fixed at 0, and the network is simulated for an additional  $450\tau$  with the same integration step.

Throughout the latter  $450\tau$  simulation, the bump position is recorded to calculate the KL divergence between the network’s evolving state and a target posterior distribution. The network state at the end of the initialization phase serves as the reference for the initial KL divergence value.

For comparison, a separate Langevin sampling process is performed. This sampling is initialized using the network’s bump position from the end of its initialization phase. The Langevin sampling then runs for a duration of  $450\tau$ , also using an integration time step of 0.01 time units.

For the non-equilibrium state depicted in Figure 2, the network is initially prepared by applying a substantially smaller input signal, denoted as  $scale_{ini}$ . This input is administered uniformly to all neurons for a duration of  $20\tau$  to initialize the network. After this initialization phase, the input to each neuron is then adjusted to its designated operational value.

For the natural gradient (NG) sampling procedure, the starting position is set to the ‘bump’ location observed at the final step of the Continuous Attractor Neural Network (CANN) model’s initialization.

For the different recurrent weight, we fix input intensity  $R_F = 3$ . We get time constant by getting the cross-correlation of bump position simulated from the network and fit the exponential function to get the time constant.

Hamiltonian sampling parameters mostly mirror the previous set, but differ by including connection parameters that define interactions between SOM and excitatory neurons. For 500 trials and simulation  $500\tau$ , it takes 2 hours on the 512GB cpu hpc.

### F.2.1 NUMERICAL ESTIMATE OF THE STIMULUS PRIOR IN COUPLED CIRCUITS

We numerically estimate the subjective bivariate stimulus prior stored in the coupled circuits. Given a combination of circuit parameters, we ran a large ensemble of stochastic network simulations. From

1620 the spatio-temporal firing rate patterns in each circuit  $\mathbf{r}_m$ , we decoded instantaneous population  
 1621 vectors  $z_m$  in each time bin in each trial. Then we concatenate the  $z_m$  from two circuits together,  
 1622  $\mathbf{z} = (z_1, z_2)$ , and estimate its mean  $\mu_{\mathbf{z}}$  and covariance  $\Sigma_{\mathbf{z}}$ , which are used to parameterize the  
 1623 Gaussian sampling distribution, i.e.,  $p(\mathbf{z}) = \mathcal{N}(\mu_{\mathbf{z}}, \Sigma_{\mathbf{z}})$ .

1624 And then we search the prior precision matrix  $\mathbf{L}$  under which the posterior is closest to the sampling  
 1625 distribution  $p(\mathbf{z})$ ,

$$1627 \hat{\mathbf{L}} = \arg \min_{\mathbf{L}} D_{KL} [\pi(\mathbf{z}) \| p(\mathbf{z})]$$

1629 where the posterior  $\pi(\mathbf{z})$  is calculated based on the parameter  $\mathbf{L}$  to be estimated,

$$1631 \pi(\mathbf{z}) = \mathcal{N}(\mu_{\mathbf{z}}, \Omega^{-1}), \quad \text{with } \Omega = \Lambda + \mathbf{L}, \quad \mu_{\mathbf{z}} = \Omega^{-1} \Lambda \mu,$$

1632 and the likelihood mean  $\mu$  and precision  $\Lambda$  are directly estimated from the received feedforward  
 1633 inputs (Eq. C18),

$$1635 \mu_{z,m} = \frac{\sum_j \mathbf{r}_m(\theta_j) \theta_j}{\sum_j \mathbf{r}_m(\theta_j)}, \quad \Lambda_m = a^{-2} \sum_j \mathbf{r}_m(\theta_j) \approx \sqrt{2\pi} \rho a^{-1} R_m^F. \quad (F5)$$

### 1638 F.2.2 THE VECTOR FIELD (DRIFT TERM) OF CIRCUITS' SAMPLING DYNAMICS

1640 For both the diagonal-Fisher natural-gradient Langevin sampler and the full-Fisher method, we  
 1641 can directly compute the gradient at each point in parameter space, evaluate the Fisher information  
 1642 (either the full matrix or just its diagonal), and then derive the corresponding vector field from this  
 1643 information.

1644 In the case of our CANN (Continuous Attractor Neural Network) model, constructing the equilibrium  
 1645 vector field requires a slightly different approach. The goal is to observe how the position of the  
 1646 bump (i.e., the localized peak of neural activity) shifts in response to changes in the input. To do  
 1647 this, we first stabilize the bump at a reference location. Specifically, we apply a fixed external input  
 1648 centered at  $(x_0, y_0)$  and run the CANN dynamics until the bump height reaches equilibrium. In our  
 1649 experiments, this equilibration phase lasted for 20 time constants ( $20\tau$ ) .

1650 Once the bump has stabilized, we perturb the input by shifting it to a new position  $(x_1, y_1)$ , and  
 1651 observe how the bump position responds. The resulting displacement of the bump provides the vector  
 1652 at the new point, essentially showing how the internal state of the network changes in response to  
 1653 this small input shift. Analytically, this shift can be expressed as moving the input from  $(x_0, y_0)$   
 1654 to  $(x_2, y_2) = (x_0, y_0) + \Lambda^{-1} \Omega (x_1 - x_0, y_1 - y_0)$ , where  $\Lambda^{-1} \Omega$  captures the relationship between  
 1655 input space and the internal dynamics of the bump.

1656 Because our 2D network structure implicitly encodes a prior, shifting the bump corresponds to  
 1657 translating the mean of the posterior distribution. Repetition of this process across a grid of input  
 1658 locations  $(x_2, y_2)$ , we can scan the whole bump position grid and then we can systematically map out  
 1659 the equilibrium vector field of the CANN. This field describes how the network's internal estimate-the  
 1660 bump position-evolves in response to perturbations in the input.

### 1662 F.3 PARAMETERS FITTING

1663 In our attractor network, the bump position  $z(t) = (z_E(t), z_S(t))^{\top}$  is determined by the connection  
 1664 between Excitatory and SOM populations. The dynamics are described by equations(E10).

1666 By introducing a compact notation and collecting terms into matrix-vector form, we specifically  
 1667 define the state as  $\mathbf{z} = (z_E, z_S)^{\top}$  and the 2D dynamics as:

$$1669 \dot{\mathbf{z}} = \mathbf{D}_U^{-1} \mathbf{F}_1 \mathbf{z} + \mathbf{D}_u^{-1} \mathbf{M}_1 + \Sigma \xi_t \quad (F6)$$

1670 where  $\mathbf{D}_U^{-1} \mathbf{F} \in \mathbb{R}^2$  which is the drift matrix,  $\mathbf{M}_1 \in \mathbb{R}^2$  is a constant input, and  $\Sigma \xi_t$  is noise term.

1672 Convert into the form of transition probability:

$$1673 \mathbf{z}_{t+\Delta t} \sim \mathcal{N}((\mathbf{I} + \mathbf{D}_u^{-1} \mathbf{F}_1 \Delta t) \mathbf{z}_t + \mathbf{D}_u^{-1} \mathbf{M}_1 \Delta t, \mathbf{Q}), \quad (F7)$$

1674 where

1675  
1676 
$$\mathbf{D}_u^{-1} \mathbf{F}_1 = \begin{bmatrix} h_{ES} + h_{EF} & -h_{ES} \\ h_{SE} & -h_{SE} \end{bmatrix}, \mathbf{Q} = \Sigma_1 \Delta t \quad (F8)$$
 1677

1678 and  $h_{ES} = -U_E^{-1} U_{ES}$ ,  $h_{EF} = -U_E^{-1} U_{EF}$ ,  $h_{SE} = -U_S^{-1} U_{SE}$  are time-rescaled synaptic  
1679 coefficients.1680 Because the noise enters the network only through the excitatory population. We therefore estimate  
1681 the four unknown parameters  $\{h_{SE}, h_{ES}, h_{EF}, \sigma_z\}$  in two consecutive steps.  
16821683 From the noiseless second equation, we have  $\dot{z}_S = U_{SE}(z_E - z_S)$  with the closed-form discrete  
1684 update  $z_S(t + \Delta t) - z_S(t) = U_{SE}[z_E(t) - z_S(t)]\Delta t$ . Averaging over a trajectory of length  $T$  gives  
1685 an unbiased estimator

1686 
$$\hat{U}_{SE} = \frac{\langle z_S(t + \Delta t) - z_S(t) \rangle_t}{\Delta t \langle z_E(t) - z_S(t) \rangle_t}, \quad (F9)$$
 1687

1688 so no optimization is required.  
16891690 Conditioned on  $z_S$ , the excitatory coordinate follows a scalar Ornstein–Uhlenbeck process  
1691

1692 
$$z_E(t + \Delta t) = z_E(t) + \Delta t[(h_{ES} + h_{EF})z_E(t) - h_{SE}z_S(t)] + \sigma_z \sqrt{\Delta t} \xi_t. \quad (F10)$$
 1693

1694 Then we used maximum likelihood estimation (MLE) to estimate the parameters of  
1695  $\{h_{SE}, h_{ES}, h_{EF}, \sigma_z\}$  in the above equation. All parameters are regressed on a data segment  
1696 of 1000 samples, corresponding to  $10\tau$ . The parameters are explicitly reparameterized in terms of  
1697 their biological interpretation and optimized via stochastic gradient descent (Adam), enabling stable  
1698 and interpretable system identification.  
16991700 After obtaining the MLE estimate of  $\{h_{SE}, h_{ES}, h_{EF}, \sigma_z\}$  for each data set, we numerically find  
1701 the transformation  $\mathbf{T}$  matrix (Eq. E13) by directly estimating the values of  $U_E$ ,  $U_S$  and  $\alpha_L$  from  
1702 network activities. Eventually, we use the estimated  $\mathbf{T}$  matrix to convert the  $(z_E, z_S)$  into  $(z_E, p)$  as  
1703 described in Eq. (E13).1704 We evaluated  $\Lambda_p$  under 11 values of feedforward input intensity,  $R_F \in \{11, 13, \dots, 23\}$ , and found  
1705 the decreasing trend of kinetic energy. The decreasing trend confirms the theoretical prediction that a  
1706 stronger external drive reduces the effective momentum budget required for accurate sampling. All  
1707 experiments were performed on a compute node equipped with 40 CPU cores and one NVIDIA A100  
1708 GPU; the full pipeline completed in about 26 hours.  
17091710 F.4 EMBEDDING CANONICAL CIRCUITS AS A LATENT SPACE SAMPLER IN VAE FRAMEWORK  
17111712 **Dataset and augmentation.** As a proof-of-concept example, we consider the MNIST handwritten  
1713 digit dataset. To mimic a simple physical stimulus space, each grayscale image was augmented by a  
1714 *rotation* and a *contrast rescaling*. Let  $\mathbf{x}_0$  denote the original  $28 \times 28$  image (pixel values in  $[0, 1]$ ).  
1715 For each training sample we drew

1716 
$$z \sim \mathcal{U}[-z_{\max}, z_{\max}], \quad c \sim \mathcal{U}[c_{\min}, c_{\max}], \quad (F11)$$
 1717

1718 with  $z_{\max} = 180^\circ$ ,  $c_{\min} = 0.1$ ,  $c_{\max} = 1.0$ . We then applied a rotation by angle  $\theta$  followed by a  
1719 contrast adjustment with factor  $c$  using bilinear interpolation and zero padding.  
17201721 **Model architecture.** We connect the encoder, canonical circuit, and decoder in serial (Fig. 5A).  
1722 Given an input image  $\mathbf{x}$ , we pass it into the encoder that is a multi-layer perception (MLP) and is  
1723 supposed to output normalized latent variables:  
1724

1725 
$$(\hat{z}, \hat{c}) = f_{Encoder}(\mathbf{x}), \quad (F12)$$
 1726

1727 where  $\hat{z}$  and  $\hat{c}$  represent the estimated orientation and the contrast, respectively. Then we pass them  
1728 into Eq. (1e) to generate a population feedforward input  $\mathbf{r}_F$  to canonical circuit,  
1729

1730 
$$\mathbf{r}_F(\theta) = \hat{c} R_F \exp[-(\theta - \hat{z})^2 / 2a^2]. \quad (F13)$$
 1731

1732 Next, the feedforward input  $\mathbf{r}_F$  is fed into the canonical circuit dynamics (Eqs. 1a-1b) that produces  
1733 the bump population firing rate  $\mathbf{r}_E(\theta, t)$  over time. After the circuit dynamics enters the equilibrium,  
1734 we read out the bump response location  $z_E$  and height  $R_E$  from the  $\mathbf{r}_E(\theta, t)$ , where  $z_E$  is regarded  
1735

1728 as a sample drawn from the orientation likelihood. Then  $(z_E, R_E)$  forms the input to the decoder  
 1729 that is supposed to output a reconstructed image,  
 1730

$$\hat{\mathbf{x}} = f_{Decoder}(z_E, R_E) \quad (F14)$$

1732 In our example, both encoder and decoder are MLPs with two hidden layers and ReLU activation  
 1733 function.

1734 **Training the encoder and decoder.** Since the latent sampler is given in VAE and it will be  
 1735 implemented by our canonical recurrent circuit, we don't train the recurrent circuit while only train  
 1736 the encoder and decoder. We trained the encoder in a purely supervised fashion by minimizing the  
 1737 mean-squared error between predicted latent variable,  $(\hat{z}, \hat{c})$ , and the target latent  $(z, c)$ . Similarly,  
 1738 the decoder also undergoes supervised training that reconstructs the augmented images  $\hat{\mathbf{x}}$  given the  
 1739 true latent parameters  $(\hat{z}, \hat{c})$ , minimizing the pixel-wise Bernoulli negative log-likelihood. During  
 1740 training, we optionally replaced the ground-truth  $(z, c)$  by the well-trained encoder predictions  $(\hat{z}, \hat{c})$ ,  
 1741 effectively training a full autoencoder.

1742 All models were implemented in PyTorch. For both the encoder and decoder, we used ReLU  
 1743 nonlinearities and trained with Adam optimizer (learning rate  $10^{-3}$ , default momentum parameters).  
 1744 The encoder was trained for 100 epochs with batch size 128, and the decoder for 200 epochs with  
 1745 batch size 256.

## 1747 G GENERALIZATION

### 1749 G.1 NON-FLAT PRIOR

1750 If we want to store a non-uniform marginal prior needs to break the symmetry of E neurons, i.e.,  
 1751 the tuning curves of all E neurons (Fig. A1C) cannot be homogeneous (aligned after translation in  
 1752 stimulus subspace) and uniformly cover the stimulus subspace. Previous studies suggested we can  
 1753 introduce the heterogeneity of tuning height, width and tuning's distribution on the stimulus subspace  
 1754 to store non-uniform marginal priors. Regarding the circuit mechanism, the tuning heterogeneity  
 1755 for non-uniform marginal prior may come from 1) an external prior input that may from higher  
 1756 cortex, or 2) internally stored in the recurrent weights in the network model which can be realized  
 1757 by introducing an extra heterogeneous recurrent weight component superimposed on the translation-  
 1758 invariant recurrent weight matrix. We provide brief analysis of the possibility 1) by showing an  
 1759 external prior input can still maintain the relation between bump height and the FI. For simplicity, we  
 1760 consider the external prior input is constant over time and it also has a Gaussian profile that is added  
 1761 into the circuit dynamics (Eq.1a),

$$1762 \rho \sum_X (\mathbf{W}_{EP} * \mathbf{r}_P)(\theta, t), \quad \mathbf{r}_P(\theta, t) = R_P \exp[-(\theta - z_P)^2 / 2a^2]$$

1763 It will become,

$$1764 \tau \dot{\mathbf{u}}_E(\theta, t) = -\mathbf{u}_E(\theta, t) + \rho \sum_X (\mathbf{W}_{EX} * \mathbf{r}_X)(\theta, t) + \rho \sum_X (\mathbf{W}_{EP} * \mathbf{r}_P)(\theta, t) + \sqrt{\tau F[\mathbf{u}_E(\theta, t)]_+} \xi(\theta, t).$$

1765 Mathematically, the external prior input is similar to the feedforward input. By performing the same  
 1766 math calculations, the Eqs. 3a and 3b are updated into with a new term,  
 1767

$$1768 \text{Position : } \dot{z}_E \approx (\tau U_E)^{-1} U_{EF}(\mu_z - z_E) + (\tau U_E)^{-1} U_{EP}(\mu_p - z_E) + \sigma_z (\tau U_E)^{-1/2} \xi_t \quad (G1a)$$

$$1769 \text{Height : } \dot{U}_E \approx \tau^{-1} [-U_E + U_{EE} + U_{EF} + U_{EP}] + \sigma_U (\tau^{-1} U_E)^{1/2} \xi_t, \quad (G1b)$$

1770 where the  $U_{EP}$  and  $\mu_p$  characterizes the precision and mean of the non-uniform marginal prior.  
 1771 Since the drift term of  $z_E$  dynamics contains feedforward input (1st RHS term) and the prior input  
 1772 (2nd RHS term), circuit can sample the posterior with non-uniform marginal prior. When  $z$  reaches  
 1773 equilibrium, the distribution will be the posterior,  
 1774

$$1775 p(z) \propto \exp[\sqrt{2\pi} \rho R_f a^{-1} (\mu_z - z_E)^2 + \sqrt{2\pi} \rho R_p a^{-1} (\mu_p - z_E)^2]$$

1776 In addition, the updated  $U_E$  dynamics also receives the  $U_{EP}$  representing the prior precision, suggesting  
 1777 the bump height  $U_E$  still encodes the updated posterior FI. Because the log-posterior and its Fisher  
 1778 information are additive ( $G_{posterior} = G_{likelihood} + G_{prior}$ ), the total bump height  $U_E$  naturally  
 1779 becomes the sum of the input heights (e.g.,  $U_{EF} + U_{EP} \propto FI$ ), with each height representing its  
 1780 component of the total information.

1782 G.2 VON MISES CASE  
1783

1784 Continuing the above modification of the recurrent circuit, we can further investigate how the circuit  
1785 can implement NG sampling of 1D von Mises likelihoods (the circuit still stores a uniform prior),  
1786 e.g.,  $p(\mu_z|z) \propto \exp[\kappa \cos(z - \mu_z)]$ .

1787 The Fisher information (FI) under the von Mises posterior is  
1788

$$1789 G(z) = \mathbb{E}_{p(\mu_z|z)}[-\nabla_z^2 \ln p(\mu_z|z)] = \int [-\nabla_z^2 \ln p(\mu_z|z)] p(\mu_z|z) d\mu_z$$

1792 where the negative Hessian of the log-likelihood is  
1793

$$1794 -\nabla_z^2 \ln p(\mu_z|z) = \kappa \cos(z - \mu_z)$$

1795 and thus the FI is  
1796

$$1797 G(z) = \int \kappa \cos(z - \mu_z) \frac{\exp[\kappa \cos(z - \mu_z)]}{2\pi I_0(\kappa)} d\mu_z = \kappa \frac{I_1(\kappa)}{I_0(\kappa)}$$

1800 where  $I_0(\kappa)$  and  $I_1(\kappa)$  are modified Bessel function of the first kind with zeroth and first order  
1801 respectively.  
1802

1803 Although we see the FI of the von Mises likelihood doesn't depend on  $z$ , i.e., the local geometry.  
1804 Our preliminary analysis find the recurrent circuit dynamics in response to an observed feature  $\mu_z$   
1805 within a trial is not able to evaluate the expectation over  $\mu_z$ . Instead, we find within a trial, the circuit  
1806 corresponds to approximating the observed FI by using the mean of the likelihood, i.e.,  
1807

$$1808 G(z) = \mathbb{E}_{p(\mu_z|z)}[\kappa \cos(z - \mu_z)] \approx \kappa \cos(z - x)|_{x=\mu_z} = \kappa \cos(z - \mu_z)$$

1810 Therefore, within a trial the approximated FI is dependent on local geometry. Once we follow the  
1811 same theoretical protocols and update the bump height  $U_E$  dynamics in the case of von Mises kernel,  
1812 we find the  $U_E$  is a function of  $\kappa \cos(z - \mu_z)$  shown as the last term of the following equation, i.e.,  
1813

$$1814 U_E = \frac{\rho w_{EE}}{e^{a/2}} \frac{I_0(a)}{I_0(a/2)^2} R + \frac{8+a}{8I_0(a)} R_F + \frac{a \cos(\mu_z - z)}{8I_0(a)} R_F$$

1816  
1817  
1818  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835