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Abstract

The automated analysis of medical time series, such as the electrocardiogram (ECG), elec-
troencephalogram (EEG), pulse oximetry, etc, has the potential to serve as a valuable tool
for diagnostic decisions, allowing for remote monitoring of patients and more efficient use of
expensive and time-consuming medical procedures. Deep neural networks (DNNs) have been
demonstrated to process such signals effectively. However, previous research has primarily
focused on classifying medical time series rather than attempting to regress the continuous-
valued physiological parameters central to diagnosis. One significant challenge in this regard
is the imbalanced nature of the dataset, as a low prevalence of abnormal conditions can lead
to heavily skewed data that results in inaccurate predictions and a lack of certainty in such
predictions when deployed. To address these challenges, we propose HypUC, a framework
for imbalanced probabilistic regression in medical time series, making several contributions.
(i) We introduce a simple kernel density-based technique to tackle the imbalanced regres-
sion problem with medical time series. (ii) Moreover, we employ a probabilistic regression
framework that allows uncertainty estimation for the predicted continuous values. (iii) We
also present a new approach to calibrate the predicted uncertainty further. (iv) Finally, we
demonstrate a technique to use calibrated uncertainty estimates to improve the predicted
continuous value and show the efficacy of the calibrated uncertainty estimates to flag un-
reliable predictions. HypUC is evaluated on a large, diverse, real-world dataset of ECGs
collected from millions of patients, outperforming several conventional baselines on various
diagnostic tasks, suggesting potential use-case for the reliable clinical deployment of deep
learning models and a prospective clinical trial. Consequently, a hyperkalemia diagnosis al-
gorithm based on HypUC is going to be the subject of a real-world clinical prospective study.

1 Introduction

Electrocardiogram (ECG) signals are widely used in the diagnosis and management of cardiovascular dis-
eases. However, widely popular manual analysis of ECG signals can be time-consuming and subject to
human error. Automated analysis of ECG signals using machine learning (ML) techniques has the po-
tential to improve the accuracy and efficiency of ECG signal analysis. Moreover, it will open up the
avenue for remote patient monitoring for managing the cardiovascular health of the patients at scale.
Recent advances in ML have led to the development of various algorithms for the automated analy-
sis of ECG signals. These include methods for ECG signal classification and diagnosis of specific car-
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diovascular diseases (Hannun et al., 2019). Convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) are commonly used for these tasks (Siontis et al., 2021; Şentürk et al., 2018).

Figure 1: Severity of the Hyperkalemia often decides
diagnosis. Hence, the binary classification is not sufficient.

Existing literature often focuses on classifying
the medical time series (in one of the disease-
related classes) (Siontis et al., 2021; Hannun
et al., 2019) instead of regressing the continuous-
valued physiological parameter on which the di-
agnosis is based (Von Bachmann et al., 2022).
But often, solving the regression problem is more
valuable than classification; for instance, con-
sider the problem of measuring electrolytes like
potassium in the blood. Excess of potassium
(known as Hyperkalemia) can be fatal. Detecting
if the patient has Hyperkalemia non-invasively
by analyzing the ECG is desirable and has been

studied previously (Galloway et al., 2019). However, a binary classifier does not distinguish between the
different severity of Hyperkalemia as shown in Figure 1 that may decide the final diagnosis for the condition,
i.e., severe/mild hyperkalemia requires different treatments.

One of the significant challenges in the real world for regressing the continuous-valued physiological parameter
from medical time series is the imbalanced nature of the dataset, i.e., such datasets are often highly skewed if
the prevalence of the abnormal condition is low. A heavily skewed dataset leads to a trained network that is
inaccurate in the prediction. Moreover, a deterministic deep-learning model cannot quantify uncertainty in
predictions at deployment. To address these limitations, we propose a new framework called HypUC, shown in
Figure 2. It leverages ideas from probabilistic regression and density estimation to tackle uncertainty-aware
imbalanced regression with medical time series. In particular, our method makes several contributions:

• We introduce a simple kernel density-based technique to tackle the imbalanced regression problem
with medical time series, discussed in detail in Section 3.2.2, 3.3.

• Our method builds on probabilistic deep regression that allows uncertainty estimation for the pre-
dicted continuous values in the novel context of medical time series, presented in Section 3.2.3, 3.3.

• We propose a new approach for calibrating the predicted uncertainty in Section 3.3.2.

• Finally, we demonstrate the efficacy of the calibrated uncertainty estimates to improve the predicted
continuous value and also flag unreliable predictions, as discussed in Section 3.3.3.

We study the efficacy of our methods on a large real-world dataset of ECGs (collected using millions of
patients with diverse medical conditions) to predict various physiological parameters such as Left Ventricular
Ejection Fraction, Serum Potassium Level, Age, Survival, etc.

2 Related Work

Automated analysis of medical time series. Deep learning techniques have been extensively used to an-
alyze medical time series signals. For instance, the work by Schaekermann et al. (2020); Calisto et al. (2017;
2022; 2023); Enevoldsen et al. (2023) compare the performance of machine learning models on medical time
series classification in the presence of ambiguity and improve the workflow of medical practitioners. There
are also works that synthesize the personalized medical time series data, like glucose monitoring signal using
generative models (Zhu et al., 2023). Similar to other time-series in helathcare, in the constext of electrocar-
diograms, one of the main areas of focus has been the use of convolutional neural networks (CNNs) for ECG
signal classification. For instance, the studies by Rajpurkar et al. (2017); Hannun et al. (2019); Murugesan
et al. (2018) used CNNs to classify ECG signals into normal and abnormal beats accurately. Another set of
studies by Ebrahimi et al. (2020); Li et al. (2016) proposed a deep learning-based framework for arrhythmia
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Figure 2: HypUC: The proposed framework processes the ECG waveform input to predict the parameters
of the distribution (i.e., entire parametric distribution) representing the continuous value. The predicted
distribution is subjected to global and hyperfine uncertainty calibration techniques to get a well-calibrated
predictive distribution and uncertainty estimate as explained in Section 3.

detection using ECG signals. Moreover, some studies use ECGs to predict QRS complex location (Han et al.,
2022; Camps et al., 2018), heart-rate (Xu et al., 2019; Şentürk et al., 2018), and cardiovascular diseases like
myocardial infarction (Baloglu et al., 2019; Mahendran et al., 2021), hypertension (Martinez-Ríos et al.,
2021) , atrial fibrillation (Siontis et al., 2021; Feeny et al., 2020), arrhythmia (Feeny et al., 2020; Pant et al.,
2022), cardiac death (Ko et al., 2020), heart failure (Bos et al., 2021), etc.

However, it is crucial to note that many cardiovascular health-related diagnoses are based on continuous value
predictions, for instance, hyper/hypo-kalemia is based on serum potassium concentration (Webster et al.,
2002), low ventricular-ejection fraction is based on ejection fraction (Yao et al., 2020), etc. This underscores
the need for newer methods that effectively tackle the regression problem. Moreover, in critical applications,
like healthcare, it is desirable to quantify the uncertainty in the predictions made as it can prevent fatal
decision-making and improve the overall outcomes (Chen et al., 2021; Tanno et al., 2021; Rangnekar et al.,
2023; Upadhyay et al., 2021b). But, the above intersection has not been studied in the context of medical
time series like ECGs. We explore this gap in the literature and provide effective solutions for the same.

3 Methodology

We first formulate the problem in Section 3.1. Preliminaries necessary to motivate the design choices for
our framework (HypUC) are presented in Section 3.2.1 (on Imbalanced Regression), Section 3.2.2 (on Kernel
Density Estimation), and Section 3.2.3 (on Uncertainty Estimation). In Section 3.3, we construct HypUC, that
performs uncertainty-aware regression followed by a new calibration technique that significantly improves
the quality of uncertainty estimates and utilizes a simple technique based on gradient-boosted decision trees
to enhance decision-making using the predicted point estimate and well-calibrated uncertainty estimate.

3.1 Problem formulation

Let D = {(xi, yi)}N
i=1 be the training set with pairs from domain X and Y (i.e., xi ∈ X, yi ∈ Y, ∀i),

where X, Y lies in Rm and R, respectively. While our proposed solution is valid for data of arbitrary input
dimension, we present the formulation for medical time series (like ECGs) with applications that predict a
desired physiological parameter helpful in making a diagnosis using ECG. Therefore, (xi, yi) represents a
pair of ECG and physiological quantity/parameter. For instance, to aid in diagnosing Hyperkalemia, xi is
ECG signal, and yi is the serum potassium level (indicating the amount of potassium in the blood, which
may be obtained from the blood test that serves as groundtruth labels for training).

We aim to learn a mapping, say Ψ(·) : X → P (Y), that learns to map a given input ECG (x) to a probability
density function P (y), indicating the probable values. We use a deep neural network (DNN) to parameterize
Ψ with θ and solve an optimization problem to obtain optimal parameters θ∗, as described in Section 3.3.
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3.2 Preliminaries

This section presents the preliminary concepts highlighting the current challenges, existing literature, and
some techniques used to construct our proposed framework, HypUC. In particular, Section 3.2.1 discusses the
problem of imbalanced regression that is very typical in real-world clinical scenarios and some solutions to
tackle the same using machine learning. Section 3.2.3 presents the existing framework often used to estimate
the uncertainty in the predictions made by the deep neural network and the shortcomings associated with
such methods. The culmination of ideas presented in this section helps us construct our method.

3.2.1 Imbalanced Regresison

Imbalanced regression refers to the problem of training a machine learning model for regression on a dataset
where the target variable is imbalanced, meaning that specific values appear more often than others.
This is typical for clinical datasets where different medical conditions appear with different prevalences.

Figure 3: Imbalanced distribution of
target values (top) Serum Potassium
Levels and (bottom) Ejection Fraction
in real-world medical datasets.

For instance, Figure 3 shows the density and the distribution of
Serum Potassium Levels (i.e., the concentration of potassium in the
blood) and left ventricular ejection fraction (i.e., the volume of blood
pumped out of the left ventricle of the heart relative to its total vol-
ume) for a real-world dataset. We notice that most of the patients
have serum potassium level in the range of 3.5 to 5.5 (which is of-
ten accepted as the range for normal potassium level). However,
it is crucial for machine learning models to work well in the high
potassium levels (defined above 5.5) that occur rarely, i.e., the pop-
ulation density in the region is very low. A similar trend is observed
for LVEF, where most of the data is concentrated in the healthy
range (between 40-60%), but low-LVEF regions (defined below 40%),
which is essential for the model to identify, are sparsely present in
the dataset. Imbalanced datasets can present challenges for training
regression models, as the model may be biased towards the densely
populated samples. Works by Yang et al. (2021); Steininger et al.
(2021) proposes distribution smoothing for both labels and features,
which explicitly acknowledges the effects of nearby targets and cal-
ibrates both labels and learned feature distributions lead to better
point estimates in sparsely populated regions. However, the method
does not explore the application to healthcare, where uncertainty
quantification is critical, and the extension to incorporate uncer-

tainty estimation in a similar framework is non-trivial. Our proposed HypUC proposes a method to tackle
imbalanced regression using deep neural networks that also incorporates a novel technique for calibrated
uncertainty quantification.

3.2.2 Kernel Density Estimation

Figure 4: KDE and related weights for imbalanced targets.
(left) Example of imbalanced target datasets with KDE.
(right) Inverse of KDE with exponent used as weights for
the loss term. Higher exponent leads to sharper weights.

Kernel density estimation (KDE) (Terrell &
Scott, 1992; Chen, 2017) is the application
of kernel smoothing for probability density
estimation. Given a set of i.i.d. samples
{y1, y2...yn} drawn from some unknown den-
sity function f . The kernel density estimate
provides an estimate of the shape of f . This
can be leveraged to train deep regression mod-
els with imbalanced dataset by estimating the
density for each target value in the training
set and use this density to create a weight-
ing scheme to be applied with the loss for that
sample. This approach can help to give more
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importance to samples with rare target values, which are often more difficult to predict. This is achieved by
estimating the density as:

ρh(y) = 1
n

n∑
i=1

Kh(y − yi) = 1
nh

n∑
i=1

K
(

y − yi

h

)
(1)

where K is the kernel — a non-negative function — and h > 0 is a smoothing parameter called the bandwidth.
Scaled kernel Kh is defined as, Kh(y) = 1

h K( y
h ), and K is often set to standard normal density function.

The weighting scheme can be designed by leveraging the fact that lower-density samples must receive higher
weights and vice-versa, a simple technique to achieve the same is to design the weight for target value y to
be w(y) = 1

ρh(y)λ2 . Figure 4-(left) shows an example of imbalanced target distribution and Figure 4-(right)
shows the designed weighting scheme, we note that hyperparameter λ2 controls the sharpness of the weights.

3.2.3 Uncertainty Estimation

The works in (Kendall & Gal, 2017; Laves et al., 2020b; Upadhyay et al., 2022; 2023; Sudarshan et al.,
2021) discuss the key techniques to estimate the irreducible (i.e., aleatoric) uncertainty, and reducible (i.e.,
epistemic) uncertainty, using deep neural networks and also highlight the importance of capturing aleatoric
uncertainty in the presence of large datasets. For an arbitrary deep neural network (DNN), say Φ(·; ζ),
parameterized by learnable parameters ζ, that learns a probabilistic mapping from input domain X and
output domain Y (as defined in Section 3), i.e., Φ(·; ζ) : X → Y. To estimate the aleatoric uncertainty, the
model must estimate the parameters of the conditional probability distribution, PY |X , which is then used
to maximize the likelihood function. This distribution is assumed to be parametrized by set of parameters
{ŷi, ν̂i1, ν̂i2, . . . ν̂ik, } which we need to estimate (e.g., for Laplace distribution the set of parameters is given
by location and scale, {µ, b} (Ilg et al., 2018), for Gaussian distribution the set of parameters is given by mean
and standard-deviation, i.e, {µ, σ} (Kendall & Gal, 2017), for generalized Gaussian the set of parameters is
given by location, scale, and shape parameters {µ, α, β} (Upadhyay et al., 2021a)). That is, for an input xi,
the model produces a set of parameters representing the output given by, {ŷi, ν̂i1, ν̂i2, . . . ν̂ik} := Φ(xi; ζ), that
characterizes the distribution PY |X(y; {ŷi, ν̂i1, ν̂i2, . . . ν̂ik}), such that yi ∼ PY |X(y; {ŷi, ν̂i1, ν̂i2, . . . ν̂ik}).
The likelihood L (ζ; D) :=

∏N
i=1 PY |X(yi; {ŷi, ν̂i1, ν̂i2, . . . ν̂ik}) is then maximized to estimate the optimal

parameters of the network. Moreover, the distribution PY |X is often chosen such that uncertainty can be
computed using a closed form solution F of estimated parameters, i.e.,

{ŷi, ν̂i1, ν̂i2, . . . ν̂ik} := Φ(xi; ζ) with ζ∗ := argmax
ζ

L (ζ; D) = argmax
ζ

N∏
i=1

PY |X(yi; {ŷi, ν̂i1, ν̂i2, . . . ν̂ik})

(2)
Uncertainty(ŷi) = F (ν̂i1, ν̂i2, . . . ν̂ik) (3)

It is common to use a heteroscedastic Gaussian distribution for PY |X (Kendall & Gal, 2017; Laves et al.,
2020b), in which case Φ(·; ζ) is designed to predict the mean and variance of the Gaussian distribution, i.e.,
{ŷi, σ̂2

i } := Φ(xi; ζ), and the predicted variance itself can be treated as uncertainty in the prediction. The
optimization problem becomes,

ζ∗ = argmax
ζ

N∏
i=1

1√
2πσ̂2

i

e
− |ŷi−yi|2

2σ̂2
i = argmin

ζ

N∑
i=1

|ŷi − yi|2

2σ̂2
i

+ log(σ̂2
i )

2 (4)

Uncertainty(ŷi) = σ̂2
i . (5)

Work by Laves et al. (2020a) discusses that uncertainty estimated using above technique is not well cali-
brated and provides a remedy for the same. They demonstrate that learning a scaling factor for the estimated
uncertainty in a post-hoc optimization step on validation data (i.e., after training) help improve the cali-
bration. However, this technique learns a single scaling factor, that is not optimal for imbalanced datasets
(e.g., clinical datasets as discussed in Section 3.2.1). We propose to alleviate this problem by proposing a
hyperfine uncertainty calibration scheme as discussed in Section 3.3.2.
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3.3 Building HypUC

In this section, we leverage the preliminary concepts as discussed above to construct our proposed HypUC.
We explain the building blocks for our framework, which consists of three major steps: (i) Optimization
for improved continuous-value point and uncertainty estimation, (ii) Post-training hyperfine uncertainty
calibration, (iii) Improved decision-making with an ensemble of gradient-boosted learners.

3.3.1 Optimization for Improved Continuous-value Point and Uncertainty Estimation

As described in Section 3.1, we aim to learn the estimation function Ψ(·; θ). Here we design the network
Ψ(·; θ) to model the output as a Gaussian distribution as thoroughly discussed in previous works (Kendall &
Gal, 2017; Laves et al., 2020b; Upadhyay et al., 2021b). That is, the DNN Ψ takes the medical time series as
the input and predicts the probability density function parameters for the output, i.e., Ψ(x; θ) = {ŷ, σ̂} =
{[Ψ(xi; θ)]ŷ, [Ψ(xi; θ)]σ̂}. Where [Ψ(xi; θ)]ŷ is the ŷi estimate given by the network and [Ψ(xi; θ)]σ̂ is the
σ̂i estimate given by the network. We propose to learn the optimal parameters of the DNN, θ∗, by:

θ∗ = argmin
θ

1
N

N∑
i=1

{
λ1 ∗

(
| ([Ψ(xi; θ)]ŷ − yi) |

ρh(yi)λ2

)
+ λ3 ∗

(
| ([Ψ(xi; θ)]ŷ − yi) |2

[Ψ(xi; θ)]2σ̂
+ log

(
[Ψ(xi; θ)]2σ̂

))}
. (6)

Where ρh(y) is the Gaussian kernel density estimate (fit on the training labels) for the target value y.
λ1, λ2, λ3, h are the hyperparameters, controlling the strength of imbalance correction and its relative con-
tribution with respect to uncertainty-based regression terms as detailed below.

In the above optimization, the term
(

|([Ψ(xi;θ)]ŷ−yi)|
ρh(yi)λ2

)
computes the discrepancy between the continuous value

prediction and the groundtruth, where the discrepancy is weighed down if the groundtruth label is present
in abundance, i.e., density ρh(y) is high. The strength of the weighting term is controlled by the hyper-
parameters h, λ2. The discrepancy is weighed up if the label density is low, addressing the imbalanced nature
of the dataset. The term,

(
|([Ψ(xi;θ)]ŷ−yi)|2

Ψ(xi;θ)]2
σ̂

+ log
(
Ψ(xi; θ)]2σ̂

))
, in the above optimization, is the negative-log-

likelihood of heteroscedastic Gaussian distribution assumed for each prediction. The hyperparameters λ1, λ3
control the relative contribution of the density-based discrepancy term and the heteroscedastic negative-log-
likelihood term that learns to estimate the uncertainty.

3.3.2 Post-training Hyperfine Uncertainty Calibration

Once the DNN is trained, i.e., the optimal parameters θ∗ have been found as described in the above op-
timization step. The trained DNN, Ψ(; θ∗), is capable of estimating both the target continuous value and
the uncertainty in the prediction. However, the uncertainty estimates obtained are biased and are not well
calibrated (Laves et al., 2020a; Bishop & Nasrabadi, 2006; Hastie et al., 2009). Therefore, we propose a new
technique to calibrate the uncertainty estimates. We first find a global optimal scaling factor s∗ by solving
the following optimization problem on the validation set Dvalid = {(xi, yi)}M

i=1, where the parameters of the
DNN are fixed to the optimal obtained above (i.e., θ∗) as described in (Laves et al., 2020a),

s∗ = argmin
s

(
M log(s) + 1

2s2

M∑
i=1

| ([Ψ(xi; θ∗)]ŷ − yi) |2

[Ψ(xi; θ∗)]2σ̂

)
(7)

We then run the model in inference mode and generate the estimates for all the samples in the validation set,
i.e., we get a new augmented validation set, Dvalid−aug = {xi, yi, ŷi, σ̂2

i }M
i=1. We then create hyperfine bins of

uniform length spanning the entire range of predicted continuous-values, i.e., we create b = int
(ymax−ymin

δ

)
bins, where δ << ymax − ymin leading to hyperfine bins, where ymax = max({yi}i=1:M ) and ymin =
min({yi}i=1:M ). The nth bin being Bn spanning [ymin + (n − 1)δ, ymin + nδ]. Each sample in the validation
set then belongs to one of the bins. We then find a bin-wise scaling factor for each of the above hyperfine
bins by solving an optimization problem. The bin-wise scaling factor for bin Bn, ηBn

, is given by,

ηBn = argmin
η

(
len({|ŷi − yi| < ηs∗σ̂i}ŷi∈Bn

)
len(Bn) > ξ

)
(8)
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Figure 5: Gradient-boosted based ensemble of decision trees incorporating calibrated uncertainty (via both
global and hyperfine calibration) and point estimate to help in diagnostic decision making.

Where, len(·) is the function that gives the number of elements in the input set and hyperparameter ξ
represents the minimum acceptable fraction in each bin where the discrepancy between the prediction and
the groundtruth (i.e., |ŷ−y|) is captured by the scaled uncertainty estimates (i.e., ηs∗σ̂i). The above scaling
factors allow us to compute the well-calibrated uncertainty estimates for each prediction. Given input x, the
continuous value prediction (ŷ) and the calibrated uncertainty (σ̂calib) are given by,

{ŷ, σ̂} = Ψ(x; θ∗) and σ̂calib = ηBin(ŷ)s
∗σ̂ (9)

Where, Bin(ŷ) is the hyperfine bin to which ŷ belongs ηBin(ŷ) is the bin-wise scaling factor of the bin.

3.3.3 Improved Decision-making with an Ensemble of Gradient-boosted Learners

Medical professionals often diagnose the condition based on continuous value lying in a certain standardized
range (Galloway et al., 2019; Bachtiger et al., 2022). We propose a technique that utilizes both the predicted
continuous value and calibrated uncertainty estimate, as obtained in the above step, to infer the standardized
range (that is better than relying on just the continuous-value point estimate). The proposed technique uses
predictions (both ŷ and σ̂calib) from the trained DNN (Ψ) as input features to an ensemble of decision trees
that uses a gradient-boosting technique to learn a random forest (represented by Υ with Ntrees trees and
dtree as the maximum possible depth for each tree) on dataset Dtrain ∪ Dvalid, that infers the standardized-
range/class in which the predicted continuous-value belongs, accounting for the uncertainty in the predictions,

Class(x) = Υ
(
[Ψ(x; θ∗)]ŷ, ηBin([Ψ(x;θ∗)]ŷ)s

∗[Ψ(x; θ∗)]σ̂
)

. (10)

In the above, note that the regression model also allows classification. This can be achieved by imposing
interpretation rules on the predicted continuous values (either explicitly by thresholding the continuous value
predictions for different classes or implicitly by learning a classifier on top of predicted continuous values
and other features, as described in this section). Therefore, this approach could potentially allow medical
practitioners to not only know about the severity of the condition (indicated by the continuous value), but
also use it to infer the broad category (by deriving the class disease class using continuous value as described).

4 Experiments and Results

4.1 Tasks and Datasets

Our dataset is curated at Mayo Clinic, USA and consists of over 2.5 million patients, with over 8.9 million
12-lead ECGs coming from different types of hardware, covering a wide range of medical conditions, age,
and demographic variables. The data collection is from the years 1980 to 2020. The retrospective ECG-
AI research described herein has been approved and determined to be minimal risk by the Mayo Clinic
Institutional Review Board (IRB 18-008992).
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4.1.1 Estimating Age from ECG

Estimating age from an electrocardiogram (ECG) has gained increasing attention in recent years due to the
potential for non-invasive age estimation to aid in diagnosing and treating age-related conditions. Moreover,
ECGs have been shown to indicate cardiovascular age, which is helpful in determining the overall cardiovas-
cular health (van der Wall et al., 2022; Chang et al., 2022; Baek et al., 2023). Previous works like (Attia
et al., 2019) have shown that using deep learning, it is possible to analyze the ECG signals such that the
neural network can identify patterns in the ECG waveform that change with age, which can be used to
estimate an individual’s cardiovascular age. For our experiments, we curated a diverse dataset of 8.8 million
ECGs (along with the patient’s age). We used 6.7/0.75/1.35 million for train/val/test datasets.

4.1.2 Estimating Survival (time-to-death) from ECG

Estimating survival, or time to death, from an electrocardiogram (ECG) is a relatively new field of study
that has gained momentum in recent years as it may aid in the treatment and management of life-threatening
conditions (Diller et al., 2019; Tripoliti et al., 2017). We curate the data to consist only of patients for which
the death has been recorded. The time interval from ECG recording to death for such patients provides
groundtruth for survival (time-to-death). In total, there were 3 million ECGs with the corresponding time-
to-death, we used 2.3/0.26/0.44 million for train/val/test sets.

4.1.3 Estimating Level of Potassium in Blood from ECG: Detecting Hyperkalemia

Serum potassium level measures the amount of potassium in the blood. Potassium is an electrolyte essential
for properly functioning the body’s cells, tissues, and organs. It helps regulate the balance of fluids in the
body and maintain normal blood pressure, among other functions. The normal range for serum potassium
levels is typically between 3.5-5.0 millimoles per liter (mmol/L). Levels below 3.5 mmol/L are considered to
be low (hypokalemia), and levels above 5.0 mmol/L are considered to be high (hyperkalemia). Both low and
high potassium levels can have serious health consequences. While a blood test is used to measure the serum
potassium level, recent works have evaluated machine learning techniques to infer the potassium level using
ECGs. This can play a critical role in remote patient monitoring (Galloway et al., 2019; 2018; Feeny et al.,
2020; Ahn et al., 2022). In total, there are over 4 million ECGs with the corresponding serum potassium
level (derived using blood test). We used 2.1/0.4/1.7 million for train/val/test sets.

4.1.4 Estimating Left Ventricular Ejection Fraction from ECG: Detecting low LVEF

Low left ventricular ejection fraction (LVEF) is a condition in which the left ventricle of the heart is unable
to pump a sufficient amount of blood out of the heart and into the body. The left ventricle is the main
pumping chamber of the heart and is responsible for pumping oxygenated blood to the rest of the body.
LVEF is typically measured as a percentage, with a normal range being between 55 − 70%. A LVEF below
40% is generally considered to be low and may indicate heart failure. LVEF can be evaluated through
various non-invasive tests, including an echocardiogram, a nuclear stress test. But ECG can still provide
valuable information about heart function and can be used in conjunction with other tests to assess LVEF
and diagnose heart conditions (Noseworthy et al., 2020; Vaid et al., 2022). In our experiments, we leverage
DNNs to infer the LVEF - this can help reduce the costs associated with overall diagnosis and treatment by
reducing the need for more expensive Echocardiogram. In total, there are over 0.6 million ECGs with the
corresponding LVEF (derived using Echo). We used 0.3/0.1/0.2 million for train/val/test sets.

4.2 Compared Methods and Training details

To perform a comparative study with 12-lead ECG time series, we create a backbone DNN architecture
adapting ResNets into a 1D version (with 1D convolutional layers) as discussed in previous works (Attia
et al., 2019). The DNN backbone architecture is used to create a class of (i) deterministic regression models,
(ii) class of probabilistic regression models, and (iii) class of classification models for some of the tasks. For
the probabilistic regression, we append the backbone architecture with two smaller feed-forward heads to
estimate the parameters of the predictive distribution as described in (Kendall & Gal, 2017; Upadhyay et al.,
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2022). The deterministic regression model is trained with (i) L2 loss, termed as Regres.-L2, (ii) L1 loss
termed as Regres.-L1, (iii) We incorporate the density-based weights to modulate the loss terms, we call this
Regres.-L1-KDEw. We train two variants of probabilistic regression models (i) the standard heteroscedastic
Gaussian model that estimates the mean and variance for the prediction and trained to maximize the
likelihood as described in (Von Bachmann et al., 2022), called Regres.-w.-U and (ii) Our proposed model
HypUC, that incorporates a novel calibration technique along with gradient-boosted corrections. For serum
potassium level estimation (and LVEF estimation), we also compare with a binary classifier that predicts
whether the given ECG has Hyperkalemia (and low LVEF for LVEF estimation). All the regression models
are trained on standardized target values, i.e., (target − µtarget)/(σtarget). We also present the regression
models trained with standardized log targets, i.e., (log(target) − µlog(target))/(σlog(target)). We train all the
models using Adam optimizer (Kingma & Ba, 2014), with (β1, β2) set to (0.9,0.999). The learning rate used
to train models was 1e − 4. For HypUC, the hyper-parameters {λ1, h, λ2, λ3} are set to (i) {1, 0.7, 0.8, 1e − 3}
for Age estimation. (ii) {1, 0.5, 0.5, 1e−4} for Survival estimation. (iii) {1, 1, 0.2, 1e−4} for Serum potassium
estimation. (iv) {1, 1.5, 0.1, 1e − 4} for Left Ventricular Ejection Fraction (LVEF) estimation.

Tasks Methods MSE ↓ MAE ↓ Spear.
Corr. ↑

Pears.
Corr. ↑ UCE ↓ NLL ↓ I0.95 ↑ < len(I0.95) > ↓ AUC ↑ Sensiti. ↑ Specifi. ↑ PPV ↑ NPV ↑

Su
rv

iv
al

E
st

im
at

io
n

Regres.-L2 100.12 8.49 0.30 0.30 NA NA NA NA NA NA NA NA NA
Regres.-L1 73.21 7.78 0.38 0.41 NA NA NA NA NA NA NA NA NA

Regres.-L1 (log) 64.33 6.11 0.51 0.54 NA NA NA NA NA NA NA NA NA
Regres.-L1-KDEw 67.97 6.30 0.51 0.53 NA NA NA NA NA NA NA NA NA

Regres.-w.-U 84.62 8.13 0.35 0.38 2.37 5.89 0.89 20.5 NA NA NA NA NA
Regres.-w.-U (log) 82.23 8.06 0.36 0.38 2.14 5.22 0.90 19.2 NA NA NA NA NA

HypUC 54.62 5.38 0.56 0.61 0.58 3.45 0.93 13.4 NA NA NA NA NA
HypUC (log) 55.77 5.52 0.52 0.59 0.69 3.62 0.91 15.6 NA NA NA NA NA

A
ge

E
st

im
at

io
n

Regres.-L2 151.69 9.47 0.58 0.60 NA NA NA NA NA NA NA NA NA
Regres.-L1 116.52 7.93 0.73 0.75 NA NA NA NA NA NA NA NA NA

Regres.-L1 (log) 101.58 8.13 0.66 0.68 NA NA NA NA NA NA NA NA NA
Regres.-L1-KDEw 99.77 7.64 0.78 0.81 NA NA NA NA NA NA NA NA NA

Regres.-w.-U 136.27 8.22 0.68 0.72 13.32 7.84 0.88 17.6 NA NA NA NA NA
Regres.-w.-U (log) 138.23 8.56 0.68 0.71 12.95 7.23 0.91 17.1 NA NA NA NA NA

HypUC 74.9 6.70 0.84 0.88 1.06 3.70 0.92 11.3 NA NA NA NA NA
HypUC (log) 76.5 7.13 0.81 0.84 1.37 3.93 0.91 14.8 NA NA NA NA NA

Se
ru

m
P

ot
as

si
um

E
st

im
at

io
n

Binary-Classifier NA NA 0.39 0.41 NA NA NA NA 0.87 0.74 0.85 0.10 0.99
Regres.-L2 0.26 0.52 0.51 0.54 NA NA NA NA 0.84 0.70 0.86 0.10 0.99
Regres.-L1 0.19 0.34 0.52 0.54 NA NA NA NA 0.86 0.70 0.87 0.09 0.99

Regres.-L1 (log) 0.21 0.39 0.48 0.50 NA NA NA NA 0.85 0.71 0.84 0.10 0.99
Regres.-L1-KDEw 0.19 0.33 0.52 0.55 NA NA NA NA 0.86 0.72 0.85 0.11 0.99

Regres.-w.-U 0.23 0.38 0.51 0.55 1.83 8.76 0.89 5.1 0.86 0.71 0.86 0.10 0.99
Regres.-w.-U (log) 0.23 0.37 0.51 0.55 1.97 8.82 0.89 5.0 0.86 0.71 0.86 0.10 0.99

HypUC 0.20 0.32 0.52 0.55 0.41 3.12 0.94 3.1 0.89 0.77 0.86 0.10 0.99
HypUC (log) 0.21 0.36 0.52 0.57 0.49 3.78 0.93 3.8 0.88 0.75 0.84 0.10 0.99

E
je

ct
io

n
Fr

ac
ti

on
E

st
im

at
io

n

Binary-Classifier NA NA 0.28 0.32 NA NA NA NA 0.91 0.77 0.87 0.09 0.98
Regres.-L2 171.37 13.56 0.37 0.39 NA NA NA NA 0.90 0.75 0.84 0.09 0.98
Regres.-L1 153.66 11.78 0.41 0.42 NA NA NA NA 0.91 0.76 0.86 0.10 0.98

Regres.-L1 (log) 138.32 10.23 0.44 0.49 NA NA NA NA 0.91 0.75 0.86 0.10 0.98
Regres.-L1-KDEw 141.62 10.71 0.41 0.43 NA NA NA NA 0.91 0.75 0.87 0.09 0.99

Regres.-w.-U 165.81 12.24 0.41 0.44 10.56 9.83 0.89 35.1 0.90 0.74 0.85 0.10 0.99
Regres.-w.-U (log) 150.33 11.25 0.40 0.43 8.11 8.36 0.90 30.3 0.90 0.75 0.85 0.10 0.99

HypUC 133.26 10.21 0.43 0.45 1.68 4.28 0.91 26.2 0.93 0.77 0.87 0.10 0.99
HypUC (log) 139.32 11.16 0.42 0.44 2.19 4.84 0.91 29.6 0.92 0.75 0.86 0.10 0.99

Table 1: Quantitative results on 4 different tasks (Survival, Age, Serum Potassium, and Left Ventricular
Ejection Fraction Estimation) showing the performance of various deterministic and probabilistic regression
and classification models in terms of Mean Squared Error (MSE), Mean Absolute Error (MAE), Spearman
Correlation (Spear. Corr.), Pearson Correlation (Pear. Corr.), Uncertainty Calibration Error (UCE), Nega-
tive Log-likelihood (NLL), I0.95, < len(I0.95) > , AUC, Sensitivity, Specificity, Positive/Negative Predictive
Values PPV/NPV. If, for a task/method certain metric is not applicable, we show NA.
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Figure 6: Serum Potassium Estimation model score correlation with groundtruth Serum Potassium levels.
(left) Model scores (pre-activation) for the binary classifier. (middle) Model scores (post-activation) for
the binary classifier. (right) Model scores for the proposed HypUC. The proposed HypUC not only produces
better-correlated outputs but can also quantify the uncertainty estimates.

4.3 Results

Table 1 shows the performance of various methods on different tasks and datasets. For all the regression
tasks, we compute MSE and MAE to measure the discrepancy between the predictions and the groundtruth.
Moreover, Spearman and Pearson correlation coefficients indicate the positive association between the pre-
dicted point estimates from the network and the groundtruth target variable. A high correlation indicates
that the prediction will be able to indicate the severity of the medical condition (which may help prescribe
the treatment as explained in Section 1). For probabilistic models, the quality of uncertainty estimates is
measured by UCE and NLL (Laves et al., 2020a; Upadhyay et al., 2022). In addition, we also quantify the
calibration of the estimated uncertainty using the interval that covers the true value with a probability of α
(under the assumption that the predicted distribution is correct) is given by,

Iα(ŷ, σ̂) =
[
ŷ − C−1(α)

2 σ̂, ŷ + C−1(α)
2 σ̂

]
(11)

Where, C−1(·) refers to the quantile function, i.e., inverse of the cumulative distribution function, discussed
thoroughly in (Kuleshov et al., 2018; Gawlikowski et al., 2021). In particular, we set the α = 0.95, which
makes C−1(0.95) = 1.645 for Gaussian distribution, and the length of the interval I0.95(ŷ, σ̂) becomes,
len(I0.95(ŷ, σ̂)) = C−1(0.95)σ̂ = 1.645σ̂. For good calibration, α fraction of groundtruth samples should lie
in the interval Iα(ŷ, σ̂) and the length of the interval, C−1(α)σ̂, should be small. We report both metrics
in our evaluation. For the interval length, we report the mean interval length of the test set, represented by
< len(Iα(ŷ, σ̂)) >. Finally, as discussed in Section 3.3.3, regression model also allows classification, which
is the approach taken by some of the prior works. To compare them, for the binary classification tasks, we
also report the AUC, Sensitivity, Specificity, and Positive/Negative Predictive values (PPV/NPV).

4.3.1 Task Specific Performance

As indicated in Table 1, for Survival Estimation, the regression model trained with L2 loss (Regres.-L2) has
a MSE of 100.12 (MAE of 8.49, Spearman/Pearson correlation of 0.30/0.30), which are worse than the per-
formance of the model trained with L1 loss (Regres.-L1) (MSE of 73.21, MAE of 7.78, Spearman/Pearson
correlation of 0.38/0.41), this is in line with previous works. Moreover, we could further improve the
performance of the regression model trained with L1 loss by incorporating kernel density-based weights
(Regres.-L1-KDEw), as described in Section 3.3, that accounts for imbalance in the dataset and leads to a
performance with MSE of 67.97 (MAE of 6.30, Spearman/Pearson correlation of 0.51/0.53). Additionally,
we notice that heteroscedastic Gaussian probabilistic regression model (Regres.-w.-U) from (Von Bach-
mann et al., 2022) performs better than homoscedastic Gaussian model (Regres.-L2) but not as good
as (Regres.-L1). However, Regres.-w.-U estimates the uncertainty in the prediction (with UCE/NLL
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Figure 7: Groundtruth and predicted distributions for 4 different tasks (Age/Survival/Serum Potas-
sium/LVEF estimation). Predicted distribution from HypUC tightly encompasses groundtruth distribution
(compared to predicted distribution from Regres.-w.-U) indicating predictions are well-calibrated.

of 2.37/5.89), but our proposed HypUC not only improves regression performance (with MSE/MAE of
54.62/5.38) but the quality of uncertainty as well (with UCE/NLL of 0.58/3.45). We observe a similar
trend for the Age Estimation.

For Serum Potassium Estimation, we compared with a binary classifier baseline (Binary-Classifier in
Table 1), an approach found in (Galloway et al., 2019), which predicts if a given ECG corresponds to Hy-
perkalemia or not, instead of estimating the serum potassium level. While such a binary classifier achieves
a good classification performance as indicated by an AUC of 0.87, it does not gauge the severity of the
condition that may decide the diagnosis. Figure 6 shows the correlation between the ground truth serum
potassium level compared to the scores derived from binary classifier (Figure 6-left and middle), the lack of
high positive correlation (Spearman correlation of 0.39) indicates that scores from the model can not be used
as an indication for the severity of the medical condition (within Hyperkalemia), but can be used to dis-
criminate Hyperkalemia from non-Hyperkalemia cases. We also train different kinds of regression models to
regress the serum potassium level. As indicated in Table 1, we see that regression models generally produce
outputs that are better correlated with the groundtruth (e.g., Regres.L2 has a Spearman correlation coef-
ficient of 0.51 vs. 0.39 for Binary Classifier). Moreover, we observe that among deterministic regression
models Regres.-L1-KDEw performs the best with MSE of 0.19 (MAE of 0.33). The probabilistic regressor
Regres.-w.-U performs better than Regres.-L2 and provides uncertainty estimates as well (UCE/NLL of
1.83/8.76). But, HypUC provides the best regression performance along with better uncertainty estimates.
Additionally, the outputs from the regression models can be used to classify the ECG into Hyperkalemia or
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not (similar to binary classifier), we notice that all the regression models perform comparable classification
to classifier. In particular, HypUC has AUC of 0.89 which is higher than the binary classifier (AUC of 0.87).

A similar trend is observed for Left Ventricular Ejection Fraction (LVEF) Estimation where the proposed
HypUC performs well in regression along with better-calibrated uncertainty estimates. Moreover, when used
as a classifier, it also yields a better performance than the binary classifier trained from scratch, emphasizing
the benefits of tackling this problem with the proposed probabilistic regression framework, HypUC.

4.3.2 Calibration of Uncertainty Estimates on the Test-set

Figure 7 shows the groundtruth and the predicted distribution for Age/Survival/Serum Potassium/LVEF
estimation tasks on the test dataset. The x-axis in the plot indicates the predicted point estimates from the
HypUC. For a given point on x-axis: (i) Red bold curve shows the peak of the groundtruth distribution (i.e.,
the distribution of groundtruth values that correspond to predicted value given by the x-axis). (ii) Shaded
red region indicate the spread of the groundtruth distribution (i.e., 2 and 98 percentile of the groundtruth
distribution). (iii) Blue bold curve shows the peak of the HypUC-predicted distribution. (iv) Blue shaded
region indicates the spread of the groundtruth distribution (i.e., 2 and 98 percentile of the groundtruth
distribution). We notice that predicted distribution from HypUC tightly encompasses groundtruth distribution
(compared to predicted distribution from Regres.-w.-U) indicating predictions are well-calibrated. We
calibrate HypUC using small validation sets but it generalizes well to much larger test sets.

4.3.3 Entropy-based Filtering to Trigger Human Expert Intervention

As the proposed HypUC produces well-calibrated predictive distribution, we propose a technique to use the
predicted distribution to flag the unreliable predictions. For a given input sample x, the trained DNN
produces {ŷ, σ̂} = Ψ(x; θ∗). We then apply the post-hoc calibration techniques to obtain {ŷ, σ̂calib}. We
then compute the entropy of the predicted distribution, i.e., N (ŷ, σ̂2

calib) given by H(z), i.e.,

H(z) =
∫

−p(z) log p(z)dz , where z ∼ N (ŷ, σ̂2
calib) (12)

H(z) = −E(log N (ŷ, σ̂2
calib)) = log

√
2πeσ̂2

calib (13)

Figure 8: Distribution of entropy for LVEF valida-
tion set with a threshold of 10%-tile.

At the test time, if for the sample x the entropy
log
√

2πeσ̂2
calib > τq,val then the prediction is flagged

as unreliable. The threshold τq,val is computed us-
ing the validation set as the q−%tile value from the
distribution of entropy values as shown in Figure 8
for LVEF estimation using HypUC. Figure 9 evalu-
ates the regression performance of HypUC (in terms
of MAE) on the test sets for various tasks by re-
moving the unreliable predictions based on different
thresholds derived from the validation set. We ob-
serve that as we remove the higher fraction of unreli-
able samples (i.e., decreasing the threshold τq,val by
lowering the value of q) the performance improves.
This phenomenon demonstrates that we could en-
hance the predictions made by the model by only
showing reliable predictions and flagging the unre-
liable predictions (based on entropy measure) to be
evaluated by human experts which may be critical
for deploying machine learning models for health-
care applications in the real world.
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Figure 9: Evaluating HypUC on test-set by removing the unreliable (i.e., high entropy) predictions. We see
consistent improvement as we decrease the entropy threshold based on quantile as described in Section 4.3.3

5 Discussion, Conclusion, and Future Work

Automated analysis of medical time series (e.g., ECG) using ML techniques opens several avenues in large-
scale remote healthcare assistance while making more efficient use of existing procedures. This work proposes
HypUC to solve the imbalanced regression problems with medical time series along with uncertainty estimation.
We also introduced a new hyperfine uncertainty calibration technique that provides reliable uncertainty
estimates for a diverse range of test sets. Additionally, we present a method for using these calibrated
uncertainties to improve decision-making through an ensemble of gradient-boosted learners. In our studies,
we use the well-calibrated predictive distribution derived from HypUC in an entropy-based technique to flag
the unreliable predictions at the inference time for human expert evaluation and improve the performance of
the ML model. Our approach is demonstrated on a large, real-world dataset of ECGs from millions of patients
with various medical conditions, and is shown to outperform several baselines while also providing calibrated
uncertainty estimates. Note that, while HypUC presents a technical solution to the above-mentioned problems,
it is crucial to explore the clinical impact of our work using real-world validation studies. Additionally, it is
important to extend our method to predict multiple target values in a single forward pass (i.e., multi-task
learning) to avoid training models for different diseases and allow cross-task learning. Another important
aspect for clinical deployment is to design protocols that will help physicians make decisions in the presence
of quantified uncertainty, which is much needed. These challenges are going to be explored in a near future
clinical study for hyperkalemia detection algorithm based on our proposed method.

Broader Impact. The large-scale real-world datasets from millions of patients were obtained from Mayo
Clinic, USA following the guidelines for retrospective study with deidentified data approved by the institu-
tional review board of Mayo Clinic, USA following the state-of-the-art identification protocol as described
in Murugadoss et al. (2021). While this study is done on a large real-world anonymized dataset, the ML mod-
els trained in this study must be evaluated for bias. Typically, formal clinical deployment of this technique
will require validation and testing on demographically diverse datasets.
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