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Abstract

Machine unlearning aims to remove specific data influ-
ences from trained models, a capability essential for adhering
to copyright laws and ensuring Al safety. Current unlearning
metrics typically measure success by monitoring the model’s
performance degradation on the specific unlearning dataset
(Dy). We argue that for Large Language Models (LLMs), this
evaluation paradigm is insufficient and potentially misleading.
Many real-world uses of unlearning—motivated by copyright
or safety—implicitly target not only verbatim content in D,,,
but also behaviors influenced by the broader generalizations
the model derived from it. We demonstrate that LLMs can
pass standard unlearning evaluation and appear to have
“forgotten” the target knowledge, while simultaneously
retaining strong capabilities on content that is semantically
adjacent to D,,. This phenomenon indicates that erasing exact
sentences does not necessarily equate to removing the under-
lying knowledge. To address this gap, we propose Proximal
Surrogate Generation (PSG), an automated stress-testing
framework that generates a surrogate dataset, D,,. This surro-
gate set is constructed to be semantically derived from D,, yet
sufficiently distinct in embedding space. By comparing un-
learning metric scores between D, and D,,, we can stress-test
the reliability of the metric itself. Our extensive evaluation
across three LLM families (Llama-3-8B, Qwen2.5-7B, and
Zephyr-7B-B), three distinct datasets, and seven standard met-
rics reveals widespread inconsistencies. We find that current
metrics frequently overestimate unlearning success, failing to
detect retained knowledge exposed by our stress-test datasets.

1 Introduction

The rapidly increasing adoption of large language models
(LLMs) in society raise severe privacy, compliance, and intel-
lectual property concerns [8,26,35,50]. Machine unlearning
aims to address these concerns by selectively removing the
influence of specific data points from a trained model such
that it behaves as if it had never seen that data [4, 5]. This

is particularly important in domains requiring post-hoc data
deletion; for instance, to satisfy regulatory frameworks like
the GDPR’s “right to be forgotten” [45].

In many applications—particularly those motivated by
copyright or safety—the data targeted for unlearning is of-
ten not merely surface-level content from an unlearning set
D,, but the higher-order knowledge inferred from D, [30].
Beyond suppressing verbatim recitation, many real-world de-
ployments implicitly expect unlearning to eliminate abstrac-
tions that allow the model to reconstruct or advantageously
leverage information from D,, through paraphrase, composi-
tion, or transfer to semantically adjacent prompts [8]. Regu-
latory or ethical requirements may demand not only the re-
moval of verbatim training examples, but also the elimination
of learned behaviors such as authorial style, domain-specific
reasoning patterns, or unsafe content generation [11].

Critically, LLM unlearning success is often evaluated only
on the unlearning set D, [36, 39, 39, 41, 43, 53], or small
handcrafted proxies closely resembling it [11,28,33]. This
risks yielding metric scores that only track surface recitation
rather than the intended removal of higher-order knowledge
(§ 3.1). This mismatch creates a false sense of unlearning:
a model can satisfy these metrics while retaining capabilities
that transfer to content semantically related to D,, (§ 6).

To better understand this gap, we propose the notion of
a surrogate unlearning dataset D,, which is disjoint but
semantically-related to D,,. This allows us to examine whether
existing metrics removed not only surface-level traces of D,
but also changes in related behaviors that practitioners often
expect unlearning to influence. For example, many applica-
tions implicitly expect that unlearning a novel would also
cause the model to perform consistently worse on fan fiction
derived from that novel. We find that this is not the case: cur-
rent unlearning metrics may judge the unlearning of a novel
as successful, yet simultaneously report no notable unlearn-
ing on a derived fan fiction, despite their significant semantic
overlap (§ 3.2).

Motivated by these insights, we propose Proximal Surro-
gate Generation (PSG) to automatically construct such surro-
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gate datasets D, for any given unlearning set D, and model
0 (§ 4). Our approach simulates a lightweight fine-tuning
process using D,,, and then samples text that the model be-
comes more confident in (i.e., shows increased likelihood).
These samples are then perturbed, using techniques inspired
by gradient-based control generation (e.g., GCG [55]) to in-
crease their (embedding) distance from D,,. This creates se-
mantically derivative but non-overlapping data. The resulting
D, can be used to stress-test unlearning metrics: if a metric
fails to behave consistently across D,, and D,,, it likely cannot
reliably measure the success of unlearning.

We validate our findings across combinations of a range
of LLMs, including Llama-3-8B [15], Qwen2.5-7B [51], and
Zephyr-7B-beta [44], and 3 datasets to simulate different
unlearning scenarios: a fantasy novel dataset, a toxic
comment dataset [3], and a biomedical weapon dataset [28].
For each pair of model to be unlearned and D,,, we craft a
Dy, consisting of sentences that can be learned from D,,, have
sufficiently low perplexity, and are distant from sentences
in D, in the embedding space. After performing unlearning
using Negative Preference Optimization (NPO) [54] and
Representation Misdirection for Unlearning (RMU) [28],
we evaluate the unlearned models on both D, and D,,, using
7 common metrics for LLM unlearning. We observe that in
61.1% of the scenarios, the unlearning metrics are not con-
sistent on D, and D, (i.e., we define inconsistency as the two
metric distributions’ means differing by more than 1/2 pooled
standard deviation; § 6). In particular, the metric scores
computed on D, are mostly higher than D,, meaning they
suggest D, is less successfully unlearned than D, despite
D, being learned from D,,. Our code is available on github.

Our results suggest that the existence of meaningful sur-
rogate datasets D, is not only plausible but also widespread.
We do not propose a new definition of unlearning; rather,
our results show that many practical expectations of LLM
unlearning are not reflected in existing metrics. Thus, we
advocate for a more nuanced understanding of what it means
to unlearn in generative models, urging the community to
distinguish between privacy-oriented deletion and knowledge-
based unlearning. In doing so, we hope to inspire the design
of new metrics that capture both direct and generalized
influence of training data.

To summarize, our main contributions are as follows:

* We highlight a critical concern in LLM unlearning: current
metrics that determine unlearning success are unreliable
(§ 3.1); metrics can certify success on D, yet report no
notable unlearning on semantically-related set D, (§ 6).

* We propose a lightweight algorithm to construct a surro-
gate dataset D, for any unlearning set D,, and model to be
unlearned 0, which can be used to audit the reliability of
an unlearning metric on the dataset (§ 4).

* We empirically evaluate 7 common unlearning metrics on
all combinations of 3 LLMs, 3 datasets, and 2 standard un-
learning algorithms (NPO and RMU) and find that none of

the metrics consistently correlate with unlearning success;
this shows the widespread impact of the metric mirage in
LLM unlearning (§ 5 and 6).

2 Related Work

In this section, we provide the necessary background infor-
mation for this work. We define the unlearning problem and
introduce notation. We also list and briefly describe some
frequently used unlearning methods and evaluation metrics
that will be studied.

2.1 Background & Notation

What is the Unlearning Problem (for LL.Ms)? It is broadly
defined as the mechanism to erase the “impact” of certain data
points from a model (particularly, its behaviors). Depending
on the incentives of unlearning (e.g., privacy, copyright, etc.),
this could either mean (a) Data-level: obtaining a model as if
it were not trained on the exact data points of the unlearning
set [2,9, 19] (similar to guarantees provided by differential
privacy [17,18]) when the goal is to address privacy concerns,
or (b) Knowledge-level: erasing all knowledge and behav-
iors that could be learned or derived from the unlearning set
post-hoc when the goal is to e.g., avoid copyright infrigement
or mitigate unsafe behaviors [24, 25,29, 38,46-48,52]. In
this work, we focus on the latter, as it is a less well-defined
form of unlearning. Consequently, many existing evaluation
methods for unlearning are designed for the former yet used
to judge the latter, since LLMs generalize and the influence of
the unlearning dataset appears beyond memorized points. Be-
sides, proper evaluation methods for the former have already
been studied and shown to be difficult [18].

As suggested in prior work [4], unlearning can trivially be
achieved by retraining the model without the data of inter-
est; such an approach constitutes “exact” unlearning. How-
ever, since this is computationally expensive, many “approxi-
mate/inexact” (and cheaper) alternatives exist. Concrete strate-
gies will be discussed in § 2.2. It is also worth noting that “the
data of interest” may not always be traceable for knowledge-
level unlearning, because the given unlearning set often serves
only as a “partial” proxy for the full capabilities stakeholders
wish to remove; similar information may exist elsewhere in
the rest of the training dataset.

Notation: Having established the problem, we now present
the notation we use throughout the paper. Let D be the data
distribution, D ~ D™ denote the dataset (of size m) used to
train the model, D,, C D be the unlearning dataset (i.e., whose
contents we want to unlearn). and D, be the retain dataset (i.e.,
whose information we want to retain; typically D, C D — D).
One can think of D, = {z;,--- ,z,} where each z; = (x;,y;)
where x; is some prefix and y; is some suffix. Let 6 denote (the
parameters of) the original (base) model trained on the full
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dataset D. Then, the exact unlearned model (e.g., obtained by
training solely on D — D,)) is denoted by 0,, and the approx-
imately unlearned model is denoted by B,. A good approxi-
mate unlearning algorithm €I aims to find 6, that is “close”
to 0, in terms of behavior and performance, particularly with
respect to D, and D,. It is formally denoted by

éu = u(eaDu)

The effectiveness of U is measured by how well éu satisfies
unlearning desiderata, such as:

1. Knowledge Removal: The model 6, should demonstrate
no discernible knowledge of D,. For instance, its per-
formance e.g., perplexity (denoted L,) on D, should be
similar to that of a model not trained on D,:

IE(x,y)~Du [LP (éu ()C) ’y)] ~ IE:(x.y)~Du [LP (eu (x) >y)]

2. Utility Preservation: The model éu should maintain its
performance on the retain set D,:

]E(x,y)~D, [[417 (éu ()C) ) y” ~ E(x,y)~D, [[‘F (e(x) ) y)]

3. Efficiency: The cost of obtaining 8, from O should be
significantly less than retraining 6,, from scratch.

2.2 Unlearning Methods

We now provide a brief description of commonly-used ap-
proximate unlearning techniques for LLMs. Broadly speaking,
these techniques often first identify the model parameters re-
lated to Dy, and then optimize these parameters to remove
D,’s impacts by e.g., gradient-based methods.

For instance, early approaches applied gradient ascent (GA)
on D, to reduce the model’s log-probability of those exam-
ples [23]; the neurons with stronger gradient signal are natu-
rally the ones related to D,. While straightforward, this often
causes severe degradation in generation quality. Huang et
al. [20] propose gradient-based unlearning that decomposes
the unlearning update into weighted gradient ascent on D,
and gradient descent on D, to minimize utility degradation.
Negative Preference Optimization (NPO) [54], a variant of
preference optimization [37] that only uses negative samples,
minimizes the learned reward for “undesired” outputs, thereby
striking a better balance between forgetting and retaining over-
all performance. Variants such as SImNPO [12] removes the
need for a separate reference model, and recent work such as
FLAT [49] further streamlines the loss to avoid relying on D,.

Lu et al. [31] proposed the Quantized Reward Konditioning
method that conditions generation on discrete reward levels
using special tokens; it samples outputs, bins them into re-
ward quantiles, and fine-tunes the model to prefer high-reward
outputs conditioned on their reward token, while staying close

to the original model via a KL penalty. By doing so, they are
able to post-hoc unlearn undesirable properties.

More recent work like DeMem [27] utilize a negative sim-
ilarity metric (between the ground truth and generation) as
a reward to encourage the LLM to not memorize, ergo facil-
itating unlearning. While the aforementioned methods rely
on end-to-end gradients with respect to specially designed
loss functions, Li et al. [28] propose an alternative: Repre-
sentation Misdirection for Unlearning (RMU) is a finetuning
method that unlearns hazardous knowledge by optimizing to
randomize the learned representations of D,,. As a follow up,
LUNAR [40] performs unlearning by redirecting represen-
tations of forgotten data into latent regions where the model
naturally signals its inability to respond. Work by Huutien et
al. [21] also adapts RMU and steers model representation in
the intermediate layer to a targeted random representation.

It is worth noting that there have also been attempts to facil-
itate exact unlearning to LL.Ms. For instance, Chowdhury et
al. [7] also introduce a parameter-efficient fine-tuning frame-
work that attaches lightweight, shard-specific adapter modules
to the base model, enabling exact unlearning by simply re-
moving the adapters corresponding to the data to be forgotten.
But such an approach only works if the unlearning dataset is
part of the fine-tuning data (and not the pre-training data).

2.3 Evaluation Metrics

Here, we taxonomize existing LLM unlearning evaluation
metrics and discuss how they work. Before jumping into
the details, we describe additional notation. We define é, =
train(@,,D’) as the model obtained by retraining 6, on a
dataset D'. Let L, denote an accuracy-based loss.

M. Next-Token Prediction Loss: To evaluate retention of lan-
guage modeling ability on forgotten content, the most straight-
forward approach is to measure the next-token prediction loss
(which is often the training loss function of LLMs) on D, and
assert the negative of it is below a certain threshold gl ie,

Ey)~p, [—L,(84(x))] < entp.

M?2. Memorization: Works in the LLM memorization litera-
ture have been used as metrics for unlearning [39]. They often
measure how feasible it is to “reactivate” forgotten behaviors
by adversarial prompt manipulations (i.e., like jailbreaking).

E(x,y)~Du [Lacc (%, Omod (x) )] < €mem,

Following Schwarzschild et al. [39], we define Bpmoq(x) =
0,(A(x)), where 4jp(x) is an adversarially optimized
prompt that elicits x as output; that is,

Ay (x) = argmax Pr(B, (p) = x],
p

'We add the negative sign to ensure the consistency of the meaning of the
threshold — being below it indicates successful unlearning.



In other words, this metric measures the similarity between
a sentence from D,,, and the generation of 6, when queried
by a prompt that is adversarially optimized to generate the
sentence. A lower metric value suggests that no adversar-
ial prefix can generate the target sentence, indicating worse
memorization and thus better unlearning, and vice versa.

M3. Relearning: For relearning-based methods [32], one re-
trains éu on D' C D,, or on out-of-distribution points to obtain
arelearned model 0,04 = t rain(éu ,D’). Then the next-token
prediction loss is evaluated to quantify success of unlearning:

]E(x,y)NDu [_Lp (emod (x))} < Erelearn-

That is, if the model has relearned parts of D, and still has
high loss value, then it is a sign that unlearning is successful.

M4. Activation Drift: The activations of hidden layers (a.k.a.,
hidden states) of LLMs can also be used as a signal to in-
fer whether the LLMs still have knowledge about D,,. If we
denote the " layer’s hidden states of © with respect to data
point x as 8/(x), then the metric would be:

E(xy)~n, [—£,(8(8},(x)))] < €ap.

where g is a function mapping hidden states to the output
space of the LLM. Motivated by an interpretation technique
of LLMs named “logit lens”, here g is defined to be applying
the final linear output head of the LLM to the intermediate
hidden states [32,36]. Intuitively, this metric can identify cases
of “incorrect” unlearning, where the probability of generating
the tokens related to D, is only suppressed in later layers
of the model, but not in the early layers. In other words, the
knowledge about D, is still in the parameters of the model.

M5. Membership Inference: Membership inference attacks
aim to identify whether a given data point is included in the
training dataset of a given trained model. It has often been
used as metrics for unlearning (not restricted to LLMs). More
formally, it is defined as follows:

E(xy)~, (A1 (84,%)] < emia,

where Ay can be any membership inference attack for
LLMs [41,53], and it outputs a membership score indicating
how likely the given point x is in the training set of 6,,. Intu-
itively, a lower score indicates successful unlearning, since x
is a training member of 6.

The metrics listed thus far are the most practical to use.
We also list 2 other unlearning metrics that rely on the
assumptions of either an exactly unlearned model, or on the
existence of T'(D,,), a Q&A variant of D, akin to a unit test.
These assumptions are hard to satisfy in practice: exact un-
learning is too computationally costly for LLMs, and creating
a T(D,) that ensures full coverage on D, is challenging. In
the limit, 7 (D,) must contain questions on all higher-order
knowledge that can be inferred from D,; this is as hard as
solving unlearning in the generative setting. Thus, while we

include these metrics for completeness, due to their current
impracticality, we do not consider them in our experiments.

M6. Output Distribution Similarity: When there exists an ex-
actly unlearned model (i.e., one retrained on D — D,), 0,
evaluating unlearning is trivial: one may measure how 6,’s
outputs differ from outputs of 0,,.

]ExNT(D) [/JKL(eu ()C) > éu ()C) )] < €op.

We use gy (-, -) to denote KL divergence, since outputs of
both models are probability distributions.

M7. Task Accuracy Deviation: When there exists a dataset
T(D,) derived from D, (such as prompt-response pairs,
classification examples, or Q&A tasks), one is able to “test”
8,’s knowledge about D, on T(D,) to evaluate unlearning.
Creating T(D,,) can be achieved by manual efforts or neural
approaches [10], and is analogous to making exams based
on contents of a course, except we wish for 8, to perform
poorly on T7'(D,) when unlearning is successful:

E(xy)~7(s(D0)) [Lace(Bu(x),)] < e1a-

A Common Theme: Across all metrics, a common
theme is the attempt to quantify the residual influence
of D, on éu. Thus, we can abstract all of these unlearn-
ing metrics using Eval(6,,D,), i.e., it is a function
defined on the unlearned model and the unlearning
dataset. While these methods differ, they share the
goal of detecting incomplete disentanglement from
the unlearning set. However, a key limitation is that
D, may be only a partial proxy for the broader prop-
erty we seek to erase. If similar information is re-
dundantly encoded in other parts of D, removing D,
alone may be insufficient. In the rest of the paper, we
propose our approach to exploit this observation.

3 Problem Formulation

In this section, we formally state the problem statement and
the threat model. We also present a motivating experiment to
provide an intuition for the limitations in existing evaluation
metrics for LLM unlearning.

3.1 Problem Statement

The discussion of the metrics thus far has highlighted the
main concern: there is a narrow view of what it means to “for-
get” — implicitly reducing knowledge-level unlearning to the
erasure of specific examples. In training supervised-learning
ML models, concerns about evaluation artifacts are gener-
ally addressed through the use of held-out validation sets that
provide an unbiased measure of generalization. However, in



unlearning, no natural validation set exists: D, is precisely
the data to be removed, and datasets semantically (and distri-
butionally) “close” to it are usually undefined/unavailable.

Our central objective is to construct a surrogate val-
idation dataset D, to audit the faithfulness of unlearn-
ing metrics.

This enables us to falsify unlearning metrics, i.e., to demon-
strate cases where a metric produces misleading assessments
of the model’s retained knowledge. We are particularly inter-
ested in scenarios where evaluation on D), suggests unlearning
is effective, whereas evaluation on our constructed D, sug-
gests otherwise. We believe this is a critical failure mode as it
can mean that sensitive, copyrighted, or harmful information,
intended to be removed, still persists in deployed models.

Why Does This Matter? One might argue that forgetting
D, alone is sufficient (as that is what is specified in the un-
learning objective), and that evaluation on similar but out-
of-specification data (e.g., D) is unnecessary. However, this
argument is fundamentally flawed. LLMs are designed to gen-
eralize by construction, and the influence of D, manifests not
only in “memorized” tokens (or those directly correspond-
ing to D,) but also in higher-level abstractions and semantic
patterns. In legal and ethical contexts, such as compliance
with GDPR [45], takedown of harmful content, or the re-
moval of proprietary data, the goal of unlearning is often to
erase the knowledge derived from D, not just the specific
inputs. Failing to evaluate on semantically similar examples
permits a model to retain and act on this learned knowledge,
undermining the spirit of unlearning. By constructing and
evaluating on D,, we provide a mechanism to expose such
failures and stress-test unlearning metrics. Our approach of-
fers a more faithful audit of unlearning outcomes, ensuring
that metrics reflect the true extent to which a model has relin-
quished knowledge associated with D,,.

3.2 Motivating Experiment

Goal: When unlearning aims to erase all knowledge and be-
haviors derived from D, a basic criterion for ideal unlearning
metrics is that they yield consistent results on both the unlearn-
ing dataset D,, and a closely related dataset D,,. By consistent,
we mean that the distribution of metric values on D, should
closely match that on D,,. To test whether this criterion holds,
we conduct a motivating experiment using a fantasy novel
(which we refer to as Book X) as D, and its fan fiction as D,.
Approach & Setup: We collect a dataset of 12 fantasy novels
and their corresponding fan fiction, where Book X is one of
the 12 novels, and fine-tune a Llama-3-8B [15] model on them
to simulate the system requiring unlearning. Book X is of
particular interest because it was published after the model’s
pre-training cutoff date. This ensures that the base model
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Figure 1: Min-k % metric scores with respect to the average
embedding distance from data points in D, to the 100
nearest neighbors in D,,. One can see a clear correlation as
indicated by the red regression line in the figure. This suggests
despite the metric is expected to perform consistently across
D, and D,, it can be impacted by where the data points located
in the embedding space.

has not been exposed to it during pre-training, allowing us to
disentangle unlearning effects from confounders introduced
by pre-existing. We then unlearn D,, using NPO [54], treating
the remaining novels (excluding fan fiction) as the retain
dataset to preserve model utility. Once the unlearned model 0,
is obtained, we compute an unlearning metric from category
M5, Min-k% [41], on D, (more details in § 5).

To evaluate whether the metric behaves consistently across
D, and D,, we take each sentence from D, and measure its
embedding similarity to sentences from D,.. Our hypothesis
is that if the metric is indeed consistent, the metric value for
a sentence in D, should be independent of its embedding
similarity to sentences in D,. Specifically, we use the last
hidden states of the model (outputs of the final transformer
block averaged across the sequence length) as embeddings,
where the embedding of a point x is denoted by e(x). We use
u(+,-) to denote a certain similarity or distance metric, such
as KL divergence, Jensen—Shannon divergence, ¢, distance,
or cosine similarity. In our analysis, we adopt ¢, distance:

p(x ~ Dy,y ~ Dy) = [le(x) —e(y)]]-

For each sentence from D,,, we identify its 100 nearest neigh-
bors in D,, using this distance and plot the Min-k% scores of
the corresponding sentence against these distances (Figure 1).
Results: It can be observed that the two axes are highly corre-
lated: sentences from D, that lie further from the embedding
distribution of D, tend to receive lower unlearning scores,
i.e., they are more likely to be judged as “not unlearned.” At
first glance this may seem reasonable: embeddings are often
assumed to capture semantic meaning, so one might expect
that sentences semantically distant from D, be considered
irrelevant for unlearning. However, semantic distance alone
does not imply the absence of information from D,. In our
case, D, consists of fan fictions of D,,; although semantically



different, they are directly related to and built upon D,,. This
contradicts our hypothesis and shows that the metric under
consideration fails to behave consistently across D, and D,.

This raises a broader concern: does a dataset analogous to
D, always exist, independent of the model, dataset, and un-
learning algorithm, and for all proposed unlearning metrics?
If so, then no metric could ever definitively certify successful
unlearning, since there would always be points highly related
to Dy, yet assigned values suggesting the opposite.

3.3 Requirements & Threat Model

To address the question raised by the motivating experiment
on falsifying unlearning metrics, we now formally state the
requirements and the threat model. Any entity aiming to fal-
sify the effectiveness of a metric would need to demonstrate
the existence of a dataset D,, such that:

1. D, is provably closely related to, or can be learned from,
D,, but

2. The metric values computed on D,, Eval(éu,Du), are
inconsistent with Eval(0,,D,).

To achieve these two criteria, we believe the following
properties are necessary for D,,.

» P1. Natural Semantic Relevance: The dataset should be
meaningfully related to D, and expressed in natural lan-
guage. D, must be both semantically related to D, and
linguistically fluent. This rules out adversarially crafted
datasets that elicit specific responses but consist of meaning-
less or ungrammatical text, as such datasets are neither nat-
urally occurring nor informative for evaluating unlearning.
We quantify this property in two ways: (i) by comparing the
likelihood of a sentence under the model before unlearning
versus after finetuning on D,,, where a significant increase
indicates related knowledge, and (ii) by measuring fluency
using standard language-model metrics such as perplexity.

* P2. Embedding Separation: The dataset should stress-test
metrics by including semantically close but embedding-
wise distant cases. As motivated in § 3.2, samples from
D, that are semantically close to D, but far apart in the
embedding space are particularly informative. Unlearning
metrics often behave inconsistently in such cases (as
observed in the fan fiction dataset), making them critical
boundary tests. By including these samples, we can
examine whether metrics only work in the immediate
neighborhood of D, or remain robust to embedding
distance when semantic relevance is preserved. This
property can be quantified by measuring the embedding
distance from a sample to its k nearest neighbors in D,,.

What Does This Mean? Intuitively, the existence of D, (that
satisfies the properties listed above) implies two things: (1)
Eval is not an accurate or comprehensive evaluation mech-
anism for unlearning. In particular, assume Eval belongs to

one of the metric categories defined in § 2.3, and that its values
lie in R™. Then, demonstrating Eval(éu,Du) > Eval(éu,Du)
shows that the metric can produce false positives i.e.,
claiming unlearning is successful when it is not. (2) The
metric Eval can be exploited to spoof successful unlearning
by selectively reporting results on a subset of D, that yields
better scores than D,,. This latter case is particularly relevant
when the full D, cannot be revealed, for example in scenarios
involving unlearning bio-weapon-related knowledge.
Threat Model: We consider an auditor i.e., an entity tasked
with evaluating unlearning metrics on behalf of an external
authority (such as a regulator), so that the metrics may be used
by the external authority to faithfully assess knowledge-based
unlearning. Since the focus is on unlearning metrics rather
than the process of unlearning in this threat model, the auditor
may use arbitrary models and unlearning datasets. Thus, the
auditor has white-box access to the model before unlearning
0, the model after unlearning éu, and the unlearning dataset
D,. The auditor may lack sufficient computational resources
to perform exact unlearning (i.e., retraining from scratch), but
can carry out lightweight computations such as fine-tuning.
White-box access also enables the auditor to inspect hidden
states of the model. For example, the auditor can compute
sentence embeddings of data points by averaging token em-
beddings from hidden layers, denoted eg(-), where 6 is the
model under consideration.

4 Proximal Surrogate Generation (PSG)

The objective of our algorithm is to generate natural-language
sentences that contain information derived from D,, yet
exhibit large embedding distances from the actual sentences
in D), (recall the criteria described in § 3.3). The underlying
hypothesis is that current unlearning metrics are unreliable
because they are too dependent on embedding-space distance
from D,,. Yet, as observed in § 3.2, embedding-space distance
is not a reliable proxy for measuring whether two sets
of sentences share information. By generating sentences
derived from D, yet are purposely far from D, in the
embedding-space, we can test this hypothesis: if a metric
certifies a model to have successfully unlearned sentences
in D, but not the derived sentences that contain knowledge
inferred from D,, it is likely not reliable because it is overly
sensitive to embedding-space distance.

To achieve the objective, we propose Proximal Surrogate
Generation (PSG), which we formalize in Algorithm 1.

4.1 Algorithm Overview

Given an LLM 0 and an unlearning dataset D,,, we fine-tune 0
on D, to obtain 07 (line 2 of Algorithm 1).2 We use 6 7 to gen-
erate D,, a set of natural-language sentences that are derived

2A concern the reader may have here is that the LLM could have already
been exposed to D, during pre-training, and thus have a high performance



Algorithm 1 Proximal Surrogate Generation (PSG)

Require: Original model 6, unlearning dataset D, iterations N, embedding function e(-), distance metric u(-,-)

Ensure: D,

1: ﬁu = {}

2. 07 < SFT(6,D,)

3 Ef={e(x)|Vxe D,}

4: for sent € D, do

5 X = generateg(sent)

6 fort=1toNdo

7: x* «— argmin, —wgisid (e(x), minibatch(Ey)))

8 Xprompt <— “Rephrase: ” +x* 4 “ Rephrased:
9

S+ Wprefer Pfef ( ‘xprompt) ~+ Wiikelihood Pre(- |xprompt)

10: x <— sample(S, 0)
11: Xfinal < X

> Finetune 6 on D,
> Compute embedding for every sentence in D,

> Generate the next sentence

> Maximize Embedding Distance via GCG
> Prompt for Rephrasing

> Weighted Summed Objective

> Sampling-based rephrasing

12: if Pref (%final) — Pro (Xfinal) > Tprefer & d(e(Xﬁnal),KNN(e(Xﬁnal),Ef))) > Tgist & Pro(Xfinal) > Tlikelihood then > Filtering

13: D, + D,U{x}
14: return D,

> Append sentences satisfying G1, G2, and G3

from D,,, yet are for from sentences in D, in the embedding
space. To facilitate this, we define an objective function that
combines likelihood increase with the standard likelihood
objective for sampling (line 9), and a complementary loss
function that penalizes proximity to D, in the embedding
space (line 7). To generate sentences for D,, we iteratively
rephrase every sentence in D, to maximize the objective
(ensuring P1) while minimizing the loss (ensuring P2). The
former is achieved through sampling (line 10), while the latter
uses a GCG-like optimization step (line 7). Unlike standard
GCG, which forces the generation of predefined outputs [55],
our variant allows the model to generate any text as long as it
increases embedding distance from D,,. This process can be
seen as creating adversarial examples to maximize embedding
separation, with fluency preserved through filtering (line
12). This filtering stage is applied after N iterations, based on
three requirements: (1) the likelihood increase from 6 to 8,
which captures semantic relevance (and excludes gibberish by
ensuring the sentence has sufficient likelihood under 6); (2)
the embedding distance to the k nearest neighbors from D,,,
which ensures embedding separation; and (3) the likelihood of
the sentence with respect to 6 for fluency, as aforementioned.
To support verifying the second criterion efficiently, we
pre-compute embeddings of all sentences in D,, using 0 (line
3), avoiding repeated encoding during distance calculations.
Sentences that exceed user-defined thresholds on all three
axes (with guidelines in § 4.2 and § 4.3) are retained as natural
candidates derived from D, that may falsify unlearning met-
rics, composing the surrogate dataset D,,. That said, differing

on knowledge generalized from D, even without fine-tuning. While it is
possible to pre-train from scratch to avoid this, the computational costs make
this option impractical. The key observation is that PSG only depends on 6
improving its performance on D,, after fine-tuning relative to before, which
we found to be the case in all experiments.

from e.g., Q&A datasets used to evaluate unlearning, D, is
not meant to cover all derivable knowledge from D,,. Instead,
it is designed for a falsification-style stress test, where the
sentences contained by it are “boundary cases” that likely
have different metric values from D,. Therefore, D, does
not need to be a large dataset but can be as small as e.g., 100
sentences, meaning PSG is not computationally expensive.

Finally, it is worth noting that PSG requires only the
dataset D, and the pre-unlearning model 0 as input; it does
not depend on the unlearned model 6,,.

4.2 Achieving Natural Semantic Relevance

The P1 criterion is enforced through both the sampling and
filtering stages of Algorithm . To approximate how the model
generalizes from D,,, we fine-tune the original pre-unlearning
model 0 solely on D,,, obtaining 0. By definition, if training
on D, reduces the cross-entropy loss for next-token prediction
on a data point outside D,, then the model has generalized
from D, to that point. In unlearning scenarios motivated by,
e.g., copyright or safety concerns, such points should also be
unlearned. Accordingly, we would expect unlearning metric
values on these points to align with those obtained directly
on D,. This captures our key intuition: one needs to leverage
observations from learning to better understand unlearning.

However, the reverse does not always hold: not all points
influenced by D, will show a measurable loss decrease dur-
ing fine-tuning. This is because D, was already part of 0’s
training, and some points may have plateaued at low loss. To
bias sampling toward sentences that plausibly reflect general-
ization, we adapt the standard likelihood objective for token
generation. In particular, given a prompt Xprompt, the model’s
token distribution is adjusted as

Worefer Prg I ( ‘ xprompt) + Wiikelihood Pre(' | xprompt);



With Wprefer > Wiikelihood and the weights normalized to sum
to 1. This ensures preference for tokens whose likelihood
increases from 0 to 07, while still preserving the (pretrained)
base model’s fluency. Sampling under this mixed objective
therefore produces candidates that are both semantically tied
to D, and linguistically natural.

At the end of the rephrasing loop, we obtain a candidate
Xfinal that has also undergone a few iterations of embedding-
distance maximization (see next subsection). Because this
step may cause the sentence to drift away from semantic
relevance, we apply a final filtering criterion. Specifically,
Xfinal 18 retained in D, only if

Pr 0r (xﬁnal) —Prg (xﬁnal) > Tprefer)

where Tpefer i a threshold. As a heuristic, it may be set
based on the likelihood increase from 0 to 67 across D,,. For
example, in the rest of this paper, we set it to the first quartile
of this likelihood increase. This ensures that only sentences
relevant to D, can be included in D,, since irrelevant
sentences would have an unchanged or even decreased (due
to catastrophic forgetting [14]) likelihood when the model
is only finetuned on D,. In addition, we also require that
the likelihood under 0 itself exceeds Tijkelihood- 10 discard
low-quality or ungrammatical sentences, Tjikelihood Mmay be set
to the first quartile of likelihoods on D, so sentences in D,
are comparably fluent to the ones from D,,. Together, these
filtering conditions ensure that sentences in D, remain both
semantically related to D,, and fluent.

4.3 Achieving Embedding Separation

To achieve P2, i.e., encouraging large embedding distances
between points created by PSG and the unlearning dataset D,,,
we adapt a GCG-like optimization [55]. GCG is commonly
used as a jailbreaking method: the model is queried with an
adversarial prompt consisting of “free tokens” and a mali-
cious or toxic request that would otherwise be refused. The
free tokens are then optimized to maximize the likelihood
of the model producing a specific continuation, e.g., "Here
is the response...", thereby coercing it into answering
the malicious prompt. In our setting, the goal is to maximize
embedding distance rather than induce a specific output (see
Appendix B for details). We therefore modify the GCG loss to

—waisid (e(x), minibatch(Ey)),

where e(-) denotes the embedding function, E; is the set of
embeddings for D,,, and d(-, -) is the averaged chosen distance
metric (Euclidean or cosine). Performing GCG to minimize
this loss increases the embedding distance. Concretely, the
embedding function e(-) is the mean of the last-layer hidden
states of O (the model before unlearning), and Ey can be
precomputed before entering the for-loop in Algorithm 1 to
reduce computation. Distances are computed as the average

distance from e(x) to a mini-batch sampled from Ey. The
optimization produces a pair (x*,free tokens), analogous
to adversarial prompts in standard GCG. When used in the
rephrasing stage, querying the model with x* yields outputs
that are distant from E in the embedding space.

Finally, in the filtering stage, we discard points with insuf-

ficient embedding-distance increase, using a threshold Tg;g.
Here, instead of computing the embedding distance from xgp,)
to a random minibatch sampled from D,, we find the k nearest
neighbors (e.g., k = 100) of xgnq from D, to reduce stochas-
ticity. Then, in practice, Tqise may be set to the embedding dis-
tance from a point in D, to its k nearest neighbors, averaged
across all points in D,,, multiplied by a coefficient > 1. This
ensures the sentences included in D, to have higher embed-
ding distances to D, than an average point in D,,, preventing
memorized patterns from D, to be included in D,.
Why GCG? One may ask why a GCG-like method is
necessary instead of the sampling-based approach used in
the previous subsection. The key reason is that sampling
operates on probability distributions over the vocabulary: a
natural output when querying an LLM. In contrast, selecting
the token that maximizes embedding-distance increase would
require computing embeddings for the entire vocabulary.
Such embeddings are not a standard output of LLM queries,
and given the typically large vocabulary size, this would
incur an intractable computational cost.

5 Experimental Setup

Models, Datasets & Algorithms. We conduct experiments on
a combination of 3 pretrained LLMs: Meta-Llama-3-8B [15],
Qwen2.5-7B [51], and Zephyr-7B-Beta [44], together with 3
unlearning datasets from distinct domains: (i) a fantasy novel
denoted as Book X°, (ii) a toxic subset of comments from the
Civil Comments platform [3], and (iii) a dataset containing
biological weapon-related knowledge, WMDP-bio [28]. We
apply 2 representative unlearning techniques: NPO [54] and
RMU [28]. Combining 3 LLMs, 3 unlearning datasets, and
2 techniques yields 18 unlearned models in total. Unless
otherwise specified, the same hyperparameters of PSG are
used across all settings.

For each triplet (LLM, unlearning dataset D,,, unlearning
technique), we first fine-tune the LLM on D,, combined with
additional datasets from similar distributions.® Portions of
these additional datasets serve as retain sets during unlearn-
ing, enabling us to simulate an LLM trained on D, without
training from scratch. We then perform unlearning using the
corresponding retain set to preserve model utility. The full
configuration of unlearning and retain datasets for each ex-

3We use this anonymized novel instead of the more commonly considered
Harry Potter because the latter may not represent typical copyrighted content,
given its extensive presence across English datasets.

4An exception is WMDP-bio, which prior work has shown to already be
included in pretraining corpora [28].



periment is summarized in Table 2, with additional details
(including compute resources) provided in Appendix A.

Unlearning Metrics Used. After obtaining the unlearned
models, we evaluate unlearning success using the metrics
described in § 2.3. In particular, we considered 7 metrics and
their implementation details are as follows:

e Likelihood (M1) is directly computed from the model’s loss
value, i.e., the negative log-likelihood of a given sentence.
Memorization (M2) is a variant of Adversarial Compres-
sion Ratio (ACR) [39], a metric for evaluating memoriza-
tion in LLMs. ACR measures the number of adversarial
tokens required by GCG to force the model to reproduce an
exact training point. However, varying the number of adver-
sarial tokens makes this method computationally expensive
for large datasets. We therefore modify it to instead mea-
sure the number of identical tokens between the model’s
generation and a training sentence, given a fixed number
of adversarial tokens.
Orthogonalization [32] (M3) is a form of relearning attack.
It uses a small fraction of D, to estimate the parameter
change caused by unlearning, and then applies this change
back to the model. The likelihood of sentences under this
modified model serves as a metric for how easily the un-
learned knowledge can be relearned.
Logit Lens [36] (M4) examines the hidden states of LLMs.
Most current LLMs consist of several transformer blocks
followed by a linear classification head to predict the next
token. The hypothesis behind this metric is that unlearned
content may only be suppressed in later layers. Accord-
ingly, the method connects the linear head to an earlier
transformer block to predict the next token. The likelihood
of sentences under this setup defines the metric value.

zlib Ratio (M5) is the ratio between likelihood and the zlib

entropy [13] of a sentence. It was proposed as a member-

ship inference technique for LLMs [6]. The idea is that a

sentence is more likely to be a member if it has low entropy,

which can result from, e.g., repeated patterns of memorized
training text.

Min-K% Prob (M5) is another widely used membership

inference technique for LLMs [41]. Its intuition is that for

a sentence seen during training, even its lowest-probability

tokens should exceed a certain threshold.

* Min-K%++ (M5) is a follow-up [53] to Min-K% Prob. The
main difference is that it normalizes per-token probability
by the expected probability of all tokens in the vocabulary,
since tokens observed during training typically have locally
(rather than globally) maximal probability.

6 Evaluation

In this section, we design experiments to simulate scenarios
where trained LLMs are required to unlearn parts of their
training datasets. Our evaluation is guided by 3 questions:
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Figure 2: Boxplots of metric scores of the unlearning
dataset D,, surrogate unlearning dataset D,, and retain
dataset D,, when Book X is unlearned from a Llama-3
model using (a) NPO and (b) RMU. The metric scores
are normalized to a [0,1] range, and a larger value indicates
unsuccessful unlearning (according to the metrics). One can
observe that the box corresponding to D, is almost always
higher than the box corresponding to D,,. This indicates that
for this setting, PSG is able to create sentences that falsify
the unlearning metrics by demonstrating they are unlearned
less successfully than D,,.

* How do existing unlearning metrics behave when applied
to datasets that are surrogates of the unlearning dataset?

* Are the inconsistencies we observe specific to a single
model—dataset pair, or do they generalize across models,
datasets, and unlearning methods?

* How sensitive is PSG to its design choices, such as embed-
ding separation thresholds, distance metrics, and generation
strategies?

Our empirical findings can be summarized as follows:

* Surrogate datasets created by PSG consistently yield metric
values that differ substantially from those of the original
unlearning datasets, despite being semantically tied to them
(as shown in the case study in § 6.1.)

* These inconsistencies generalize broadly: across 3 mod-
els, 3 datasets, and 2 unlearning methods, no existing met-



Dataset Model [ Method Unlearning Metrics
Likelihood zlib Ratio Min-K% Prob | Min-K%++ Memorization | Orthogonalization | Logit Len
Llama-3 NPO 2.13 +/- 0.16 | 1.61 +/- 0.12 | 2.16 +/- 0.14 | 0.90 +/- 0.19 | 1.16 +/- 0.09 | 1.37 +/- 0.07 1.20 +/- 0.09
RMU 1.56 +/- 0.12 | 0.93 +/- 0.10 | 1.74 +/- 0.14 | 1.68 +/-0.10 | 1.35+/-0.11 | 1.13 +/- 0.11 1.18 +/- 0.11
Book X Qwen2.5 NPO 2.01+/-0.12 | 0.54 +/-0.09 | 1.96 +/-0.13 | 1.53 +/-0.11 | 1.51 +/-0.09 | -0.49 +/- 0.06 0.82 +/- 0.08
RMU 147 +/-0.13 | 0.77 +/- 0.12 | 1.57 +/- 0.12 | 1.43 +/- 0.15 | 1.62 +/- 0.10 | 1.54 +/- 0.13 0.85 +/- 0.10
Zephyr NPO 1.47 +/- 0.09 | 0.20 +/- 0.05 | 1.42 +/-0.08 | 1.33 +/- 0.09 | 1.18 +/- 0.09 | -0.35 +/- 0.04 1.03 +/- 0.07
RMU 1.36 +/- 0.10 | -0.11 +/- 0.04 | 1.30 +/- 0.09 | 1.14 +/- 0.07 | 1.18 +/- 0.08 | 1.08 +/- 0.11 0.98 +/- 0.08
Llama-3 NPO 0.65 +/- 0.10 | 0.23 +/-0.09 | 0.73 +/- 0.10 | 0.54 +/- 0.08 | 0.89 +/- 0.07 | -0.23 +/- 0.06 0.46 +/- 0.09
RMU 0.67 +/- 0.11 | -0.10 +/- 0.08 | 0.66 +/- 0.09 | 0.62 +/- 0.08 | 0.79 +/- 0.08 | 0.87 +/- 0.10 0.44 +/- 0.09
Toxic Civil NPO 0.38 +/- 0.08 | -0.15 +/- 0.02 | 0.56 +/- 0.09 | 0.40 +/- 0.09 | 0.62 +/- 0.07 | 0.06 +/- 0.04 0.16 +/- 0.10
Comments | V"> "RMU [ 0.70 +/-0.08 | 0.23 +/-0.05 | 0.78 +/-0.09 | L4 +/-0.09 | 0.97 +/-0.07 | 0.40 +/-0.05 -0.02 +-0.09
Zephyr NPO 0.15 +/- 0.09 | -0.51 +/- 0.05 | 0.26 +/- 0.10 | 0.26 +/-0.10 | 0.29 +/-0.07 | 0.40 +/- 0.08 0.04 +/- 0.08
RMU 0.05 +/- 0.09 | -0.63 +/- 0.03 | 0.19 +/- 0.10 | -0.15 +/- 0.08 | 0.27 +/- 0.07 | -0.07 +/- 0.09 -0.04 +/- 0.08
Llama-3 NPO 0.49 +/- 0.05 | -1.06 +/- 0.02 | 0.25 +/- 0.03 | 0.23 +/-0.04 | 0.88 +/- 0.05 | 0.65 +/- 0.09 0.36 +/- 0.02
RMU 0.88 +/- 0.03 | -1.10 +/- 0.02 | 0.46 +/- 0.06 | 0.07 +/-0.08 | 0.89 +/- 0.05 | -4.10 +/- 0.03 0.39 +/- 0.00
WMDP-bio | Qwen2.5 NPO 0.34 +/- 0.04 | -1.30 +/- 0.01 | 0.24 +/- 0.04 | -0.15 +/- 0.00 | 1.08 +/- 0.04 | 3.44 +/- 0.04 0.55 +/- 0.04
RMU 0.66 +/- 0.03 | -1.42 +/- 0.02 | 0.24 +/- 0.05 | -0.46 +/- 0.06 | 1.27 +/- 0.05 | 2.32 +/- 0.18 0.48 +/- 0.01
Zephyr NPO 0.28 +/- 0.07 | -1.56 +/- 0.04 | 0.33 +/-0.07 | 0.37 +/-0.07 | 0.52 +/-0.09 | 0.37 +/- 0.10 0.30 +/- 0.03
RMU 0.98 +/- 0.09 | -0.92 +/- 0.04 | 0.90 +/- 0.08 | 1.02 +/-0.08 | 1.02 +/-0.11 | 0.45+/-0.11 0.45 +/- 0.05

Table 1: Standardized mean difference between metric values of D, and D, across various settings. For each combination
of the 3 datasets, 3 models, and 2 unlearning methods, we compute the 7 metrics on the unlearned model using both D,, and D,,.
Then for each D,, (100 points), we randomly sample 100 points from D, and measure the mean difference between their metric
values, standardized by the pooled standard deviation. The random sampling is repeated 100 times so that we report average
mean differences with their standard deviations in this table. We presenting the mean difference with absolute value greater than
0.5 in bold—this is 61.1% of the table. In addition, no metric performs consistently on D, and D, under all settings.

ric can always remain consistent between D, and D, (as
shownin § 6.1.)

* Ablation studies show that PSGdoes not require heavy
hyperparameter tuning and behaves predictably with re-
spect to its hyperparameters: larger separation thresholds
increase effectiveness but reduce efficiency while choices
of embedding distance metrics and generation strategies
have insignficiant impacts (as shown in § 6.2.)

6.1 Achieving Falsification

Case Study: Fantasy Novel Unlearning. We begin with the
scenario where the fantasy novel Book X is unlearned from
a Llama-3 model using NPO. We construct the surrogate un-
learning dataset D, and compute the values of 7 unlearning
metrics, alongside those for the unlearning dataset D,, and the
retain dataset D,. To visualize the results, we plot the distri-
butions of the metric values as boxplots in Figure 2. Since
different metrics operate on different scales, we normalize
each metric by its minimum and maximum values across the
3 datasets, mapping them into the range [0, 1], where larger
values indicate less successful unlearning. It is noteworthy
that the variability of metric values is large for some metrics,
even for D,. However, this is not problematic as long as the
values computed on D,, are significantly lower than D,, mean-
ing the differences between the unlearned data and retaining
data can be captured by the corresponding metric. Here, this
case study serves as a concrete starting point to illustrate
how D,, behaves relative to D,, and D,.
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Divergence Between D, and D,. As expected, the boxes
corresponding to D, lie below those of D,, indicating that
unlearning impacts the model’s behaviors on D,,, which is
successfully captured by the metrics. However, the boxes
corresponding to D, created by PSG are markedly differ-
ent from those of D,. This is noteworthy because we set

Tprefer = Quantiley »s (Pl‘ef (x) —Pro(x) ‘ X € Du), which en-

sures that every sentence in D, exhibits a likelihood increase
greater than at least 25% of the points in D,,. This guarantees
that D, contains information and knowledge learned from
D,,. Yet, the metric values suggest that D, is not unlearned
as effectively. In other words, these results show that D,, de-
spite being semantically tied to D, produces very different
outcomes under existing metrics.

Results Across Models and Datasets. To validate the
consistency of these findings, we run PSG for all other
dataset—model pairs to obtain D,, using the same hyperparam-
eters, and evaluate the same 7 unlearning metrics on both D,
and D,, with respect to the corresponding unlearned models.’
Since an ideal unlearning metric should behave similarly
on D, and D,, we compute standardized mean differences
between their metric values, reported in Table 1 (boxplots
similar to Figure 2 for these settings can be found in Figures 8

5A related concern is whether the gap between the metric scores for D,
and D, may be a result of variances in the unlearning process, i.e., the gap
only exists for some unlearning runs, but not others. To test this, we run
NPO on Llama-3 with the Book X unlearning set 4 times with identical
hyperparameters but different random seeds (Figure 7); results show the gap
between D, and D, is consistent across all runs and metrics.
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Figure 3: Standardized mean difference between metric
values of D, and D,,, with respect to Tgis. Here Tgj is rela-
tive to the average embedding distance among points in D,,.
It can be observed that for both NPO and RMU, there is a
positive correlation between the standardized mean difference
and Tgis for most of the metrics. This validates our hypothesis
that increasing the embedding distances between D, and D,
can cause the metrics to perform more differently on them.

to 15 in Appendix C). Following standard practice, we bold
the cells with absolute values exceeding 0.5, indicating cases
of inconsistency. We observe that this occurs in the majority
of cases, and no metric maintains a mean difference below
0.5 across all dataset-model pairs. These results validate our
hypothesis from § 3: most existing unlearning metrics depend
heavily on the embedding-space closeness of the evaluation
points to D,,. In other words, the metrics overfit to D, and
fail to reliably judge unlearning success on sentences that are
semantically derived from D,,. Taken together, this highlights
a systemic limitation: current unlearning metrics are not
robust to semantically related but embedding-distant data.

6.2 Ablation Study

PSG involves several tunable hyperparameters, as well as
design choices such as the distance metric used for computing
embedding separation. In this section, we conduct ablation
studies to examine the effects of these hyperparameters and
justify our design decisions.

Embedding Separation Threshold. As discussed in § 4, one
essential component of PSG is to maximize the separation
between sentences in D, and those in D,,. This is achieved
by the GCG-like optimization and the filtering stage (lines 7
and 12 in Algorithm [, respectively). As aforementioned, the
filtering threshold T4ic may be set to the average embedding
distance from a point in D,, to its k nearest neighbors, multi-
plied by a coefficient. Doing so avoids the need to search for
hyperparameters for different model-dataset pairs. So far, we
used k£ = 100 and the same coefficient 1.5 for all the settings.
Here, to study the impact of embedding separation on the per-
formance of PSG, we run PSG with varying coefficient values
ranging from 1 to 2 and plot the standardized mean difference
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Figure 4: Boxplots of metric scores of 2 surrogate unlearn-
ing datasets, D, (¢,) and D,(cos), where the embedding
distance is measured using ¢, distance and cos distance
respectively. The metric scores of the unlearning dataset D,
and retain dataset D, are also presented as reference. One
can observe that for most cases, ¢, distance results in slightly
more different (mean) scores from D, than cos distance, and
smaller variance in the distribution of the metric scores. Al-
though the differences are not significant, we choose to use
{5 distance as the result of this ablation study.

between unlearning metric values of D, and D,,. Results for
Llama-3 are shown in Figure 3, while those for Qwen2.5 and
Zephyr appear in Figures 16 and 17 in Appendix C.

As seen in the figures, there is a clear positive correlation
between Tgis and the standardized mean difference (which
represents the effectiveness of PSG). When the coefficient
is 1, i.e., Tgist €quals the average embedding distance among
points in D, standardized mean differences are generally
below 1, with some near O, indicating little separation
between D, and D,. As Tg4igx increases, standardized mean
differences rise accordingly. That said, since 7Tg;g is used for
filtering, higher thresholds reduce the number of unfiltered
sentences and thus slow down PSG when constructing D,,. In
short, larger separation thresholds make PSG more effective
but at the cost of efficiency.

Distance Metric. Beyond the magnitude of separation, the
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Figure 5: Boxplots of metric scores of 2 surrogate unlearn-
ing datasets, D, and D, (scratch). The sentences in the for-
mer are generated by continuing writing from sentences in D,,,
whereas the latter contains sentences written from scratch (i.e.,
generating from an empty string). The metric scores of the
unlearning dataset D, and retain dataset D, are also presented
as reference. It can be seen that for most of the metrics, the
difference between the boxes corresponding to the 2 surrogate
unlearning datasets are negligible. Thus, we conclude that
generating whether from a sentence in D, or an empty string
does not significantly impacts the performance of PSG.

choice of distance metric is another hyperparameter of PSG.
We consider 2 common options: Euclidean (¢,) distance and
cosine distance. To test whether this choice significantly af-
fects PSG, we create D, using each metric and plot their
corresponding metric values in Figure 4, following the same
format as Figure 2. Two observations emerge: (1) when cosine
distance is used, the resulting metric distributions tend to have
larger variance than with ¢, distance; (2) for some metrics, ¢,
distance yields larger standardized mean differences relative
to D,. However, this is not consistent across all metrics, and
the differences are generally subtle. For consistency, we use ¢,
distance in other experiments, though PSG appears relatively
robust to the choice of metric. Overall, PSG is not highly
sensitive to whether cosine or Euclidean distance is used.
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Generation Strategy. As shown in lines 4-5 of Algorithm 1,
PSG begins with sentences from D,, generates continua-
tions, and then enters the loop of maximizing separation and
rephrasing. A natural question is whether starting from D,
is necessary. To test this, we consider an alternative strategy
where PSG generates sentences from scratch by prompting the
model with an empty string. We denote the resulting dataset as
D, (scratch), and plot its metric values in Figure 5, alongside
those of D,,, D,, and the D,, created by continuing from D,,.
The figure shows that D, (scratch) and D, yield very similar
metric distributions across most metrics and both unlearning
methods. This suggests that the choice between continuing
from D,, or generating from scratch has little effect, likely be-
cause the iterative rephrasing loop heavily modifies sentences
after initialization. Nonetheless, we prefer the former strategy,
since generation from scratch can lead to collisions; for some
models, starting from an empty string can result in repeated
outputs with high probability. Thus, while either generation
works in principle, continuing from D,, is more practical.

Model Size. All models studied so far have around 7-8 billion
parameters (see § 5). To assess the impact of model size,
we test PSG on a smaller model: Phi-3-mini-4k-instruct [1],
with only 3.8 billion parameters. Other than the architecture,
all settings remain the same as in Figure 2: the model is
fine-tuned with 12 fantasy novels and their fan fictions, and
Book X is unlearned using both NPO and RMU. The metric
values of D,, Dy, and D, are shown in Figure 6. Two main
observations arise: (1) unlearning appears less successful
for the smaller model, as D, often overlaps with D, in
metric distributions, despite lower mean values; and (2) PSG
works as expected for most metrics, i.e., D, achieves large
standardized mean differences from D,,. However, exceptions
occur for Orthogonalization and Logit Lens, the same metrics
that also suggest unlearning itself was unsuccessful. This
indicates that PSG requires the condition that the chosen
metric differentiates D,, and D, in the first place. Intuitively,
not being able to do so means the metric performs similarly
across the entire training distribution, where an extreme
example would be a random metric that decides if a point is
unlearned successfully with 50 — 50 chance. It is impossible
to create D, with a different metric score distribution from
D, in this case. Therefore, the effectiveness of PSG depends
on using metrics that can at least differentiate D,, and D,.

7 Discussion

How is the surrogate unlearning dataset related to the un-
learning dataset? As aforementioned in § 4.2, PSG ensures
the surrogate unlearning dataset is driven from the unlearning
dataset by only including sentences with an increase in like-
lihood when the model is finetuned on the latter. To further
confirm this, we analyze D, and D, by leveraging topic mod-
eling techniques, under the same setting as in § 6.1. First, by
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Figure 6: Boxplots for metric scores of D, (Book X), Dy,
and D, on a smaller model. Unlike Figure 2, the model ar-
chitecture used here is Microsoft’s Phi-3-mini-4k model with
only 3.8 billion parameters, which is significantly less than the
other models studied in this work. The results are consistent
with Figure 2 for most of the metrics: the boxes representmg
D, are consistently different from the ones for D,,. However,
this is not the case for metrics Orthogonalization and Logit
Len. By comparing the metric scores of D, and D,, we sus-
pect this is because unlearning is not successful in the first
place, i.e., the metric is performing similarly on all training
data (whether it is unlearned or used for retaining), so it is
hard to create D, that is not vastly different from the training
distribution and has different metric values at the same time.

clustering the sentences of D, into topics based on TF-IDF
(term frequency—inverse document frequency), we observe
87% sentences of D, falls into the 5-largest topics of D,,
suggesting similar use of words between the two datasets.
We then move to an LLM-based topic modeling technique,
BERTopic [16]. Here, we observe 63% sentences of D, were
classified as outliers, i.e., not belonging to any topic clusters
of D,. This may be because that LLM-based topic modeling
techniques often rely on embeddings of the underlying LLMs.
Recall that PSG maximized embedding distances between the
two datasets on 0, so this might transfer to other models like
the BERT model used in BERTopic. We then rerun BERTopic
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on both D, and the retain dataset D,. Despite D, is much
larger in size than D,,, we find 90% sentences of D,, falls into
topic clusters dominated by sentences from D,,. This means
D, is more relevant to D, than other subsets of the training
dataset.

Could unlearning methods be the cause of the issue? One
might argue that the key issue identified by PSG, i.e., unlearn-
ing metrics give different scores to sentences in D, versus
sentences learned from D,,, could stem from imperfect un-
learning methods. For instance, when applied for copyright or
safety, an unlearning method may falsely primarily target ex-
act sentences in D,,, leaving semantically related sentences in-
sufficiently unlearned. This could reproduce our observation:
the existence of a dataset related to D,, but with a different dis-
tribution of metric values. However, even if this is the case, an
ideal metric for copyright- or safety-driven unlearning should
report the worst-case performance across both D,, and related
data, rather than only the performance on D,. Otherwise, the
metric remains problematic, as it may overstate or understate
the success of unlearning. Thus, imperfect unlearning meth-
ods may explain the discrepancy, but they do not absolve the
metrics of their responsibility to capture it.

Could the surrogate unlearning dataset be leveraged dur-
ing unlearning? Since the surrogate datasets created by PSG
consist of sentences that can be learned from D, a natural
question is whether including them during unlearning would
improve unlearning success. The answer depends on the size
of D, and how well it represents the complete distribution
of sentences containing knowledge from D,,. If a sufficiently
large and representative dataset exists, unlearning it could im-
prove both success and generalizability [30]. However, PSG
is designed to falsify metrics, not to generate representative
distributions: one counterexample suffices to falsify a metric.
As such, unlearning with D, is analogous to training on a
validation set, making evaluation harder without truly improv-
ing unlearning®. That said, the fine-tuned model 6  used to
construct D,, may still provide useful signals, as it encodes
more information about what can be learned from D, than a
few sentences alone. Indeed, similar approaches have been
explored in task-vector-based unlearning [22]. Yet relying
on a single fine-tuned model is likely insufficient and may
lead to failure cases [42]. A more promising direction may
be to obtain a distribution of models fine-tuned on D, and
use them collectively to guide unlearning. Therefore, while
D, itself may not be suitable for unlearning, the fine-tuned
models used to construct it could inform better strategies.

When do unlearning metrics need to be tested against
the surrogate dataset? It is worth noting that the surrogate

This does not mean including surrogate unlearning datasets in the un-
learning dataset can function as an adaptive attack against PSG. As specified
in the threat model in § 3.3, the auditor’s task is to only evaluate unlearning
metrics, so it may use arbitrary unlearning datasets and models. In other
words, an adversarial unlearning metric designed against PSG does not have
access to the unlearning setting where it would be evaluated.



dataset does not overlap with the unlearning dataset. There-
fore, by design, if the goal of unlearning is to remove certain
exact data points, the unlearning metrics are not expected to be
test against a surrogate dataset—for example, when unlearn-
ing is motivated by privacy concerns regarding personally
identifiable information. Note that this is not claiming that
existing unlearning metrics are perfect in that scenario. In fact,
it has been pointed out that the evaluation of privacy-oriented
unlearning is also flawed [18]. However, the drawbacks of
metrics are different when the goals of unlearning are differ-
ent, and so are how we should test them—surrogate datasets
are only needed when unlearning beyond sentence-level, e.g.,
when motivated by copyright or safety.

What would be the right direction toward best practices
for evaluating unlearning? Our results highlight the limita-
tions of existing metrics and suggest properties for improved
evaluation. First, metrics must align with the true incentive
of unlearning. Measures derived from memorization or mem-
bership inference are designed to detect whether a model
has memorized or trained on an exact data point; naturally,
they cannot be expected to generalize to semantically related
but unseen data, such as fan fiction of copyrighted content.
Second, if the goal is to remove broader knowledge rather
than specific data points, the evaluation must also address
generalization. This implies two considerations:

1. Evaluation should move beyond individual data points
toward sets of examples that all entail the same piece
of knowledge, and measure whether that knowledge has
been unlearned.

2. Analogous to standard model evaluation, an external test
dataset is necessary.

What constitutes a good test dataset remains an open question.
The surrogate datasets produced by PSG rely on embedding
separation, but this is unlikely to be the only requirement.
This also highlights a limitation of PSG itself: a large mean
difference between D, and D, indicates that a metric is not
ideal, but the reverse does not imply that the metric is sound.
In other words, PSG is designed to falsify unlearning metrics,
not to prove their correctness. Hence, best practices for evalu-
ating unlearning should move beyond data-point membership,
embrace generalization, and develop robust test datasets. That
said, we also recognize the possibility that this work may lead
to future findings suggesting it is impossible to faithfully eval-
uate knowledge-level unlearning, in which case unlearning
may not be the best tool for e.g., copyright or safety protec-
tion. We hope highlighting this possibility can encourage
researchers to revisit fundamental questions on unlearning,
such as incentive-dependent best practices for evaluating it,
rather than focusing on proposing “better” LLM unlearning
methods based on metrics that may not be faithful.
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8 Conclusion

We study the problem of evaluating unlearning in generative
settings, when the goal is to remove knowledge beyond the
data-point level from trained models. We argue that current
metrics, which are typically applied only to the unlearning set
D,, and thus tailored to D,, create a false sense of success. In
particular, many metrics suggest that data containing knowl-
edge learned from the unlearning dataset has inconsistent
unlearning success with respect to the unlearning dataset. To
make this gap explicit, we introduced the notion of surrogate
unlearning datasets D,,, which are derived from (thus semanti-
cally related to) but disjoint from D, and presented Proximal
Surrogate Generation (PSG), a lightweight algorithm for con-
structing them automatically.

Our empirical results across 18 settings (3 LLMs, 3
datasets, and 2 unlearning algorithms) show that commonly-
used unlearning metrics are highly inconsistent between
D, and D,, with D, frequently appearing less successfully
unlearned, according to these metrics. These findings
highlight that existing metrics are overfitting to D, and
systematically fail to evaluate unlearning success based on
the removal of higher-order knowledge, which is more tied to
the incentive of knowledge-based (e.g., copyrighted contents
removal or unsafe outputs mitigation) unlearning. Looking
ahead, we hope our work can encourage future unlearning
metrics to account for generalization of unlearning (e.g., by
the use of a pseudo-validation dataset) and tailor to the goal
of unlearning: in particular, when unlearning is motivated
by knowledge removal, the metrics can be designed to move
beyond exact-data deletion and toward capturing the true
extent of knowledge removal in LLMs.
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Appendix
A Experimental Setup

A.1 Datasets and Retain/Unlearning Mapping

We organize experiments into three tasks: Novel, WMDP, and Toxic. Sizes and dataset identifiers are summarized in Table 2.
Below we state, for each task, the precise mapping from the unlearning dataset (also known as forget dataset) to its corresponding
retain dataset(s), consistent with the main text and tables.

Novel task. We fine-tune on 12 novels and their associated fan fiction. For unlearning, the unlearning dataset is Book X. The
retain dataset is the union of the other 11 novels, as listed in Table 2.

WMDP task. The unlearning dataset is WMDP-bio [28]. The retain dataset is Salesforce/wikitext (specifically
wikitext-2-raw-v1l) [34], as listed in Table 2.

Toxic task. We fine-tune on the union of google/civil_comments subsets with (i) toxicity= 0 and (ii) toxicity>0.5 [3]. For
unlearning, the unlearning dataset is the toxicity>0.5 subset; the retain dataset is the toxicity= 0 subset, as listed in Table 2.

Table 2: Dataset sizes for corpora used in the WMDP, Toxic, and Novel tasks.

Dataset Comment Size
WMDP-bio [28] bio-forget-corpus 712.96 MB
Salesforce/wikitext [34] wikitext-2-raw-v1 12.77 MB
google/civil_comments [3] toxicity = 0 348.42 MB
google/civil_comments toxicity > 0.5 38.38 MB
Novel task (fine-tune) All novels + fan fiction ~ 81.90 MB
Novel task (unlearning) One novel (Book X) 0.63 MB
Novel task (retain) Other 11 novels 33.85 MB

A.2 Models and Training Environment

We conduct experiments with Meta-Llama-3-8B [15], Qwen2.5-7B [51], and Zephyr-7B-beta [44]. For unlearning, we em-
ploy Negative Preference Optimization (NPO) [54] and Removal via Model Update (RMU) as instantiated in the WMDP
framework [28].

Hardware. All runs used four NVIDIA A100-SXM4-80GB GPUs (80 GB each). The host has two AMD EPYC 7643 48-core
processors (96 physical cores / 192 threads). The total system RAM was not captured in our environment logs. The OS is
Ubuntu 22.04.5 LTS (64-bit).

Software. We used Python 3.11.9 and PyTorch v2.6.0 with CUDA Toolkit 12.1. The NVIDIA driver is 535.161.08 (supports
up to CUDA 12.2).

B Is line 7 of Proximal Surrogate Generation (PSG) jailbreaking?

Although our method adopts a GCG-like optimization, it is fundamentally different from jailbreaking. In jailbreaking, free tokens
are optimized to coerce the model into producing a specific harmful or restricted continuation. In contrast, our objective does
not prescribe any target output. Instead, the free tokens are optimized solely to maximize separation from D,, in the embedding
space. The outcome is not unsafe generations, but natural sentences that remain semantically related to D, while stress-testing
unlearning metrics. The similarity to GCG is thus purely structural, not adversarial in either intent or use. In short, PSG borrows
the mechanics of GCG but serves a fundamentally different, non-adversarial purpose.
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C Additional Experiment Results
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Figure 7: Boxplots for metric scores of D,, (Book X), D,,, and D, where the unlearning method is NPO and the model architecture
is Llama-3. With the same model before unlearning, we perform unlearning 4 times with identical hyperparameters but different
random seeds. Therefore, there are 4 boxes for each of D, D,,, and D, for every metric. Note that, besides D, and D,, the D,
is also identical across the 4 runs of unlearning, since Proximal Surrogate Generation (PSG) is not impacted by the unlearned
model. One can see that PSG performs consistently across different random seeds.
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Figure 8: This is a reproduction of Figure 2 with identical settings, except the model architecture is Qwen?2.5.
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Figure 9: This is a reproduction of Figure 2 with identical settings, except the model architecture is Zephyr.
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Figure 10: This is a reproduction of Figure 2 with identical settings, except the dataset is Civil Comments. Note that here, for

computational efficiency, the metric values are computed for 5% of D, (randomly sampled), which contain about 13 thousand
sentences.
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Figure 11: This is a reproduction of Figure 2 with identical settings, except the dataset is Civil Comments, and the model
architecture is Qwen2.5.
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Figure 12: This is a reproduction of Figure 2 with identical settings, except the dataset is Civil Comments, and the model

(a) Negative Preference Optimization (NPO)

architecture is Zephyr.
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Figure 13: This is a reproduction of Figure 2 with identical settings, except the dataset is WMDP-bio. Note that here, for

computational efficiency, the metric values are computed for 1% of D, (randomly sampled), which contain about 18 thousand
sentences.
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Figure 14: This is a reproduction of Figure 2 with identical settings, except the dataset is WMDP-bio, and the model architecture

is Qwen2.5.
M D, -Du W D, W D, | D, W D,
1.0 D 1.0 D
= te T . = ‘e T ‘g N
8081 1 8087 . H "
Té 0.61 ' g 0.61 X * *
5 : ‘o, 5 : . v,
=) =)
\;0.4- $ \;0.4- i
2 L !
3029 | § 3029 | § C '
wn w2
00 ) , 004 o . .
X 3 X X 3 +
‘;‘\‘e\‘k\ood 200 Ra“:A °/ A8V ‘K /o)(M mo“z go(\&\‘zat\ﬁ%“ e L'\\ie\‘“o"d 200 Y\a“‘;& XC’/ A8V \(\‘L/OJ(M mG“Za %0(\3\‘7’3‘{,0%“"6“
Metrics Metrics

(a) Negative Preference Optimization (NPO)

(b) Representation Misdirection for Unlearning (RMU)

Figure 15: This is a reproduction of Figure 2 with identical settings, except the dataset is WMDP-bio, and the model architecture

is Zephyr.
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Figure 16: This is a reproduction of Figure 4 with identical settings, except the model architecture is Qwen2.5. Similar trends can
be observed.
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Figure 17: This is a reproduction of Figure 4 with identical settings, except the model architecture is Zephyr. Similar trends can
be observed.
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