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Abstract

In this project, we did the ablation study of the paper "Fully Neural Network
based Model for General Temporal Point Processes" by Takahiro Omi from the
2019 NeurIPS accepted papers. This paper discusses Recurrent Neural Network
(RNN) based models developed for point processes. RNN based models usually
assume a specific functional form for the time course of the intensity function of
a point process. This paper proposed a novel model where the time evolution of
the conditional intensity function is formulated based on a neural network rather
than assuming a specific functional form. We confirmed that the conclusions of
the paper are supported. This new model overall achieves superior performances
compared to the previous state-of-the-art methods for synthetic datasets. However
because of the nature of the neural network where it requires a training process,
it has a higher variance and highly depends on the process used to generate the
data. Typically it performs better when the process is more complex, specifically
stationary renewal, non-stationary-renewal, and Hawkes Processes. We show that
tanh is a better activation function for the Neural Network and the 64 units per
hidden layer setting in this paper performs worse compared to 16 units and 32
units, reducing the layer does not only increase the accuracy but also decreases the
computational power required. Thus, we purposed ways to optimize the model and
improve the result.

1 Introduction

1.1 Background and Motivation

Ablation study is a great way to analyze a machine learning model. By removing and modifying some
of the features to see how it affects performance, it shows which parts of the model are especially
crucial to the results and which parts are not (1). We choose to do an ablation study on the paper
“Fully Neural Network based Model for General Temporal Point Processes”. This paper is interesting
as it purposed a new approach to the current state of the art model for the temporal point process. A
temporal point process is a random process whose realizations consist of the time of isolated events.
(2) The more widely adapted understanding views temporal point processes as how long events
occur where the events themselves are spaced according to a discrete set of time parameters. The
behavior of a temporal point process N is typically modeled by specifying its conditional intensity λ
= λ(t). The intensity functions of many point processes involve two components: the background
and the effect of historical events. Formerly, models for point processes use parametric forms for the
conditional intensity function that are carefully designed by researchers’ prior knowledge to capture
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the character of the dataset in the study. However, this gives rise to a limitation where parametric
forms of point process are specialized and restricted for arbitrarily distributed event data which tends
to be oversimplified or even infeasible for capturing the problem complexity in real applications.
Therefore, a Recurrent Neural Network (RNN) is used to obtain a compact representation of the
event history. The conditional intensity function is then modeled as a function of the hidden state
of the RNN. Consequently, the RNN based models outperform the linear and/or parametric models
in prediction performance (3)(4). This paper brings it one step further by purposing a new model.
It is innovative in a way that employs a neural network to represent the background time series
of the intensity function in a general manner. In their experiment, a feed-forward neural network
is applied to integrate the intensity function and then the intensity function is obtained through
the differential. Through an average negative log-likelihood function, the authors get rid of any
numerical approximations in the model of intensity function. (5) As a result, the expressive ability of
recurrent Neural Network is improved, and the potential deterioration of the incorrect function-form
assumptions can be nearly eliminated. Finally, the authors defend the superiority of their method
through comparison with previous state-of-the-art methods. We are interested in this paper as we
want to find out whether deep learning techniques can indeed defeat traditional mathematical methods
in point processes, a specialized topic that used to only depends on pure mathematical functions,
equations and accumulated knowledge of individual researchers. It might show us how machine
learning can be revolutionary. The code and raw data of our work can be found in (6).

2 Related Works

2.1 Fully Neural Network based Model for General Temporal Point Processes, Omi et al.

Omi et al., 2019 purposed a novel model for point processes (5) While other RNN based models
usually assume a specific functional form for the time course of the intensity function of a point
process (e.g., exponentially decreasing or increasing with the time since the most recent event), this
model uses a feedforward neural network to obtain the intensity function as its derivative (Figure.1).
The backpropagation through time (BPTT) is employed to obtain the gradient of the loglikelihood
function. Rather than directly modeling the hazard function, this paper defines cumulative hazard
function Φ(τ |hi) as follows:

Φ(τ |hi) =

∫ τ

0

φ(s|hi)ds

Figure 1: Network architecture to output the cumulative hazard function.(5)

The paper demonstrates that Neural Network Based Model (NN) outperforms parametric models
(5) by a notable margin on stationary renewal (S_Renewal), non-stational renewal (N_Renewal),
Hawkes Process 1 (Hawkes1) and Hawkes Process 2 (Hawkes2). It is as effective as or less effective
compared to other models on stationary Poisson (S_Poisson) and non-stationary Poisson (N_Poisson)
and self correcting (SC).

2.2 Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks,
Xiao et al.

In this paper (7), RNN is used to model the background of intensity function of point processes. The
units of RNN is aligned with time series indexes while the history effect is modeled by another RNN
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whose units are aligned with asynchronous events to capture the long-range dynamics. The authors
point out the advantage being that the whole model with event type and timestamp prediction output
layers can be trained end-to-end. For example, we could pre-train the model to fit real-life data before
using it. The main difference between these two papers is that while Shuai et al, 2017 focuses on
preserving temporal dynamic behavior of event sequences using RNN (Figure.2), while the paper we
are studying uses NN in attempt to construct a even more versatile and flexible intensity function
expression. Using NN also reduces the problematic issue of gradient vanishing or explosion due to
history dependence for a long sequence.

Overall, in the study of point processes, we see a trend of combining traditionally mathematical
methods with machine learning. From both papers, we can see that the goal is to allow a black-box
treatment for modeling the intensity which is often a pre-defined parametric form in point processes.
This allows the algorithms to be easier to use for people without prior domain knowledge and reduces
false assumption errors.

Figure 2: Synergically modelling time series and event sequence. Using RNN in intensity
function.(7)

3 Dataset

For synthetic data, the authors generate seven random processes. There are S_Poisson, N_Poisson,
S_Renewal, N_Renewal, SC, Hawkes1 and Hawkes2.Codes which generates each random processes
are provided so these seven random processes are available for reproducing results and conducting
ablation sutdy.

For real data, the authors provide four real datasets (5) without related code so we decided to write the
code by ourselves. The first dataset needs purchasing and the link of the fourth dataset is broken. For
the second dataset, we have prepossessed the dataset as described in (5). Unfortunately, this dataset
was updated on 28th Nov. Due to the difference caused by updating, we fail to reproduce the same
results but we still upload the code of prepossessing in code.zip. The size of the third dataset is too
big and overwhelms Google Colab. We cannot find sufficient computation resources to preprocess.
But the idea of prepossessing is still similar to the second dataset so our code should work on it.

The testing of real datasets is discouraged at the beginning due to uncontrolled reasons so we mainly
focused on synthesis data in this project.

4 Proposed Approach

We applied the code provided by the paper in GPU environment in Google Colabto keep the
consistency between our experiments and the authors’ original work, we will still use the synthetic.
We only used the synthetic data as the real data is not accessible. We want to investigate how deleting
and changing the factors of the feedback neural network will change the performance of the model.
More specifically, we aim at investigating whether the parameters used in the original paper are
important. And if it is important to the result, whether it can produce the optimized result. Lastly, if
the parameters does not produce the best result, we intend to find the better setting. Before performing
the ablation tasks, first we will replicate the result from the paper using the code published by the
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author to affirm that the experiment and conclusion are valid. Then, we proceed to examine this
project in two aspects: 1. hyper-parameter explorations, 2. different model components’ utilities.

4.1 Parameters

We want to explore how the changes in some hyper-parameters in the model affects the result. We
keep in mind that we do not want to change parameters that contribute to the framework of the model
as we still want to maintain the overall structure and framework of the given model. Therefore we
selected the following features we think are appropriate. The parameters and its respective changes
are listed as followed: Training size: 20%, 40%, 60%, 80%. Learning rate: 0.1, 0.01, 0.05, 0.001,
0.005. Activation function: tanh, ReLU, sigmoid, softplus. number of hidden layers: 2,3,4,5,6.
number of units per hidden layers: power of 2 from 2 to 1024. optimizer: RMSprop, Nadam, Adam.
The original setting is training size= 80%, learning rate = 0.1, activation function = tanh, number of
hidden layers = 2, number of units per hidden layers = 64, optimizer = Adam.

Our method of experiments is to change one parameter each time, keeping the rest of the parameters
controlled. By doing so allows any changes in the result to sole depends on the features we want to
examine and minimize confusion. For the activation function we only modified those of the neural
network and kept the rest as in the original report. To keep the model robust, we do not modify the
parameters for RNN. We use MNLL to evaluate whether the quality of calculated conditional intensity
functions. Smaller MNLL is, better the calculation is. MAE is not preferred because regarding
evaluation, MNLL surpasses MAE for MNLL has a more obvious tendency.

4.2 Components’ Utilities

We are interested in which part of the NN contributes the most into producing a better result. An NN
model consists of one input layer, several hidden layers and one output perceptron. Every layer could
have its own contribution to the final results. The input, hidden and output weights are limited in
positive value because the authors of the paper think that in this way the cumulative hazard function
will make sense. But we think the cumulative hazard function will make sense as long as it is
monotonically increasing, which does not imply that every weight needs to be positive. We hence
modified the original model into three models: one without hidden layer, one without neither input
nor hidden layer and one without positive limitation of weight. By comparing whose MNLLs increase
the most, we can say which part is the most important one.

5 Results

5.1 parameters

5.1.1 Training Size

To test the robustness of the model, we try to explore the effect of training size on the value of MNLL.
We plot the MNLL versus seven random processes curve for each of the four models at different
training sizes, the testing training sizes are chosen to be 20%, 40%, 60% and 80%. The following
figure shows the results for NN model, the figures for the rest of the models have similar shapes and
trends so they are not shown here, but they can be found in (8), which is an appendix for extra graphs.

From these curves (including three more figures in (8)) it is clear to see that the size of training
set does not have much effect on the MNLL of these random processes, the four curves are nearly
overlapped in each figure, except for the Hawkes Processes. Even for the Hawkes Processes, the
differences in MNLL among different training sizes are within 10%, which are not significant. For
Hawkes1, it can be observed that, no matter which model it uses, the training size of 40% always
gives the lowest MNLL and 80% gives the highest, whereas in Hawkes2, 80% always gives the lowest
MNLL and 60% gives the highest. This indicates that the Hawkes1 random process may be a little
over trained using the author’s original setting, but only 10% higher than its lowest MNLL may be
acceptable by the author since training size of 80% works well for all other random processes.

There is no general conclusion can be drawn regarding what should be the best training size to use, it
mostly depends on the characteristic of the random process itself. However, due to the fact that the

4



Figure 3: Influence of changing the training size on the MNLL.

overall performance of these four models are not sensitive to the change of training sizes, we can say
that the model as a whole is sufficiently robust.

5.1.2 Learning Rate

The author set the learning rate to be 0.001, we test four other different learning rates: 0.1, 0.05, 0.01
and 0.005 while keeping all other hyper-parameters unchanged. The following figures plot MNLL
against random processes at different learning rates for NN model and for constant model, the other
two can be found in (8).

Figure 4: Influence of changing the learning rate to the MNLL for 7 different random
processes using NN model

Figure 5: Influence of changing the learning rate to the MNLL for 7 different random
processes using constant model

From these figures, it can be seen that the values of MNLL depend more on which model we use
rather than the value of the learning rate. For example, the MNLL of S_Renewal process reaches
below 0.01 for NN model but goes above 0.7 for constant model at all learning rates. Within a certain
model, the effect of learning rate on MNLL is relatively small, the fluctuation is no more than 10%.
i Specifically looking at the figure for NN model, one thing worth noticing is that this model has
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Table 1: MNLLs for Three Different Optimizers (Blue Stands for minimum and Red Stands for
Maximums in each Column)

Name of Random Processes

S-Poisson N-Poisson S-Renewal N-Renewal SC Hawkws1 Hawkws2

Adam(Original Model) 0.012 0.030 0.004 0.021 0.035 0.009 0.015
RMSprop 0.013 0.02 0.004 0.023 0.038 0.01 0.014
Nadam -0.004 0.019 0.002 0.025 0.035 0.016 0.012

greatly reduced MNLL to 0.045 and below, this is approximately 10 times reduction. This result is
confirmed with the author’s conclusion, which states that the NN model is the best model among
these four. In this figure it is also clearer to see that a learning rate of 0.01 generally produces the
worst results (i.e. highest MNLL), and results from 0.1, 0.05 and 0.001 are very similar.

5.1.3 Activation Functions

As the author of the paper states that their NN model performs the best over all four models, we test
some parameters that is specifically influential for NN model. We try several common activation
functions to replace the originally-used “tanh”. The resulting MNLL for each random process is
shown in Figure.6.

Figure 6: Influence of changing the activation function on the MNLL (without ReLU)

Among the three activation functions we use, ReLU is significantly inferior to the others in NN
model. As the resulting MNLL obtained from ReLU is much higher than that obtained from others,
plotting these four curves altogether in the same figure shield the trends for sigmoid, softplus and
tanh. This is why we only plot the curves without ReLU presented, the seven corresponding values
for ReLU are 2.255, 0.59, 0.078, 0.297, 2.94, 1.212 and 0.924. From Figure.6, we can confirm that
the author’s choice is indeed the best in general, it is the most optimal activation function for most
of the random processes. In addition, we also plot the same curves for constant model, exponential
model and piece-wise constant model to demonstrate that the tuning in NN model will not affect
other models’ behavior (figures in (8)).

5.1.4 Optimizer

Optimizer searches the extremums and hence finds the optimization for neural network. The default
optimizer is Adam which is RMSprop with momentum. We compare the performance of Adam with
RMSprop and Namdam which is RMSprop with Nesterov momentum (9). The results are in Table.1

From Table.1, RMSprop has the worst performance: three of seven MNLLs are the largest and no
smallest MNLLs are in RMSprop. Nadam has one more smallest MNLL and one less largest MNLLs
then Adam. However, the results of RMSprop, Adam and Nadam differ slightly in general, so we can
conclude that NN proposed by authors are robust to optimizer change.
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5.1.5 Number of NN Hidden Layers

Firstly, we focus on the influence of the number of hidden layers. The results are in Figure.7. We
see that each random process have the respective optimized number of layers. N_renewal and SC
prefer the least number of layers. S_Poisson, S_Renewal and Hawkws1 reach the smallest MNLL
when number of layers is 3. Hawkws2 needs 5 layers to output its best MNLL. Overall, most
smallest MNLLs occur at small number of hidden layers while increment in hidden layers may bring
overfitting which degrades the performance.

Figure 7: Influence of changing the number of hidden layers on the MNLL.

5.1.6 Numbers of Sizes of NN Hidden layers

Figure 8: Influence of changing the size of hidden layers, i.e the number of units in each
hidden layers on the MNLL.

What surprises us is that the default value used by authors, 64, doesn’t give the smallest MNLL in
all seven random processes. We find S_Poisson, N_Renewal and Hawkws1 achieve their smallest
MNLLs when the number of units is 32. N_Poisson, S_Renewal, SC and Hawkws2 achieve their
smallest MNLLs when the number of units is 16. This result also indicates that the authors’ model
can be simplified without loss of accuracy and even a superior result can be obtained through
simplification.

Then we step into the individual process and see the difference between NN and the other three
models when the size of hidden layers changes (Corresponding graphs in section 5 in (8)) . We
can see that in S_Poisson and N_Poisson, MNLLs of NN are not always the lowest and even can
become the largest in some sizes of hidden unit, especially obvious when sizes are 4, 64 and 1024
. When sizes are 2 and 128. the performance of NN falls behind exponential model in SC and the
performance of NN falls behind piecewise constant model in Hawkws1. So despite two Poisson
processes, exponential and piecewise constant model can be competitive in the certain sizes. In the
other three models, N_Renewal, S_Renewal and Hawkws2, NN successfully defends its superiority
and generates large margins of 0.2 to 0.3.
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Table 2: MNLL when Remove One Critical Part (Blue Stands for minimum and Red Stands for
Maximums in each Column)

Name of Random Processes

S-Poisson N-Poisson S-Renewal N-Renewal SC Hawkws1 Hawkws2

Original Model 0.012 0.030 0.004 0.021 0.035 0.009 0.015
No Hidden Layer -0.01 0.016 0.01 0.022 0.028 0.012 0.013
Only One Perceptron 0.088 0.164 0.065 0.211 0.189 0.109 0.13
Remove Positive Limitation 0.004 0.014 0.002 0.021 0.029 0.009 0.01

5.2 Investigation of Components’ Utilities

From Table.2, positive limitation of weights seem to be unhelpful for the model because removing it
could bring back a better MNLL. Meanwhile, when we remove both input and hidden layers, the
results deteriorate but simply removing hidden layers could improve the result slightly. It indicates
that the structure of NN, that multiple perceptrons at the same layer, is critical to the advantaged result
for even one layer of multiple perceptrons could decrease MNLLs sharply. By the way, the result in
no-hidden layer again proves that the authors’ model is over-complicated because the disappearance
of the hidden layers decreases the MNLLs in four of seven random processes.

6 Discussion and Conclusion

In this study, we confirm the result of the paper. The NN model outperforms the other models by a
notable margin on S_Renewal, N_Renewal, hawkes1 and hawkes2. It is as effective as exponential
model and piece-wise constant model in self correcting model, which are all notable better than
constant model. It is usually as effective as or less effective compared to other models on S_Poisson
and N_Poisson. We think this is due to the nature of the neural network. It is a much more complex
model and requires a training process. Therefore, it shows greater advantage over the other models
on more complex datasets like hawkes1 and hawkes2. For simple datasets, it is sufficient to assume a
specific functional form for the time-course of the hazard function. It is also clear that the constant
model overall performed worse on all datasets. Therefore, for simpler datasets, exponential model
and piece-wise constant model should be used as they can achieve both higher accuracy and requires
less computational power. For more complex datasets, NN model presents its advantage. It should
therefore be used. In addition, since we have shown that reducing the units in a hidden layer both
increases accuracy and reduced computational power, we should modify the NN model.

Combining all the ablation work, We found out that the learning rate and training set percentage
have little to no effect on the result. Therefore they are not important features to be considered. We
found out that for each process, considering the computation cost, the preferred model(s) differ. For
S_Poisson and N_Poisson, constant model is enough to produce a good estimation of conditional
intensity function. For S_Renewal, N_Renewal and Hawkes2, NN is necessary to produce satisfied
MNLLs. Lastly, in SC and Hawkes1, piece-wise constant model is competitive with NN because
it can approximate conditional intensity function with close MNLLs but with fewer computation
resources.

In conclusion, although NN model proves to be useful in the certain situations, it highly depends on
the nature of the data. Therefore a well-knowledged individual is still needed to determine whether
NN model is appropriate to employ. Therefore, in the short term, NN model cannot yet replace a
specific model driven by domain knowledge for point processes. Looking forward, we want to extend
our scope of investigating to other deep learning frameworks to map the intensity function. Inspired
by Xiao et al, 2019, we should compare the effect of feed-forward NN and RNN on real-life data. To
tackle the possible issue of gradient vanishing or exploding, other machine learning methods such as
LSTM or even simpler methods that require less computational force such as LR. We want to see
whether they differ drastically in different situations and if so, which one performs better in a given
situation.
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