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ABSTRACT

Efficient comparison of spherical probability distributions becomes important
in fields such as computer vision, geosciences, and medicine. Sliced optimal
transport distances, such as spherical and stereographic spherical sliced Wasserstein
distances, have recently been developed to address this need. These methods reduce
the computational burden of optimal transport by slicing hyperspheres into one-
dimensional projections, i.e., lines or circles. Concurrently, linear optimal transport
has been proposed to embed distributions into L2 spaces, where the L2 distance
approximates the optimal transport distance, thereby simplifying comparisons
across multiple distributions. In this work, we introduce the Linear Spherical Sliced
Optimal Transport (LSSOT) framework, which utilizes slicing to embed spherical
distributions into L2 spaces while preserving their intrinsic geometry, offering a
computationally efficient metric for spherical probability measures. We establish
the metricity of LSSOT and demonstrate its superior computational efficiency
in applications such as cortical surface registration, 3D point cloud interpolation
via gradient flow, and shape embedding. Our results demonstrate the significant
computational benefits and high accuracy of LSSOT in these applications.

1 INTRODUCTION

Spherical signal analysis has received increasing attention in many domains such as computer vision,
astrophysics (Jarosik et al., 2011), climatology (Garrett et al., 2024) and neuroscience (Elad &
Kimmel, 2002; Zhao et al., 2019; 2023). In practice, certain types of data are intrinsically defined on
a sphere, namely omnidirectional images, ambisonics, and earth data. In addition, some forms of
data are studied canonically in hyperspheres by spherical mappings (Gotsman et al., 2003; Gu et al.,
2004; Shen & Makedon, 2006; Chung & Chen, 2022) from the original data spaces. Among them, a
notable category of data is the genus-zero surfaces, which can be conformally mapped to unit spheres
according to the Poincare uniformization theorem (Abikoff, 1981). Cortical surface-based analysis,
for example, can be facilitated by the inherent spherical topology (0-genus) of the cerebral cortex.
Compared to conventional 3D volumetric analysis, applying spherical representations of cortical
surfaces offers a more streamlined and accurate geometric framework to examine the brain. This
approach proves particularly advantageous in both cross-sectional and longitudinal studies of brain
structure and function (Zhao et al., 2021; 2023).

Analyzing spherical data through machine learning techniques necessitates metrics that can effectively
compare signals while maintaining data structure and geometry. In this context, optimal transport
(OT) has emerged as a versatile and widely adopted tool in the machine learning community. OT
provides a framework for comparing probability distributions in various domains (Kolouri et al.,
2017; Peyré et al., 2019; Kolkin et al., 2019; Arjovsky et al., 2017; Seguy et al., 2017; ?; Makkuva
et al., 2020; Cang et al., 2023). OT has demonstrated remarkable effectiveness not only in Euclidean
spaces, but its theoretical foundations have also been firmly established for various other manifolds
(Fathi & Figalli, 2010; McCann & Topping, 2010), especially on spheres (Cui et al., 2019; Hamfeldt
& Turnquist, 2022). However, the calculation of OT distances is prohibitively expensive with a
cubic cost O(N3). This computational burden poses a substantial challenge to applications where
the input size N is large. In light of this, researchers have enthusiastically pursued and developed
faster alternatives, including entropic optimal transport (Cuturi, 2013) and sliced optimal transport
(Bonnotte, 2013; Bonneel et al., 2015; Kolouri et al., 2016; 2018; Deshpande et al., 2018; Kolouri
et al., 2019).
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Sliced Optimal Transport (SOT) accelerates computation by projecting high-dimensional data onto
one-dimensional subspaces and applying efficient OT solvers for the resulting one-dimensional
probability distributions. In this paper, we are interested in sliced optimal transport methods on
hyperspheres. Related work includes the Spherical Sliced Wasserstein (SSW) discrepancy (Bonet
et al., 2023), which proposes slicing the sphere by the spherical Radon transform and leveraging
circular optimal transport; and the Stereographic Spherical Sliced Wasserstein (S3W) distance (Tran
et al., 2024), which utilizes stereographic projection to solve the SOT problem in Euclidean space
with minimal distortion.

Many machine learning applications, from manifold learning to k-nearest neighbor classification and
regression, rely on pairwise distance calculations among members of a set, often requiring distance
evaluations on the order of the square of the number of objects. To accelerate pairwise calculation of
OT distances between probability measures, Linear Optimal Transport (LOT) (Wang et al., 2013)
was developed as a framework that embeds distributions into L2 spaces where pairwise distance
computations can be performed with significantly higher efficiency. For example, Wasserstein
Embedding and Sliced Wasserstein Embedding have been applied in Euclidean spaces to enable
efficient image analysis Basu et al. (2014), faster graph learning (Kolouri et al., 2020), supervised
task transferability prediction (Liu et al., 2022), point cloud retrieval (Lu et al., 2024), etc. A more
recent work, Martin et al. (2023) focused on S1 and established a computationally efficient Linear
Circular Optimal Transport (LCOT) framework to embed circular distributions into a L2 space.

In this paper, we build on the work of Martin et al. (2023) and extend the linearized methodology
from circles to hyperspheres. We develop a novel embedding technique for spherical probability
distributions, which significantly enhances the efficiency of group analysis in spherical domains.

Contributions. In summary, our contributions are as follows:

1. We propose Linear Spherical Sliced Optimal Transport (LSSOT) to embed spherical distri-
butions into L2 space while preserving their intrinsic spherical geometry.

2. We prove that LSSOT defines a metric, and demonstrate the superior computation efficiency
over other baseline metrics.

3. We conduct a comprehensive set of experiments to show the effectiveness and efficiency of
LSSOT in diverse applications, from point cloud analysis to cortical surface registration.

2 BACKGROUND

2.1 CIRCULAR OPTIMAL TRANSPORT AND LINEAR CIRCULAR OPTIMAL TRANSPORT

Consider two circular probability measures µ, ν ∈ P(S1), where S1 denotes the unit circle in
R2. Let us parametrize S1 with the angles in between 0 and 1 and consider the cost function
c(x, y) := h(|x − y|S1), where h : R → R+ is a convex increasing function and |x − y|S1 :=
min{|x− y|, 1− |x− y|} for x, y ∈ [0, 1). The Circular Optimal Transport (COT) problem between
µ and ν is defined by the following two equivalent minimization problems:

COTh(µ, ν) := inf
γ∈Γ(µ,ν)

∫
S1×S1

c(x, y)dγ(x, y) = inf
α∈R

∫ 1

0

h(|F−1
µ (x)− F−1

ν (x− α)|)dx, (1)

where in the first expression Γ(µ, ν) is the set of all couplings between µ and ν, and in the second
expression Fµ (respectively, Fν) is the cumulative distribution function of µ on S1 (i.e., Fµ(y) :=
µ([0, y)) =

∫ y

0
dµ, ∀y ∈ [0, 1)) extended on R by Fµ(y + n) = Fµ(y) + n, ∀y ∈ [0, 1), n ∈ Z, and

its inverse (or quantile function) is defined by F−1
µ (y) = inf{x : Fµ(x) > y}. When h(x) = |x|p

for 1 ≤ p <∞, we denote COTh(·, ·) as COTp(·, ·), and COTp(·, ·)1/p defines a metric on P(S1).
Moreover, if µ = Unif(S1) and h(x) = |x|2, the minimizer αµ,ν of (1) is the antipodal of E(ν), i.e.,
αµ,ν = E(ν) − 1/2. We refer the reader to Delon et al. (2010); Rabin et al. (2011); Bonet et al.
(2023) for more details.

Recently, Martin et al. (2023) expanded the linear optimal transport framework (Wang et al., 2012) to
encompass circular probability measures, introducing the Linear Circular Optimal Transport (LCOT)
embedding and metric. For the reader’s convenience, we summarize the key definitions from their
work below.
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The LCOT embedding corresponds to the optimal circular displacement that comes from the problem
of transporting a reference measure to a target measure with respect to COTh(·, ·). Precisely, given a
reference measure µ ∈ P(S1) that is absolutely continuous with respect to the Lebesgue measure on
S1, the LCOT embedding of a target measure ν ∈ P(S1) is defined by

ν̂µ,h(x) := F−1
ν (Fµ(x)− αµ,ν)− x, ∀x ∈ [0, 1), (2)

where αµ,ν is a minimizer of (1). When h(x) = |x|p, for 1 ≤ p <∞, this embedding gives rise to
the LCOT distance between circular measures:

LCOTµ,p(ν1, ν2) := ∥ν̂1µ,h − ν̂2
µ,h∥Lp(S1,dµ), ∀ν1, ν2 ∈ P(S1), (3)

where
Lp(S1, dµ) := {f : S1 → R : ∥f∥pLp(S1,dµ) :=

∫
S1
|f(t)|pS1 dµ(t) <∞}. (4)

If µ = Unif(S1), we use the notation Lp(S1) := Lp(S1, dµ). If also h(x) = |x|2, the LCOT
embedding becomes

ν̂ := F−1
ν

(
x− E(ν) +

1

2

)
− x, ∀x ∈ [0, 1), (5)

and we denote the LCOT distance simply as LCOT2(·, ·).

2.2 SPHERICAL SLICING

Bonet et al. (2023) recently presented the Spherical Sliced Wasserstein (SSW) discrepancy for
probability measures supported on the sphere Sd−1 ⊂ Rd, that projects ∀x ∈ Sd−1 on great circles C
to:

argmin
y∈C

{arccos(⟨x, y⟩)}, (6)

where arccos(⟨·, ·⟩) is the geodesic distance on Sd−1. Since each great circle is obtained by inter-
secting the sphere with a 2-dimensional plane in Rd, the authors proposed to average over all great
circles by integrating over all planes in Rd (i.e., the Grassmann manifold (Bendokat et al., 2020)) and
then project the distributions onto the intersection with Sd−1. However, due to the impracticality of
the Grassmann manifold, the set of rank 2 projectors is used instead:

V2(Rd) := {U ∈ Rd×2 : UTU = I2},
where V2(Rd) is the Stiefel manifold (Bendokat et al., 2020). Hence, the integration process can be
performed over V2(Rd) according to the uniform distribution σ ∈ P(V2(Rd)). The projection onto
U ∈ V2(Rd) can be computed as in (Bonet et al., 2023, Lemma 1) by

PU (x) =
UTx

∥UTx∥2
, ∀x ∈ Sd−1 \ {x : UTx = 0} (7)

Finally, given µ, ν ∈ P(Sd−1), the Spherical Sliced Wasserstein discrepancy between them, for
1 ≤ p <∞, is defined in (Bonet et al., 2023) by

(SSWp(µ, ν))
p :=

∫
V2(Rd)

(
COTp(P

U
#µ, P

U
# ν)

)p
dσ(U). (8)

3 METHOD

In this section, we first introduce the Linear Spherical Sliced Optimal Transport (LSSOT) embedding
and discrepancy, and then state the main theorem —- LSSOT indeed defines a metric in P(Sd−1).

3.1 LINEAR SPHERICAL SLICED OPTIMAL TRANSPORT (LSSOT)

Definition 3.1. Consider spherical measures ν1, ν2 ∈ P(Sd−1). We define the Linear Spherical
Sliced Optimal Transport (LSSOT) embedding of νi, i = 1, 2, with respect to a slice U ∈ V2(Rd) by

ν̂i
S(x, U) := F−1

PU
# νi

(
PU (x)− E(PU

# νi) +
1

2

)
, x ∈ Sd−1, U ∈ V2(Rd), (9)

3
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where PU
# νi denotes the pushforward measure on S1 of νi by the map PU . We also define their

LSSOT discrepancy by

(LSSOT2(ν1, ν2))
2
:=

∫
V2(Rd)

(
LCOT2(P

U
# ν1, P

U
# ν2)

)2
dσ(U) (10)

=

∫
V2(Rd)

∥ν̂1S(·, U)− ν̂2
S(·, U)∥2L2(S1) dσ(U),

Remark 3.2 (LSSOT extends LCOT). When d = 2, PU = I2 for every U ∈ V2(R2) since
V2(R2) coincides with the set of orthonormal basis on R2. Thus, for any ν ∈ P(S1) we have that
ν̂S(x, U) = ν̂S(x, V ) for all U, V ∈ V2(R2), so the LSSOT embedding and the LSSOT discrepancy
coincide with the LCOT embedding and with the LCOT distance respectively, as the integration is
normalized to 1 on V2(R2) (which is isomorphic to the orthogonal group O(2) of dimension 1).
Theorem 3.3 (Metric property of LSSOT). LSSOT2(·, ·) defines a pseudo-metric in P(Sd−1), and
a metric when restricting to probability measures with continuous density functions. We will refer to
it as LSSOT distance.

We refer the reader to the Appendix for detailed proof. The symmetry of LSSOT2(·, ·) is easy to
deduce from its definition. The triangle inequality holds as an application of Minkowski inequality
by using the fact that LCOT2(·, ·) is a metric (see Proposition D.1 in Appendix D). For proving the
identity of indiscernibles, the idea is to give an alternative expression of the LSSOT2(·, ·) involving
a Spherical Radon Transform R: see (45) in Appendix C.1, which is inspired by Bonet et al. (2023).
Such formula reads for probability density functions f1, f2 ∈ L1(Sd−1)1 as

(LSSOT2(ν1, ν2))
2
=

∫
V2(Rd)

(LCOT2(Rf1(U, ·),Rf2(U, ·)))2 dσ(U) (11)

where R : L1(Sd−1) → L1(V2(Rd)× S1) is the integral operator

Rf(U, z) =
∫
{x∈Sd−1: z=PU (x)}

f(x)dx,

where the surface/line integral is taken over a (d− 2)-dimensional surface, which coincides with a (1-
dimensional) great semicircle when d = 3. We will call this transformation as Semicircle Transform
when d = 3, and (d − 2)-Hemispherical Transform on Sd−1 in general. We describe R acting on
L1(S2) by using different and detailed parameterizations in Appendix A and generalize it for any
dimension d in Appendix B. In Appendix C, R is extended to the set of measures on the sphere,
and the disintegration theorem from measure theory is used to obtain the general version of (11).
The novelty is that we will relate R with an integral transformation presented in Groemer (1998),
instead of relating it with the Hemispherical Transform in Rubin (1999) as done in Bonet et al. (2023)
(see Remark B.8 for a discussion in this regard). By doing so, we can prove the injectivity of R on
continuous functions ( Corollary B.7), which is the key property to show that if LSSOT2(ν1, ν2) = 0
then ν1 = ν2. As a byproduct, we also obtain that SSWp(·, ·) is not only a pseudo-metric as proven
in Bonet et al. (2023), but also a metric when it is restricted to probability measures with continuous
density functions (Theorem D.3 in Appendix D).

3.2 LSSOT IMPLEMENTATION

Figure 1: Semicircle Transform projects non-polar
points to the closest location on the circle, and the
north/south poles to everywhere on the circle.

Following the Monte-Carlo approach for com-
puting the classical Sliced Wasserstein distance,
we consider samples from the uniform distribu-
tion σ ∈ P(V2(Rd)) for generating the slices.
To do so, a standard procedure is to first con-
struct matrices in Rd×2 whose components are
drawn from the standard normal distribution
N (0, 1), then use the Gram-Schmidt algorithm
to orthonormalize the column vectors of the ma-
trix, or apply the QR-decomposition and finally

1(which is equivalent to considering two absolutely continuous probability measures on Sd−1)
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Algorithm 1 Linear Spherical Sliced Optimal Transport (LSSOT)

Require: Spherical distributions µ =
∑Nµ

i=1 aiδxi and ν =
∑Nν

j=1 bjδyj ; number of slices L;
reference size M , threshold ϵ
for l = 1 to L do

Construct a matrix Zl ∈ Rd×2 with entries randomly drawn from N (0, 1)
Apply QR decomposition on Zl to get an orthogonal Q matrix Ul

Project {xi}
Nµ

i=1 and {yj}Nν
j=1 on R2 to get x̂li = UT

l xi and ŷlj = UT
l yj , ∀i, j

Find I∗l = {i∗}, J∗
l = {j∗} such that ∥x̂li∗∥ ≤ ϵ or ∥ŷlj∗∥ ≤ ϵ


Apply ϵ-cap
around poles

a∗l =
∑

i∗∈I∗ ai∗ , b∗l =
∑

j∗∈J∗ bj∗ ; Ñµ = Nµ − |I∗l |, Ñν = Nν − |J∗
l |

µ̃l =
∑Ñµ

ĩ=1
(aĩ +

a∗

Ñµ
)δx̂l

ĩ
, ν̃l =

∑Ñν

j̃=1
(bj̃ +

b∗

Ñν
)δŷl

j̃

Project all x̂l
ĩ

and ŷl
j̃

on S1: P (x̂l
ĩ
) =

x̂l
ĩ

∥x̂l
ĩ
∥ , P (ŷl

j̃
) =

ŷl
j̃

∥ŷl
j̃
∥

Calculate LCOTµ̄,2(µ̃
proj
l , µ̃proj

l ) by (3), where µ̃proj
l =

∑Ñµ

ĩ=1
(aĩ +

a∗

Ñµ
)δP (x̂l

ĩ
), ν̃

proj
l =∑Ñν

j̃=1
(bj̃ +

b∗

Ñν
)δP (ŷl

j̃
), µ̄ is the discrete uniform reference measure of size M

end for
return LSSOT2(µ, ν) ≈

(
1
L

∑L
l=1 LCOT

2
2 (µ̃

proj
l , µ̃proj

l )
) 1

2

normalize the orthogonal matrix Q (dividing each column vector of Q by its Euclidean norm). In
contrast to the Spherical Sliced Wasserstein (SSW) numerical implementation in which projections
of poles are not well defined (when UTx = 0 in 7), LSSOT maps the polar points everywhere on the
equator by definition. To achieve this mapping numerically, we put an ϵ-cap around the poles, and
redistribute all the mass inside the ϵ-cap evenly onto the discrete points outside the cap. See Figure 1
for a visual depiction of the projection and Algorithm 1 for detailed implementation steps.

3.3 TIME COMPLEXITY AND RUNTIME ANALYSIS

Let L denote the number of slices and d denote the dimension. For a discrete spherical distribution ν
with N samples, the slicing and projection require O(LdN). For a single slice, the time complexity
of calculating the LCOT embedding (Equation 5) of the corresponding circular distributions with
respect to the uniform distribution is O(N) after sorting. Therefore the time complexity of calculating
LSSOT embedding of ν is O(LN(d+ logN + 1)), where LN logN comes from the sorting S1.

For a set of K distributions {νk}Kk=1, each with N samples, the pairwise LSSOT distances
can be boiled down to K LSSOT embeddings and LK(K−1)

2 distances in L2(S1), thus cost
O(KLN(d+logN+1+ K−1

2 )). However, other methods such as spherical Optimal Transport (OT),
Sinkhorn divergence, Sliced Wasserstein Distance (SWD), SSW, and Stereographic Spherical Sliced
Wasserstein distance (S3W) all require the time complexity O(K2D), where D is the complexity
of each distance, e.g. O(K2N3 logN) for spherical OT and O(K2LN logN) for SSW, compared
to O(K2LN) for our method. Figure 2 shows the pairwise distances computation time of LSSOT
along with the methods mentioned above. All methods are run on the CPU for fair comparison. The
distributions are randomly generated with sample sizes N = 1000, 5000, 10000, 12500, 15000. For
each fixed sample size, we observe that LSSOT stands out as the fastest in all methods under the
increase in the number of distributions. In the Appendix E, we also provide the runtime comparisons
for slice-based methods with varying numbers of slices.

Figure 2: Pairwise distances runtime (log scale) comparison w.r.t the number of distributions. N denotes sample
sizes in each distribution. The number of slices is 500 for all slice-based methods.
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4 EXPERIMENTS

To demonstrate that the proposed LSSOT is an effective and efficient metric of spherical distributions
while preserving the geometry, we design and implement the following experiments on toy examples,
cortical surfaces, and point clouds.

4.1 ROTATION AND SCALING IN SPHERICAL GEOMETRY

We test the LSSOT metric on spherical geometric transformations such as rotation and scaling.

For rotations, we generate a set of 20 Von Mises-Fisher (VMF) distributions {pi(x;µi, κ) =
κ

2π(eκ−e−κ) exp(κµ
T
i x)}20i=1 with the same concentration parameter κ, but the mean directions µi’s

are 20 distinct points on the Fibonacci Sphere, i.e. spread evenly on S2. Since the 20 VMFs are
of the same shape with varying mean directions, each can be interpreted as a rotated version of
another. We calculate the pairwise LSSOT distances among the 20 distributions and visualize the
embeddings in 3-dimensional space using multi-dimensional scaling (MDS). We use the Scikit Learn
(Pedregosa et al., 2011) sklearn.manifold.MDS function for MDS implementation. As shown in
Figure 3 (left), the embeddings spread almost evenly on the sphere, implying the LSSOT captures the
rotation geometry.

To study the scaling geometry, we generate 6 VMF distributions with fixed µ but varying κ, and then
apply the same LSSOT pairwise distances calculation followed by the MDS embedding procedure.
Figure 3 (right) illustrates that the LSSOT metric preserves the linear transitions in scaling geometry,
with embeddings falling approximately onto a straight line.

𝜅 = 5

𝜅 = 10

𝜅 = 15

𝜅 = 20

𝜅 = 25

𝜅 = 30

LSSOT for Rotating VMFs LSSOT for Scaling VMFs 

Figure 3: Generated VMF distributions and manifold learning results by LSSOT. Left: a group of 20 VMFs
generated by rotating a source VMF, and the corresponding 3-dimensional visualizations by LSSOT and MDS.
Right: 6 VMFs generated by scaling a source VMF with κ = 30, and the same 3-dimensional visualizations.

4.2 CORTICAL SURFACE REGISTRATION

We further verify the validity and efficiency of the proposed LSSOT method in comparing spherical
cerebral cortex data for registration tasks. Cortical surface registration seeks to establish meaningful
anatomical correspondences across subjects or time points. This process is essential for surface-based
analysis in both cross-sectional and longitudinal neuroimaging studies. Cortical surface scans are
often acquired from diverse spatial frameworks, necessitating a preliminary alignment process to
situate them within a common space. This alignment is crucial for enabling meaningful group
analyses and comparisons. The unit sphere S2 is usually chosen to be this common space, owing to
the inherent genus-0 spherical topology of the cortical surfaces (Wang et al., 2004; Gu et al., 2004;
Lui et al., 2007). Thus, such aligning involves mapping each hemisphere of the convoluted cerebral
cortical surface onto the S2 space with minimal distortions. Then the goal is to register spherical
cortical surfaces to a template, i.e. computing a smooth velocity field on the sphere which is used to
deform the moving vertices into the fixed template. Through this deformation, correspondences are
established across a group of cortical surfaces.
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4.2.1 EXPERIMENTAL SETUP

We leverage the Superfast Spherical Surface Registration (S3Reg) (Zhao et al., 2021) neural network
to perform atlas-based registration, which focuses on registering all surfaces to one atlas surface.
S3Reg is an end-to-end unsupervised diffeomorphic registration network based on the Voxelmorph
framework (Balakrishnan et al., 2018) and the Spherical Unet (Zhao et al., 2019) backbone, offering
flexibilities in choosing the similarity measure for spherical surfaces in the training objectives.
Following the S3Reg experimental setup with resolution level at the 6-th icosahedron subdivisions
(i.e. 40962 vertices on each surface), we replace the original mean squared error (MSE) similarity
loss with our LSSOT distance and other baselines, and evaluate the registration performance achieved
by each similarity measure. We use the Freesurfer fsaverage (Fischl, 2012) surface as the fixed (atlas)
surface. All models are implemented in PyTorch (Paszke et al., 2017) and run on a Linux server with
NVIDIA RTX A6000 GPU. More experimental details are documented in Appendix F.

Dataset and Preprocessing. We perform registration on the NKI dataset (Nooner et al., 2012) and
ADNI dataset (Jack Jr et al., 2008). NKI contains T1-weigted brain MRI images from 515 subjects,
which are processed to obtain reconstructed cortical surfaces, spherical mappings, parcellations, and
anatomical features using the FreeSurfer pipeline (Fischl, 2012). A subset of the ADNI dataset that
contains 412 subjects is used and processed in the same FreeSurfer pipeline. We choose the sulcal
depth as the single-channel feature for registration and normalize features into probability vectors.
For parcellations, we choose the DKT Atlas (Klein & Tourville, 2012; Klein et al., 2017), which
parcellates each hemisphere into 31 cortical regions of interest (ROIs). We split both datasets into
70% scans for training, 10% scans for validation, and 20% scans for testing.

Training Losses. The training loss has three components: the similarity loss for aligning the moving
surfaces to the fixed atlas surface, the Dice loss to impose biological validity, and the regularization
loss to enforce the smoothness of the deformation field. Specifically, we employ the parcellation
maps generated by FreeSurfer and the torchmetrics.Dice function from the torchmetrics library (Nicki
Skafte Detlefsen et al., 2022) for Dice loss. The training loss is a linear combination of the three
components. In our experimental design, we keep the regularization and the Dice terms in all setups.
Our primary focus is on investigating the impact of various similarity losses on the registration
performance, including LSSOT distance and the following baselines.

Baselines. Since the original S3Reg framework used MSE as part of the similarity loss, we include
MSE as one of the baselines. Besides, Spherical Sliced-Wasserstein (SSW) (Bonet et al., 2023) and
Stereographic Spherical Sliced Wasserstein Distances (S3W) (Tran et al., 2024) are powerful spherical
distances to test LSSOT against. We use the SSW implementation from the official repo 2 and the
Amortized Rotationally Invariant Extension of S3W (AI-S3W) from the official implementation 3

with 10 rotations. We also add the Slice Wasserstein distance (SWD), which is defined in Euclidean
space R3 instead of S2. The implementation of the SWD algorithm is from the Python Optimal
Transport (POT) library (Flamary et al., 2021).

Metrics We quantitatively evaluate the similarities between the registered moving surfaces and the
fixed atlas surface using mean absolute error (MAE) and Pearson correlation coefficient (CC) on
features, as well as LSSOT, SWD on the spherical distributions (represented by vertex locations and
feature probability vectors). We calculate the Dice score of the registered parcellations and the fixed
parcellation. Moreover, we measure the area (resp. edge) distortions between the original moving
surface meshes and the deformed surface meshes as relative changes in the areas of all faces (resp.
the lengths of all edges) of meshes.

4.2.2 RESULTS

Table 1 summarizes the performance of registration evaluated by the metrics for four scenarios:
left/right hemispheres of the NKI and ADNI datasets. As the two best methods overall, our proposed
LSSOT metric and SSW are on par with each other, yet LSSOT costs less than 10% of the training
time. We emphasize that LSSOT is the leading method in the alignment of the parcellations (i.e. Dice
Score), indicating that LSSOT yields more biologically meaningful registrations. Besides, with the
least area/edge distortions, LSSOT finds the simplest solution of the deformation field to align the

2https://github.com/clbonet/Spherical_Sliced-Wasserstein
3https://github.com/mint-vu/s3wd
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moving surface to the fixed surface. Figure 4 shows the registered sulcal depth map and parcellation
map of a random subject. More visualizations can be found in the Appendix G. It’s worth noting that
the LSSOT embedding v̂Sfix of the fixed surface is calculated once and for all before training, and in
each training iteration, only the LSSOT embedding of the deformed moving surface v̂Smov is calculated
and then compared to v̂Sfix. Other competing methods, however, need to process both surfaces and
calculate the distance during each iteration, which accounts for LSSOT taking less time than SWD.
This makes LSSOT a perfect fit for atlas-based registrations, as the template is fixed.

MSE S3W SWD SSW LSSOT (Ours)

LSSOT(↓) 0.2754±0.0611 0.2298±0.0346 0.2411± 0.0366 0.2079±0.0369 0.1890±0.0361

SWD(↓) 0.0051±0.0017 0.0053±0.0010 0.0027±0.0011 0.0059±0.0011 0.0052±0.0011

MAE(↓) 0.1129±0.0471 0.2278±0.0372 0.2658±0.0410 0.2145±0.0266 0.2516±0.0397

CC(↑) 0.8269±0.0425 0.9216±0.0174 0.8722±0.0302 0.8671±0.0314 0.8649±0.0295

Dice (↑) 0.7746±0.0861∗∗ 0.8498±0.0670∗∗ 0.7984±0.0539∗∗ 0.8429±0.0692∗ 0.8462±0.0548

Edge Dist.(↓) 0.3060±0.0404∗∗ 0.3922±0.0647∗∗ 0.3442±0.0346∗∗ 0.2476±0.0348∗∗ 0.2365±0.0343

Area Dist.(↓) 0.4305±0.0488∗∗ 0.4048±0.0752∗∗ 0.4073±0.0368∗∗ 0.2733±0.0402∗∗ 0.2897±0.0396

Time(seconds)(↓) 73.07 121.00 118.96 1350.96 101.01

LSSOT(↓) 0.2847±0.0502 0.2062±0.0510] 0.2454±0.0396 0.1341±0.0209 0.1121±0.0253

SWD(↓) 0.0048±0.0015 0.0046±0.0009 0.0019±0.0003 0.0031±0.0017 0.0033±0.0015

MAE(↓) 0.1411±0.0215 0.2224±0.0324 0.2379±0.0348 0.2268±0.0551 0.2489±0.0568

CC(↑) 0.9334±0.0111 0.9145±0.0130 0.9191±0.0263 0.8979±0.0383 0.9284±0.0599

Dice (↑) 0.7318±0.0943∗∗ 0.6961±0.0777∗∗ 0.6972±0.0820∗∗ 0.7952±0.0751∗∗ 0.7996±0.0706

Edge Dist.(↓) 0.2872±0.0421∗∗ 0.1395±0.0709∗∗ 0.2160±0.0406∗∗ 0.1460±0.0417∗∗ 0.1428±0.0162

Area Dist.(↓) 0.3453±0.0422∗∗ 0.3125±0.0876∗∗ 0.2924±0.0412∗∗ 0.1709±0.0126∗∗ 0.1910±0.0189

Time(seconds)(↓) 72.14 121.02 116.91 1362.16 100.68

LSSOT(↓) 0.1476±0.0396 0.1340±0.0397 0.1412±0.0419 0.1262±0.0261 0.1041±0.0277

SWD(↓) 0.0046±0.0011 0.0041±0.0011 0.0027±0.0009 0.0052±0.0014 0.0063±0.0016

MAE(↓) 0.2784±0.0367 0.3295±0.0427 0.3627±0.0477 0.3153±0.0485 0.3332±0.0873

CC(↑) 0.9141±0.0269 0.9077±0.0207 0.9139±0.0406 0.9032±0.0139 0.9036±0.1128

Dice (↑) 0.7859±0.0949∗∗ 0.7733±0.0816∗∗ 0.7457±0.0683∗∗ 0.7987±0.0775∗∗ 0.8119±0.0940

Edge Dist.(↓) 0.3241±0.0516∗∗ 0.2836±0.0750∗∗ 0.2379±0.0459∗∗ 0.1927±0.0582∗∗ 0.0979±0.0129

Area Dist.(↓) 0.2990±0.0580∗∗ 0.1937±0.0849∗∗ 0.1930±0.0450∗∗ 0.1008±0.0053∗∗ 0.1303±0.0088

Time(seconds)(↓) 59.34 100.78 96.69 1094.06 84.51

LSSOT(↓) 0.1807±0.0347 0.1367±0.0375 0.1497±0.0509 0.1349±0.0541 0.1295±0.0281

SWD(↓) 0.0034±0.0010 0.0046±0.0011 0.0020±0.0005 0.0041±0.0016 0.0037±0.0020

MAE(↓) 0.2433±0.0273 0.3229±0.0386 0.2618±0.0450 0.3236±0.0519 0.3493±0.0732

CC(↑) 0.9330±0.0163 0.9139±0.0204 0.8985±0.0391 0.9375±0.0437 0.8013±0.0851

Dice (↑) 0.8073±0.0983∗∗ 0.7617±0.0806∗∗ 0.8122±0.0648∗∗ 0.8622±0.0915∗∗ 0.8518±0.0879

Edge Dist.(↓) 0.3371±0.0627∗∗ 0.2868±0.0835∗∗ 0.3690±0.0513∗∗ 0.1841±0.0576∗∗ 0.1226±0.0213

Area Dist.(↓) 0.3015±0.0568∗∗ 0.3109±0.0987∗∗ 0.4123±0.0438∗∗ 0.1939±0.0392∗ 0.1948±0.0325

Time(seconds)(↓) 59.69 101.35 97.52 1114.83 85.37
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Table 1: Evaluation metrics on the test datasets (mean ± standard deviation) for sulcal depth registration of both
hemispheres from NKI dataset and ADNI dataset. The best two methods are bolded. The average training time
for each epoch is also included in the bottom row of each scenario. We would like to note that as the number of
samples is 40,962, using spherical optimal transport or even Sinkhorn divergence is computationally intractable
in both time and space. We perform significance testing for the difference on Dice, Edge Dist. and Area Dist.
against LSSOT. ∗∗ denotes p < 0.001 and ∗ denotes p < 0.01.
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Figure 4: Qualitative registration results (middle columns) from a moving surface (left column) to the fixed
surface (right column). Both sulcal depth and parcellations are visualized with global and close-up views. This
moving surface is from Subject A00065749 in the NKI dataset. Visualizations for more subjects can be found in
the Appendix G.

4.3 POINT CLOUD INTERPOLATION

LSSOT can also be utilized in point cloud analysis, once each point cloud is endowed with a spherical
representation. In this experiment, we explore the interpolations between point cloud pairs from the
ModelNet dataset (Wu et al., 2015). Specifically, we train an autoencoder to project the original point
clouds to a spherical latent space, to represent each of them as a spherical distribution. Then we apply
gradient flow between the pairs of spherical distributions using the LSSOT metric along with SSW
and Spherical OT. Finally, this transformation is reconstructed in the original space by the trained
decoder, resulting in an interpolation between the original pairs. See Figure 5 (top) for an illustration
of this process.

4.3.1 MAPPING POINT CLOUDS TO SPHERICAL LATENT SPACE VIA LSSOT AUTOENCODER

As point clouds are set-structured data, we leverage the Set Transformer (Lee et al., 2019) architecture
to build the autoencoder4. The encoder Φenc is composed of three consecutive Set Attention Blocks,
followed by a linear layer and a normalization layer to output a set of points on S2. The decoder Ψdec
consists of four Set Attention Blocks with a linear layer at the end. For a set of point clouds {Xi}Ii=1
(each point cloud Xi is a set of points), the autoencoder is trained to reconstruct each Xi under a soft
regularity constraint in the latent space. That is, the objective function is defined as

L =
1

I

I∑
i=1

(
∥Ψdec(Φenc(Xi))−Xi∥22 + λ · LSSOT2(Φenc(Xi), Xunif)

)
(12)

where Xunif is a set of samples from the uniform distribution on S2.

After training, the encoder Φenc can serve as a spherical mapping from R3 to S2, and the decoder
Ψdec acts as an inverse mapping. Enforcing the latent representation to closely approximate the
uniform distribution offers significant benefits. It minimizes the occurrence of singularities in both
the spherical mapping and its inverse function, resulting in fewer distortions or discontinuities, hence
the structural and geometrical characteristics of the original point clouds are better preserved. In
implementation, we select λ = 1e− 4 through hyperparameter search. We set the number of slices to
be L = 1000, and the reference size as M = 1024 for the LSSOT2 function.

4https://github.com/juho-lee/set_transformer
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4.3.2 GRADIENT FLOW AND INTERPOLATIONS OF SPHERICAL REPRESENTATIONS

Given two spherical distributions as the source and the target, we can attach gradients on the source
distribution and drive it toward the target by minimizing the distance between them. For the distance,
we use LSSOT, SSW, and Spherical OT for comparisons. Here the Riemannian Gradient flow
algorithm (see Appendix I.3) is implemented on S2. With a slight abuse of notation to mimic the
constant speed geodesic, we sample 5 time points denoted as T = 0, 1/4, 2/4, 3/4, 1, from the
beginning (T = 0) to the loss converging (T = 1), such that the loss goes down by approximately the
same amount in each interval. In Figure 5 (bottom), we visualize the interpolations for two example
pairs of point clouds.

Interpolation using Gradient Flow
T=0 T=1T=1/4 T=2/4 T=3/4

Φ!"# Ψ$!# Φ!"#Ψ$!# Ψ$!#

Figure 5: Top panel: the interpolation process between a pair of point clouds using gradient flow in the latent
space S2. Bottom panel: gradient flow interpolations from a range hood to a bottle (left), and from a stool to a
chair (right) using three metrics LSSOT, SSW and spherical OT. See Appendix I.4 for more interpolated pairs.

5 LIMITATIONS AND FUTURE WORK

To the best of our knowledge, this work is the first to adapt the Linear Optimal Transport methodology
onto hyperspheres, enabling rapid comparisons among a group of spherical distributions. However,
spherical data/signals may not come in the form of distributions in practice, and normalizing data into
probability distributions may result in the loss of information, thus one limitation of our work is that
LSSOT is defined only for probability measures. Immediate future work includes a partial extension
of LSSOT for positive signals with unequal mass, and transport Lp Thorpe et al. (2017); Liu et al.;
Crook et al. (2024) extension for non-positive spherical signals, both of which will be studied on S1
as the first step, and extended to S2 by slicing.

6 CONCLUSION

In this work, we propose Linear Spherical Sliced Optimal Transport (LSSOT) as a novel and fast
metric for defining the similarities between spherical data. We provide rigorous mathematical proofs
establishing LSSOT as a true metric. We also demonstrate the computation efficiency of the LSSOT,
superior to other baselines in the setting of pairwise comparisons of spherical data. We verify that
LSSOT captures the rotation and scaling geometry on spheres through experiments on the Von
Mises-Fisher distributions. In the task of atlas-based cortical surface registration on various datasets,
LSSOT delivers top registration performance across multiple evaluation metrics while reducing the
training time significantly. Furthermore, LSSOT is shown to yield meaningful interpolations between
point cloud pairs. The metric’s effectiveness in both point cloud analysis and practical neuroimaging
applications demonstrates its broad potential in 3D data analysis.
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Wei Wang, Dejan Slepčev, Saurav Basu, John A. Ozolek, and Gustavo Kunde Rohde. A linear optimal
transportation framework for quantifying and visualizing variations in sets of images. International
Journal of Computer Vision, 101:254–269, 2012. URL https://api.semanticscholar.
org/CorpusID:5982072.
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A SPHERICAL RADON TRANSFORM IN S2

In Bonet et al. (2023), a Spherical Radon transform is introduced and it is used to give an equivalent
formula of the SSW discrepancy (8). In this section, we will discuss such Spherical Radon transform
and its relation with the Semicircle Transform.

A.1 NOTATIONS ON SPHERE S2

Let U ∈ V2(R3), where
V2(R3) = {U ∈ R3×2 : UTU = I2}.

Each U determines a 2-dimensional plane spanned by the columns of U :

H(U) := span{U [:, 1], U [:, 2]} ⊂ R3.

The set {U [:, 1], U [:, 2]} is an orthonormal basis for H(U). The subspace H(U) can be equivalently
defined by a normal unit vector nU , which is the uniquely determined by U (up to scalar ±1):

nU ∈ S2, UTnU = 02. (13)

Thus, the plane H(U) can be defined as

H(U) = n⊥U := {x ∈ R3 : xTnU = 0}.

Note that S(U) := H(U) ∩ S2 defines a great circle.

A.2 PROJECTION ONTO THE GREAT CIRCLE S(U)

Given U ∈ V2(R3), the operator UUT : R3 → R3 defines a projection. Indeed, for each point
s ∈ S2 \ {±nU}, the mapping

s 7→ P1
S(U)(s) :=

UUT s

∥UUT s∥
=
UUT s

∥UT s∥
=
U [:, 1]T s

∥UT s∥
U [:, 1] +

U [:, 2]T s

∥UT s∥
U [:, 2] ∈ S(U) ⊂ R3.

(14)

defines a projection onto the great circle S(U), where in (14) we used that∥∥UUT s
∥∥ = sTUUTUUT s = sTUUT s =

∥∥UT s
∥∥

(see (Bonet et al., 2023, Lemma 1)). Note that in Bonet et al. (2023), the above projection is written
as

s 7→ PUs :=
UT s

∥UT s∥
, (15)

which is a map from S2 \{±nU} to R2 that saves the coordinates [U [:, 1]T s, U [:, 2]T s]. This function
maps s into a 1-dimensional circle ≈ S1, which can be regarded as a representation/parametrization
of the great circle S(U).

An equivalent method that allows us to define such a projection is introduced by the following
parameterization system Quellmalz et al. (2023):

Each s ∈ S2 can be written in spherical coordinates:

s = [cosα sinβ, sinα sinβ, cosβ]T .

where α ∈ [0, 2π) is called the azimuth angle of s, and β ∈ [0, π] the zenith angle of s. We will use
the notation α = azi(s), β = zen(s).
Remark A.1. When s = ±[0, 0, 1], the above parametrization is not unique. As in Quellmalz et al.
(2023), we set α = 0, β = 0 for s = [0, 0, 1] and α = 0, β = π for s = [0, 0,−1]. Thus,

s 7→ (α, β)

becomes a bijection (see (Quellmalz et al., 2023, page 6)).
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Let us define the following mappings:

[0, 2π)× [0, π] ∋ (α, β) 7→ Φ(α, β) := [cosα sinβ, sinα sinβ, cosβ]T =: s ∈ S2 (16)

S2 ∋ s 7→ azi(s) =: α ∈ [0, 2π) (17)

S2 ∋ s 7→ zen(s) =: β ∈ [0, π] (18)

In addition, we define the following matrix:

Ψ(α, β, γ) :=

[
cosα − sinα 0
sinα cosα 0
0 0 1

][
cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

][
cos γ − sin γ 0
sin γ cos γ 0
0 0 1

]
By (Quellmalz et al., 2023, page 7) and Gräf & Potts (2009),

S2 × [0, 2π) ∋ (s, γ) 7→ Ψ(azi(s), zen(s), γ) ∈ SO(3) (19)

is a bijection, where SO(3) is the special orthogonal group in R3:

SO(3) = {G ∈ R3×3 : GGT = GTG = I3, det(G) = 1}.

In the special case γ = 0, we adopt the following notation:

Ψ(s) := Ψ(α, β, 0) =

[
cosα cosβ − sinα cosα sinβ
sinα cosβ cosα sinα sinβ
− sinβ 0 cosβ

]

where, given s ∈ S2, α and β are as in (17) and (18) (or equivalently, given (α, β), s ∈ S2 is defined
by (16)).

It is straightforward to verify
Ψ(s)T s = n := [0, 0, 1]T .

That is, we can regard Ψ(s)T as a rotation matrix that can rotate s back to the North Pole n = [0, 0, 1]T .
Equivalently, Ψ(s) is a rotation matrix, which can rotate [0, 0, 1]T to s.

Define the Equator by
E := {[cos γ, sin γ, 0] : γ ∈ [0, 2π)}.

Given U ∈ V2(R3), consider the following set

{s ∈ S2 : Ψ(nU )
T s ∈ E}

to obtain the following characterization of great circles for S2 ⊂ R3:

Lemma A.2. Given U ∈ V2(R3), it defines a great circle S(U) = H(U)∩S2 which is characterized
by the following identity:

S(U) = {s ∈ S2 : Ψ(nU )
T s ∈ E}. (20)

Proof. First, since Ψ(nU ) is a rotation matrix, Ψ(nU )
T s ∈ S2 for all s ∈ S2, as ∥Ψ(nU )

T s∥ =
∥s∥ = 1.

Now, write nU = [cosα∗ sinβ∗, sinα∗ sinβ∗, cosβ∗]T , where α∗ := azi(nU ) and β∗ = zen(nU ).

For any s ∈ S(U), we have (nU )
T s = 0.

We have to prove that the third coordinate of Ψ(nU )
T s ∈ S2 is 0:

[Ψ(nU )
T s][3] = [cosα∗ sinβ∗, sinα∗ sinβ∗, cosβ∗]s = (nU )

T s = 0.

That is, for every s ∈ S(U), we have obtained that s ∈ {s ∈ S2 : Ψ(nU )
T s ∈ E}.

Similarly, if we consider s ∈ {s ∈ S2 : Ψ(nU )
T s ∈ E}, we have 0 = [Ψ(nU )

T s][3] = (nU )
T s.

Thus, s ∈ S(U).

Therefore, we have the equality in (20).
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Lemma A.3. The mapping
[0, 2π) ∋ γ 7→ Φ(γ, π/2) = [cos γ, sin γ, 0]T ∈ E

and the mapping
E ∋ s 7→ Ψ(nU )s ∈ S(U)

are bijections. Thus, the mapping
[0, 2π) ∋ γ 7→ s := Ψ(nU )Φ(γ, π/2) ∈ S(U)

is also a bijection.

Proof. It is trivial to verify that the first mapping, γ 7→ [cos γ, sin γ, 0]T , is a bijection.

By the Lemma A.2, the mapping s 7→ Ψ(nU )
T s is well-defined from S(U) to E . Since Ψ(nU )

T is a
rotation matrix, it is bijection S2 → S2 whose inverse is Ψ(nU ), and so the mapping s 7→ Ψ(nU )s
is a well-defined bijection from E to S(U): that is, if we restrict Ψ(nU ) to E , by Lemma A.2, the
matrix Ψ(nU ) defines a bijection from E to Range(Ψ(nU )E) = S(U).

Now, we define the following composition map P2
S(U)(s):

S2 \ {±nU} ∋ s 7→ γ := azi(Ψ(nU )
T s) 7→ P2

S(U)(s) := Ψ(nU )Φ(γ, π/2) ∈ S(U) (21)

Proposition A.4. The mappings P1
S(U) (defined by 14) and P2

S(U) (defined by 21) coincide on
S2 \ {±nU}.

Proof. Case 1: Suppose nU = [0, 0, 1]T . Consider s = [cosα sinβ, sinα sinβ, cosβ]T ∈ S2 \
{±nU}, i.e., where α = azi(s) and β = zen(s) with β ∈ (0, π). In this case, from (13), U [3, :] = 02.
Thus, {U [1 : 2, 1], U [1 : 2, 2]} forms an orthornomal basis for R2. From (14), we have

UUT s =

[
I2 0
0 0

]
s = [cosα sinβ, sinα sinβ, 0]T

Thus,

P1
S(U)(s) =

UUT s

∥UT s∥
= [cosα, sinα, 0]T .

In addition, in this case, Ψ(nU ) = I3. Thus, γ := azi(Ψ(nU )
T s) = azi(s) = α. Therefore,

P2
S(U)(s) = Ψ(nU )Φ(γ, π/2) = Φ(γ, 0) = [cosα, sinα, π/2]T .

Thus, 14 and 21 coincide in this case.

Case 2: Suppose nU ̸= [0, 0, 1]. Each point s ∈ S2 can be written as s = Ψ(nU )s
′

where s′ = Ψ(nU )
T s. In addition, when s ̸= ±nU , we can parametrize s′ via s′ =

[cosα sinβ, sinα sinβ, cosβ]T , where β ∈ (0, π). We also have that Ψ(nU )
TnU = [0, 0, 1]T .

Let U ′ = Ψ(nU )
TU . We have

(U ′)T [0, 0, 1]T = UTΨ(nU )[0, 0, 1]
T = UTnU = 02.

Thus nU ′ = [0, 0, 1]T . Besides, we have that

UUT s = Ψ(nU )U
′(U ′)TΨ(nU )

TΨ(nU )s
′ = Ψ(nU )U

′(U ′)T s′.

Thus,
P1
S(U)(s) = Ψ(nU )P1

S(U ′)(s
′), ∀s ̸= ±nU .

In addition, by using the parametrization of s′ in spherical coordinates, we have

γ := azi(Ψ(nU )
T s) = azi(s′) = α.

Thus,
P2
S(U)(s) = Ψ(nU )[cosα, sinα, 0]

T = Ψ(nU )P2
S(U ′)(s

′).

From Case 1, we have
P1
S(U ′)(s

′) = P2
S(U ′)(s

′),

and from the the fact that s′ 7→ s = Ψ(nU )s
′ is a bijection on S2, we get

P1
S(U)(s) = P2

S(U)(s).
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Lemma A.5. Given z ∈ S1, U ∈ V2(R3), there exists α∗ ∈ [0, 2π), β∗ ∈ [0, π], γ ∈ [0, 2π) such
that

nU = Φ(α∗, β∗) = [cosα∗ sinβ∗, sinα∗ sinβ∗, cosβ∗]T (22)

Uz = Ψ(nU )[cos γ, sin γ, 0]
T (23)

Vice-versa: Given α∗ ∈ [0, 2π), β∗ ∈ [0, π], γ ∈ [0, 2π), there exist z ∈ S2, U ∈ V2(R3) for which
formulas 22 and 23 hold.

Proof. Given U ∈ V2(R3), one can find nU ∈ S2 via (13). (Note that if nU satisfies (13), then −nU
also satisfies (13), and so nU is unique up to sign.) Then, once nU is chosen, we can uniquely find
(α∗, β∗) as (17), (18).

In addition, for z ∈ S1 ⊂ R2, since

P1
S(U)(Uz) =

UUTUz

∥UTUz∥
=
Uz

∥z∥
= Uz,

we obtain that Uz ∈ S(U). By Lemma A.3, Ψ(nU )
TUz ∈ E . Then, we can uniquely determine γ

(see Lemma A.3). Thus, (22), and (23) are satisfied.

For the other direction, consider angles α∗, β∗, γ and let us separate the analysis into the following
cases:

Case 1: α∗ = 0, β∗ ∈ {0, π}. In this case, we have nU = [0, 0,±1] and thus we can set

U :=

[
I2
0

]
.

In addition, set z := [cos γ, sin γ]T ∈ S1 and so the identities 22, and 23 are satisfied.

Case 2: If α∗ ̸= 0, then we set nU by 22. Choose an orthornormal basis {u1, u2} for n⊥U = {x ∈
R3 : xTnU = 0}, and set U := [u1, u2]. Then (U, nU ) satisfies 13.

By Lemma A.3, we have Ψ(nU )[cos γ, sin γ, 0]
T ∈ S(U). Then,

UUTΨ(nU )[cos γ, sin γ, 0]
T ∈ S(U),

and by setting
z := UTΨ(nU )[cos γ, sin γ, 0]

T ,

we have

Uz = UUTΨ(nU )[cos γ, sin γ, 0]
T =

UUTΨ(nU )[cos γ, sin γ, 0]
T

∥UTΨ(nU )[cos γ, sin γ, 0]T ∥
= P1

S(U)(Ψ(nU )[cos γ, sin γ, 0]
T ) = Ψ(nU )[cos γ, sin γ, 0]

T

Thus, 23 is satisfied.

Now, given γ ∈ [0, 2π), and nU = Φ(α∗, β∗) ∈ S2, we can define the following semicircle:

SCγ
nU

:= SCγ
α∗,β∗ := {s ∈ S2 : azi(Ψ(nU )

T s) = γ}. (24)

Remark A.6. When γ ̸= 0, we can replace the above definition by

SCγ
nU

:= SCγ
α∗,β∗ := {s ∈ S2 \ {±nU} : azi(Ψ(nU )

T s) = γ}. (25)

Proposition A.7. Let z ∈ S1, U ∈ V2(R3). Consider α∗ ∈ [0, 2π), β∗ ∈ [0, π], γ ∈ [0, 2π) as in
Lemma A.5 (or equivalently, first, fix (α∗, β∗) ∈ ((0, 2π)× [0, π]) ∪ {0} × {0, π}), γ ∈ [0, 2π), and
then, find z, U according to Lemma A.5). We have:

SCγ
nU

\ {±nU} = SCγ
α∗,β∗ \ {±nU} = {s ∈ S2 \ {±nU} : PUs = z}.
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Proof. We have that

{s ∈ S2 \ {±nU} : PUs = z} =

{
s ∈ S2 \ {±nU} :

UUT s

∥UT s∥
= Uz

}
=
{
s ∈ S2 \ {±nU} : P1

S(U)(s) = Uz
}

=
{
s ∈ S2 \ {±nU} : P2

S(U)(s) = Ψ(nU )[cos γ, sin γ, 0]
T
}

(by Proposition A.4 and (23))

=
{
s ∈ S2 \ {±nU} : Ψ(nU )Φ(azi(Ψ(nU )

T s), π/2) = Ψ(nU )[cos γ, sin γ, 0]
T
}

(by definition 21)

=
{
s ∈ S2 \ {±nU} : Φ(azi(Ψ(nU )

T s), π/2) = [cos γ, sin γ, 0]T
}

(applying ΨT (nU ) on both sides)

=
{
s ∈ S2 \ {±nU} : azi(Ψ(nU )

T s) = γ
}

(by Lemma A.3)

= SCγ
nU

\ {±nU} = SCγ
α∗,β∗ \ {±nU}.

Remark A.8. With the notation of the above proposition. For each fixed pair (z, U) ∈ S2 × V2(R3),
if we choose distinct (α∗, β∗, γ) and (α̃∗, β̃∗, γ̃) such that the conditions in Lemma A.5 are satisfied,
we obtain

SCγ
α∗,β∗ = SCγ̃

α̃∗,β̃∗ .

A.3 SEMICIRCLE TRANSFORM AND SPHERICAL RADON TRANSFORM

Let f ∈ L1(S2). The Normalized Semicircle Transform of f is a function S2 → R defined as:

Wf(α∗, β∗, γ) :=
1

4π

∫
SCγ

nU

f(s) sin(zen(s))dSCγ
nU

(26)

where dSCγ
nU

is the curve differential on the semicircle SCγ
nU

.

Its un-normalized version is defined as

UWf(α∗, β∗, γ) :=
1

4π

∫
SCγ

nU

f(s)dSCγ
nU

(27)

The Spherical Radon Transform of f ∈ L1(Sd−1), for d ≥ 2, defined in Bonet et al. (2023) is the
mapping Rf : V2(Rd)× S1 7→ R given by:

Rf(U, z) =
∫
Sd−1

f(s)δ(z = PU (s))ds (28)

When considering d = 3, we obtain the following relation between the above-defined transforms.
Proposition A.9. The Unbounded Semicircle Transform 27 and the Spherical Radon Transform 28 are
equivalent. In particular, given z ∈ S1, U ∈ V2(R3), consider α∗ ∈ [0, 2π), β∗ ∈ [0, π], γ ∈ [0, 2π)
defined as in Lemma A.5, then

UWf(α∗, β∗, γ) =
1

4π
Rf(U, z).

Proof. From Proposition A.7, we have SCγ
α∗,β∗ = {s : PUs = z}, thus

Rf(U, z) =
∫
SCγ

nU

f(s)dSCγ
nU

= |4π|UW(f)(α∗, β∗, γ).

Remark A.10. We notice that there are other versions of the Spherical Radon Transform. For
example, in Groemer (1998) the spherical Radon transformation is defined by integrating over the
full great circles S(U)

R̃f(nU ) =
∫
S(U)

f dS(U).
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In this paper we are using the variant given in Bonet et al. (2023), which we have proven coincides
with the integral transformation over semicircles. That is, this version coincides with the integral
transformation denoted by B in Groemer (1998). It holds that

R̃(nU ) = Rf(U, z) +Rf(U,−z)
We will review this in Appendix B when generalizing from d = 3 to higher dimensions.

We end this section with a discussion about some alternative formulations for Wf and UWf .

For each s ∈ SCγ
α∗,β∗ \ {±[0, 0, 1]T }, we have

azi(Ψ(α∗, β∗, 0)T s) = γ.

Thus, we can write s as
s = Ψ(α∗, β∗, 0)Φ(γ, ξ) = Ψ(α∗, β∗, γ)Φ(0, ξ),

for some ξ ∈ (0, π) (recall that Φ(0, ξ) = [sin(ξ), 0, cos(ξ)]T , and see Groemer (1998) for more
details).

Similar to Remark A.6, we can redefine the semicircle as
SCγ

α,β = {Ψ(α, β, γ)Φ(0, ξ) : ξ ∈ (0, π)},
and Ψ(α∗, β∗, γ) is called primal median of SCγ

α∗,β∗ .

Combining this with the fact that (α∗, β∗, γ) 7→ Ψ(α∗, β∗, γ) is a bijection, we can rewrite (26), and
(27) as

Wf(Q) =
1

4π

∫ π

0

f(QΦ(0, ξ)) sin(ξ)dξ

UWf(Q) =
1

4π

∫ π

0

f(QΦ(0, ξ))dξ

where Q ∈ SO(3) (by using the identity s = QΦ(0, ξ), for an appropriate Q ∈ SO(3)).

In Hielscher et al. (2018), the Un-normalized Semicircle Transform is defined as

ŨW(f)(Q) :=

∫ π/2

−π/2

f(QTΦ(ξ, π/2))dξ, Q ∈ SO(3). (29)

The equivalence relation between UW(f) and ŨW(f) reads as follows:
Lemma A.11. For any Q ∈ SO(3), we have

UWf(Q) = ŨWf

([
1 0 0
0 0 −1
0 1 0

]
QT

)
.

Proof. Given Q ∈ SO(3), ξ ∈ (0, π), let Q′ =

[
1 0 0
0 0 −1
0 1 0

]
QT , ξ′ = ξ − β. Then,

Q′[1, :] = QT [1 :] = Q[:, 1]

Q′[2, :] = −QT [3, :] = −Q[:, 3]

Q′[3, :] = QT [2, :] = Q[:, 2]

and so
QΦ(0, ξ) = Q[sin ξ, 0, cos ξ]T

= Q[:, 1] sin ξ +Q[:, 3] cos ξ

= Q[:, 1] cos(ξ′)−Q[:, 3] sin(ξ′)

= Q′[1, :] cos ξ′ +Q′[2, :] sin ξ′

= (Q′)T [cos ξ′, sin ξ′, 0]T

= (Q′)TΦ(ξ′, π/2)

Thus, UWf(Q) = ŨWf(Q).
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Another formulation has been introduced in Groemer (1998). Since it allows us to define UWf in
higher dimensions (d ≥ 3), we will discuss it in the next section.

B SPHERICAL RADON TRANSFORM IN Sd−1

B.1 GREAT CIRCLE AND SEMICIRCLE / (d− 2)-DIMENSIONAL HEMISPHERE IN Sd−1

We set d ≥ 3 and consider

V2(Rd) := {U ∈ Rd×2 : UTU = I2}.

Similar to the previous section, we can define 2D hyperplane

H(U) := span{U [:, 1], U [:, 2]},
and U⊥ := H(U)⊥.

In addition, we define the corresponding great circle: S(U) = H(U) ∩ Sd−1. Note that the Equator
is a specific great circle:

E = {s ∈ Sd−1 : sTn = 0},
where n = [0, 0, . . . , 0, 1]T ∈ Sd−1 ⊂ Rd. Similar to the previous section, the corresponding
projection onto the great circle is

P1
S(U)(s) =

UUT s

∥UT s∥
, s ∈ Sd−1 \ UT (30)

Similar to Proposition A.7 and (24), we define the (d− 2)-dimensional hemisphere:

HS(U, z) := {s : PUs = z} ∪ (U⊥ ∩ Sd−1) (31)

Remark B.1. When d = 3, U⊥ = {±nU} and if we ignore these two points, (31) is consistent to
(24).

By introducing the hemisphere, the projection 30 can be regarded as the following: Let s ∈ Sd \ U⊥,
we have: s ∈ HS(U, z) where z = UT s

∥UT s∥ . Then the function P1
S(U) maps s to the intersection point

HS(U, z) ∩ SC(U).
Proposition B.2. The following identity holds for great circles:

S(U) = P1
S(U)(S

d \ U⊥) = {Uz : z ∈ S1} (32)

Proof. Since P1
S(U) is the projection, we have P1

S(U)(S
d \ U⊥) ⊂ S(U).

For the other direction, choose s ∈ S(U) and we decompose s as

s = sU + sU⊥ ,

where sU ∈ H(U), sU⊥ ∈ U⊥.

By definition of S(U), we have sU⊥ = 0. Thus s = sU . From the fact H(U) ∩ U⊥ = {0d}, we
have s /∈ U⊥. Therefore, s ∈ Sd−1 \ U⊥. Thus s = P1

S(U)(s). Therefore, we have

S(U) ⊂ P1
S(U)(S

d \ U⊥).

It remains to verify the second equality. Pick z ∈ S1, we have

P1
S(U)(Uz) =

UUTUz

∥UTUz∥
= Uz

Thus Uz ∈ S(U). For the other direction, pick s ∈ S(U), thus

s = sU = UUT s

In addition, 1 = ∥s∥ = ∥UUT s∥ = ∥UT s∥. Thus, s ∈ {Uz : z ∈ S1} and the second equality
holds.
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B.2 GREAT CIRCLES AND HEMISPHERES IN GROEMER (1998)

In this subsection, we re-parametrize the great circles and semicircles by using the notation in
Groemer (1998).

Let Bd = {(u, v) : u, v ∈ Sd−1, uT v = 0}. We define, as in Groemer (1998), the hyperplane
H(u, v) = span{u, v} and the corresponding “great circle”

S(u, v) = Sd−1 ∩H(u, v).

The (d− 2)-dimensional hemisphere is defined by

HS(u, v) = {s ∈ Sd−1 : sTu = 0, sT v ≥ 0} (33)

Lemma B.3. Pick U ∈ V2(Rd), z ∈ S1, there exists (u, v) ∈ Bd such that
span(U) = span({u, v}) (34)

UT v = z (35)
and vice-versa.

In addition, if U, z, u, v satisfy (34), and (35), we have:
S(U) = S(u, v)

HS(U, z) = HS(u, v)

Proof. First, we pick U, z. We set : v = Uz. There exists a uniquely determined (up to scalar ±1)
u ∈ H(U) ∩ v⊥ with ∥u∥ = 1. Since UT v = UTUz = z, we have that (34), and (35) hold.

Now consider (u, v) ∈ Bd. We set U = [u, v]. (Note that the choice of U is not unique, for example,
we can also set U = [−u, v] or U = [u,−v].) Let z = UT v = [0, 1]T . We have that (34) and (35)
hold.

Suppose U, z, u, v satisfy (34) and (35). We have H(U, z) = H(u, v), and thus
S(U) = S(u, v).

Consider s ∈ HS(U, z), we decompose s as s = sU + sU⊥ , then (by Proposition B.2)

P1
S(U)(s) = Uz = UUT v = v.

The last equation holds from the fact v ∈ H(U). Since u, v ∈ H(U), we have

sT v = sTUv = (UUT s)T v = ∥UT s∥vT v ≥ 0

sTu = sTUu = (UUT s)Tu = ∥UT s∥vTu = 0

So, s ∈ HS(u, v) and thus
HS(U, z) ⊂ HS(u, v).

For the other direction, we pick s ∈ HS(u, v). We have sTu = 0.

Since u ∈ H(U), we obtain:

0 = sTu = sTUu+ sTU⊥u = sTUu

By combining this with the fact that sU ∈ H(U) = span({u, v}), we have sU = αv for some α ∈ R.
In addition, from sT v ≥ 0, we have α ≥ 0.

Case 1: If α = 0, we have s ∈ U⊥, thus s ∈ HS(U, z).
Case 2: If α > 0, we have:

PUs = PUsU =
UT s

∥UT s∥
=
UTαv

α
= UTUz = z.

Thus, s ∈ HS(U, z). Therefore HS(u, v) ⊂ HS(U, z).

Remark B.4. When d = 3, then u = U [:, 1], v = U [:, 2], and nU = 1
∥u×v∥u × v (cross product,

normalized).

Moreover, these (d− 2)-dimensional hemispheres HS generalize the semicircles SC (see (24)) given
for d = 3.
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B.3 SPHERICAL RADON TRANSFORM AND A HEMISPHERICAL TRANSFORM

We call the integral transformation defined in (Groemer, 1998, Section 2) as the “(d − 2)-
Hemispherical Transform on Sd−1”: it is the d−dimensional extension of the Un-normalized
Semicircle Transform given by (27) for d = 3. For f ∈ L1(Sd−1), we define

Hf(u, v) :=
∫
HS(u,v)

f(s)dHS(u, v)

where dHS(u, v) is the surface area differential on HS(u, v). (We note that in the article Groemer
(1998), the notation for the above transformation is B.)
Remark B.5. In the literature, the so-called Hemispherical Transform integrates over a full (d− 1)-
dimensional hemisphere of Sd−1, that is,

f(z) :=

∫
{x∈Sd−1: xT z≥0}

f(x)dx (z ∈ Sd−1). (36)

See, e.g., Rubin (1999); Groemer (1998).

The Spherical Radon Transform in Sd−1 is defined in Bonet et al. (2023) as the linear and bounded
integral operator R : L1(Sd−1) → L1(V2(Rd)× S1) with the formula:

Rf(U, z) :=
∫
Sd−1

δ(PUs = z)f(s)ds. (37)

Thus, we can re-write it as

Rf(U, z) =
∫
Sd−1

δ(PUs = z)f(s)ds =

∫
HS(U,z)

f(s)dHS(U, z) (38)

We define the following variant of such Spherical Radon Transform:

H̃(f)(U, z) :=

∫
Sd−1\U⊥

δ(PUs = z)f(s)ds =

∫
HS(U,z)\U⊥

f(s)dHS(U, z). (39)

Proposition B.6. For U ∈ V2(Rd) and z ∈ S1, consider (u, v) as in Lemma B.3. Then

Rf(U, z) = Hf(u, v) = H̃f(U, z), ∀f ∈ L1(Sd−1)

Proof. By Lemma B.3, we have HS(U, z) = HS(u, v). Then, by (38),

Rf(U, z) = Hf(u, v).

Thus, it remains to show H̃f = Rf .

For each (U, z), U⊥ is a (d− 2)-dimensional subspace. Thus, Sd−1 ∩ U⊥ is a (d− 3)-dimensional
sub-sphere.

Since {s ∈ Sd−1 \ U⊥}, U⊥ ∩ Sd−1 are disjoint, we have:

HS(U, z) ∩ U⊥ =
[
{s ∈ Sd−1 \ U⊥ : PUs = z} ∪ (U⊥ ∩ Sd−1))

]
∩ U⊥ (40)

= U⊥ ∩ Sd−1

In addition, since U⊥ ∩ Sd−1 is a (d− 3)-dimensional sub-sphere, while HS(U, z) = HS(u, z) is a
(d− 3)-dimensional hemisphere, we have

Rf(U, z) = H̃f(U, z) +
∫
U⊥∩Sd−1

f(x)dHS(U, z)

= H̃f(U, z) + 0 = H̃f(U, z)

and we have completed the proof.

Corollary B.7. Given continuous function f, g ∈ C(Sd−1), if Rf = Rg, then f = g.
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Proof. For every (U, z) there exists u, v ∈ Sd−1 such that, by Lemma B.6,

Rf(U, z) = Hf(u, v), Rg(U, z) = Hg(u, v).

Thus, Hf(u, v) = Hg(u, v). From (Groemer, 1998, Theorem 1), we have f = g.

Remark B.8. In the article Bonet et al. (2023) the authors relate the Spherical Radon Transform R
with the Hemispherical Transform F given in (36). Indeed,

Rf(U, z) = F(f|S(U)
)(z),

where f|S(U)
denotes the restriction of f ∈ L1(Sd−1) to the (d − 2)-dimensional “great circle”

S(U) ≃ Sd−2, and the above operator F is the Hemispherical Transform in L1(Sd−2). By doing
so, the authors can use the characterization of Ker(F) provided in Rubin (1999) to prove their
characterization of Ker(R) (see (Bonet et al., 2023, Proposition 4)). Also, in Bonet et al. (2023)
the authors claim that they leave for future works checking whether the set Ker(R) is null or not.
In this paper we show that it is more natural to relate R with the integral transformation given
in (Groemer, 1998, Section 2) that we have named as the “(d − 2)-Hemispherical Transform on
Sd−1” and denoted by H. Thus, (Groemer, 1998, Theorem 1) we can show the injectivity of R for
absolutely continuous measures on the sphere with continuous density functions. (Since Sd−1 is
compact, the space of continuous functions C(Sd−1) is dense in L1(Sd−1) under closure with respect
to the L1-norm. However, we still can not guarantee that the injectivity property of R extends from
C(Rd−1) to L1(Sd−1), which represents the densities of absolutely continuous measures).

C SPHERICAL RADON TRANSFORM FOR MEASURES ON Sd−1

Similarly to the classical Radon Transform in Euclidean spaces, the dual-operator of R, called the
back-projection operator and denoted as R∗ : C0(V2(Rd)× S1) → C(Sd−1), is given in Bonet et al.
(2023) by the following formula:

R∗(ψ)(x) =

∫
V2(Rd)

ψ(U,PU (x))dσ(U), x ∈ Sd−1, ψ ∈ C0(V2(Rd)× S1). (41)

That is, R∗ is such that the following identity holds:∫
S1×V2(Rd)

Rf(U, z)ψ(U, z)dσ(U)dz =

∫
Sd−1

f(s)R∗ψ(s)ds, (42)

for f ∈ L1(Sd−1), ψ ∈ C0(V2(Rd) × S1) (see (Bonet et al., 2023, Proposition 2)). Then, the
Spherical Radon transform R can be extended from L1(Sd−1) to the space of measures supported on
Sd−1 by defining Rµ as a new measure on V2(Rd)× S1 by the “duality expression”:∫

S1×V2(Rd)

ψ(U, z)dRµ(U, z) =
∫
Sd−1

R∗ψ(s)dµ(s), ∀ψ ∈ C0(V2(Rd)× S1). (43)

Remark C.1. For each s ∈ Sd−1, if s ∈ U⊥, then U [:, 1], U [:, 2] ∈ s⊥. Thus

σ({U ∈ V2(Rd) : s ∈ U⊥})
= σ({U ∈ V2(Rd) : U [:, 1], U [:, 2] ∈ s⊥})
= 0

In Bonet et al. (2023), the authors mention the above that definition is considered a.e.. Via the above
property, we have that (41) is well-defined for all s ∈ Sd−1.

Now, consider probability measures µ ∈ P(Sd−1). In analogy to the classical Radon Transform in
Euclidean spaces, by the disintegration theorem in classic measure theory, there exists a σ-almost
everywhere uniquely determined family of 1-dimensional probability measures {(Rµ)U}U∈V2(Rd)

on the unit circle S1 such that for any ψ ∈ C0(V2(Rd)× S1) we have∫
V2(Rd)×S1

ψ(U, z) dRµ(U, z) =
∫
V2(Rd)

∫
S1
ψ(t, θ) d(Rµ)U (z) dσ(U). (44)
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In (Bonet et al., 2023, Proposition 3) the authors prove that if µf is an absolutely continuous
probability measure on the sphere Sd−1, that is, it has a density f ∈ L1(Sd−1), then

(Rµf )
U = PU

# (µf )

The same computation can be extended to any measure µ supported on Sd−1 to get (Rµ)U = PU
# (µ).

Remark C.2. In the particular case of µf , that is, for functions f ∈ L1(Sd−1) we have that the
measure Rµf has density Rf . This implies that the function Rf(U, ·) (i.e., the function z 7→
Rf(U, z) defined for z ∈ S1) is the density of (Rµf )

U , and therefore Rf(U, ·) is also the density of
PU
# (µf ).

C.1 LINEAR SPHERICAL SLICED OPTIMAL TRANSPORT IN TERMS OF THE SPHERICAL
RADON TRANSFORM

By using the previous expressions, given ν1, ν2 ∈ P(Sd−1) we can re-write LSSOT2(·, ·) as follows:

(LSSOT2(ν1, ν2))
2
:=

∫
V2(Rd)

(
LCOT2(P

U
# ν1, P

U
# ν2)

)2
dσ(U)

=

∫
V2(Rd)

(
LCOT2((Rν1)U , (Rν2)U )

)2
dσ(U). (45)

D METRIC PROPERTY OF LINEAR SPHERICAL SLICED OPTIMAL TRANSPORT

Proposition D.1. LSSOT2(·, ·) is a well-defined pseudo-metric in P(Sd−1), that is,
LSSOT2(ν, ν) = 0 for all ν ∈ P(S1), it is non-negative, symmetric, and satisfies the triangle
inequality.

Proof. Let ν1, ν2, ν3 ∈ P(Sd−1).

It is straightforward to verify positivity (i.e., LSSOT2(ν1, ν2) ≥ 0), and symmetry (i.e.,
LSSOT2(ν1, ν2) = LSSOT2(ν2, ν1)).

If ν1 = ν2, for each U ∈ V2(Rd), we have PU
# ν1 = PU

# ν2, thus ν̂S1 (·, U) = ν̂S2 (·, U). It implies that
∥ν̂S1 (·, U)− ν̂S2 (·, U)∥2L2(Sd−1) = 0, and so LSSOT2(ν1, ν2) = 0.

Finally, we verify the triangle inequality. Let U ∈ V2(Rd). By (Martin et al., 2023, Theorem 3.6), we
have LCOT2(·, ·) defines a metric. Thus, the following triangle inequality holds:

LCOT2(P
U
# ν1, P

U
# ν2) ≤ LCOT2(P

U
# ν1, P

U
# ν3) + LCOT2(P

U
# ν2, P

U
# ν3).

Thus,

LSSOT2(ν1, ν2)

=

(∫
V2(Rd)

(LCOT2(P
U
# ν1, P

U
# ν2))dσ(U)

)1/2

≤

(∫
V2(Rd)

(LCOT2(P
U
# ν1, P

U
# ν3) + LCOT2(P

U
# ν2, P

U
# ν3))dσ(U)

)1/2

≤

(∫
V2(Rd)

(LCOT2(P
U
# ν1, P

U
# ν3))dσ(U)

)1/2

+

(∫
V2(Rd)

(LCOT2(P
U
# ν2, P

U
# ν3))dσ(U)

)1/2

(46)
= LSSOT2(ν1, ν3) + LSSOT2(ν2, ν3)

where (46) holds by Minkowski inequality in space L2(V2(Rd), dσ).

Theorem D.2 (Theorem 3.3). LSSOT2(·, ·) is a well-defined metric in the set of absolutely continu-
ous measures in P(Sd−1) with continuous density function, that is, it is pseudo-metric satisfying also
the identity of indiscernibles.
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Proof. From Proposition D.1, we only have to prove that if LSSOT2(ν1, ν2) = 0, then ν1 = ν2. To
do so, we will the expression of the LSSOT2(·, ·) in terms of a Spherical Radon Transform given in
given in (45). Let ν1, ν2 ∈ P(Sd−1) such that

0 = (LSSOT2(ν1, ν2))
2
=

∫
V2(Rd)

(
LCOT2((Rν1)U , (Rν2)U

)2
dσ(U).

Thus,

LCOT2((Rν1)U , (Rν2)U ) = 0 σ(U)− a.s.

Since LCOT2(·, ·) defines a metric in P(S1) (see again (Martin et al., 2023, Theorem 3.6)), we have
that

(Rν1)U = (Rν2)U σ(U)− a.s.

As the disintegration is a family σ-almost everywhere uniquely determined, we have that

Rν1 = Rν2.

Finally, if ν1, ν2 have continuous density functions, by injectivity of the operator R (Corollary B.7),
we have that ν1 = ν2.

As a byproduct of our deductions, we obtain that the SSW in Bonet et al. (2023) and defined in (8), is
also a metric in P(Sd−1):

Theorem D.3. The Spherical Sliced Wasserstein discrepancy SSWp(·, ·), for p ≥ 1, defines a metric
in the set of absolutely continuous measures in P(Sd−1) with continuous density function.

Proof. First, notice that since the sphere is compact, there is no need to ask that ν ∈ P(Sd−1) has to
have finite p-moment, as it automatically has such a property. In (Bonet et al., 2023, Proposition 5),
the authors show that SSWp(·, ·) is a pseudo-metric. Finally, by using the expression

(SSWp(µ, ν))
p :=

∫
V2(Rd)

(
COTp(P

U
#µ, P

U
# ν)

)p
dσ(U) (47)

=

∫
V2(Rd)

(
COTp((Rµ)U , (Rν)U )

)p
dσ(U) (48)

and repeating the arguments in the proof of Theorem 3.3 with the Wasserstein distance COTp(·, ·)
in the unit circle in place of the LCOT distance, we get that SSWp(·, ·) satisfies the identity of
indiscernibles when restricted to probability measures with continuous densities.

E RUNTIME ANALYSIS WITH RESPECT TO NUMBER OF SLICES

Here we provide further running time comparisons of the slice-based methods for pairwise distance
calculations under different numbers of slices L = 500, 1000, 5000. All methods are run on NVIDIA
RTX A6000 GPU.
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Figure 6: Running time comparison under varying number of slices. L denotes the number of slices used in all
the slice-based methods in each row. N is the number of samples in each distribution for each column.

F IMPLEMENTATION DETAILS OF CORTICAL SURFACE REGISTRATION

F.1 ICOSPHERES AND RESAMPLING

S3Reg relies on Spherical-Unet (Zhao et al., 2019) as the backbone, which capitalizes on the regular
structure of icospheres to perform convolution and pooling on spheres. Spherical surfaces are
resampled on icospheres in order to be input to the S3Reg network.

Icospheres are generated from a regular convex icosahedron with 12 vertices, then by recursively
adding a new vertex to the center of each edge in each triangle. The number of vertices on the
icospheres is increased from 12 to 42 (level 1), 162 (level 2), 642 (level 3), 2562 (level 4), 10,242
(level 5), 40,962 (level 6), 163,842 (level 7), etc. In this work, we focus on the level-6 icosphere with
40,962 vertices on the cortical surfaces.

For resampling in the preprocessing step, we employ the simple but fast Nearest Neighbor method
and implement it using sklearn.neighbors.KDTree function from Scikit Learn (Pedregosa et al., 2011).
The feature value on each output point is represented as a weighted sum of the feature values on the
nearest three vertices.

F.2 S3REG FRAMEWORK AND LOSS COMPONENTS

In a nutshell, the S3Reg framework receives a concatenation of fixed and moving spherical surface
maps defined on icospheres as input, processes them through an encoder-decoder architecture,
and finally outputs the velocity field represented by tangent vectors on S2. In particular, as the
convolution kernel in Spherical U-Net could cause distortions around the poles (Zhao et al., 2019), 3
complementary orthogonal Spherical U-Nets are combined to predict the deformation field so that the
polar areas are also regularly processed at least two times. As the 3 predicted velocity fields should
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be orthogonal accordingly, a loss term of inconsistency is added to the total loss. We refer the readers
to Zhao et al. (2021) (Section III-A) for details of the consistency loss.

As the similarity losses are thoroughly discussed in the main text, we will now describe other loss
components in more detail. Let F denote the fixed image and M be the moving image. Suppose pF ,
pM are the corresponding parcellation maps of F and M , respectively. Let ϕ denote the velocity field
predicted by the network.

Dice Score and Dice Loss Parcellation maps can be integrated into the training process to enforce
biological validity. The Dice Score is a measure of similarity/overlap between two parcellations.
Assume both pF and pM have K regions of interest (ROIs), then the Dice score is defined as

Dice(pF , pM ◦ ϕ) = 1

K

K∑
k=1

2
|pkF ∩ (pkM ◦ ϕ)|
|pkF |+ |pkM ◦ ϕ|

, (49)

where pkM ◦ϕ is the warped moving image by ϕ, the superscript k denotes the k-th ROI. Since the Dice
Score is between 0 and 1, the Dice Loss can be defined as LDice(pF , pM ◦ϕ) = 1−Dice(pF , pM ◦ϕ).
Smoothness Loss The local spatial non-smoothness of the output velocity field ϕ is penalized by
Lsmooth(ϕ) =

∑
v |∇S2C(ϕ(v))|, where the sum is over all the moving vertices v, C is the 1-ring

convolution operator (Zhao et al., 2019), and ∇S2 denotes the spherical gradients.

G MORE VISUALIZATIONS OF CORTICAL SURFACE REGISTRATION
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Figure 7: Qualitative registration results from Subject A00060516 in the NKI dataset.
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Figure 8: Qualitative registration results from Subject A00076798 in the NKI dataset.
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Figure 9: Qualitative registration results from Subject 0356 in the ADNI dataset.
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Figure 10: Qualitative registration from Subject 6650 in the ADNI dataset.
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Figure 11: Qualitative registration results from Subject 7060 in the ADNI dataset.
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H 3D SHAPE CLUSTERING AND RETRIEVAL

To further validate the effectiveness of LSSOT in evaluating the similarity of spherical distributions,
we conduct additional experiments using a variety of genus-0 3D shapes. Our methodology involves
a two-step process: 1) mapping the 3D shapes onto spherical surfaces; and 2) performing clustering
and nearest neighbor retrieval tasks on these spherical representations. For the spherical mapping
process, we employ two distinct techniques, Inflation and Projection (IAP) and Deep Unsupervised
Learning using PointNet++ Qi et al. (2017).

H.1 DATASET

We conduct experiments on mesh models from the Watertight Track of SHREC 2007 dataset (Giorgi
et al., 2007). This dataset contains surfaces belonging to 19 categories, among them, we select 4
genus-0 closed surface models, human, octopus, teddy bear, and Fish. Moreover, as explored in the
previous experiment, LSSOT is sensitive to rotations, therefore we remove the meshes with different
orientations than the rest.

H.2 SPHERICAL MAPPING

Inflation and Projection. A direct projection from a genus-0 closed surface to the sphere by fixing
an inside point source and normalizing the vertices may cause undesirable topologically incorrect
foldings. One workaround is iteratively smoothing and inflating the surface before the final projection.
This inflation and projection is a common spherical mapping strategy used in neuroimaging data
processing tools such as FreeSurfer (Fischl, 2012), Connectome Workbench (Marcus et al., 2013).

Deep Unsupervised Learning using PointNet++. To accelerate the forward pass of spherical
mapping, we capitalize on deep unsupervised learning and train a PointNet++ network to map a
cortical surface on a sphere with minimal distortion. The trained network then serves as a deep
learning-based spherical mapping tool.

Loss function. Zhao et al. (2022) proposed an unsupervised approach of mapping cortical surfaces to
a sphere using Spherical U-Net Zhao et al. (2019) to learn the spherical diffeomorphic deformation
field for minimizing the metric (distance), area, or angle distortions. We follow their definitions of
metric (Jd) and area (Ja) distortions as local relative differences, and conformal/angle distortion
(Jc) after market share normalization, but adapt them to general meshes instead of restricting to
icosahedron-reparameterized surfaces. For a pair of original input surface R and the predicted
spherical mesh S, the loss function has three components:

Jd(R,S) = min
r∈R+

1

Ne

Ne∑
i=1

|rdSi − dRi |
dRi

(50)

Ja(R,S) = min
r∈R+

1

Nf

Nf∑
j=1

|raSj − aRj |
aRj

(51)

Jc(R,S) =
1

3Nf

Nf∑
k=1

1

π
(|αR

k − αS
k |+ |βR

k − βS
k |+ |θRk − θSk |) (52)

where Ne is the total number of edges, Nf is the total number of faces. dRi and dSi are the length of
i-th edge on original surface and predicted sphere. Similarly, aRj and aSj are the area of j-th face on
original surface and predicted sphere; (αR

k , β
R
k , θ

R
k ) and (αS

k , β
S
k , θ

S
k ) are the inner angles of the k-th

face on original surface and predicted sphere.
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Inflation and Projection + LSSOT + MDS PointNet++  Spherical Mapping + LSSOT + MDS

Query Retrieval Results Query Retrieval Results

Figure 12: Manifold learning of clustering results (top) and nearest neighbor retrieval results (bottom) using
Inflation and Projection (left) and PointNet++ (right) as spherical mappings.

H.3 RESULTS

Figure 12 illustrates the effectiveness of the LSSOT metric under both spherical mapping techniques.
The results demonstrate that LSSOT successfully identifies inherent similarities and dissimilarities
among the spherical surface representations, regardless of the mapping method employed. This
capability translates into good performance in both clustering and nearest neighbor retrieval tasks. The
consistency of LSSOT’s effectiveness under different mapping approaches underscores its robustness
as a metric for analyzing spherical distributions and comparing surface geometries.

I GRADIENT FLOW WITH RESPECT TO LSSOT IN THE SPHERICAL SPACE

I.1 BACKGROUND: INTRODUCTION TO STIEFEL MANIFOLD

In this section, we briefly introduce the gradient flow and related concepts in spherical space. First,
we introduce the Riemannian structure of the Stiefel manifold, which is a general case of spherical
space. Next, we specify the related concepts in the spherical space.

Given positive integers 1 ≤ k ≤ d, the Stiefel manifold is given by

Vd,k := Vk(Rd) = {V ∈ Rd×k : V ⊤V = Ik}.

It is a
(
dk − (k +

(
k
2

)
)
)

-dimensional manifold.
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Given X ∈ Vd,k, the tangent space is given by:

TX(Vd,k) := {Z ∈ Rd×k : ZX +XZ = 0}. (53)

Given matrix G ∈ Rd×k, the projection of G onto TX(Vd,k) is given by,

PTX(Vd,k)(G) := G−Xsym(G⊤X), (54)

where sym(G⊤X) = 1
2 (G

⊤X +X⊤G) is the symmetric matrix obtained from G⊤X .

Given a differentiable function F : Vd,k → R, the following steps can describe the gradient of F in
the manifold. In particular, choose X ∈ Vd,k:

• Step 1: compute Euclidean gradient ∇E(F (X)).
• Step 2: the Stiefel manifold gradient is defined as:

∇SF (X) := PTX(Vd,k)(∇E(F (X))). (55)

We consider the gradient flow problem:

∂tXt = −∇SF (Xt),∀X ∈ Vd,k.

Let η denote the step size (i.e., the learning rate for the machine learning community), the discrete
gradient descent step of the above problem becomes:

X 7→ X − η∇SF (X) = X − η(∇EF (X)−Xsym(∇EF (X)⊥X)). (56)

I.2 GRADIENT FLOW IN SPHERICAL SPACE

In spherical space, we have k = 1 (in this case, we use convention
(
1
2

)
= 0). Thus, the tangent space

(53) becomes:

Tx(Sd−1) := span(x)⊥ := {z ∈ Rd : z⊤x = 0}, (57)

where span(x) is the 1D line spaned by x. The corresponding projection (54) becomes

Rd ∋ g 7→ PTx(Vd,k)(g) := g − x(g⊤x) ∈ Tx(Sd−1). (58)

Note, the above projection is essentially the Euclidean projection of x into the hyperplane x⊥.

Given X = [x1, . . . , xn] ∈ Rd×n, Y = [y1, . . . , ym] ∈ Rd×m, where Y is fixed. Let ν1 =∑n
i=1 piδxi

, ν2 =
∑m

j=1 qjδyj
. We consider the following function :

C(X) := LSSOT (µ, ν)

≈ 1

T

T∑
t=1

LCOT ((θt)#µ, (θt)#ν). (59)

where each θt ∈ Sd−1, (59) is the Monte Carlo approximation.

We select one θ and consider the 1-dimensional LCOT problem

LCOT ((θ)#ν1, (θ)#ν2)

=

∫ 1

0

h

(∣∣∣∣F−1
θ#ν1

(s− E[θ#ν1] +
1

2
)− |F−1

θ#ν2
(s− E[θ#ν2] +

1

2
)

∣∣∣∣2
)
ds

where h(r) = min(r, 1− r).

Note, the above quantity implicitly defines a transportation plan between µ and ν. In particular,
suppose γθ ∈ Rn×m, with

γθ[i, j] = |{s : F−1
θ#ν1

(s− E[θ#ν1]) ≡ xi, F
−1
θ#ν1

(s− E[θ#ν2]) ≡ yj}|, (60)

where | · | is the uniform measure (Lebesgue measure) in [0, 1), a ≡1 b means a mod 1 = b. It is
straightforward to verify γθ ∈ Γ(θ#ν1, θ#ν2), and thus is a transportation plan between θ#ν1, θ#ν2.
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Therefore, we can explicitly write (59) in term of X = [x1, . . . xn]:

(59) =
1

T

T∑
t=1

∑
i,j

h(θ⊤t xi − θ⊤t yj)γθt [i, j]. (61)

where each γθt is defined via (60). For each xi, the Euclidean gradient is given by

∇EC(xi) =
1

T

T∑
t=1

θt

 ∑
j:|θ⊤

t xi−θ⊤
t yj |≤1/2

2(θ⊤t xi − θ⊤t yj)γθt [i, j]

−
∑

j:|θ⊤
t xi−θ⊤

t yj |>1/2

2(θ⊤t xi − θ⊤t yj)γθt [i, j]

 . (62)

Based on this, we derive the gradient descent step for the following gradient flow problem.

−∇SC(X) = −V (X)

That is,

X 7→ X − η∇S(C(X)) = X − (X −X(∇EC(X)⊤X)) (63)

where ∇E(C(X))[:, i] is given by (62) for each i.

I.3 IMPLEMENTATION OF GRADIENT FLOW

Riemannian Gradient Descent. Let µX = 1
N

∑N
n=1 δxn

be the source distribution with mass
uniformly distributed at X = {xn}Nn=1 ⊂ Sd−1, and νY = 1

M

∑M
m=1 δym

be the target distribution
with Y = {ym}Mm=1 ⊂ Sd−1. For each x ∈ X , let x(k) be the location of x at k-th iteration, then at
(k + 1)-th iteration, the update should be the following (Absil et al., 2008; Boumal et al., 2019):

x(k+1) = expx(k)(−γk∇Sd−1F(x(k))), (64)

where γk is the learning rate at k-th iteration, the exponential map expx(v) = x cos ∥v∥+ v
∥v∥ sin ∥v∥,

and ∇Sd−1F(x(k)) is the projection of the Euclidean gradient ∇RdF(x(k)) onto the tangent space
at x(k). We implement this gradient descent method using the exponential function and projection
function in the Geoopt library (Kochurov et al., 2020) 5.

Spherical Coordinate Gradient Descent. A more straightforward gradient descent method is to
work in the spherical coordinate system. By the following correspondences (in S2 for example)
between (x, y, z) ∈ S2 and (θ, ϕ)

x = cos θ sinϕ

y = sin θ sinϕ

z = cosϕ

and

θ = arctan(
y

x
)

ϕ = arccos z

we can calculate the gradient of the loss function with respect to (θ, ϕ). Note here arctan must be
suitably defined according to the quadrant.

5https://github.com/geoopt/geoopt
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I.4 ADDITIONAL POINT CLOUD INTERPOLATION VISUALIZATIONS

Figure 13: Gradient flow interpolations between two tables.

Figure 14: Gradient flow interpolations between two toilets.

Figure 15: Gradient flow interpolations from a range hood to a plant.
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Figure 16: Gradient flow interpolations from a TV stand to a bookshelf.

Figure 17: Gradient flow interpolations from a table to a piano.

Figure 18: Gradient flow interpolations from a guitar to an airplane.

I.5 GRADIENT FLOW MOLLWEIDE VIEW VISUALIZATIONS

We provide more visualizations for the gradient flow of spherical distributions with respect to LSSOT
metric, SSW, and spherical optimal transport distance (spherical OT). At first, a source distribution
and a target distribution are generated, both of which are discrete distributions with uniform mass at all
points. Then we perform gradient descent on the mass locations of the source distribution with respect
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to the above three objectives, driving the source toward the target distribution by minimizing these
losses. We employ two methods of gradient descent on the sphere. See Figure 19 to Figure 30 for the
Mollweide views of the gradient flows between two different pairs of source-target distributions.

t=0 t=1/11 t=2/11

t=3/11 t=4/11 t=5/11

t=6/11 t=7/11 t=8/11

t=9/11 t=10/11 t=1

LSSOT Gradient Flow (Riemannian Gradient Descent)

Figure 19: LSSOT gradient flow using Riemannian gradient descent.
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SSW Gradient Flow (Riemannian Gradient Descent)

Figure 20: SSW gradient flow using Riemannian gradient descent.
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Figure 21: Spherical OT gradient flow using Riemannian gradient descent.
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Figure 22: LSSOT gradient flow using spherical coordinate gradient descent.
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Figure 23: SSW gradient flow using spherical coordinate gradient descent.
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Figure 24: Spherical OT gradient flow using spherical coordinate gradient descent.
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Figure 25: LSSOT gradient flow using Riemannian gradient descent.
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Figure 26: SSW gradient flow using Riemannian gradient descent.
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Figure 27: Spherical OT gradient flow using Riemannian gradient descent.
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Figure 28: LSSOT gradient flow using spherical coordinate gradient descent.
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Figure 29: SSW gradient flow using spherical coordinate gradient descent.
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Figure 30: Spherical OT gradient flow using spherical coordinate gradient descent.

J COMPUTATION COMPLEXITY

We provide the complexities for d-dimensional discrete distributions with support of size N :

Method Complexity Pairwise Distance Calculation Complexity

LSSOT O(LN(d+ logN + 1)) O(KLN(d+ logN + 1 +K))
SSW O(LN(d+ logN + log( 1ϵ ))) O(K2LN(d+ logN + log( 1ϵ )))
OT O(N2(N logN + d)) O(K2N2(N logN + d)

Sinkhorn O(N2( logN
ϵ2 + d)) O(K2N2( logN

ϵ2 + d))
S3W O(LN(d+ logN)) O(K2LN(d+ logN))
SWD O(LN(d+ logN)) O(K2LN(d+ logN))

Table 2: Computation complexities for one pair of distributions (middle column) and for pairwise distance
computation among a set of K distributions. The ϵ in the complexity of SSW arises from approximating the
solution with precision ϵ in binary search. Similarly, the ϵ in the complexity of Sinkhorn refers to finding an
ϵ-approximation of the OT distance by Sinkhorn’s algorithm.

Of note, all methods except SWD are under the spherical geometry, whereas the underlying ground
distance for SWD is the Euclidean distance. For one pair of distributions, SWD and S3W are
marginally faster than LSSOT. However, when K is large enough in the pairwise comparison, the
linear complexity with respect toK will overrule that slight advantage (as shown in Figure 2), making
LSSOT the fastest of all the methods.

K INFLUENCE OF NUMBER OF PROJECTIONS AND REFERENCE SIZE

As the number of slices and reference size are the hyperparameters of the LSSOT method, we plot
the evolution of LSSOT with respect to the number of slices in Figure 31 and the evolution with
respect to reference size in Figure 32 for different dimensions d and VMF distributions with different
κ. With more than 100 slices, LSSOT performs robustly as the projector varies. LSSOT also behaves
consistently as reference size changes.
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Figure 31: Evolution of LSSOT with respect to number of slices. The sample sizes are fixed to be 500.
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Figure 32: Evolution of LSSOT with respect to reference size. Reference is sampled from the uniform
distribution on [0, 1).

L INVARIANCE TO ROTATIONS

By definition of LSSOT as an integration over the uniform distribution σ (Equation 10), it is invariant
to rotations. To empirically test the invariance, we fix a pair of distributions and generate 20 random
rotations that are applied on the distributions. The LSSOT distances for all 20 rotated distributions
are plotted in Figure 33, with mean and standard deviation indicated. All 20 values fall closely with
each other, with slight deviation due to the discrete approximation of the uniform distribution over
the rank-2 projectors.
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Figure 33: LSSOT distances for a pair of distributions and their rotated variants.
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M IDENTIFYING INCORRECTLY LABELED SUBJECTS

With metric properties, LSSOT can be applied to identify the same distribution. One scenario in
neuroimaging analysis is when the same subject is labeled as different subjects in the datasets. We
design a simplified experiment to demonstrate the effectiveness of LSSOT in identifying the same
subjects in the ADNI dataset. We randomly select 25 subjects from the ADNI dataset and duplicate
one of them (the 8-th subject) as the test subject with an incorrect label. Figure 34 depicts that eLSSOT

stands out at subject 8 with value 1, as the LSSOT distance between them is arbitrarily close to 0.
Such behavior makes LSSOT a very convenient tool in correcting the labels in the preprocessing of
the datasets.
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Figure 34: Exponential of the negative LSSOT distance from a test subject to a set of 25 training subjects.

N COMPARING WITH FREESURFER REGISTRATION

Freesurfer MSE S3W SWD SSW LSSOT (Ours)

LSSOT(↓) 0.2877±0.0392 0.2754±0.0611 0.2298±0.0346 0.2411± 0.0366 0.2079±0.0369 0.1890±0.0361

SWD(↓) 0.0060±0.0020 0.0051±0.0017 0.0053±0.0010 0.0027±0.0011 0.0059±0.0011 0.0052±0.0011

MAE(↓) 0.1053±0.0214 0.1129±0.0471 0.2278±0.0372 0.2658±0.0410 0.2145±0.0266 0.2516±0.0397

CC(↑) 0.8190±0.0264 0.8269±0.0425 0.9216±0.0174 0.8722±0.0302 0.8671±0.0314 0.8649±0.0295

Dice (↑) 0.7541±0.0651∗∗ 0.7746±0.0861∗∗ 0.8498±0.0670∗∗ 0.7984±0.0539∗∗ 0.8429±0.0692∗ 0.8462±0.0548

Edge Dist.(↓) 0.3207±0.0436∗∗ 0.3060±0.0404∗∗ 0.3922±0.0647∗∗ 0.3442±0.0346∗∗ 0.2476±0.0348∗∗ 0.2365±0.0343

Area Dist.(↓) 0.4652±0.0698∗∗ 0.4305±0.0488∗∗ 0.4048±0.0752∗∗ 0.4073±0.0368∗∗ 0.2733±0.0402∗∗ 0.2897±0.0396

Time(seconds)(↓) – 73.07 121.00 118.96 1350.96 101.01

N
K

I(
L

ef
tH

em
is

ph
er

e)

Table 3: Updated table for left hemispheres of NKI dataset after adding Freesurfer as a baseline. Significance
test is performed for the difference on Dice, Edge Dist. and Area Dist. against LSSOT. ∗∗ denotes p < 0.001
and ∗ denotes p < 0.01.
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