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Abstract

Sparse autoencoders (SAEs) have been widely used for interpretability of neural1

networks, but their learned features often vary across seeds and hyperparame-2

ter settings. We introduce Ordered Sparse Autoencoders (OSAE), which extend3

Matryoshka SAEs by (1) establishing a strict ordering of latent features and (2)4

deterministically using every feature dimension, avoiding the sampling-based ap-5

proximations of prior nested SAE methods. Theoretically, we show that OSAEs6

resolve permutation non-identifiability in settings of sparse dictionary learning7

where solutions are unique (up to natural symmetries). Empirically on Gemma2-8

2B and Pythia-70M, we show that OSAEs can help improve consistency compared9

to Matryoshka baselines.10

1 Introduction11

Sparse autoencoders (SAEs) have become central to unsupervised representation learning. Enforc-12

ing sparsity in the latent space yields interpretable, often disentangled features, enabling progress13

in clustering, visualization, and scientific discovery [Vincent et al., 2010, Coates et al., 2011, Ng,14

2011]. Yet despite their success, SAEs suffer from a critical shortcoming: the set of features they15

learn can vary across random seeds, initialization schemes, and hyperparameter settings, leading to16

poor reproducibility and undermining any mechanistic interpretation of individual latent dimensions17

[Song et al., 2025, Fel et al., 2025]. Several strategies have been proposed to mitigate this instability.18

These include regularization techniques such as orthonormality penalties [Lee et al., 2025], struc-19

tured sparsity constraints like group or tree sparsity [Jenatton et al., 2010], and post-hoc alignment20

or averaging of learned dictionaries across runs [Ghorbani et al., 2020].21

One way to reduce the size of each equivalence class of solutions is to enforce structural constraints22

into the loss function. In particular, Matryoshka SAEs [Bussmann et al., 2025] are introduced to23

resolve a notion of hierarchy in feature learning. Their work defines an ordering on features by thir24

level of abstraction: ”comma” is a lower-level feature than ”punctuation mark”. Matryoshka SAEs25

sample a small number of dictionary sizes per batch, thereby capturing multiscale features and26

partially breaking permutation symmetry. Despite these advances, Matryoshka SAEs treat features27

within each sampled group as exchangeable, a limitation from sampling only a handful of dictionary28

sizes (e.g., up to 10 per batch).29

In this work, we introduce Ordered Sparse Autoencoders (OSAE), which extends Matryoshka SAEs30

by enforcing a strict ordering of latent dimensions. Drawing on the concept of nested dropout—31

which imposes an explicit ordering by stochastically truncating latent codes [Rippel et al., 2014]—32

OSAE treats each non-zero feature as its own dictionary size.33

Our key contributions are:34
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• We propose Ordered Sparse Autoencoders (OSAE), which enforce deterministic feature35

ordering.36

• We present theoretical results for ordered feature recovery by nested dropout loss in a spe-37

cial case of overcomplete sparse dictionary learning.38

• We demonstrate improvement in feature consistency when using OSAEs on Gemma2-2B39

and Pythia-70M.40

2 Problem setup41

2.1 Preliminaries42

Throughout, we use the following notation:43

• X = [x1, . . . , xN ] ∈ Rd×N : the data matrix whose columns xi ∈ Rd are samples.44

• E : Rd → RK : the encoder mapping each input xi to a code zi = E(xi).45

• D ∈ Rd×K : the decoder or dictionary matrix, whose columns dj ∈ Rd are basis atoms.46

• Z = E(X) ∈ RK×N : the code matrix, whose columns are the encoded vectors zi.47

We will consider two settings:48

• (Under)complete (K ≤ d). D spans a K-dimensional subspace (the PCA case).49

• Overcomplete (K > d). D is a dictionary of K atoms for sparse coding.50

Define for all ℓ = 1, . . . ,K:51

Λℓ =

[
Iℓ 0
0 0

]
∈ {0, 1}K×K ,

52

Topm(zi)j =

{
zi,j , if |zi,j | in top m,

0, otherwise,

extended column-wise to Topm(Z).53

2.2 Nested dropout in the (under)complete setting54

Consider the (under)complete linear autoencoder with representation dimension K ≤ d. The stan-55

dard reconstruction loss56

LAE(D,E) = ∥X −DZ∥2F
recovers the top-K principal subspace but leaves D defined only up to an invertible transforma-57

tion Baldi and Hornik [1989], Bourlard and Kamp [1988], Plaut [2018]. Rippel et al. [2014] intro-58

duce the nested dropout loss, which minimizes59

LND(D,E) = Eℓ∼pND

∥∥X −DΛℓ Z
∥∥2
F
,

where pND(ℓ) is a distribution over {1, . . . , k} with full support. With D⊤D = I , they theoretically60

show that this loss uniquely recovers the PCA eigenbasis in descending-eigenvalue order, rather than61

merely its subspace.62

In the next section we extend this idea to the overcomplete, hard-m sparse setting by inserting a63

Top-m mask into the same expectation to obtain our Ordered Sparse Autoencoder (O-SAE).64

2.3 Sparse dictionary learning65

To understand the non-identifiability challenges faced by sparse autoencoders in the overcomplete66

regime, we first discuss classical sparse dictionary learning. The goal is to generalize PCA’s fixed-67

size eigenbasis to an overcomplete dictionary of atoms that admits sparse representations. Con-68

cretely, each data vector xi is modeled as69

X = [x1, . . . , xN ] ∈ Rd×N , X = DY,
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where70

D = [ d1, . . . , dK ] ∈ Rd×K , Y = [ y1, . . . , yN ] ∈ RK×N ,

with unit-norm atoms ∥dj∥2 = 1 and sparse codes ∥yi∥0 ≤ m ≪ K. That is, each sample xi is71

assumed to be generated by a linear combination of a small subset of the dictionary atoms.72

Whereas PCA solves min ∥X −DZ∥2F under a rank constraint K ≤ d, sparse dictionary learning73

(SDL) tackles74

min
D,Y

∥X −DY ∥2F subject to ∥yi∥0 ≤ m,

an NP-hard problem due to the combinatorial nature of the ℓ0 sparsity constraint. In practice, this ob-75

jective is typically approximated using greedy methods like orthogonal matching pursuit (OMP) Pati76

et al. [1993], Tropp and Gilbert [2007], alternating minimization algorithms such as K-SVD Aharon77

et al. [2006], or online optimization techniques Mairal et al. [2010].78

A key challenge in SDL is the issue of non-identifiability: many dictionaries D and code matrices79

Y can produce the same reconstruction X , especially in the overcomplete setting. Even in the80

ideal noiseless case, identifiability of the ground-truth dictionary D∗ is only possible under strong81

structural assumptions.82

Spark and uniqueness. The spark of a dictionary D,83

spark(D) = min{∥z∥0 : Dz = 0, z ̸= 0},

measures the size of the smallest linearly dependent set of atoms. If spark(D) > 2m, then any84

m-sparse representation y = Dz is unique, guaranteeing identifiability in sparse coding. However,85

computing spark is NP-hard, so practitioners often rely on relaxed surrogate conditions:86

• Mutual coherence µ(D) = maxi ̸=j |d⊤i dj |, with µ(D)(m − 1) < 1 ensuring uniqueness87

via greedy methods such as OMP Tropp [2004].88

• Restricted isometry property (RIP), which ensures D approximately preserves the norms89

of all m-sparse vectors Candes and Tao [2005].90

Recent work has begun applying these identifiability conditions to sparse autoencoders. In partic-91

ular, Song et al. [2025] show that if a Top-k SAE achieves exact sparsity and zero reconstruction92

error, then the encoder-decoder pair satisfies a round-trip condition that implies spark(D) > 2k,93

guaranteeing uniqueness of the learned features up to permutation and scaling. Our work builds on94

this by explicitly reducing permutation ambiguity during training itself.95

2.4 ℓ-prefix reconstruction objective (Top-m).96

We define:97

Lℓ(D,E) =
∥∥X −DΛℓ Topm(Z)

∥∥2
F
.

This objective minimizes reconstruction loss when we use the top-k codes and then truncate to the98

first ℓ dimensions. When ℓ = K, this becomes the standard full-code reconstruction loss
∥∥X −99

DTopk(Z)
∥∥2
F

that standard top-m SAEs minimize.100

2.5 Matryoshka SAE objective (Top-m).101

Matryoshka SAEs [Bussmann et al., 2025] partition the K atoms into a small collection of nested102

“groups” of increasing size M = {ℓ1 < · · · < ℓL}. At each training step, one group 1:ℓ is sampled103

with probability pMSAE(ℓ), and only atoms d1, . . . , dℓ (and their corresponding code entries) are104

used for reconstruction:105

LMSAE(D,E) = Eℓ∼pMSAE

[
Lℓ(D,E)

]
=

∑
ℓ∈M

pMSAE(ℓ)
∥∥X −DΛℓ Topm(Z)

∥∥2
F
.

By enforcing reconstruction over only a handful of group sizes (e.g. 5–10 per batch), Matryoshka106

SAE captures multiscale features while partially breaking permutation symmetry within each group.107
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2.6 Nested dropout objective (Top-m).108

We extend nested dropout [Rippel et al., 2014] by treating each individual atom dj as its own109

“group,” so that sampling a prefix ℓ means retaining exactly atoms 1 through ℓ and dropping the110

rest. Let pND(ℓ) be a distribution over {1, . . . ,m} with full support. The nested-dropout loss is111

LND(D,E) = Eℓ∼pND

[
Lℓ(D,E)

]
=

m∑
ℓ=1

pND(ℓ)
∥∥X −DΛℓ Topm(Z)

∥∥2
F
.

By covering all prefixes in expectation, this objective enforces a strict ordering of features.112

2.7 Consistency evaluation113

To quantify how reproducibly SAEs recover the same features across seeds, we adopt the stability114

metric from Fel et al. [2025]. Let D,D′ ∈ Rd×K be two learned decoder matrices with unit-norm115

columns. We define116

Stab(D,D′) = max
P∈P

1

K
tr
(
D⊤ P D′),

where P is the set of all K ×K permutation matrices. This computes the average cosine similarity117

between matched atoms after optimal re-indexing via the Hungarian algorithm. When we compare118

a learned dictionary D against the ground-truth dictionary D⋆, stability also serves as a feature119

recovery fidelity metric, indicating how accurately the true atoms are recovered.120

2.8 Orderedness evaluation121

To quantify how similarly in order SAEs recover features across seeds, we introduce an orderedness122

metric. Let D,D′ ∈ Rd×K be two dictionaries, each with an inherent ordering of their atoms123

(e.g. by frequency, abstraction, or another criterion). After matching each atom dj in D to its best-124

corresponding atom d′µ(j) in D′ via the Hungarian algorithm, we obtain a permutation vector125

µ =
(
µ(1), µ(2), . . . , µ(K)

)
∈ {1, . . . ,K}K .

We then define the orderedness between D and D′ as the Spearman rank correlation between their126

index sequences:127

Ord(D,D′) = Spearman
(
(1, . . . ,K), µ

)
= 1 −

6
∑K

j=1

(
j − µ(j)

)2
K(K2 − 1)

.

A value Ord(D,D′) = 1 indicates perfect matching of their orderings.128

3 Exact recovery of ordered features129

Define the domain of optimization to be130

F =
{
(D,E)

∣∣ D = [d1, . . . , dK ] ∈ Rd×K , ∥dj∥2 = 1 (∀j = 1, . . . ,K), E : Rd → RK
}
.

In other words, F consists of all decoder–encoder pairs (D,E) in which each dictionary atom dj131

has unit ℓ2-norm, and E is an arbitrary mapping from Rd to RK .132

Suppose X = D∗Y ∗,where D∗ = [d∗1, . . . , d
∗
K ] ∈ Rd×K has unit-norm columns satisfying133

spark(D∗) > 2m, and Y ∗ ∈ RK×N m-sparse columns.134

Lemma 3.1. Any minimiser of LND also minimises the full-prefix loss Lk. That is,135

argmin(D,E)∈FLND ⊆ argmin(D,E)∈FLK.

The proof is deferred to Appendix A136
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Theorem 3.1. [Exact ordered recovery under spark condition] Assume the columns of Y ∗ are non-137

negative (to resolve sign ambiguity) and “true” atoms are ordered so that138

|{ i : y∗1,i > 0}| ≥ |{ i : y∗2,i > 0}| ≥ · · · ≥ |{ i : y∗K,i > 0}|.

Then any global minimiser (D̂, Ê) ∈ F of the nested-dropout loss LND satisfies139

D̂ = D∗, Ê(X) = Y ∗

Proof. By Lemma 3.1, any minimiser of LND also minimises the full-prefix loss LK . Hence (D̂, Ŷ )140

with Ŷ = Topm
(
Ê(X)

)
satisfies141

D̂ Ŷ = X, ∥ŷi∥0 ≤ m.

The uniqueness result under the spark condition then gives142

D̂ = D∗ P S, Ŷ = S−1P⊤ Y ∗,

for some permutation matrix P and invertible diagonal S.143

Since all columns of Y ∗ and Ŷ are nonnegative, S must be the identity (no sign-flips or rescaling).144

Finally, because the atoms were assumed ordered by their sparsity-support frequencies, the only145

permutation that preserves that ordering is the identity. Hence P = I and146

D̂ = D∗, Ŷ = Y ∗,

as claimed.147

3.1 Toy Gaussian model148

Theorem 3.1 gives theoretical guarantees that SAEs minimising nested dropout loss can achieve149

perfect consistency and orderedness under certain conditions of the data and sparsity. We evaluate150

under the following synthetic generative model:151

1. Parameters. Fix dimensions d, n,K and sparsity level m ≤ d. Assume an ordering152

distribution π = (π1, . . . , πK) with π1 ≥ π2 ≥ · · · ≥ πK > 0 and
∑K

j=1 πj = 1.153

2. Dictionary generation.154

D = [ d1, . . . , dK ] ∈ Rd×K , dj
iid∼ N

(
0, 1

dId
)
, dj ←

dj
∥dj∥2

.

3. Code generation. For each sample i = 1, . . . , n:155

(a) Sample a support of size m by drawing indices without replacement according to π:156

Si ∼ MultisetSample(π,m).

(b) Let157

yi ∈ RK , (yi)j =

{
zij , j ∈ Si,

0, j /∈ Si,
zij

iid∼ N (0, 1).

(c) For the purposes of this toy model, we remove sign ambiguity: yi ← |yi|.158

Collect into Y = [ y1, . . . , yn ] ∈ RK×n.159

4. Data matrix.160

X = DY ∈ Rd×n.

Under this model, atoms with smaller index j appear more frequently in the data (higher πj), in-161

ducing a ground-truth ordering that we will attempt to recover via O-SAEs. Since the dictionary is162

drawn from a standard Gaussian ensemble, the spark condition for uniqueness is satisfied with high163

probability [Hillar and Sommer, 2015].164

5



Unit sweeping. Nested dropout samples a truncation index b ∼ pB(·), so gradients onto late units165

shrink exponentially with index. To avoid starving these units, we employ unit sweeping [Rippel166

et al., 2014]: once a lower-index unit has effectively converged, we freeze its encoder row and167

decoder column (stop backprop through that unit) and continue training the remaining, unfrozen168

units. Practically, we use a simple “clockwork” schedule that freezes one additional unit every169

T epochs (from 1 → K), after a short burn-in; frozen units remain in the forward pass, and we170

renormalize decoder columns to unit norm after each freeze. Results in Fig. 4 and Table 1 use unit171

sweeping, which we find improves stability and ordered recovery in this setting.172

Evaluation. We evaluate Ordered SAE, Matryoshka SAE (Fixed and Random, with five groups),173

and Vanilla top-m SAEs on the toy model above with (d,K,m,N) = (80, 100, 5, 100,000) and a174

Zipf support prior πj ∝ j−α, α = 1.2, which induces a strict ground-truth ordering. Hyperparame-175

ters are selected by lowest validation reconstruction error at the target sparsity. We use the warmup176

schedule for k (from K down to m) and train with unit sweeping. Qualitative recovery patterns are177

shown in Fig. 1 for Fixed MSAE and OSAE; full results can be found in Fig. 4. Quantitative results178

(mean ± std) are summarized in Table 1. Importantly, Stab(D,D′) is averaged over
(
10
2

)
= 45179

seed pairs, while Stab(D,D∗) and Ord(D,D∗) are averaged over 10 seed→ D∗ comparisons;180

reconstruction loss is MSE on a held-out set.181

For each model, we choose the hyperparameter configuration that achieves the lowest validation182

reconstruction error at the target sparsity level.183

To stabilize training and improve recovery, we adopt a warmup strategy for top-k truncation. Specif-184

ically, we begin training with a large truncation size kinit ≥ m (typically kinit = K) and gradually185

decrease k to the target sparsity m over a fixed number of epochs. This schedule smooths the op-186

timization landscape by initially allowing dense activations before progressively enforcing sparsity.187

We find this warmup significantly improves convergence, particularly for O-SAE and Matryoshka188

models where early features receive higher training pressure. Additional results are shown in Ap-189

pendix B.190

Model Stab(D,D′) Stab(D,D∗) Ord(D,D∗) Reconstruction loss

Vanilla SAE 0.572 (0.00964) 0.479 (0.0104) 0.0162 (0.128) 0.0257 (0.000841)
Fixed MSAE 0.538 (0.0114) 0.502 (0.0160) 0.119 (0.673) 0.0339 (0.00635)
Random MSAE 0.531 (0.0150) 0.480 (0.0106) 0.0544 (0.0760) 0.0309 (0.00366)
OSAE (ours) 0.664 (0.0191) 0.814 (0.0195) 0.734 (0.0758) 0.00725 (0.000746)

Table 1: Summary metrics on the toy Gaussian model (mean± std).

We found it surprising that our O-SAEs achieved the lowest reconstruction loss here despite pos-191

sessing inductive biases that restrict the solution class. Thus for a controlled evalation with minimal192

influence from hyperparameter bias, we ran further evaluations for O-SAEs in Appendix B.3 directly193

extending Song et al. [2025]’s synthetic experiments. There, O-SAEs achieve a similar consistency194

and higher orderedness compared to baseline architectures despite a higher MSE loss, helping sup-195

port our findings here.196

4 Results on empirical data197

4.1 Text-Based Evaluations on Gemma-2 2B198

Setup. We evaluate the orderedness and stability of pairs of random seeds for Ordered SAEs and199

Matryoshka SAE variants trained on Gemma-2 2B [Team et al., 2024]. We train these SAEs with200

dictionary size 4096 on layer 12 with K=80, collecting activations from Gemma-2 2B on an un-201

copyrighted portion of the Pile [Gao et al., 2020]. We use the same piecewise distribution for the202

O-SAE as Matryoshka baselines for these experiments. Unit sweeping is not employed for these203

experiments. We note that O-SAEs have slightly worse reconstruction loss compared to baselines,204

potentially due to a restricted solution space or, for a simpler explanation, our limited hyperparam-205

eter sweeps. Thus, we compare checkpoints with similar loss values for a fair orderedness and206

stability comparison.207
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Figure 1: Recovery across SAE variants on a Gaussian toy model with (d,K,m,N) =
(80, 100, 5, 100 000). Each panel plots the Hungarian matching between learned decoder atoms
D and ground truth D∗ (one dot per matched pair; color encodes cosine similarity). Ordered SAEs
achieve higher stability Stab(D,D∗) (mean matched cosine) and higher orderedness Ord(D,D∗)
(order agreement), meaning they recover features more faithfully and in order.

O-SAEs achieve greater orderedness and stability in Gemma-2 2B. In Figure 2, we demonstrate208

that O-SAEs achieve better orderedness (defined in 2.8) than the Fixed-prefix MSAE and Random-209

prefix MSAE with 5 groups. Although the overall average stability (defined in 2.7) is lower for210

O-SAE than the Matryoshka variants, we find that the most significant features have higher stability.211

For both metrics, we calculate the truncated metrics for the first p prefix length features. We see that212

O-SAEs have a lower prefix-length stability compared to the Random MSAE at a crossover point213

between 1024 and 2048 features, where features are less significant in the feature ordering.214

4.2 Consistency across datasets on Pythia 70m215

We furthermore test the generalizability of orderedness and stability of O-SAEs trained on a different216

model, Pythia-70M [Biderman et al., 2023], and also evaluate consistency when activations are217

collected on different datasets. Both the Pile [Gao et al., 2020] and Dolma [Soldaini et al., 2024] are218

diverse and general pretraining mixes, so we select these datasets to represent a wide distribution of219

language while not drawing from the exact same data sources. If SAEs learn a good representation of220

general language, we ideally hope that the representations are consistent across datasets. We evaluate221

(1) same-dataset consistency similar to the previous section and (2) cross-dataset consistency by222

evaluating pairs of SAEs where one is trained on activations on the Pile and the other on activations223

from Dolma.224

Setup. We train with the same hyperparameters as Gemma2-2B, although Pythia-70M is much225

smaller and has fewer layers. We use layer 3 of Pythia-70M, roughly halfway, to approximate the226

same position as layer 12 in Gemma2-2B. We train five seeds per (model, dataset) pair. In these227

experiments, we evaluate checkpoints after training for 50M tokens, reaching 0.02-0.03 recon loss.228

Similar trends on the Pile and Dolma datasets. In Figure 3a, we evaluate same-dataset ordered-229

ness and stability on the SAEs trained on the Pile and Dolma. We see similar trends of higher230

orderedness for O-SAEs while stability degrades after time. All SAE variants maintain similar per-231

formance between the Pile and Dolma in same-dataset evaluations.232

We include additional visualizations of how measures of orderedness and stability evolve with in-233

creasing amounts of training on same-dataset evaluations on the Pile and Dolma in Figure 11 and 12234
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Figure 2: SAEs trained on Gemma2-2B. (a) Orderedness evaluated at different prefix lengths. O-
SAE’s have the most consistently ordered features almost reaching an average Ord(D,D′) of 0.8.
As expected, we observe orderedness close to 0.0 for the first 128 features of the Fixed MSAE since
the first group size is 128, whereafter it jumps up to values between around 0.5. (b) O-SAEs have
high stability for the first portion of features, before a sharp decline for later features.

(
9
2

)
= 36 pairs

of seeds are evaluated per method and 95% confidence intervals are visualized.

in Appendix C. Interestingly, there are some cases for both O-SAEs and Random MSAEs where as235

training progresses, high levels of orderedness and stability in earlier prefixes decrease while these236

measures at later prefixes increase. We suspect this may be an artifact of the probability distribution237

or over-training, but we plan to run more ablations.238

O-SAEs also improve orderedness in cross-dataset comparisons. In Figure 3b, we evaluate or-239

deredness and stability of SAEs in cross-dataset settings, where one SAE is trained on the Pile and240

the other on Dolma. We observe that cross-dataset orderedness and stability matches trends from241

same-dataset results in Figure 3a, with a decline of around 0.1-0.2 from same-dataset results.242

When we use same-seed initialization, O-SAEs achieve near-1.0 value in Orderedness and stability243

of 0.8 at full prefix length, when trained on different datasets. Orderedness and stability also increase244

in early prefix dictionary positions compared to the cross-seed settings for both O-SAEs and Random245

MSAEs; however, increases are more substantial for O-SAEs. We hypothesize the greater jump in246

full-prefix orderedness and stability metrics for O-SAEs are because they do not update their latter247

indices as much as earlier indices; this is further supported by Figure 13 and 14 in Appendix C248

showing minimal full-prefix changes in orderedness when comparing trained models against their249

initialization state for O-SAEs and significant full-prefix drops for Random MSAEs when comparing250

trained models against their initialization state.251

5 Limitations252

Our theoretical guarantees assume idealized conditions—sparsity and uniqueness assumptions and253

a well-specified ordering prior—that may not hold exactly in real data. If the imposed order is254

misspecified, the objective can over-regularize and suppress equally valid alternative bases. Training255

cost is higher because covering prefixes increases compute, so practical deployments may require256

approximations or careful schedule design. Performance is also sensitive to design choices such as257

the prefix distribution and unit sweeping. Finally, our empirical study focuses on controlled settings258

intended to evaluate the mechanism rather than to exhaustively benchmark task performance across259

architectures.260

6 Discussion261

By optimizing an ordered, nested-prefix objective, we shrink the solution class of sparse autoen-262

coders. The plain reconstruction loss admits large equivalence classes (permutations and near-263

mixings of features) that undermine reproducibility; the ordered objective effectively selects a264

canonical basis. This narrowing of admissible solutions is a training-time structural prior, which (i)265

constrains the hypothesis space, (ii) alters the optimization geometry toward a feature-curriculum,266

and (iii) makes the learned representation more comparable across runs and hyperparameters. We267
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(a) Ord(D,D′) and Stab(D,D′) comparing SAEs trained on The Pile and Dolma
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(b) Ord(D,D′) and Stab(D,D′) on Cross-dataset setting

Figure 3: SAEs trained on Pythia-70M (a) O-SAEs demonstrate an improvement in orderedness
over Random MSAEs and Fixed MSAEs on the Pile and Dolma after prefix length 128. O-SAE
stability is likewise stronger than Random MSAE on both datasets for the beginning features, but
crosses over at around prefix length 128. Fixed MSAE stability is higher than O-SAE, but has
lower orderedness. (n=10). (b) In the cross-dataset, cross-seed setting we observe that O-SAE
has modest improvements in orderedness against Random MSAE and sizable stability gains against
Random MSAE before prefix 128. O-SAEs and Random MSAEs demonstrate improvements to
orderedness and stability when using the same seed despite training on different datasets; however,
the improvements are larger for O-SAEs. (Cross-Seed: n=20. Same-Seed: n=5)

view ordering as a general mechanism for enforcing identifiability into overcomplete models, com-268

plementary to sparsity and incoherence assumptions in classical dictionary learning. Furthermore,269

we provide empirical results for O-SAEs on Gemma2-2B and Pythia 70m, trained on the Pile and270

Dolma, that demonstrate greater orderedness and stability in earlier features, while sometimes at the271

cost of lower stability in later, less-significant features.272
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patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-322
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A Proofs372

Proof of Lemma 3.1. Assume for contradiction that (D⋆, E⋆) ∈ F globally minimizes LND but373

does not minimize LK . Write374

Z⋆ = E⋆(X), R⋆ = X −D⋆ Topm(Z⋆), ∆ =
1

N
∥R⋆∥2F = LK(D⋆, E⋆) > 0.

Denote the Kth row of Topm(Z⋆) by y⋆K· ∈ Rn.375

If y⋆K· = 0 then none of the prefix losses ever see atom K, so we could remove it entirely and376

re-index, strictly reducing the nested-dropout loss unless R∗ = 0. Hence for a strict counterexample377

we may assume y⋆K· ̸= 0.”378

Set379

v = R⋆ y⋆K· =

n∑
i=1

r⋆·i y
⋆
K,i ∈ Rd,

which is nonzero since R⋆ ̸= 0 and y⋆K· ̸= 0. Define380

u =
(I − d⋆K(d⋆K)⊤) v∥∥(I − d⋆K(d⋆K)⊤) v

∥∥
2

.

Then u is unit-length, u ⊥ d⋆K , and381

n∑
i=1

y⋆K,i (u
⊤r⋆·i) = u⊤

(∑
i

r⋆·i y
⋆
K,i

)
= u⊤v =

∥∥(I − d⋆K(d⋆K)⊤) v
∥∥
2

> 0.

Now for small ϵ > 0 define a perturbation of only the Kth atom:382

dnewK =
d⋆K + ϵ u

∥d⋆K + ϵ u∥2
= d⋆K + ϵ u− 1

2ϵ
2 d⋆K +O(ϵ3),

and leave E⋆ (hence Topm(Z)) unchanged. All other atoms remain as in D⋆, so (Dϵ, E⋆) ∈ F .383

Note that every prefix ℓ < K satisfies384

Dϵ Λℓ Topm(Z⋆) = D⋆ Λℓ Topm(Z⋆),

hence Lℓ(D
ϵ, E⋆) = Lℓ(D

⋆, E⋆) for all ℓ < K. Therefore385

LND(D
ϵ, E⋆) =

K∑
ℓ=1

pℓ Lℓ(D
ϵ, E⋆) = pK LK(Dϵ, E⋆) +

∑
ℓ<K

pℓ Lℓ(D
⋆, E⋆).

It suffices to show LK(Dϵ, E⋆) < LK(D⋆, E⋆).386

Since Topm(Z) is unchanged,387

Rϵ = X −Dϵ Topm(Z⋆) = R⋆ −
(
dnewK − d⋆K

)
y⋆K·

⊤.

Using dnewK − d⋆K = ϵ u− 1
2ϵ

2 d⋆K +O(ϵ3), one finds, entrywise,388

rϵαi = r⋆αi − ϵ uα y⋆K,i +O(ϵ2).

Squaring and summing,389

∥Rϵ∥2F =
∑
α,i

(rϵαi)
2 =

∑
α,i

(r⋆αi)
2 − 2ϵ

∑
i

y⋆K,i (u
⊤r⋆·i) +O(ϵ2).

By our choice of u, the coefficient
∑

i y
⋆
K,i (u

⊤r⋆·i) is strictly positive, so for sufficiently small ϵ the390

linear term makes ∥Rϵ∥2F < ∥R⋆∥2F . Equivalently,391

LK(Dϵ, E⋆) = 1
N ∥R

ϵ∥2F < 1
N ∥R

⋆∥2F = LK(D⋆, E⋆).

Since all Lℓ<K remain fixed,392

LND(D
ϵ, E⋆) < LND(D

⋆, E⋆),

contradicting the global minimality of (D⋆, E⋆). Therefore no residual can remain, and every min-393

imiser of LND must satisfy ∥R∥F = 0, i.e. also minimise LK .394
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Figure 4: Recovery across SAE variants on a Gaussian toy model with (d,K,m,N) =
(80, 100, 5, 100 000). Each panel plots the Hungarian matching between learned decoder atoms
D and ground truth D∗ (one dot per matched pair; color encodes cosine similarity). Ordered SAEs
achieve higher stability Stab(D,D∗) (mean matched cosine) and higher orderedness Ord(D,D∗)
(order agreement), meaning they recover features more faithfully and in order.
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B Toy model results395

B.1 Activation–stream stability and orderedness396

Let Z(s) = E(s)(X) ∈ RK×N be the code matrix for seed s (rows are unit activations over the eval-397

uation set), and let Y ∗ ∈ RK×N be the ground-truth activations. We replace decoder-space cosine398

with Pearson correlation on the activation stream and compute stability via Hungarian assignment:399

R
(ρ)
ij = corr

(
Z

(s)
i: , Y ∗

j:

)
, S

(ρ)
ij = corr

(
Z

(a)
i: , Z

(b)
j:

)
.

With P the optimal permutation matrix, we report400

StabZ(Z
(s), Y ∗) = 1

K tr
(
R(ρ)P

)
, StabZ(Z

(a), Z(b)) = 1
K tr

(
S(ρ)P

)
,

and define orderedness on the induced permutation as401

OrdZ = Spearman
(
(1, . . . ,K), (µ(1), . . . , µ(K))

)
, where µ is read off from P.

These Z-based measures complement the decoder–cosine results in the main text. Whereas Fig. 4402

visualizes only matched pairs, the figures below show the full K × K similarity fields. In the top403

row we also show a small raster (50 evaluation inputs) to compare activation patterns Y ∗ vs. Z(0)404

vs. Z(1). Note: for Vanilla and Matryoshka models, activations can be much larger than Y ∗, so per-405

panel normalization makes the rasters not directly comparable in scale; this effect is less pronounced406

for the ordered model.407

Figure 5: Vanilla SAE (example seed pair). Top: activation rasters for 50 eval inputs (left: Y ∗,
middle: Z(0), right: Z(1)). Middle: all-pairs activation–Pearson matrices (left: Z(0) vs. Y ∗, middle:
Z(1) vs. Y ∗, right: Z(0) vs. Z(1)) used for StabZ and OrdZ . Bottom: all-pairs decoder–cosine
matrices (left: D(0) vs. D∗, middle: D(1) vs. D∗, right: D(0) vs. D(1)); this extends Fig. 4 from
matched pairs to all pairs.

B.2 Additional dictionary sizes408

We repeat the activation–stream analysis at smaller widths with matching sparsities, (K,m) ∈409

{(10, 2), (30, 3), (50, 5)}. Each panel uses the same three-row layout as Appendix B.1:410

top—activation rasters for 50 evaluation inputs (left: Y ∗, middle: Z(0), right: Z(1)); middle—all-411

pairs activation–Pearson matrices (left: Z(0) vs. Y ∗, middle: Z(1) vs. Y ∗, right: Z(0) vs. Z(1)) used412
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Figure 6: Fixed MSAE (example seed pair). Same layout as Fig. 5: top—activation rasters
(Y ∗, Z(0), Z(1)); middle—all-pairs activation–Pearson (Z(0) vs. Y ∗, Z(1) vs. Y ∗, Z(0) vs. Z(1));
bottom—all-pairs decoder–cosine (D(0) vs. D∗, D(1) vs. D∗, D(0) vs. D(1)).

Figure 7: Random MSAE (example seed pair). Same layout as Fig. 5; top—activation rasters;
middle—activation–Pearson; bottom—decoder–cosine; columns are (0 vs. Y ∗), (1 vs. Y ∗), (0 vs.
1).
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Figure 8: O-SAE (example seed pair). Same layout as Fig. 5. Top row rasters (50 inputs); middle
row all-pairs activation–Pearson for StabZ /OrdZ ; bottom row all-pairs decoder–cosine extending
Fig. 4 to all pairs.

for StabZ and OrdZ ; bottom—all-pairs decoder–cosine matrices (left: D(0) vs. D∗, middle: D(1)413

vs. D∗, right: D(0) vs. D(1)). Figures show a single example seed pair for brevity; Matryoshka414

variants are omitted. Note that in Vanilla, activations can be much larger than Y ∗, so per-panel415

normalization of the top row can make scales not directly comparable; this effect is less pronounced416

for O-SAE.417

B.3 Zipfian toy model: high consistency with moderate orderedness418

Setup. We evaluate Ordered SAEs (O-SAEs; “Ordered TopK” in the legend) on a synthetic Zipfian419

activation process. Following Song et al. [2025], inputs live in R16 with an overcomplete ground-420

truth dictionary of 32 atoms; k = 3 features are active per sample, and we draw N = 50,000421

samples. Unless noted otherwise: Gaussian features, Zipf exponent α swept across panels, 30,000422

training steps, learning rate 10−4, ℓ1 coefficient 0.01, and results are averaged over 5 seeds. We423

compare to TopK, two Matryoshka variants (“fixed” and “random”), and a vanilla SAE. We weighted424

the features for Matryoshka and Ordered SAEs by the Zipfian alpha value of the data. For fixed425

Matryoshka, we used 8 groups. For random Matryoshka, we used 4 truncations.426

Results. Figure 10 shows that O-SAEs achieve consistency comparable to the strongest baselines:427

for small α (near-uniform usage) ground-truth stability is≈ 0.9 for O-SAE, TopK, and Matryoshka,428

and remains competitive as skew increases. Unlike TopK and vanilla, O-SAEs also exhibit or-429

deredness: the learned atom ordering correlates with the ground-truth order (Spearman ρ ≈ 0.5 at430

low α, remaining positive across the sweep), while pairwise orderedness likewise improves relative431

to vanilla. This ordering bias comes with a trade-off in global ℓ2 reconstruction error, where O-SAEs432

are higher than TopK/vanilla.433

A final observation is that our Frequency-Invariant Feature Reconstruction (FIFR) Error (Sec. B.4)434

tracks dictionary stability across methods and α much better than the global MSE. In ordered/Zipfian435

regimes, rare features contribute little to MSE and can be underfit without a visible penalty, whereas436

FIFR Error exposes such failures. Empirically, when TopK and O-SAEs attain a FIFR Error com-437
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Vanilla O - SAE

(a) (K,m) = (10, 2): example seed pair.

Vanilla O - SAE

(b) (K,m) = (30, 3): example seed pair.

Vanilla O - SAE

(c) (K,m) = (50, 5): example seed pair.

Figure 9: Top: activation rasters for 50 inputs; middle: all-pairs activation–Pearson; bottom: all-
pairs decoder–cosine. Columns within each row are (0 vs. Y ∗), (1 vs. Y ∗), (0 vs. 1).

parable to vanilla SAEs, their ground-truth stability also converges to vanilla, despite differences in438

global MSE.439

Going forward, we hypothesize that with better hyperparameter tuning and methods such as unit440

sweeping, it is possible to achieve lower L2 and FIFR error with O-SAEs and thus higher ordered-441

ness than baseline architectures while maintaining 0.9 consistency.442

B.4 MSE underweights rare features; a frequency-invariant error443

Motivation. In ordered/Zipfian settings, some features appear far more often than others. The444

global reconstruction MSE E∥x− x̂∥22 therefore emphasizes frequent features and can look “good”445
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Figure 10: Zipfian toy-model comparison of SAEs (5 seeds). Each panel sweeps the Zipf ex-
ponent α controlling activation skew (higher α ⇒ rarer tail features). Top row: O-SAE (Ordered
TopK) matches TopK/Matryoshka on ground-truth and pairwise stability (∼ 0.9 at low α, remain-
ing competitive as skew rises). Middle row: O-SAE exhibits positive orderedness (Spearman ρ with
ground-truth ordering≈ 0.5 at low α; pairwise orderedness likewise improves), unlike vanilla/TopK.
Bottom row: O-SAE has higher global ℓ2 error, but the proposed Frequency-Invariant Feature Re-
construction (FIFR) Error better predicts stability across methods and α: when FIFR Error aligns
across methods, ground-truth stability aligns as well. Experimental details: input dim 16, dictionary
size 32, k=3, N=50k, Gaussian features, 30k steps, lr=10−4, ℓ1=0.01.
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while rare features are poorly reconstructed. We seek a metric that (i) treats each feature equally re-446

gardless of frequency and (ii) scores the fidelity of its per-feature contribution to the reconstruction.447

Definition (Frequency-Invariant Feature Reconstruction Error). Let the ground-truth dictio-448

nary be A⋆∈Rm×n with atoms (rows) a⋆j , true codes S⋆∈RN×m, learned decoder A∈Rm×n with449

atoms ak, and inferred features F ∈RN×m. We align atoms by Hungarian assignment on absolute450

correlations of ℓ2-normalized atoms:451

ã⋆j =
a⋆j
∥a⋆j∥2

, ãk =
ak
∥ak∥2

, Cjk = ⟨ã⋆j , ãk⟩, π ∈ argmax
σ

m∑
j=1

|Cj,σ(j)|.

For feature j, let Ij = {i : s⋆ij ̸= 0}. Define true and estimated per-sample components452

c⋆ij = s⋆ij a
⋆
j , ĉij = fi,π(j) aπ(j).

With ε = 10−12,453

rj =

1
|Ij |

∑
i∈Ij
∥c⋆ij − ĉij∥22

1
|Ij |

∑
i∈Ij
∥c⋆ij∥22 + ε

, FIFR(A⋆, S⋆;A,F ) =
1

|J |
∑
j∈J

rj , J = {j : |Ij | > 0}.

Properties. (i) Frequency-invariant: macro-averaging across features prevents frequent atoms454

from dominating. (ii) Per-feature scale-invariant: normalizing by the energy of c⋆ij removes dic-455

tionary–code scaling ambiguity. (iii) Permutation-invariant: alignment via π factors out atom or-456

dering. (iv) Interpretable: FIFR Error equals 0 iff per-feature components are recovered exactly;457

larger values indicate worse reconstruction (and can exceed 1). As seen in Fig. 10, FIFR Error458

correlates strongly with dictionary stability in Zipfian regimes, whereas global MSE does not.459
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C Empirical results460

Figure 11 and 12 show how orderedness and stability metrics change as SAEs are trained for O-461

SAE, Random MSAE, and Fixed MSAE on the Pile and Dolma. Orderedness and stability tend to462

increase over the 45M tokens illustrated in the figures, with some exceptions at lower prefix lengths463

going down while higher prefix length measures increase.
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Figure 11: Prefix Ord(D,D′) plotted with increasing training tokens. Top row is trained on the Pile,
and the bottom row is trained on Dolma. (n=1 pair of seeds)
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Figure 12: Prefix Stab(D,D′) plotted with increasing training tokens. Top row is trained on the Pile,
and the bottom row is trained on Dolma. (n=1 pair of seeds)
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Figure 13: O-SAE Orderedness and Stability. (left) Cross dataset compares O-SAE trained on Pile
against O-SAE trained Dolma. They use the same seed, so initial checkpoints start with 1.0 ordered-
ness and stability. (middle) Shows the progression of checkpoints from O-SAE trained on the Pile,
when compared against its initialized checkpoint. This gives a relative measure of deviation from
initialization. (right) Progression of checkpoints trained on Dolma compared against its initialized
checkpoint.
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Figure 14: Random MSAE Orderedness and Stability. (left) Cross dataset compares Random MSAE
trained on Pile against Random MSAE trained Dolma. They use the same seed, so initial check-
points start with 1.0 orderedness and stability. (middle) Shows the progression of checkpoints from
Random MSAE trained on the Pile, when compared against its initialized checkpoint. This gives
a relative measure of deviation from initialization. (right) Progression of checkpoints trained on
Dolma compared against its initialized checkpoint.
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