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Abstract

Sparse autoencoders (SAEs) have been widely used for interpretability of neural
networks, but their learned features often vary across seeds and hyperparame-
ter settings. We introduce Ordered Sparse Autoencoders (OSAE), which extend
Matryoshka SAEs by (1) establishing a strict ordering of latent features and (2)
deterministically using every feature dimension, avoiding the sampling-based ap-
proximations of prior nested SAE methods. Theoretically, we show that OSAEs
resolve permutation non-identifiability in settings of sparse dictionary learning
where solutions are unique (up to natural symmetries). Empirically on Gemma2-
2B and Pythia-70M, we show that OSAEs can help improve consistency compared
to Matryoshka baselines.

1 Introduction

Sparse autoencoders (SAEs) have become central to unsupervised representation learning. Enforc-
ing sparsity in the latent space yields interpretable, often disentangled features, enabling progress
in clustering, visualization, and scientific discovery [Vincent et al., 2010, Coates et al., 2011, Ng,
2011]. Yet despite their success, SAEs suffer from a critical shortcoming: the set of features they
learn can vary across random seeds, initialization schemes, and hyperparameter settings, leading to
poor reproducibility and undermining any mechanistic interpretation of individual latent dimensions
[Song et al., 2025, Fel et al., 2025]. Several strategies have been proposed to mitigate this instability.
These include regularization techniques such as orthonormality penalties [Lee et al., 2025], struc-
tured sparsity constraints like group or tree sparsity [Jenatton et al., 2010], and post-hoc alignment
or averaging of learned dictionaries across runs [Ghorbani et al., 2020].

One way to reduce the size of each equivalence class of solutions is to enforce structural constraints
into the loss function. In particular, Matryoshka SAEs [Bussmann et al., 2025] are introduced to
resolve a notion of hierarchy in feature learning. Their work defines an ordering on features by thir
level of abstraction: ”comma” is a lower-level feature than ”punctuation mark”. Matryoshka SAEs
sample a small number of dictionary sizes per batch, thereby capturing multiscale features and
partially breaking permutation symmetry. Despite these advances, Matryoshka SAEs treat features
within each sampled group as exchangeable, a limitation from sampling only a handful of dictionary
sizes (e.g., up to 10 per batch).

In this work, we introduce Ordered Sparse Autoencoders (OSAE), which extends Matryoshka SAEs
by enforcing a strict ordering of latent dimensions. Drawing on the concept of nested dropout—
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which imposes an explicit ordering by stochastically truncating latent codes [Rippel et al., 2014]—
OSAE treats each non-zero feature as its own dictionary size.

Our key contributions are:

• We propose Ordered Sparse Autoencoders (OSAE), which enforce deterministic feature
ordering.

• We present theoretical results for ordered feature recovery by nested dropout loss in a spe-
cial case of overcomplete sparse dictionary learning.

• We demonstrate improvement in feature consistency when using OSAEs on Gemma2-2B
and Pythia-70M.

2 Problem setup

2.1 Preliminaries

Throughout, we use the following notation:

• X = [x1, . . . , xN ] ∈ Rd×N : the data matrix whose columns xi ∈ Rd are samples.

• E : Rd → RK : the encoder mapping each input xi to a code zi = E(xi).

• D ∈ Rd×K : the decoder or dictionary matrix, whose columns dj ∈ Rd are basis atoms.

• Z = E(X) ∈ RK×N : the code matrix, whose columns are the encoded vectors zi.

We will consider two settings:

• (Under)complete (K ≤ d). D spans a K-dimensional subspace (the PCA case).

• Overcomplete (K > d). D is a dictionary of K atoms for sparse coding.

Define for all ℓ = 1, . . . ,K:

Λℓ =

[
Iℓ 0
0 0

]
∈ {0, 1}K×K ,

Topm(zi)j =

{
zi,j , if |zi,j | in top m,

0, otherwise,

extended column-wise to Topm(Z).

2.2 Nested dropout in the (under)complete setting

Consider the (under)complete linear autoencoder with representation dimension K ≤ d. The stan-
dard reconstruction loss

LAE(D,E) = ∥X −DZ∥2F
recovers the top-K principal subspace but leaves D defined only up to an invertible transforma-
tion Baldi and Hornik [1989], Bourlard and Kamp [1988], Plaut [2018]. Rippel et al. [2014] intro-
duce the nested dropout loss, which minimizes

LND(D,E) = Eℓ∼pND

∥∥X −DΛℓ Z
∥∥2
F
,

where pND(ℓ) is a distribution over {1, . . . , k} with full support. With D⊤D = I , they theoretically
show that this loss uniquely recovers the PCA eigenbasis in descending-eigenvalue order, rather than
merely its subspace.

In the next section we extend this idea to the overcomplete, hard-m sparse setting by inserting a
Top-m mask into the same expectation to obtain our Ordered Sparse Autoencoder (O-SAE).
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2.3 Sparse dictionary learning

To understand the non-identifiability challenges faced by sparse autoencoders in the overcomplete
regime, we first discuss classical sparse dictionary learning. The goal is to generalize PCA’s fixed-
size eigenbasis to an overcomplete dictionary of atoms that admits sparse representations. Con-
cretely, each data vector xi is modeled as

X = [x1, . . . , xN ] ∈ Rd×N , X = DY,

where
D = [ d1, . . . , dK ] ∈ Rd×K , Y = [ y1, . . . , yN ] ∈ RK×N ,

with unit-norm atoms ∥dj∥2 = 1 and sparse codes ∥yi∥0 ≤ m ≪ K. That is, each sample xi is
assumed to be generated by a linear combination of a small subset of the dictionary atoms.

Whereas PCA solves min ∥X −DZ∥2F under a rank constraint K ≤ d, sparse dictionary learning
(SDL) tackles

min
D,Y

∥X −DY ∥2F subject to ∥yi∥0 ≤ m,

an NP-hard problem due to the combinatorial nature of the ℓ0 sparsity constraint. In practice, this ob-
jective is typically approximated using greedy methods like orthogonal matching pursuit (OMP) Pati
et al. [1993], Tropp and Gilbert [2007], alternating minimization algorithms such as K-SVD Aharon
et al. [2006], or online optimization techniques Mairal et al. [2010].

A key challenge in SDL is the issue of non-identifiability: many dictionaries D and code matrices
Y can produce the same reconstruction X , especially in the overcomplete setting. Even in the
ideal noiseless case, identifiability of the ground-truth dictionary D∗ is only possible under strong
structural assumptions.

Spark and uniqueness. The spark of a dictionary D,

spark(D) = min{∥z∥0 : Dz = 0, z ̸= 0},

measures the size of the smallest linearly dependent set of atoms. If spark(D) > 2m, then any
m-sparse representation y = Dz is unique, guaranteeing identifiability in sparse coding. However,
computing spark is NP-hard, so practitioners often rely on relaxed surrogate conditions:

• Mutual coherence µ(D) = maxi ̸=j |d⊤i dj |, with µ(D)(m − 1) < 1 ensuring uniqueness
via greedy methods such as OMP Tropp [2004].

• Restricted isometry property (RIP), which ensures D approximately preserves the norms
of all m-sparse vectors Candes and Tao [2005].

Recent work has begun applying these identifiability conditions to sparse autoencoders. In partic-
ular, Song et al. [2025] show that if a Top-k SAE achieves exact sparsity and zero reconstruction
error, then the encoder-decoder pair satisfies a round-trip condition that implies spark(D) > 2k,
guaranteeing uniqueness of the learned features up to permutation and scaling. Our work builds on
this by explicitly reducing permutation ambiguity during training itself.

2.4 ℓ-prefix reconstruction objective (Top-m).

We define:
Lℓ(D,E) =

∥∥X −DΛℓ Topm(Z)
∥∥2
F
.

This objective minimizes reconstruction loss when we use the top-k codes and then truncate to the
first ℓ dimensions. When ℓ = K, this becomes the standard full-code reconstruction loss

∥∥X −
DTopk(Z)

∥∥2
F

that standard top-m SAEs minimize.

2.5 Matryoshka SAE objective (Top-m).

Matryoshka SAEs [Bussmann et al., 2025] partition the K atoms into a small collection of nested
“groups” of increasing size M = {ℓ1 < · · · < ℓL}. At each training step, one group 1:ℓ is sampled
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with probability pMSAE(ℓ), and only atoms d1, . . . , dℓ (and their corresponding code entries) are
used for reconstruction:

LMSAE(D,E) = Eℓ∼pMSAE

[
Lℓ(D,E)

]
=

∑
ℓ∈M

pMSAE(ℓ)
∥∥X −DΛℓ Topm(Z)

∥∥2
F
.

By enforcing reconstruction over only a handful of group sizes (e.g. 5–10 per batch), Matryoshka
SAE captures multiscale features while partially breaking permutation symmetry within each group.

2.6 Nested dropout objective (Top-m).

We extend nested dropout [Rippel et al., 2014] by treating each individual atom dj as its own
“group,” so that sampling a prefix ℓ means retaining exactly atoms 1 through ℓ and dropping the
rest. Let pND(ℓ) be a distribution over {1, . . . ,m} with full support. The nested-dropout loss is

LND(D,E) = Eℓ∼pND

[
Lℓ(D,E)

]
=

m∑
ℓ=1

pND(ℓ)
∥∥X −DΛℓ Topm(Z)

∥∥2
F
.

By covering all prefixes in expectation, this objective enforces a strict ordering of features.

2.7 Consistency evaluation

To quantify how reproducibly SAEs recover the same features across seeds, we adopt the stability
metric from Fel et al. [2025]. Let D,D′ ∈ Rd×K be two learned decoder matrices with unit-norm
columns. We define

Stab(D,D′) = max
P∈P

1

K
tr
(
D⊤ P D′),

where P is the set of all K ×K permutation matrices. This computes the average cosine similarity
between matched atoms after optimal re-indexing via the Hungarian algorithm. When we compare
a learned dictionary D against the ground-truth dictionary D⋆, stability also serves as a feature
recovery fidelity metric, indicating how accurately the true atoms are recovered.

2.8 Orderedness evaluation

To quantify how similarly in order SAEs recover features across seeds, we introduce an orderedness
metric. Let D,D′ ∈ Rd×K be two dictionaries, each with an inherent ordering of their atoms
(e.g. by frequency, abstraction, or another criterion). After matching each atom dj in D to its best-
corresponding atom d′µ(j) in D′ via the Hungarian algorithm, we obtain a permutation vector

µ =
(
µ(1), µ(2), . . . , µ(K)

)
∈ {1, . . . ,K}K .

We then define the orderedness between D and D′ as the Spearman rank correlation between their
index sequences:

Ord(D,D′) = Spearman
(
(1, . . . ,K), µ

)
= 1 −

6
∑K

j=1

(
j − µ(j)

)2
K(K2 − 1)

.

A value Ord(D,D′) = 1 indicates perfect matching of their orderings.

3 Exact recovery of ordered features

Define the domain of optimization to be

F =
{
(D,E)

∣∣ D = [d1, . . . , dK ] ∈ Rd×K , ∥dj∥2 = 1 (∀j = 1, . . . ,K), E : Rd → RK
}
.

In other words, F consists of all decoder–encoder pairs (D,E) in which each dictionary atom dj
has unit ℓ2-norm, and E is an arbitrary mapping from Rd to RK .

Suppose X = D∗Y ∗,where D∗ = [d∗1, . . . , d
∗
K ] ∈ Rd×K has unit-norm columns satisfying

spark(D∗) > 2m, and Y ∗ ∈ RK×N m-sparse columns.
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Lemma 3.1. Any minimiser of LND also minimises the full-prefix loss Lk. That is,

argmin(D,E)∈FLND ⊆ argmin(D,E)∈FLK.

The proof is deferred to Appendix A
Theorem 3.1. [Exact ordered recovery under spark condition] Assume the columns of Y ∗ are non-
negative (to resolve sign ambiguity) and “true” atoms are ordered so that

|{ i : y∗1,i > 0}| ≥ |{ i : y∗2,i > 0}| ≥ · · · ≥ |{ i : y∗K,i > 0}|.

Then any global minimiser (D̂, Ê) ∈ F of the nested-dropout loss LND satisfies

D̂ = D∗, Ê(X) = Y ∗

Proof. By Lemma 3.1, any minimiser of LND also minimises the full-prefix loss LK . Hence (D̂, Ŷ )

with Ŷ = Topm
(
Ê(X)

)
satisfies

D̂ Ŷ = X, ∥ŷi∥0 ≤ m.

The uniqueness result under the spark condition then gives

D̂ = D∗ P S, Ŷ = S−1P⊤ Y ∗,

for some permutation matrix P and invertible diagonal S.

Since all columns of Y ∗ and Ŷ are nonnegative, S must be the identity (no sign-flips or rescaling).
Finally, because the atoms were assumed ordered by their sparsity-support frequencies, the only
permutation that preserves that ordering is the identity. Hence P = I and

D̂ = D∗, Ŷ = Y ∗,

as claimed.

3.1 Toy Gaussian model

Theorem 3.1 gives theoretical guarantees that SAEs minimising nested dropout loss can achieve
perfect consistency and orderedness under certain conditions of the data and sparsity. We evaluate
under the following synthetic generative model:

1. Parameters. Fix dimensions d, n,K and sparsity level m ≤ d. Assume an ordering
distribution π = (π1, . . . , πK) with π1 ≥ π2 ≥ · · · ≥ πK > 0 and

∑K
j=1 πj = 1.

2. Dictionary generation.

D = [ d1, . . . , dK ] ∈ Rd×K , dj
iid∼ N

(
0, 1

dId
)
, dj ←

dj
∥dj∥2

.

3. Code generation. For each sample i = 1, . . . , n:
(a) Sample a support of size m by drawing indices without replacement according to π:

Si ∼ MultisetSample(π,m).

(b) Let

yi ∈ RK , (yi)j =

{
zij , j ∈ Si,

0, j /∈ Si,
zij

iid∼ N (0, 1).

(c) For the purposes of this toy model, we remove sign ambiguity: yi ← |yi|.
Collect into Y = [ y1, . . . , yn ] ∈ RK×n.

4. Data matrix.
X = DY ∈ Rd×n.

Under this model, atoms with smaller index j appear more frequently in the data (higher πj), in-
ducing a ground-truth ordering that we will attempt to recover via O-SAEs. Since the dictionary is
drawn from a standard Gaussian ensemble, the spark condition for uniqueness is satisfied with high
probability [Hillar and Sommer, 2015].

5



Unit sweeping. Nested dropout samples a truncation index b ∼ pB(·), so gradients onto late units
shrink exponentially with index. To avoid starving these units, we employ unit sweeping [Rippel
et al., 2014]: once a lower-index unit has effectively converged, we freeze its encoder row and
decoder column (stop backprop through that unit) and continue training the remaining, unfrozen
units. Practically, we use a simple “clockwork” schedule that freezes one additional unit every
T epochs (from 1 → K), after a short burn-in; frozen units remain in the forward pass, and we
renormalize decoder columns to unit norm after each freeze. Results in Fig. 4 and Table 1 use unit
sweeping, which we find improves stability and ordered recovery in this setting.

Evaluation. We evaluate Ordered SAE, Matryoshka SAE (Fixed and Random, with five groups),
and Vanilla top-m SAEs on the toy model above with (d,K,m,N) = (80, 100, 5, 100,000) and a
Zipf support prior πj ∝ j−α, α = 1.2, which induces a strict ground-truth ordering. Hyperparame-
ters are selected by lowest validation reconstruction error at the target sparsity. We use the warmup
schedule for k (from K down to m) and train with unit sweeping. Qualitative recovery patterns are
shown in Fig. 1 for Fixed MSAE and OSAE; full results can be found in Fig. 4. Quantitative results
(mean ± std) are summarized in Table 1. Importantly, Stab(D,D′) is averaged over

(
10
2

)
= 45

seed pairs, while Stab(D,D∗) and Ord(D,D∗) are averaged over 10 seed→ D∗ comparisons;
reconstruction loss is MSE on a held-out set.

For each model, we choose the hyperparameter configuration that achieves the lowest validation
reconstruction error at the target sparsity level.

To stabilize training and improve recovery, we adopt a warmup strategy for top-k truncation. Specif-
ically, we begin training with a large truncation size kinit ≥ m (typically kinit = K) and gradually
decrease k to the target sparsity m over a fixed number of epochs. This schedule smooths the op-
timization landscape by initially allowing dense activations before progressively enforcing sparsity.
We find this warmup significantly improves convergence, particularly for O-SAE and Matryoshka
models where early features receive higher training pressure. Additional results are shown in Ap-
pendix B.

Model Stab(D,D′) Stab(D,D∗) Ord(D,D∗) Reconstruction loss

Vanilla SAE 0.572 (0.00964) 0.479 (0.0104) 0.0162 (0.128) 0.0257 (0.000841)
Fixed MSAE 0.538 (0.0114) 0.502 (0.0160) 0.119 (0.673) 0.0339 (0.00635)
Random MSAE 0.531 (0.0150) 0.480 (0.0106) 0.0544 (0.0760) 0.0309 (0.00366)
OSAE (ours) 0.664 (0.0191) 0.814 (0.0195) 0.734 (0.0758) 0.00725 (0.000746)

Table 1: Summary metrics on the toy Gaussian model (mean± std).

We found it surprising that our O-SAEs achieved the lowest reconstruction loss here despite pos-
sessing inductive biases that restrict the solution class. Thus for a controlled evalation with minimal
influence from hyperparameter bias, we ran further evaluations for O-SAEs in Appendix B.3 directly
extending Song et al. [2025]’s synthetic experiments. There, O-SAEs achieve a similar consistency
and higher orderedness compared to baseline architectures despite a higher MSE loss, helping sup-
port our findings here.

4 Results on empirical data

4.1 Text-Based Evaluations on Gemma-2 2B

Setup. We evaluate the orderedness and stability of pairs of random seeds for Ordered SAEs and
Matryoshka SAE variants trained on Gemma-2 2B [Team et al., 2024]. We train these SAEs with
dictionary size 4096 on layer 12 with K=80, collecting activations from Gemma-2 2B on an un-
copyrighted portion of the Pile [Gao et al., 2020]. We use the same piecewise distribution for the
O-SAE as Matryoshka baselines for these experiments. Unit sweeping is not employed for these
experiments. We note that O-SAEs have slightly worse reconstruction loss compared to baselines,
potentially due to a restricted solution space or, for a simpler explanation, our limited hyperparam-
eter sweeps. Thus, we compare checkpoints with similar loss values for a fair orderedness and
stability comparison.
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Figure 1: Recovery across SAE variants on a Gaussian toy model with (d,K,m,N) =
(80, 100, 5, 100 000). Each panel plots the Hungarian matching between learned decoder atoms
D and ground truth D∗ (one dot per matched pair; color encodes cosine similarity). Ordered SAEs
achieve higher stability Stab(D,D∗) (mean matched cosine) and higher orderedness Ord(D,D∗)
(order agreement), meaning they recover features more faithfully and in order.

O-SAEs achieve greater orderedness and stability in Gemma-2 2B. In Figure 2, we demonstrate
that O-SAEs achieve better orderedness (defined in 2.8) than the Fixed-prefix MSAE and Random-
prefix MSAE with 5 groups. Although the overall average stability (defined in 2.7) is lower for
O-SAE than the Matryoshka variants, we find that the most significant features have higher stability.
For both metrics, we calculate the truncated metrics for the first p prefix length features. We see that
O-SAEs have a lower prefix-length stability compared to the Random MSAE at a crossover point
between 1024 and 2048 features, where features are less significant in the feature ordering.

4.2 Consistency across datasets on Pythia 70m

We furthermore test the generalizability of orderedness and stability of O-SAEs trained on a different
model, Pythia-70M [Biderman et al., 2023], and also evaluate consistency when activations are
collected on different datasets. Both the Pile [Gao et al., 2020] and Dolma [Soldaini et al., 2024] are
diverse and general pretraining mixes, so we select these datasets to represent a wide distribution of
language while not drawing from the exact same data sources. If SAEs learn a good representation of
general language, we ideally hope that the representations are consistent across datasets. We evaluate
(1) same-dataset consistency similar to the previous section and (2) cross-dataset consistency by
evaluating pairs of SAEs where one is trained on activations on the Pile and the other on activations
from Dolma.

Setup. We train with the same hyperparameters as Gemma2-2B, although Pythia-70M is much
smaller and has fewer layers. We use layer 3 of Pythia-70M, roughly halfway, to approximate the
same position as layer 12 in Gemma2-2B. We train five seeds per (model, dataset) pair. In these
experiments, we evaluate checkpoints after training for 50M tokens, reaching 0.02-0.03 recon loss.

Similar trends on the Pile and Dolma datasets. In Figure 3a, we evaluate same-dataset ordered-
ness and stability on the SAEs trained on the Pile and Dolma. We see similar trends of higher
orderedness for O-SAEs while stability degrades after time. All SAE variants maintain similar per-
formance between the Pile and Dolma in same-dataset evaluations.

We include additional visualizations of how measures of orderedness and stability evolve with in-
creasing amounts of training on same-dataset evaluations on the Pile and Dolma in Figure 11 and 12
in Appendix C. Interestingly, there are some cases for both O-SAEs and Random MSAEs where as
training progresses, high levels of orderedness and stability in earlier prefixes decrease while these
measures at later prefixes increase. We suspect this may be an artifact of the probability distribution
or over-training, but we plan to run more ablations.
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(b) Stab(D,D′)

Figure 2: SAEs trained on Gemma2-2B. (a) Orderedness evaluated at different prefix lengths. O-
SAE’s have the most consistently ordered features almost reaching an average Ord(D,D′) of 0.8.
As expected, we observe orderedness close to 0.0 for the first 128 features of the Fixed MSAE since
the first group size is 128, whereafter it jumps up to values between around 0.5. (b) O-SAEs have
high stability for the first portion of features, before a sharp decline for later features.

(
9
2

)
= 36 pairs

of seeds are evaluated per method and 95% confidence intervals are visualized.

O-SAEs also improve orderedness in cross-dataset comparisons. In Figure 3b, we evaluate or-
deredness and stability of SAEs in cross-dataset settings, where one SAE is trained on the Pile and
the other on Dolma. We observe that cross-dataset orderedness and stability matches trends from
same-dataset results in Figure 3a, with a decline of around 0.1-0.2 from same-dataset results.

When we use same-seed initialization, O-SAEs achieve near-1.0 value in Orderedness and stability
of 0.8 at full prefix length, when trained on different datasets. Orderedness and stability also increase
in early prefix dictionary positions compared to the cross-seed settings for both O-SAEs and Random
MSAEs; however, increases are more substantial for O-SAEs. We hypothesize the greater jump in
full-prefix orderedness and stability metrics for O-SAEs are because they do not update their latter
indices as much as earlier indices; this is further supported by Figure 13 and 14 in Appendix C
showing minimal full-prefix changes in orderedness when comparing trained models against their
initialization state for O-SAEs and significant full-prefix drops for Random MSAEs when comparing
trained models against their initialization state.

5 Limitations

Our theoretical guarantees assume idealized conditions—sparsity and uniqueness assumptions and
a well-specified ordering prior—that may not hold exactly in real data. If the imposed order is
misspecified, the objective can over-regularize and suppress equally valid alternative bases. The
training cost for O-SAEs is higher because covering prefixes requires more compute, so practical
deployments may require approximations or careful schedule design. Performance is also sensi-
tive to design choices such as the prefix distribution and unit sweeping. Finally, our empirical study
focuses on controlled settings intended to evaluate the mechanism rather than to exhaustively bench-
mark task performance across architectures.

6 Discussion

By optimizing an ordered, nested-prefix objective, we shrink the solution class of sparse autoen-
coders. The plain reconstruction loss admits large equivalence classes (permutations and near-
mixings of features) that undermine reproducibility; the ordered objective effectively selects a
canonical basis. This narrowing of admissible solutions is a training-time structural prior, which (i)
constrains the hypothesis space, (ii) alters the optimization geometry toward a feature-curriculum,
and (iii) makes the learned representation more comparable across runs and hyperparameters. We
view ordering as a general mechanism for enforcing identifiability into overcomplete models, com-
plementary to sparsity and incoherence assumptions in classical dictionary learning. Furthermore,
we provide empirical results for O-SAEs on Gemma2-2B and Pythia 70m, trained on the Pile and
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(a) Ord(D,D′) and Stab(D,D′) comparing SAEs trained on The Pile and Dolma
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Fixed MSAE (Same Seed)
Fixed MSAE (Cross Seed)

(b) Ord(D,D′) and Stab(D,D′) on Cross-dataset setting

Figure 3: SAEs trained on Pythia-70M (a) O-SAEs demonstrate an improvement in orderedness
over Random MSAEs and Fixed MSAEs on the Pile and Dolma after prefix length 128. O-SAE
stability is likewise stronger than Random MSAE on both datasets for the beginning features, but
crosses over at around prefix length 128. Fixed MSAE stability is higher than O-SAE, but has
lower orderedness. (n=10). (b) In the cross-dataset, cross-seed setting we observe that O-SAE
has modest improvements in orderedness against Random MSAE and sizable stability gains against
Random MSAE before prefix 128. O-SAEs and Random MSAEs demonstrate improvements to
orderedness and stability when using the same seed despite training on different datasets; however,
the improvements are larger for O-SAEs. (Cross-Seed: n=20. Same-Seed: n=5)

Dolma, that demonstrate greater orderedness and stability in earlier features, while sometimes at the
cost of lower stability in later, less-significant features.
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Use of LLMs

We made limited use of LLMs during paper preparation. Specifically, we used them to help write
scripts for generating plots, and to suggest edits aimed at improving clarity of the text. All scientific
claims are validated by the authors.
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A Proofs

Proof of Lemma 3.1. Assume for contradiction that (D⋆, E⋆) ∈ F globally minimizes LND but
does not minimize LK . Write

Z⋆ = E⋆(X), R⋆ = X −D⋆ Topm(Z⋆), ∆ =
1

N
∥R⋆∥2F = LK(D⋆, E⋆) > 0.

Denote the Kth row of Topm(Z⋆) by y⋆K· ∈ Rn.

If y⋆K· = 0 then none of the prefix losses ever see atom K, so we could remove it entirely and
re-index, strictly reducing the nested-dropout loss unless R∗ = 0. Hence for a strict counterexample
we may assume y⋆K· ̸= 0.”

Set

v = R⋆ y⋆K· =

n∑
i=1

r⋆·i y
⋆
K,i ∈ Rd,

which is nonzero since R⋆ ̸= 0 and y⋆K· ̸= 0. Define

u =
(I − d⋆K(d⋆K)⊤) v∥∥(I − d⋆K(d⋆K)⊤) v

∥∥
2

.

Then u is unit-length, u ⊥ d⋆K , and
n∑

i=1

y⋆K,i (u
⊤r⋆·i) = u⊤

(∑
i

r⋆·i y
⋆
K,i

)
= u⊤v =

∥∥(I − d⋆K(d⋆K)⊤) v
∥∥
2

> 0.

Now for small ϵ > 0 define a perturbation of only the Kth atom:

dnewK =
d⋆K + ϵ u

∥d⋆K + ϵ u∥2
= d⋆K + ϵ u− 1

2ϵ
2 d⋆K +O(ϵ3),

and leave E⋆ (hence Topm(Z)) unchanged. All other atoms remain as in D⋆, so (Dϵ, E⋆) ∈ F .

Note that every prefix ℓ < K satisfies
Dϵ Λℓ Topm(Z⋆) = D⋆ Λℓ Topm(Z⋆),

hence Lℓ(D
ϵ, E⋆) = Lℓ(D

⋆, E⋆) for all ℓ < K. Therefore

LND(D
ϵ, E⋆) =

K∑
ℓ=1

pℓ Lℓ(D
ϵ, E⋆) = pK LK(Dϵ, E⋆) +

∑
ℓ<K

pℓ Lℓ(D
⋆, E⋆).

It suffices to show LK(Dϵ, E⋆) < LK(D⋆, E⋆).

Since Topm(Z) is unchanged,

Rϵ = X −Dϵ Topm(Z⋆) = R⋆ −
(
dnewK − d⋆K

)
y⋆K·

⊤.

Using dnewK − d⋆K = ϵ u− 1
2ϵ

2 d⋆K +O(ϵ3), one finds, entrywise,

rϵαi = r⋆αi − ϵ uα y⋆K,i +O(ϵ2).

Squaring and summing,

∥Rϵ∥2F =
∑
α,i

(rϵαi)
2 =

∑
α,i

(r⋆αi)
2 − 2ϵ

∑
i

y⋆K,i (u
⊤r⋆·i) +O(ϵ2).

By our choice of u, the coefficient
∑

i y
⋆
K,i (u

⊤r⋆·i) is strictly positive, so for sufficiently small ϵ the
linear term makes ∥Rϵ∥2F < ∥R⋆∥2F . Equivalently,

LK(Dϵ, E⋆) = 1
N ∥R

ϵ∥2F < 1
N ∥R

⋆∥2F = LK(D⋆, E⋆).

Since all Lℓ<K remain fixed,
LND(D

ϵ, E⋆) < LND(D
⋆, E⋆),

contradicting the global minimality of (D⋆, E⋆). Therefore no residual can remain, and every min-
imiser of LND must satisfy ∥R∥F = 0, i.e. also minimise LK .
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Figure 4: Recovery across SAE variants on a Gaussian toy model with (d,K,m,N) =
(80, 100, 5, 100 000). Each panel plots the Hungarian matching between learned decoder atoms
D and ground truth D∗ (one dot per matched pair; color encodes cosine similarity). Ordered SAEs
achieve higher stability Stab(D,D∗) (mean matched cosine) and higher orderedness Ord(D,D∗)
(order agreement), meaning they recover features more faithfully and in order.

14



B Toy model results

B.1 Activation–stream stability and orderedness

Let Z(s) = E(s)(X) ∈ RK×N be the code matrix for seed s (rows are unit activations over the eval-
uation set), and let Y ∗ ∈ RK×N be the ground-truth activations. We replace decoder-space cosine
with Pearson correlation on the activation stream and compute stability via Hungarian assignment:

R
(ρ)
ij = corr

(
Z

(s)
i: , Y ∗

j:

)
, S

(ρ)
ij = corr

(
Z

(a)
i: , Z

(b)
j:

)
.

With P the optimal permutation matrix, we report

StabZ(Z
(s), Y ∗) = 1

K tr
(
R(ρ)P

)
, StabZ(Z

(a), Z(b)) = 1
K tr

(
S(ρ)P

)
,

and define orderedness on the induced permutation as

OrdZ = Spearman
(
(1, . . . ,K), (µ(1), . . . , µ(K))

)
, where µ is read off from P.

These Z-based measures complement the decoder–cosine results in the main text. Whereas Fig. 4
visualizes only matched pairs, the figures below show the full K × K similarity fields. In the top
row we also show a small raster (50 evaluation inputs) to compare activation patterns Y ∗ vs. Z(0)

vs. Z(1). Note: for Vanilla and Matryoshka models, activations can be much larger than Y ∗, so per-
panel normalization makes the rasters not directly comparable in scale; this effect is less pronounced
for the ordered model.

Figure 5: Vanilla SAE (example seed pair). Top: activation rasters for 50 eval inputs (left: Y ∗,
middle: Z(0), right: Z(1)). Middle: all-pairs activation–Pearson matrices (left: Z(0) vs. Y ∗, middle:
Z(1) vs. Y ∗, right: Z(0) vs. Z(1)) used for StabZ and OrdZ . Bottom: all-pairs decoder–cosine
matrices (left: D(0) vs. D∗, middle: D(1) vs. D∗, right: D(0) vs. D(1)); this extends Fig. 4 from
matched pairs to all pairs.

B.2 Additional dictionary sizes

We repeat the activation–stream analysis at smaller widths with matching sparsities, (K,m) ∈
{(10, 2), (30, 3), (50, 5)}. Each panel uses the same three-row layout as Appendix B.1:
top—activation rasters for 50 evaluation inputs (left: Y ∗, middle: Z(0), right: Z(1)); middle—all-
pairs activation–Pearson matrices (left: Z(0) vs. Y ∗, middle: Z(1) vs. Y ∗, right: Z(0) vs. Z(1)) used
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Figure 6: Fixed MSAE (example seed pair). Same layout as Fig. 5: top—activation rasters
(Y ∗, Z(0), Z(1)); middle—all-pairs activation–Pearson (Z(0) vs. Y ∗, Z(1) vs. Y ∗, Z(0) vs. Z(1));
bottom—all-pairs decoder–cosine (D(0) vs. D∗, D(1) vs. D∗, D(0) vs. D(1)).

Figure 7: Random MSAE (example seed pair). Same layout as Fig. 5; top—activation rasters;
middle—activation–Pearson; bottom—decoder–cosine; columns are (0 vs. Y ∗), (1 vs. Y ∗), (0 vs.
1).
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Figure 8: O-SAE (example seed pair). Same layout as Fig. 5. Top row rasters (50 inputs); middle
row all-pairs activation–Pearson for StabZ /OrdZ ; bottom row all-pairs decoder–cosine extending
Fig. 4 to all pairs.

for StabZ and OrdZ ; bottom—all-pairs decoder–cosine matrices (left: D(0) vs. D∗, middle: D(1)

vs. D∗, right: D(0) vs. D(1)). Figures show a single example seed pair for brevity; Matryoshka
variants are omitted. Note that in Vanilla, activations can be much larger than Y ∗, so per-panel
normalization of the top row can make scales not directly comparable; this effect is less pronounced
for O-SAE.

B.3 Zipfian toy model: high consistency with moderate orderedness

Setup. We evaluate Ordered SAEs (O-SAEs; “Ordered TopK” in the legend) on a synthetic Zipfian
activation process. Following Song et al. [2025], inputs live in R16 with an overcomplete ground-
truth dictionary of 32 atoms; k = 3 features are active per sample, and we draw N = 50,000
samples. Unless noted otherwise: Gaussian features, Zipf exponent α swept across panels, 30,000
training steps, learning rate 10−4, ℓ1 coefficient 0.01, and results are averaged over 5 seeds. We
compare to TopK, two Matryoshka variants (“fixed” and “random”), and a vanilla SAE. We weighted
the features for Matryoshka and Ordered SAEs by the Zipfian alpha value of the data. For fixed
Matryoshka, we used 8 groups. For random Matryoshka, we used 4 truncations.

Results. Figure 10 shows that O-SAEs achieve consistency comparable to the strongest baselines:
for small α (near-uniform usage) ground-truth stability is≈ 0.9 for O-SAE, TopK, and Matryoshka,
and remains competitive as skew increases. Unlike TopK and vanilla, O-SAEs also exhibit or-
deredness: the learned atom ordering correlates with the ground-truth order (Spearman ρ ≈ 0.5 at
low α, remaining positive across the sweep), while pairwise orderedness likewise improves relative
to vanilla. This ordering bias comes with a trade-off in global ℓ2 reconstruction error, where O-SAEs
are higher than TopK/vanilla.

A final observation is that our Frequency-Invariant Feature Reconstruction (FIFR) Error (Sec. B.4)
tracks dictionary stability across methods and α much better than the global MSE. In ordered/Zipfian
regimes, rare features contribute little to MSE and can be underfit without a visible penalty, whereas
FIFR Error exposes such failures. Empirically, when TopK and O-SAEs attain a FIFR Error com-
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Vanilla O - SAE

(a) (K,m) = (10, 2): example seed pair.

Vanilla O - SAE

(b) (K,m) = (30, 3): example seed pair.

Vanilla O - SAE

(c) (K,m) = (50, 5): example seed pair.

Figure 9: Top: activation rasters for 50 inputs; middle: all-pairs activation–Pearson; bottom: all-
pairs decoder–cosine. Columns within each row are (0 vs. Y ∗), (1 vs. Y ∗), (0 vs. 1).

parable to vanilla SAEs, their ground-truth stability also converges to vanilla, despite differences in
global MSE.

Going forward, we hypothesize that with better hyperparameter tuning and methods such as unit
sweeping, it is possible to achieve lower L2 and FIFR error with O-SAEs and thus higher ordered-
ness than baseline architectures while maintaining 0.9 consistency.

B.4 MSE underweights rare features; a frequency-invariant error

Motivation. In ordered/Zipfian settings, some features appear far more often than others. The
global reconstruction MSE E∥x− x̂∥22 therefore emphasizes frequent features and can look “good”
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Figure 10: Zipfian toy-model comparison of SAEs (5 seeds). Each panel sweeps the Zipf ex-
ponent α controlling activation skew (higher α ⇒ rarer tail features). Top row: O-SAE (Ordered
TopK) matches TopK/Matryoshka on ground-truth and pairwise stability (∼ 0.9 at low α, remain-
ing competitive as skew rises). Middle row: O-SAE exhibits positive orderedness (Spearman ρ with
ground-truth ordering≈ 0.5 at low α; pairwise orderedness likewise improves), unlike vanilla/TopK.
Bottom row: O-SAE has higher global ℓ2 error, but the proposed Frequency-Invariant Feature Re-
construction (FIFR) Error better predicts stability across methods and α: when FIFR Error aligns
across methods, ground-truth stability aligns as well. Experimental details: input dim 16, dictionary
size 32, k=3, N=50k, Gaussian features, 30k steps, lr=10−4, ℓ1=0.01.
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while rare features are poorly reconstructed. We seek a metric that (i) treats each feature equally re-
gardless of frequency and (ii) scores the fidelity of its per-feature contribution to the reconstruction.

Definition (Frequency-Invariant Feature Reconstruction Error). Let the ground-truth dictio-
nary be A⋆∈Rm×n with atoms (rows) a⋆j , true codes S⋆∈RN×m, learned decoder A∈Rm×n with
atoms ak, and inferred features F ∈RN×m. We align atoms by Hungarian assignment on absolute
correlations of ℓ2-normalized atoms:

ã⋆j =
a⋆j
∥a⋆j∥2

, ãk =
ak
∥ak∥2

, Cjk = ⟨ã⋆j , ãk⟩, π ∈ argmax
σ

m∑
j=1

|Cj,σ(j)|.

For feature j, let Ij = {i : s⋆ij ̸= 0}. Define true and estimated per-sample components

c⋆ij = s⋆ij a
⋆
j , ĉij = fi,π(j) aπ(j).

With ε = 10−12,

rj =

1
|Ij |

∑
i∈Ij
∥c⋆ij − ĉij∥22

1
|Ij |

∑
i∈Ij
∥c⋆ij∥22 + ε

, FIFR(A⋆, S⋆;A,F ) =
1

|J |
∑
j∈J

rj , J = {j : |Ij | > 0}.

Properties. (i) Frequency-invariant: macro-averaging across features prevents frequent atoms
from dominating. (ii) Per-feature scale-invariant: normalizing by the energy of c⋆ij removes dic-
tionary–code scaling ambiguity. (iii) Permutation-invariant: alignment via π factors out atom or-
dering. (iv) Interpretable: FIFR Error equals 0 iff per-feature components are recovered exactly;
larger values indicate worse reconstruction (and can exceed 1). As seen in Fig. 10, FIFR Error
correlates strongly with dictionary stability in Zipfian regimes, whereas global MSE does not.
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C Empirical results

Figure 11 and 12 show how orderedness and stability metrics change as SAEs are trained for O-
SAE, Random MSAE, and Fixed MSAE on the Pile and Dolma. Orderedness and stability tend to
increase over the 45M tokens illustrated in the figures, with some exceptions at lower prefix lengths
going down while higher prefix length measures increase.
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Figure 11: Prefix Ord(D,D′) plotted with increasing training tokens. Top row is trained on the Pile,
and the bottom row is trained on Dolma. (n=1 pair of seeds)
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Figure 12: Prefix Stab(D,D′) plotted with increasing training tokens. Top row is trained on the Pile,
and the bottom row is trained on Dolma. (n=1 pair of seeds)

D Empirical results - SAE Stitching

O-SAEs decrease the number of novel features found by SAE Stitching

A key limitation of standard SAEs is their incompleteness, since they often fail to recover the full
set of canonical features in a model’s representations. Prior work Leask et al. [2025] highlights this
issue using SAE stitching. In this procedure, we take a feature (latent) discovered by a larger SAE
and “stitch” it into a smaller SAE. If this stitched latent improves reconstruction performance, it
suggests that the smaller SAE was missing this information entirely, which means the larger SAE
has uncovered a novel feature. If reconstruction worsens instead, the stitched latent is overlapping
with existing ones, which means the SAE is redundantly encoding the same information. We call
this a reconstruction feature.

Our experiments show that O-SAEs substantially reduce the fraction of novel features discovered
via stitching. In other words, O-SAEs capture more of the underlying structure up front, leaving
fewer important features uncovered compared to standard SAEs. This reduction in incompleteness
directly addresses one of the main critiques of sparse autoencoders: while traditional SAEs leave
gaps in the feature set, O-SAEs close those gaps by providing a more complete and less redundant
decomposition.

SAE Type Novel Feature % Reconstruction % No MSE Change %
BatchTopK 73.8% 21.2% 5.0%
Random MSAE 52.7% 11.4% 35.9%
O-SAE 33.8% 64.8% 1.4%

Table 2: Novel Feature, Reconstruction, and No MSE Change Percentages of various SAE types
when stitching 65536-sized features into the corresponding 4096-sized SAE.

In Table 2, the BatchTopK baseline demonstrates 73.8% novel features, indicating strong incom-
pleteness. While O-SAE’s 33.8% novel features are still substantial but better than the baseline.
Random MSAE falls in between at 52.7% novel features with the caveat that it has a higher fraction
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Figure 13: O-SAE Orderedness and Stability. (left) Cross dataset compares O-SAE trained on Pile
against O-SAE trained Dolma. They use the same seed, so initial checkpoints start with 1.0 ordered-
ness and stability. (middle) Shows the progression of checkpoints from O-SAE trained on the Pile,
when compared against its initialized checkpoint. This gives a relative measure of deviation from
initialization. (right) Progression of checkpoints trained on Dolma compared against its initialized
checkpoint.

of non-activating features for the limited number of samples tested on. This shows how increasing
degrees of hierarchy decrease the novel percentage between 65536 and 4096 sized SAEs.
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Figure 14: Random MSAE Orderedness and Stability. (left) Cross dataset compares Random MSAE
trained on Pile against Random MSAE trained Dolma. They use the same seed, so initial check-
points start with 1.0 orderedness and stability. (middle) Shows the progression of checkpoints from
Random MSAE trained on the Pile, when compared against its initialized checkpoint. This gives
a relative measure of deviation from initialization. (right) Progression of checkpoints trained on
Dolma compared against its initialized checkpoint.
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