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ABSTRACT

Solutions of dynamic systems that exhibit chaotic behavior are particularly sen-
sitive to errors in initial/intermediate state estimates when long term dynamics is
of interest. Lagrangian Neural Networks (LNN) are a class of physics induced
learning methods that seamlessly integrate physical conservation laws into func-
tional solutions, by forming a parametric Lagrangian for the system of interest.
However it has been seen that the function approximation error associated with
the parametric Lagrangian modelling could prove to be catastrophic for the pre-
diction of long term dynamics of chaotic systems. This makes improving the
precision of the parametric Lagrangian particularly crucial. Considering the same
in this work a modified LNN approach is proposed, where a customized neural
network architecture is designed to directly emphasize the relative importance of
each significant bit in the Lagrangian estimates produced. We evaluate our method
on two dynamic systems that are well known in the literature in exhibiting deter-
ministic chaos, namely the double pendulum and Henon-Helies systems. Further,
we compare the obtained solutions with those estimated by Finite Element solvers
(under optimal conditions) to validate the relative accuracy. We observe that the
trajectory deviations as a result of chaotic behavior can be significantly reduced
by the process of explicitly enforcing the precision requirement for the parametric
Lagrangian, as modelled using the proposed approach.

1 INTRODUCTION

Differential Equations (DEs) play a prominent role in the dynamic modelling of virtually every phys-
ical system Braun & Golubitsky (1983); Bandrauk et al. (2007). Accounting for the same, the litera-
ture associated with the solution estimation of differential equations are well versed. The simplest of
which are solution methods involving the estimation of direct symbolic functional forms, note that
the same have been developed only for a minor set of differential equation classes Bluman & Anco
(2008). For the large majority of DEs which are used in the modelling of systems of practical in-
terest, the closed form symbolic functional solutions cannot be estimated. A prominent workaround
involves the use of Finite Element methods Logg et al. (2012), the same estimates point-wise nu-
merical solutions of a given differential equation (for a set of points defined by a mesh-geometry)
and interpolates the same to obtain the solution in a predetermined domain. Physics informed neu-
ral networks (PINNs) are a class of mesh-free alternative that provide functional solutions for DEs.
A most recent study Grossmann et al. (2023) found that PINNs show lower computational cost (2
orders of magnitude) in comparison to Finite Element methods when estimating solutions of DEs
of higher dimensionality, as the latter’s computational complexity scales with the dimensionalilty
due to the increased complexity of mesh required. PINNs being inherently mesh-free accounts for
minimal domain points for solution estimation. PINNs could also integrate system configurations
into the solution space Raissi et al. (2019), eliminating the need for re-estimation of the solution
space in accordance with change of system parameters. Another notable advantage of PINNs is
that they can seamlessly integrate domain information in the form of data collected from real world
settings Raissi et al. (2017) as a set of additional constraints on the solution space. The typical set of
DEs that could be solved using PINNs range from (but are not limited to) integer-order Raissi et al.
(2019), integro-differential equations Sirignano & Spiliopoulos (2018); Lu et al. (2021), fractional
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PDEs Pang et al. (2019), high dimensional-PDEs Zeng et al. (2022) or even stochastic PDEs Zhang
et al. (2020); Yang et al. (2020). The applicability of the standard PINN based procedure carried out
for estimating functional solutions for a given ordinary differential equation is well studied within
multiple domains of science and engineering Bararnia & Esmaeilpour (2022); Misyris et al. (2020);
Cai et al. (2021); Wang et al. (2022). In most PINN settings aimed to solve a governing differential
equation of system (with state x), the functional solution f(x) is approximated by numerical opti-
mization of the neural network parameters Sexton et al. (1998) with the optimization objective as
the residue (Equation 1) obtained from substituting the PINN functional solution and it’s derivatives
into the differential equation of interest.

resOD =
1

n

n∑
i=0

∥∥∥DE

(
f(xi), f

′
(xi), f

′′
(xi), ...

)∥∥∥2 (1)

Note that the residue based objective values are computed at discrete state points within a limited
domain from which coordinate points are sampled in batches at random, the same is inherently effi-
cient as compared to Finite Element alternatives, eliminating the need for complex mesh geometries.
Given any differential equation with state a set of state variables x, the same can be written in the
residual form : DE [f(x)] = 0. The residues can be evaluated by considering a discretized do-
main over the state variables with (n) sample state coordinates (dataset of input variables), usually
obtained through uniform sampling over state variable bounds (domain). Note that another signifi-
cant component is the boundary/initial conditions (BCs) required to form the unique solution of the
corresponding differential equation. For most standard cases of PINN solution estimation the same
could be added directly into the functional solution form, by re-parameterizing the output space
of the PINN model. In the case of a re-parameterized solution pf(x), the overall objective loss
uses in the optimization procedure of the PINN model could be directly estimated by substituting
the same in Equation 1, where the corresponding functional or derivative components required to
solve the differential equation at a given point could be computed using the re-parameterized so-
lution and its corresponding derivatives (which could be computed using automatic differentiation
procedure Baydin et al. (2018)). In its most simple form, the PINN based algorithm for the solution
estimation of a differential equation (DE) is as shown in Algorithm 3. Note that the PINN based
functional modelling as illustrated in Algorithm 3 has been proven to be applicable to many phys-
ical systems, provided that the given set of boundary conditions is sufficient enough to guarantee
a unique solution for the governing equations to be solved. For most cases the same is the only
essential condition for convergence (obtain optimal solution). The gradients (partial derivatives with
respect to functional model parameters) necessary for the back-propagation step (parameter opti-
mization) is computed using the automatic differentiation method for neural networks. Generally
a typical stochastic gradient descent (or its derivatives) based optimization strategy Bottou (2012);
Kingma & Ba (2014) is used to optimize the network weights. Specifically for solving differential
equations using PINNs, the solution as provided by the PINN can be augmented to satisfy exactly
the required initial conditions Lagaris et al. (1998), Dirichlet boundary conditions Sheng & Yang
(2021), Neumann boundary conditions McFall & Mahan (2009); Beidokhti & Malek (2009), peri-
odic boundary conditions Zhang et al. (2020); Dong & Ni (2021), Robin boundary and interface
conditions Lagari et al. (2020). Since the augmentation so performed is inherently functional, the
automatic differentiation procedure can still be followed for all necessary gradient computation op-
erations. Note that the modelling brought in by re-parameterising the solutions so as to inherently
satisfy the boundary conditions are largely efficient as compared to vanilla counterparts such as reg-
ularization terms in optimization objectives; a straightforward argument for the same can be made
by analysing the complexity driven convergence trends of such a weighted objective function. In
addition to the same, if some features of the DE solutions are known a priori, it is also possible to
encode them in network architectures, for example, multi-scale features, even/odd symmetries of
energy conservation Mattheakis et al. (2019), high frequencies Cai et al. (2020) and so on.

Energy conservation is of prime interest in many dynamical systems, which helps in a more robust
modelling of long term dynamics. A classical implementation of the same is by explicit energy
conservation formulations such as gradient based optimization of a weighted objective, in which a
component of the objective function is an explicit comparison between the known total energy of
a system with the energy estimate obtained from predicted quantities. However most of these ap-
proaches fail to generalise or achieve sufficient precision requirements, a prominent reason for the
same would be due to the increase in the variance of the overall objective function used. A much
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noted alternative that efficiently addresses this problem is the Hamiltonian Neural Network Grey-
danus et al. (2019) (HNN) formulation where instead of a direct modeling of a solutions or explicit
objective components for energy conservation, the Hamiltonian of a system is modelled, from which
quantities of interest that define the complete system dynamics (usually position, momenta) can be
easily derived. Given a set of generalized coordinates {q, p} for a system with N degrees of free-
dom, that is q = {q1, q2, ..., qN} and p = {p1, p2, ..., pN}. The pair (q, p) represents the complete
state of the system (usually positions and momenta). If the total energy of the of the system is
conserved, the following (Equation 2) can be written in terms of the Hamiltonian analogue H.

∂q

∂t
=

∂H
∂p

,
∂p

∂t
= −∂H

∂q
(2)

Note that the left hand side of both equations (in Equation 2) is the constraint used to optimize the
network parameters. In a data driven approach, the same maybe estimated using finite difference in
time where the state evolution, i.e., data required is known. The complete objective function used
for optimizing the Hamiltonian neural network is as shown in Equation 3.

OHNN =

∣∣∣∣∂q∂t − ∂H
∂p

∣∣∣∣2 + ∣∣∣∣∂p∂t +
∂H
∂q

∣∣∣∣2 (3)

Similarly Lagrangian neural networks (LNNs) Cranmer et al. (2020) make use of observed states of
a system to model the Lagrangian directly. The advantage of the same over HNNs comes from the
ability of the Lagrangian to be defined over an arbitrary coordinates in space as opposed to strictly
canonical spaces in the case HNNs. Given a set of coordinates xt = (q, q̇) we can make use of
the Lagrangian as modelled using LNNs to estimate q̈ by making use of the modified Lagrangian
equation Hand & Finch (1998) as follows,

q̈ =

(
∂2L
∂q̇2

)−1 (
∂L

∂q
− q̇

∂2L
∂q∂q̇

)
(4)

By integrating Equation 4 after substituting the black-box Lagrangian L, one could re-estimate the
state variables (q, q̇) as functions in time, solved for a specific set of initial condition. The re-
estimated state variables could therefore by compared with pre known state variable data (similar to
the HNN objective) to optimize the LNN. As per Grossmann et al. (2023) the most prominent limi-
tations of differential equation solutions as estimated using vanilla PINNs is the larger relative error
margins in the functional solutions as compared to Finite element alternatives. The time indepen-
dent nature of solutions as estimated by LNNs makes it inherently superior to traditional alternatives,
however the function approximation error in the Neural Network based solution is inherently higher
than the Finite Element alternatives. Note that the same acts as a significant limitation to the LNN
or HNN approach as a reduced precision in the Lagrangian or Hamiltonian parametric model causes
significant solution deviations in systems that exhibit chaotic behavior Cranmer et al. (2020). In
this work we hope to effectively address this limitation by adding explicit modelling constraints to
preserve the numerical precision of the LNN model upto a specified limit.

2 METHODOLOGY

As per the Lagrangian Neural Network (LNN) formulation as proposed in Ref Cranmer et al. (2020),
a functional (parametric) Lagrangian could be estimated for any system whose state (xt) at time (t)
is defined by a set of position and velocity coordinates (q, q̇). Here the data D used consists of valid
trajectory estimates D = {qn, q̇n}. In other words, the dataset D consists of N randomly sampled
trajectory points (initial values) sampled over the space of possible state variable (q, q̇) values. By
doing so one hopes to exhaust a wide range of possible configurations of the system of interest. The
vectorized Lagrangian formulation of any dynamic system can be written as,

d

dt
∇q̇L = ∇qL (5)

Expanding the Equation 5 by propagating the time derivative through the gradient of the Lagrangian
and isolating q̈ would result in Equation 6. The LNN models a parametric Lagrangian L, which is
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the direct predicted quantity of the neural network. Equation 6 can be applied on L so as to obtain
an estimated functional form for q̈pred, valid for a given domain and system specifics/configuration.

q̈ =
(
∇q̇∇⊤

q̇ L
)−1 [ ∇qL − (∇q∇⊤

q̇ L)q̇
]

(6)

Note that trajectory of the state variables can be estimated through numerical integration of q̈pred
obtained using Equation 6. Now one can easily form the basis for the predictive error used for
optimizing the parametric Lagrangian L as modelled by the Lagrangian Neural Network. That is the
optimization constraint is to minimize the predictive error between the trajectory estimates obtained
by integrating the estimated q̈pred and known values of state variables (q, q̇).

2.1 MOTIVATION

This work builds upon the LNN formulation Cranmer et al. (2020), in an effort to effectively address
the function approximation error associated with the modelling of the parametric Lagrangian L.
We show that by adding additional constraints aimed at the numerical precision of the Lagrangian
estimates, the deviations that could occur while estimating long term solutions could be considerably
addressed. That is, as a direct consequence of a more precise Lagrangian estimate obtained, the latter
estimates of quantities (state variables) that emerge from same are also inherently better in terms of
precision. In a mathematical perspective, the precision improved Lagrangian directly results in
a significantly lower cumulative integration error, when estimating the trajectory states (q, q̇) by
numerical integration of q̈pred. This is particularly important for chaotic systems where incurring
numerical errors during the solution estimation process can cause significant changes in the long
term estimates of solutions or trajectories Duit et al. (1998). In this work we introduce a scalable
formulation that can explicitly and independently condition on the accuracy of each significant digit
in the solution space obtained, when using a Lagrangian Neural Network.

Figure 1: Branched Multi-Output Deep Neural Network architecture used in this study, where each
output branch is used to independently predict each significant digit of the output quantity.

2.2 PRECISION CONSTRAINT

Suppose the dataset D used to train the LNN consists of N sample points (initial values) and let the
predicted state estimate at t = 0 obtained by integrating the q̈pred (obtained from plugging in the
LNN into Eqn. 6) be (qpred, q̇pred), then the objective loss used for the optimization of the LNN is
the average of L2 norm values (Mean Squared Error) over all residues (each data-point) as shown in
Eqn. 7.
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Opred =
1

N

N∑
i=1

∥qipred − qidata∥2 + ∥q̇ipred − q̇idata∥2 (7)

The proposed advancement in this work can be split into two parts: 1. The modified neural network
architecture, and 2. The regularization terms added into the overall objective function (loss) during
the parametric optimization process (training) of the LNN. The deep neural network used in this
study follows a doubling sequence neural scheme by which the number of layers of the same could
be scaled to arbitrary values. Also note that the neural network used is infinitely differentiable
(end to end), i.e., the partial derivatives of any order with respect to any input quantity is directly
estimated using automatic graph differentiation Griewank et al. (1989). The typical structure of the
neural network architecture used involves predicting each digit of the output quantity (L) using
a separate branch, the complete architecture is as illustrated in Fig. 1. Note that to effectively
use this method we first fix the required number of digits that are of interest based on the overall
output range. For simplicity we assume that the predicted Lagrangian estimate is the n-bit binary
integer representation of the actual Lagrangian. Sigmoid activation is used to bound and convert
the predicted value (output) of each branch to directly estimate the corresponding bit of the binary
signed integer representation of the quantity being predicted. Equation 8 is used to recover the
value of the Lagrangian post the first stage of model output. Where, B0 is the rounded output value
(rounded value of sigmoid output) of the branch that predicts the sign of the integer, and each Bi

correspond to the rounded output of the branches that predicts the bit value corresponding to each
binary digit. Also note that k is a parameter that directly decides the number of decimal places in
the model output post conversion.

Lpred =
1

10k
B0

n∑
i=1

2i ×Bi (8)

The aim of the added regularization term in the objective function is to ensure that the prediction
of each binary bit is accurate once the parametric optimization process of the neural network is
complete. The expected dataset to train the LNN using the added regularization factor is a set
of initial conditions ( state variables : {qi, q̇i} ) and Analytical Lagrangian (L) values, that are
randomly sampled over a range of possible configurations of state variables. Let us suppose that
the dataset consists of N data-points, each with true Lagrangian estimates Li calculated using the
corresponding Lagrangian equation of the system of interest. Further, let BLi

j be the jth binary
value in the signed binary representation of Li post scaling the same using the factor 10k. Then the
corresponding regularization factor to be added to the overall objective loss of the LNN is estimated
as the binary cross entropy value between BLi

j and the predicted sigmoid probabilities Bp
j for each

corresponding bit as shown in Eqn. 9.

Oreg =
−1

N

N∑
i=1

n∑
j=0

[
BLi

j × log(Bp
j )− (1−BLi

j )× log(1−Bp
j )
]

(9)

Now, the total objective loss used in the parametric optimization of the modified LNN is the weighted
sum of the prediction loss (Eqn. 7) and the regularization factor (Eqn. 9) as shown in Eqn. 10, where
λ is the scale factor.

Ototal = Opred + λOreg (10)

Although the analytical form of the Lagrangian is know for a large set of physical systems, it’s to
be noted that a significant limitation of this approach is the requirement of the same. The proceed-
ing section explores a notable alternative approach to form intermediate temporal estimates of the
Lagrangian in hope of eliminating the need for an analytical Lagrangian for the system of interest.

2.3 STEADY STATE ASSUMPTION - PROPOSAL

In this section we introduce a regularization strategy to enforce precision using the formulation
mentioned in the preceding section when the explicit Lagrangian equation of the system of interest
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in not known. We base the regularization on the fact that the output estimate of the LNN at epoch
(e − 1) in the model training process should be equivalent to the estimate at epoch (e) when the
modelling is close to being optimal, as the quantity being approximated has no associated stochastic
nature. Let us suppose eLpred is the predicted output by the LNN, where e denote the epoch count
of the LNN training process, the Lagrangian estimate at epoch e− 1 (just preceding) could be used
as the pseudo true estimate for estimating the precision regularization term (Eqn. 9) for the estimate
at the current epoch (e), acting as an alternative to the true value. The precision based regularization
term can now be estimated using Eqn. 9 considering Li

pseudo as the true estimate. Additionally
it’s necessary to enforce that the temporal error on the Lagrangian estimates given by the LNN is
minimized by training progress. This is particularly clucial to ensure the validity assumption on the
invariant nature of the estimates formed under optimal model conditions. We estimate the temporal
convergence regularization term as shown in Eqn. 11, when the training dataset D contains N sample
points.

OTC =
1

N

N∑
i=1

∥∥eLi
pred − e−1Li

pred

∥∥2 (11)

Note that in most cases the scale of the quantity being approximated is unknown apriori. Since
stability of the numerical value of the Lagrangian should not depend on the relative scale variations
of the same between sample points, we follow a normalization procedure as outlined in Algorithm 1
for the purposes of estimating Eqn. 11 invariant of the relative scale of each Lagrangian estimate
(Li

pred).

Algorithm 1: Intermediate Estimate for Temporal Convergence Assessment

Data: No of significant digits : n, Model Prediction : Li
pred

Result: Obtain : tempLi
pred

Estimate Current Scale for Normalization
Ln = log10(

∣∣∣Li
pred

∣∣∣);
Ln = ⌊Ln⌋
Normalize the Output Using Scale Estimate
normLi

pred = Li
pred × 10−Ln ;

Upscale to Meet Precision Requirements
tempLi

pred = normLi
pred × 10n

Return tempLi
pred

Another factor to note is that the output values produced in the initial stages of neural optimiza-
tion procedures are largely transient, enforcing temporal convergence regularization to stabilize the
model predictions at such stages causes sub-optimal convergence. To ensure generality of the overall
algorithm we weight the temporal convergence loss term (OTC) with an training epoch dependent
factor that increases (linear scaling) with training progress.

µTC = G
(

Cepoch

Nepochs

)
(12)

A typical example of the scale factor used to relatively scale the temporal convergence component of
the objective is as shown in Equation 12. Where, Cepoch is the current epoch and G is a tunable scalar
hyper-parameter, that decides the overall relative weight of the temporal convergence component to
total objective loss of the LNN. The total objective loss for the LNN optimization can be written as
the relative weighted sum of the three loss components (Opred, Oreg, OTC) as shown in Eqn. 13.

Ototal = Opred + µTC ×OTC + λ×Oreg (13)

Also note that the presence of regularization terms in the objective function is directly compatible
with any Auto-grad based stochastic gradient strategy used to optimize the weights of the neural
network, since the expected value of the overall objective is still tending to zero in the asymptotic
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Algorithm 2: LNN training process with implicit precision enforcement.
Data: Span of Initial States : D = {qi, q̇i}, Precision : k
Result: Lagrangian Neural Network : LNN ( q, q̇ )
Initialize LNN model with random weights
Model (LNN ) = Create-New-Neural-Function-Approxmiator();
Iterate for no of epochs
for e = 1 to Nepochs do

Estimate Lpred using current LNN
eLpred = Forward Pass LNN ( q, q̇ );
Estimate q̈ using current eLpred

q̈pred = estimated using Equation 6 : L =e Lpred ;
Estimate State Variables : (qpred, q̇pred) using q̈pred
qpred, q̇pred = Perform Numerical Integration on : q̈pred ;
Estimate prediction Objective for state estimate
Opred obtained using Equation 7;
Conditional to initialize e−1Lpred estimate
if e == 1 then

Initialize the value of e−1Lpred
e−1Lpred = eLpred;
Backpropagate prediction loss on LNN weights : w
wj = wj − α ∂

∂wj
Opred(w);

Skip next steps in loop
continue;

end
Normalize predicted Lagrangian Estimates
e−1Lpred = Using Algorithm 1 : (e−1Lpred, k);
eLpred = Using Algorithm 1 : (e−1Lpred, k);
Calculate Temporal Convergence Objective
OTC = Using Equation 11 : (e−1Lpred, eLpred);
Calculate Precision Regularization Objective
Oreg = Using Equation 9 : (e−1Lpred, eLpred);
Calculate Total Objective Value
Ototal = Using Equation 13;
Backpropagate total loss on LNN weights : w
wj = wj − α ∂

∂wj
Ototal(w);

Reset the value of e−1Lpred
e−1Lpred = eLpred;

end
Return final converged LNN ( q, q̇ )

case. However the local behaviors of convergences such as rate of convergence and variance in
objective evolution can significantly change. Further theoretical analysis is required to gain more
clarity regarding the same.

3 EXPERIMENTS AND RESULTS

The experiments are carried out as a comparative analysis over the proposed setting and existing
alternatives, the analysis is conducted based on the relative error margins. Order four Runge-Kutta
method Tan & Chen (2012) with a tolerance set to 10−13 was used to estimate the acceptable ground
truth (Exact solution) for all systems under consideration. We also evaluate the trajectory deviations
of the best model under long timescale solution estimations for relative comparison of model set-
tings. Training and testing code for all models and settings were developed using the python JAX
framework Schoenholz & Cubuk (2020). All experiments were conducted using an 8 core 9th gen
intel i7 processor and a Tesla P4 GPU.
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3.1 DOUBLE PENDULUM

The ability to estimate trajectories with minimal deviations in systems under chaotic behaviour is
of prime interest for this study, hence, all experiments are conducted on two classical systems that
are proven to exhibit chaotic behaviour. Firstly we employ the present methodology to approximate
solutions to a classical system that is proven to have deterministic chaos behavior, which is double
pendulum. The dynamic equations of the double pendulum used here are as derived in Ref Assencio.

α1 =
l2
l1

(
m2

m1 +m2

)
cos(θ1 − θ2), α2 =

l1
l2

cos(θ1 − θ2) (14)

f1 = − l2
l1

(
m2

m1 +m2

)
θ̇2

2
sin(θ1−θ2)−

g

l1
sin(θ1), f2 =

l1
l2
θ̇1

2
sin(θ1−θ2)−

g

l2
sin(θ2) (15)

To write the governing equations of the double pendulum system in a simplified manner, the follow-
ing quantities {α1, α2, f1, f2} are introduced as shown in Equations 14 and 15. The equations of
motion of the double pendulum could now be written as shown in Equation 16.

θ̈1 =
f1 − α1f2
1− α1α2

, θ̈2 =
f2 − α2f1
1− α1α2

(16)

Note that the masses {m1, m2} and the lengths {l1, l2} decide the configuration of the system, for
all experimental settings we set them equal to unity and the acceleration due to gravity (g) is assumed
to be 9.8 m/s2. The Dataset (D) used to train the LNN on the given double pendulum system
consists of 6× 105 randomly sampled initial states in the format {qi = (θi1, θ

i
2), q̇

i = (θ̇1
i
, θ̇2

i
)}

and corresponding Lagrangian values here are estimated using Equation 17.

L =
1

2
(m1+m2)l

2
1θ̇

2
1 +

1

2
m2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos(θ1− θ2)+ (m1+m2)gl1 cos θ1+m2gl2 cos θ2

(17)

(a) Comparison of trajectory estimates obtained using
numerical and LNN based methods.

(b) Absolute error comparison between LNN based
solutions and numerical solver.

Figure 2: Comparative results obtained on the double pendulum system, starting from t = 0 and
given initial state : {q = (θ1 = 3π

7 , θ2 = 3π
4 ), q̇ = (θ̇1 = 0, θ̇2 = 0)}

3.2 HENON-HEILES

The second system considered for the evaluation on the applicability of the proposed method is
the Henon-Heiles system Hénon & Heiles (1964), the same models the non-linear motion of a star
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around a galactic center with the motion restricted to a plane. In it’s simplest form the Equation of
motion of the system can be described using Equation 18. Where, the system is described using the
position q = (x, y) and momentum coordinates q̇ = (px = ẋ, py = ẏ) of the star.

ṗx = −x− 2λxy, ṗy = −y − λ(x2 − y2) (18)

Note that λ is set to 1 for all experimental configurations of the Henon-Heiles system (widely applied
in the chaos literature). The Dataset (D) used to train the LNN on Henon-Heiles system consists
of 6 × 105 randomly sampled initial states in the format {qi = (xi, yi), q̇i = (pix, piy)} and
corresponding Lagrangian values can be estimated using Equation 19.

L =
1

2
(p2x + p2y)−

1

2
(x2 + y2)− x2y +

1

3
y3 (19)

(a) Comparison of trajectory estimates obtained using
numerical and LNN based methods.

(b) Absolute error comparison between LNN based
solutions and numerical solver.

Figure 3: Comparative results obtained on the Henon-Heiles system, starting from t = 0 and for
the given initial state {q = (x = 0.3, y = −0.3), q̇ = (px = 0.3, py = 0.15)}

4 CONCLUSIONS

In this a work a new augmented form of the Lagrangian Neural Network is introduced which can
extend the precision of the parametric Lagrangian to arbitrary extends. In our comparison on set-
ting the precision (k = 5) of the proposed method close to what can be achieved by the original
LNN formulation Cranmer et al. (2020), it can be seen that (Figures 2 and 3) the proposed method
obtains comparable solutions and error margins as compared to the LNN approach Cranmer et al.
(2020). Additionally we showed that the proposed method can scale the precision of the parametric
Lagrangian to arbitrary numerical precision (at the cost of a larger parametric space) and effectively
address the shortcomings associated with solution estimation of systems that exhibit deterministic
chaos behavior. The feasibility of the proposed method to extend the achievable numerical precision
due to computational limitations is discussed in Appendix C. Even-though there is a relative (but
feasible) increase in computational resources required, the method is proven to help in maintaining
the validity of the solution spaces of systems that exhibit chaotic behavior for longer time intervals.
From relative comparison with the existing literature (Appendix D) it can be seen that the proposed
approach preserves the arbitrary nature of required coordinates the LNN Cranmer et al. (2020) had,
with an addition of being able to preserve arbitrary precision standards on the solution space formed.
In future work we hope to evaluate the applicability of the same in chaotic systems with consider-
ably larger degrees of freedom and also extend the Lagrangian formulation so as to directly include
arbitrary configurations (instead of single) of physical systems in the parametric Lagrangain formed.
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A VANILLA PHYSICS INFORMED NEURAL NETWORKS

Algorithm 3 roughly outlines the original physics informed neural networks based solution esti-
mation strategyRaissi et al. (2017) used to estimate solutions of differential equations for a given
boundary/initial condition.

Algorithm 3: Solution Estimation of Differential Equations using PINN
Data: Domain : [a, b], Differential Equation : DE(f) = 0, Sufficient BCs
Result: pf(x) = Re-parameterise (FNN (x), BCs)
Initialize model with random weights
Model (FNN ) = Create-New-Neural-Function-Approxmiator();
Iterate for a set number of epochs
for i = 1 to Nepochs do

Predict solution pf(x) by re-parameterizing current estimate
pfpred(x) = Re-parameterise (FNN (x), BCs);
Estimate necessary gradients using automatic differentiation
pf

′

pred(x),
pf

′′

pred(x), ...;
Estimate prediction loss for current solution estimate
LD - obtained using Equation 1 within the domain;
Backpropagate prediction loss
wj+1 = wj − α ∂

∂wj
OD(w);

end
Return final converged solution pf(x)

It’s worth noting the solution estimated using Algorithm3 is only valid for the limited Domain :
[a, b] and a given boundary/initial condition(s) BCs. Although the method effectively addressed the
curse of dimensionalityKöppen (2000) as shown by finite element solvers, the limited validity of the
solution space is considered as a backdrop which Lagrangian Neural NetworksCranmer et al. (2020)
effectively address.

B HYPERPARAMETER SETTING USED

Additionally we outline the simplified network architecture tuning mechanism used in this study
Figure 4. The network architecture definition is simplified into three hyperparameters : Minimum
number of Neurons in the last hidden layer (Mn), Number of hidden layers (Mn) and Neuron fac-
tor (f). The exact value of these parameters are as mentioned in Table 1.
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Hyper Parameter Value

No. Epochs 100000
Batch Size 256
Objective Loss Equation 10
Optimizer Adam
Learning Rate 0.005
Adam - β1 0.9
Adam - β2 0.999
Adam - ϵ 1e-08
Network - (Mn, Mn, f) 16, 5, 2

Table 1: Hyper-parameter setting used in this study, all hyper-parameters were obtained by grid
search. Experiment tracking done through wandb.aiBiewald (2020).

.

Figure 4: Illustration of the scheme by which network architecture tuning was carried out.

C A NOTE ON NETWORK PARAMETERS

A crucial point of this study is the relative scalability of the introduced method. Although for our
experiments we have used binary representation of integers as the underlying numeral system, the
same is not unique and can be extended to numeral systems with larger integer bases. In which case
the number of branches n of the architecture used 1 could be substantially reduced.

Form Table 2 it can be seen that the number of trainable parameters for each branch (that predicts a
binary bit) in the architecture 1 can be counted as (2080 + 528 + 17 = 2625). An example scaling
of the proposed method could to improve the number of bits, say by the addition of another 16 bits
onto the current architecture. Note that the addition of 4̃2000 parameters per each 16 binary bits is
relevant although feasible computationally.
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Layer : (Branch-Type : No) Output Shape No Param

ReLU Linear : (Common : 1) [batch-size, 512] 2560
ReLU Linear : (Common : 2) [batch-size, 256] 131,328
ReLU Linear : (Common : 3) [batch-size, 128] 32,896
ReLU Linear : (Common : 4) [batch-size, 64] 8,256
ReLU Linear : (Branch : 1) x n [batch-size, 32] 2080 x n
ReLU Linear : (Branch : 2) x n [batch-size, 16] 528 x n
Sigmoid Linear : (Branch : 3) x n [batch-size, 1] 17 x n

Trainable params (max): 301,040 (n = 48)
Non-trainable params: 0
Total params (max): 301,040

Table 2: Layer-wise parameter count of the Neural Network used under high precision binary setting.

D ADDITIONAL LITERATURE COMPARISON

The proposed work builds upon the Lagrangian Neural Network formulation (LNN) Cranmer et al.
(2020), which enabled Lagrangian modelling of arbitrary dynamic systems represented in arbitrary
coordinates systems. The LNN formulation improved the flexibility of the DeLaN Lutter et al.
(2019) formulation by implicitly modelling the Lagrangian, improving the applicability of the same
and better obeyed conservation laws. Finzi et al. (2020) augmented the LNN Cranmer et al. (2020)
and Greydanus et al. (2019) formulations to work with Cartesian coordinates, which allowed the
explicit addition of common physical constraints that better defines any dynamic system of interest,
improving the data-efficiency and solution accuracy. Zhong et al. (2021) builds upon the Cartesian
coordinate based formulations proposed in Finzi et al. (2020) to add explicit contact modelling
constraints, which proved significant in improving the solution quality in dynamic systems for which
contact forces were of crucial interest. In this work we take a detour from the Cartesian coordinate
based formulations to directly imporve the LNN Cranmer et al. (2020) formulation by explicitly
conditioning on the precision of the solution estimates. By doing so the proposed approach illustrates
a scalable approach to achieve arbitrary precision standards, allowing for long term (time domain)
validity of solutions to systems that exhibit deterministic chaos.

Neural Networks Neural ODE HNNs
Greydanus et al. (2019)

DeLaN
Lutter et al. (2019)

LNN
Cranmer et al. (2020)

CHNN
Finzi et al. (2020)

CLNN
Finzi et al. (2020)

CM-CD-CHNN
Zhong et al. (2021)

CM-CD-LNN
Zhong et al. (2021) This Work

Model Dynamic Systems ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Differential Equation Solutions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exact Conservation Laws ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Learn from arbitrary coordinates ✓ ✓ ✓ ✓ ✓

Learn from Cartesian Coordinates ✓ ✓ ✓ ✓ ✓ ✓

Learn arbitrary Lagrangian ✓ ✓ ✓ ✓

Explicit system constraints ✓ ✓ ✓ ✓ ✓

Contact and Collision constraints ✓ ✓ ✓

Adaptable to other works ✓

Arbitrary precision constraints ✓

Long term solutions: chaos ✓

Table 3: Outline of the existing literature and their relative strengths on comparision with the work
proposed here.
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