
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARTIFACTLINKER: LINKING SCIENTIFIC ARTIFACTS
FOR AUTOMATIC SOTA DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific artifacts, such as models and benchmarks, are the foundation of ma-
chine learning research. With the rapid growth of repositories like HuggingFace,
researchers now have access to millions of high-quality artifacts contributed by
different researchers, yet the challenge remains: how can we automatically dis-
cover the state-of-the-art (SOTA) model for a given benchmark, fully leveraging
existing scientific artifacts? We address this task, abbreviated as automatic SOTA
discovery, by first modeling HuggingFace as an artifact graph, where nodes rep-
resent models or benchmarks and edges capture their relationships, labeled with
evaluation results. Within this graph, we formulate the automatic SOTA discovery
as the process of identifying new unobserved links with high potential perfor-
mance that could advance future research. To enable scalable and efficient dis-
covery of SOTA artifact links, we propose ARTIFACTLINKER, a two-stage frame-
work for automatic SOTA discovery: (1) prediction, which identifies promising
links with Graph Neural Networks (GNNs) or graph-augmented LLMs, and (2)
verification, which validates promising predicted links through reproducible and
automatic coding experiments and agents. To evaluate ARTIFACTLINKER, we fur-
ther propose ARTIFACTBENCH, collecting 1,372 models and 308 benchmarks for
systematically measuring prediction and verification performance and helping to
develop new SOTA discovery agents. Our key results indicate that the graph-based
prediction module in ARTIFACTLINKER is effective in prediction. Moreover, an
automatic verification pipeline in ARTIFACTLINKER can verify that the identi-
fied promising links indeed achieve high performance on existing benchmarks in
a fully automatic way.

1 INTRODUCTION

Scientific artifacts are the fundamental building blocks of research (Heumüller et al., 2020; Cooper
et al., 2022; Johnson et al., 2019). Codebases on the GitHub platform, papers available on arXiv,
models and benchmarks on the HuggingFace are all examples of such artifacts. Researchers who
targets at conducting reproducible and high-quality research share, interact with, and build upon
these artifacts, releasing new versions to demonstrate progress (Marić et al., 2023; Lissa et al.,
2020). In the machine learning community, a vast number of artifacts (>1M on HuggingFace) are
produced by researchers working in different domains (Castaño et al., 2024; Ait et al., 2023; Laufer
et al., 2025). This naturally raises an important question: How can we leverage existing artifacts to
enable automatic discovery? Addressing this question would (1) allow us to utilize diverse types
of artifacts better, and (2) promote scalable and automated scientific discovery based on existing
resources. We focus on the HuggingFace community as a case study, since it is one of the largest
and most active hubs of open-source machine learning artifacts and targeting at making experiments
more accessible and easy to run. With countless models, benchmarks, and libraries hosted on the
platform, it provides an invaluable foundation for exploring automated discovery.

Building an automatic discovery system on HuggingFace presents several challenges. First, the con-
cept of “automatic discovery” itself is ill-defined (Beel et al., 2025; Kitano, 2021; Kramer et al.,
2023)—what does it really mean for a system to conduct research autonomously and contribute
to future applications? Second, although HuggingFace provides convenient access to models and
datasets, building a fully automated and reproducible pipeline to verify predicted model perfor-
mance is still difficult (Urbanowicz et al., 2022). The usability of models and benchmarks remains

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Artifact Graph

Prediction

Verification

benchmodel

accuracy=?

link or not? Link
Prediction

Attribute
Prediction

Coding
Agent
Verification

F1=0.7

Link Discovery

metric

SOTA Discovery

A

B

C

For benchmark2,
performance A>B>C

1

2
code

collect improve

Figure 1: Overview of ARTIFACTLINKER. The overall automatic SOTA discovery process in AR-
TIFACTLINKER includes three main components: (1) artifact graph construction from HuggingFace
(models, benchmarks, evaluation relationships); (2) link prediction and verification as discovery
tasks; (3) state-of-the-art result filtering.

inconsistent, and many of them require specialized configurations to work properly and reproduce
research works built on them, even a frustrating process for human researchers (Mu et al., 2025).

Thinking HuggingFace as an artifact graph. Our key observation is that the Hugging Face com-
munity can be naturally represented as a graph (Chen et al., 2025; Laufer et al., 2025), where models
and benchmarks serve as nodes and their relationships form the edges. This perspective is moti-
vated by three characteristics of the platform: (1) it hosts a large collection of artifacts, including
both models and benchmarks; (2) many of these artifacts are high-quality and widely adopted by
researchers; and (3) it encodes rich relational information—for example, a model trained on one
dataset and evaluated on another with a reported F1 score. Such structured relationships are often
difficult to extract directly from research papers. Prior work has largely treated Hugging Face as an
information source for retrieval (Silva et al., 2025) or as an API hub (Shen et al., 2023). In contrast,
we highlight its value for dynamic discovery. Rather than viewing it as a static data source, we aim
to actively uncover new relationships—particularly model–benchmark interactions defined through
evaluation metrics. These interactions naturally form the edges of an artifact graph.

Linking artifacts as automatic SOTA discovery. Within this artifact graph, we define the task of
automatic discovery as finding links with state-of-the-art evaluation results between artifacts (mod-
els and benchmarks). Concretely, our goal is to build an auto-discovery engine that leverages the
existing artifact graph structures in the Hugging Face community and their existing relationships to
propose unfounded connections. In this way, automatic discovery becomes a well-defined problem:
identifying state-of-the-art links—such as models that could perform well on unexplored bench-
marks—thereby enabling systematic and scalable research progress.

Novel framework for automatic discovery. To operationalize the linking problem as automatic
discovery, we propose a novel two-stage framework: (1) prediction and (2) verification. Given the
vast number of artifacts in the graph and the high cost of verifying evaluation results, directly iden-
tifying the small subset of valuable links through execution alone is prohibitively costly. Our frame-
work addresses this challenge by first performing prediction, where we use strong priors to filter
out the majority of unlikely links—analogous to how experienced researchers prioritize promising
directions. In the verification stage, we employ a coding agent to test and validate the predicted
links, grounding hypotheses into real, reproducible results. This division of labor enables scalable
automatic discovery while ensuring that results remain empirically verifiable.

Main Discovery. Our work makes three key contributions: (1) we construct ARTIFACTBENCH, a
benchmark for prediction, verification, and automatic discovery, (2) we design a two-stage frame-
work named ARTIFACTLINKER for scalable link discovery, and (3) we demonstrate the practical
value of this system through a case study for potential link discovery.

2 RELATED WORK

HuggingFace platform utilization. HuggingFace has increasingly become a natural platform for
studying automatic discovery. Prior work has largely relied on static analyses of its artifacts and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

relationships to characterize trends in machine learning development (Chen et al., 2025; Laufer
et al., 2025). Beyond serving as a repository, HuggingFace has been conceptualized in multiple
ways: as a knowledge graph (Silva et al., 2025), an API hub (Shen et al., 2023), a model card
aggregator (Yang et al., 2024), and even an evolutionary tree (Gao & Gao, 2023). Other studies
have examined its community dynamics (Rahman et al., 2025; Castaño et al., 2023). In contrast,
our work moves beyond static description and trend analysis, which are the traditional focus of data
mining. We instead leverage the intrinsic graph structure of HuggingFace artifacts for grounded,
execution-based prediction and verification. This perspective highlights HuggingFace not only as a
repository of information but also as a foundation for building an automatic discovery engine—one
that functions as a research scaffold.

Large-scale prediction for accelerating discoveries. Accelerating scientific discovery has been a
major focus in domains such as drug discovery (Stokes et al., 2020; Serrano et al., 2024; Vis, an &
Negut, , 2024; You et al., 2022), materials science (Xie & Grossman, 2018; Butler et al., 2018), and
molecular design (Segler et al., 2018). In these settings, experimental verification is prohibitively
costly and time-consuming, which makes reliable prediction an indispensable first step. By nar-
rowing down the vast search space to a manageable set of promising candidates, prediction enables
researchers to prioritize what is worth validating in the lab. Without this predictive stage, discovery
in such domains would be prohibitively inefficient. Yet, these tasks remain highly flexible and diffi-
cult to evaluate systematically, often requiring research agents that can manage complex, multi-step
workflows. In contrast, our work focuses on a more tractable class of automatic discovery tasks.
By leveraging the intrinsic linking structure of HuggingFace artifacts, we perform prediction in a
structured research ecosystem with a large number of artifacts. This design preserves the bene-
fits of predictive discovery—guiding researchers toward promising directions—while avoiding the
prohibitive costs of physical experimentation.

LLM-based coding agent for reproducible experiment. Beyond prediction, an important charac-
teristic of machine learning research is its relatively high reproducibility (Bajwa, 2021). Unlike do-
mains such as biology or chemistry, where experimental verification is costly and time-consuming,
verification in machine learning is largely coding-based and thus far more accessible. This makes
it feasible to design coding execution tasks that reproduce experiments at scale. Prior work has
explored free-form discovery with generating executable code from research ideas (Lu et al., 2024;
Jansen et al., 2024; 2025), though evaluating the quality of such code remains difficult because the
underlying ideas or intents are often ambiguous. Other efforts have focused on reproducing experi-
ments within specific codebases (Starace et al., 2025; Kim et al., 2025; Seo et al., 2025; Siegel et al.,
2024; Xiang et al., 2025), a setting that is challenging and costly due to the complexity and idiosyn-
crasies of large software systems. In contrast, our task narrows the scope: we execute experiments
directly by combining a HuggingFace model artifact with a HuggingFace benchmark artifact under
a specified evaluation metric. This design preserves the reproducibility benefits of coding execution
while avoiding the complexity of open-ended idea generation or large codebase replication.

3 BUILDING ARTIFACT GRAPH FROM HUGGINGFACE

As the first stage of ARTIFACTLINKER, we first formally provide the definition of artifact graphs
that we conduct link discovery on. Furthermore, we provide details about how we extract the artifact
graph from the HuggingFace platform.

Definition of artifact graphs. We define the artifact graph as an undirected heterogeneous bipartite
graph G = (V, E), where the node set V = Vm ∪ Vd consists of two disjoint types of nodes:
model nodes Vm and benchmark nodes Vd. The edge set E ⊆ Vm × Vd × K encodes evaluation
relationships, where each edge (u, v, k) indicates that a model u ∈ Vm has an evaluation result on
a benchmark v ∈ Vd with score k = ϕ(u, v) defined by a metric function ϕ : Vm × Vd → K.
Besides edges, each benchmark node is associated with attributes such as metadata (e.g., download
counts) and task descriptions, while each model node is associated with metadata and specifications,
including architecture, number of parameters, and configuration. Such rich information on both
edges and nodes allows the graph to capture fine-grained performance relationships between models
and benchmarks.

Data collection. We construct edges in the artifact graph by extracting ground-truth evaluation
metrics from Hugging Face model cards. Specifically, we parse the README files to identify

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

model–dataset pairs along with their reported performance scores. Model and dataset names are
then matched to their canonical entries on the Hugging Face platform to ensure consistency, yielding
a clean set of evaluation edges. In total, this process produces |E| = 2,067 perfectly matched
evaluation records, which serve as edge attributes in the graph. For nodes, we collect both models
and benchmarks. Each model is described by its model card, dataset card, and metadata fields
(e.g., architecture, parameters, tags), while each dataset includes metadata such as domain, size, and
license. To ensure relevance, we retain only nodes that participate in at least one evaluation edge,
filtering out isolated artifacts.

Graph statistics. The final artifact graph contains |V| = 1,680 nodes, consisting of |Vm| = 1,372
models and |Vd| = 308 benchmarks, with |E| = 2,067 edges in total. The average degree of
a model node is d̄m = |E|

|Vm| ≈ 1.51, while that of a benchmark node is d̄d = |E|
|Vd| ≈ 6.71,

indicating a sparse bipartite structure. To quantify the community structure, we apply Louvain
community detection (Blondel et al., 2008) and compute the modularity, obtaining Q = 0.9233,
which highlights the presence of clear sub-community structures (e.g., NLP, audio, computer vision)
under sparse connectivity. Figure 4 shows the visualization of the artifact graph structure.

4 LINKING SCIENTIFIC ARTIFACTS FOR AUTOMATIC SOTA DISCOVERY

To describe the overall pipeline of ARTIFACTLINKER, we first formalize the problem definition of
automatic discovery using the artifact-graph formulation. We then introduce our scalable solution,
which addresses this problem via a two-stage prediction–verification framework.

4.1 DEFINITION OF AUTOMATIC SOTA DISCOVERY

Building on the artifact graph G = (V, E) defined in the previous section, each observed edge
(m, d) ∈ E is annotated with a performance score given by the metric function ϕ : Vm × Vd → K,
with realized score denoted as ϕ(m, d). The ultimate goal of automatic discovery is to identify a
missing link (m, d) /∈ E ,m ∈ Vm, d ∈ Vd such that the predicted score under the same evaluation
function ϕ(m, d) exceeds the best known performance on dataset d:

ϕ(m, d) > max
(m′,d)∈E

ϕ(m′, d). (1)

In other words, automatic SOTA discovery seeks model–benchmark pairs not yet connected in G
but expected to advance the state of the art on d. The input of our proposed ARTIFACTLINKER
framework is the artifact graph G while the target output is these state-of-the-art (m, d) pairs.

4.2 SCALABLE LINK DISCOVERY FRAMEWORK

Because verification through actual model evaluation is computationally expensive, scalability re-
quires a mechanism to reduce the number of candidates before evaluation. To this end, we design a
two-stage framework that factors the problem into two sub-problems: (1) prediction and (2) verifica-
tion. In the prediction stage, we first produce a ranked set of candidate pairs (m, d) by modeling the
score function s(m, d). From this ranking we derive the candidate set C, which contains those pairs
whose predicted scores are close to or surpass the current state of the art. In the verification stage,
each candidate in C is executed and evaluated in practice, yielding the refined set C∗ of validated
state-of-the-art discoveries. This design focuses computational resources on the most promising
candidates while ensuring correctness through real evaluation.

4.2.1 PREDICTION STAGE WITH SCORE FUNCTION MODELING

The goal of prediction is not only to estimate ϕ̂(m, d) for missing edges but also to rank all candidate
links by their discovery potential. Concretely, each prediction model defines a scoring function
s : Vm × Vd → R, which assigns each unseen pair (m, d) /∈ E a predicted performance. For each
model the objective is to approximate the score function ϕ̂(m, d) and produce rankings consistent
with observed edges. Since all of our prediction models utilize graph information, we formulate
them using a general GNN-style notation. Formally, each score function is defined as:

h(k+1)
v = AGG(k)

(
h(k)
v , {h(k)

u , euv : u ∈ N (v)}
)
, s(m, d) = ψ

(
h(L)
m ,h

(L)
d

)
, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where h
(k)
v is a model’s internal representation of node v after k iterations aggregated over all rep-

resentations h(k)
u constructed from neighboring nodes u ∈ N (v). The final score is s(m, d) is then

defined over the final node representations h(L)
m and h

(L)
d transformed via some function ψ. As we

detail below, different instantiations of AGG and ψ lead to different modeling strategies.

LLM-based modeling. These models are based on ordinary prompt-based frozen LLMs. Following
the TextGNN formulation presented in Yu et al. (2024), we represent each h

(k)
v directly with text

instead of embeddings. The aggregation function AGG is instantiated as a one-layer concat operator
that serializes neighborhood information into a textual prompt:

h(k+1)
v = CONCAT

(
h(k)
v , {h(k)

u , euv : u ∈ N (v)}
)
, s(m, d) = LLM

(
h(L)
m ,h

(L)
d

)
. (3)

Here, h(0)
v = xv corresponds to the textual description of node v. The CONCAT function converts all

neighbor attributes into natural language and concatenates them into a serialized context. The LLM
then consumes these prompts for m and d, jointly reasoning over their neighborhoods to predict
s(m, d). We typically adopt a single TextGNN layer due to the limited context window size of
LLMs.

GNN-based modeling. Alternatively, we instantiate AGG using standard message passing in Graph
Neural Networks. In this setting, node features are initialized as h(0)

v = EMBED(xv) from the textual
description xv , and representations are updated by:

h(k+1)
v = σ

(
W (k)h(k)

v + AGG(k)
(
{W (k)h(k)

u , euv : u ∈ N (v)}
))
, s(m, d) = MLP

(
[h(L)

m ∥h(L)
d]

)
.

(4)
Here, AGG(k)(·) can be implemented with classical GNN operators such as GATv2Conv (Brody
et al., 2021), which applies dynamic attention weights to neighbor embeddings. The edge scoring
function s(m, d) is then computed by an MLP over the concatenation of the final node embeddings
h
(L)
m and h

(L)
d . In contrast to the LLM models above, this model is tuned using a training set of

positive and negative links mined from the original artifact graph (see full details in Appendix. B.1)

Ranking with score function. Given different modeling choices of s(m, d), the prediction stage
first produces a ranked list of all unseen pairs (m, d) /∈ E , ordered by their predicted score s(m, d).
This ranking reflects the discovery potential of each candidate, with higher scores indicating stronger
likelihood of advancing the state of the art.

From this ranked list, we further define the set of promising candidates as

C =

{
(m, d)

∣∣∣∣ (m, d) /∈ E , m ∈ Vm, d ∈ Vd, s(m, d) ≥ max
(m′,d)∈E

ϕ(m′, d) − δ

}
, (5)

where δ ≥ 0 is a tolerance parameter and ϕ(m′, d) is the observed evaluation score of model m′

on dataset d. In other words, the score function s(m, d) serves a dual purpose: it provides a global
ranking over all candidates, and it defines a thresholded subset C to guide the verification stage by
focusing computation on the most promising discoveries.

4.2.2 VERIFICATION STAGE WITH MULTI-STAGE PLANNING

Given the candidate set C with a relatively small size, the goal of verification is to execute and
collect the concrete evaluation results. We verify each pair (m, d) with an agentic workflow, RE-
ACTLINKER, that plans, generates, executes, and refines code for automatic benchmarking at scale.
REACTLINKER performs node-first validation before any edge-level run via three sub-components:
(1) benchmark checker checkd (resolve dataset on HuggingFace, validate version/splits, load a shard,
and materialize examples), (2) model checker checkm (resolve model, verify dependencies/device,
and dry-forward to confirm I/O contracts), and (3) metric checker checkk (instantiate the evalua-
tion metric and sanity-check on synthetic (ŷ, y)). Each stage within REACTLINKER is a ReAct
loop (Yao et al., 2023). Only if all three checks pass does REACTLINKER compose the pipeline
(model → dataset → metric) and run the edge evaluation to obtain a real score:

s∗(m, d) = REACTLINKER
(
xm,xd

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1
0
01

0

Link prediction Link ranking

0.76

Attribute prediction Attribute ranking

1
2

3

Figure 2: Four types of evaluation tasks for prediction. From left to right: (1) 0/1 binary link
prediction between existing edges and negative sampled edges; (2) link ranking between existing
edges and negative sampled edges; (3) attribute prediction to conduct regression on a single existing
edge; (4) attribute ranking between edges with smaller attributes and edges with higher attributes.

SOTA selection with execution. We keep only candidates that pass all node checks, execute suc-
cessfully, and beat the best known score on d:

C∗ =
{
(m, d)∈C

∣∣ s∗(m, d)≥ max
(m′,d)∈E

ϕ(m′, d)
}
.

This multi-stage agnetic workflow design isolates configuration errors early, enables caching of
validated nodes across pairs, and avoids wasted full runs—making verification robust and scalable
under the standardized structure of HuggingFace artifacts.

5 EVALUATING LINK DISCOVERY WITH EDGE MASKING

In Section §4, we described how ARTIFACTLINKER is designed and used to perform automatic
SOTA link discovery. However, beyond training and inference, we also need systematic evaluation
tasks for both the prediction and verification stages. To this end, we design a mask-and-predict/verify
protocol based on the artifact graph. Instead of running inference in the real world, we directly
sample missing links (m, d) /∈ E and evaluate them on ARTIFACTBENCH.

For evaluation, we consider two forms of masking. (i) Edge masking: a subset of observed edges
Emask ⊂ E is hidden from the graph, requiring the model to recover their existence. (ii) Attribute
masking: for another subset of edges, we keep the edge structure visible but hide their associated
attributes (e.g., evaluation scores), requiring the model to predict or rank the missing values.

Prediction evaluation. Given the masked graph G \ Emask, we benchmark prediction performance
with four tasks, as shown in Figure 2. (1) Link prediction (edge masking): determine whether a
masked edge (m, d) ∈ Emask exists, i.e., ŷm,d = 1[s(m, d) > τ], where s(m, d) is the predicted
score function. (2) Link ranking (edge masking): for each dataset d, rank all candidate models m
by s(m, d) and evaluate the rank of the true masked edges (m, d) ∈ Emask. (3) Attribute prediction
(attribute masking): for each edge (m, d) with hidden attributes, predict its score ϕ̂(m, d). (4)
Attribute ranking (attribute masking): for each dataset d, rank all candidate models m by predicted
attributes ϕ̂(m, d) and compare this ordering against ground-truth scores.

Verification evaluation. Finally, we define the reproduction task in the verification stage, which
also corresponds to attribute masking. Here, the coding agent re-evaluates edges (m, d) with hid-
den attributes to measure consistency between predicted scores s(m, d) and execution-based results
ϕ∗(m, d). Formally, consistency is satisfied if

∣∣ s(m, d)−ϕ∗(m, d) ∣∣ ≤ δ, where δ is a tolerance pa-
rameter defined for the same metric. This criterion checks whether prediction and execution agree up
to an acceptable margin, ensuring that verification faithfully reproduces benchmarked performance.

6 EXPERIMENTAL SETTINGS

Prediction task settings. We split the overall artifact graph into train, development, and test edge
splits based on a 70%-10%-20% ratio. This leads to 1,448 edges in the train split, 206 edges in the
development split, and 413 edges in the test split.

Prediction baseline settings. Besides the LLM-based TextGNN settings and GNN-based settings,
we include multiple baseline settings for comparison: (1) random, where for both the prediction and
ranking tasks we generate random results as a baseline; (2) metadata, where we directly use metadata
of the artifacts such as downloading times as a feature for prediction; (3) node degree, where we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Link prediction results. We randomly
sample an equal number of negative samples
from the artifact graph for binary 0/1 link pre-
diction and keep existing edges as positive sam-
ples. More information about baselines is avail-
able in Section §6.

Method F1 P R Acc

Random 50.0 50.0 50.0 50.0
Metadata 52.2 58.6 47.0 56.9
Node degree 87.2 91.5 83.3 87.8

GPT-4o 64.6 95.2 48.9 73.2
Qwen2.5-72B 77.3 94.6 65.4 80.8
o3 58.8 96.7 42.3 70.4

GPT-4o+graph 83.4 90.3 77.5 84.6
Qwen2.5+graph 77.3 94.6 65.4 80.8
o3+graph 63.1 97.7 46.6 72.8
GATv2Conv 88.4 95.8 82.1 89.2

Table 2: Link ranking results. We build
a ranking task for each benchmark and sam-
ple 10 more as negative candidates for each
benchmark. More information about baselines
is available in Section §6. R@k refers to
Recall@k and P@k refers to Precision@k.

Method R@1 R@5 P@1 P@5

Random 6.9 38.9 20.0 21.2
Metadata 6.7 38.1 17.8 19.4
Node degree 17.7 61.2 41.1 33.3

GPT-4o 49.2 86.0 82.8 45.0
Qwen2.5-72B 47.4 86.3 83.2 44.8
o3 52.2 87.2 87.6 45.6

GPT-4o+graph 53.7 90.6 89.9 47.4
Qwen2.5+graph 54.8 90.7 88.9 44.1
o3+graph 54.1 89.0 91.7 47.6
GATv2Conv 36.9 84.2 55.8 34.0

utilize graph-related structural features like node degree for prediction; (4) LLM baselines, where
we only provide the model information and benchmark information to an LLM (we use GPT-4o
(OpenAI et al., 2024), Qwen2.5-72B (Qwen et al., 2025), and o3) and ask them to directly predict.

Verification task settings. We construct the verification benchmark by selecting model–benchmark
pairs from the artifact graph that include reported scores (e.g., F1, accuracy, BLEU, ROUGE). For
each pair, we test whether the reported result can be reproduced through execution-based evalu-
ation, given the model and benchmark specifications. To capture varying levels of difficulty, we
define two splits: (i) a hard split, consisting of large models, complex benchmarks, and metrics that
are more challenging to reproduce (e.g., MMLU with Mistral-7B); and (ii) an easy split, covering
straightforward settings such as evaluating BERT-based models on SST-2 with accuracy.

Verification baseline settings. As baselines, we adopt ReAct (Yao et al., 2023), which employs
a single coding agent that iteratively debugs execution errors. Importantly, this baseline does not
include HuggingFace-specific design choices, but simply uses model and benchmark descriptions
as inputs. For a fair comparison, both ReAct and our proposed ReActLinker use GPT-4o as the
underlying backbone model.

7 EXPERIMENTAL RESULTS

7.1 EXPERIMENTAL RESULTS ON PREDICTION TASKS

Structural information from the graph is useful for prediction. Across all tasks—including link
prediction (Table 1), link ranking (Table 2), attribute prediction (Table 3), and attribute ranking
(Table 4)—we find that incorporating neighborhood information into the LLM-based score func-
tion substantially improves performance. The gains are especially pronounced for link prediction
and attribute prediction: for example, adding 1-hop neighborhood information increases GPT-4o’s
F1 from 64.6 to 83.4 in link prediction and reduces MAE from 8.9 to 5.0 in attribute prediction.
Improvements on ranking tasks are smaller, likely because LLMs already receive rich contextual
information about candidate items. Nevertheless, the effect is consistent across different backbone
models (GPT-4o, Qwen2.5-72B, and o3), validating the utility of the artifact graph.

GNN-based models achieve strong performance. Beyond LLM-based modeling, we also evaluate
GNN-based methods using a simple 3-layer GATv2Conv. Node embeddings are initialized with
Voyage-31 embeddings. Surprisingly, this lightweight GNN achieves competitive or even state-of-
the-art performance. For instance, it matches GPT-4o on attribute prediction MAPE (8.9 vs. 9.0)
and outperforms all methods on link prediction. While GNNs are relatively weaker on ranking tasks
compared with LLM-based approaches, they remain far stronger than baseline heuristics. These

1https://docs.voyageai.com/docs/embeddings

7

https://docs.voyageai.com/docs/embeddings

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Attribute prediction results. We
focus on predicting the attributes on existing
edges. MSE refers to Mean Squared Error,
MAE refers to Mean Absolute Error, MAPE
refers to Mean Absolute Percentage Error, and
R2 refers to Coefficient of Determination.

Method MSE MAE MAPE R2

Global mean 3.48 14.9 26.3 -0.5
Local mean 1.94 8.6 14.7 43.9

GPT-4o 1.84 8.9 16.6 46.9
Qwen2.5-72B 2.37 10.5 20.7 31.5
o3 2.47 9.1 13.9 28.7

GPT-4o+graph 0.90 5.0 9.0 74.1
Qwen2.5+graph 1.23 6.5 11.9 70.2
o3+graph 1.05 4.1 6.8 69.3
GATv2Conv 1.32 6.0 8.9 49.3

Table 4: Attribute ranking results. Similar to
link ranking tasks, we build an attribute ranking
task for each benchmark. Only models report-
ing the same metric are included for ranking.
We focus on ranking the attributes on existing
edges instead of sampling negative ones.

Method NDCG@1 Hit@1 Hit@5

Random 27.4 58.5 47.8
Node degree 36.7 11.3 56.5

GPT-4o 61.8 43.4 82.6
Qwen2.5-72B 58.6 35.9 82.6
o3 58.1 36.5 77.3

GPT-4o+graph 62.0 35.9 87.0
Qwen2.5+graph 62.3 38.5 81.8
o3+graph 60.5 37.7 78.3
GATv2Conv 41.8 31.0 40.0

results suggest that structural patterns in the research community graph encode valuable signals for
predicting model–dataset performance.

Overall: prediction and ranking tasks defined on the artifact graph are valuable but challeng-
ing. Our experiments show that, apart from link prediction (where random negative sampling is
used), other sub-tasks—link ranking, attribute prediction, and attribute ranking—still leave substan-
tial room for improvement. We argue that progress on this benchmark will be crucial for enabling
scalable automatic discovery.

7.2 EXPERIMENTAL RESULTS ON VERIFICATION TASKS

Specialized workflows improve robustness under hard cases. As shown in Figure 3, specialized
multi-stage workflows influence both the execution rate and successful reproduction rate. While
execution rate may decrease a lot under the easy cases (from 81.0 to 63.0)—since the agent ex-
plores more possibilities and can become stuck at certain stages—the overall reproduction success
improves in harder scenarios. In particular, our proposed ReActLinker can handle stage-specific
errors independently, leading to substantially better performance in challenging cases.

Overall: verification on the artifact graph is valuable but cannot be solved trivially. Despite
HuggingFace providing a convenient infrastructure for running models and benchmarks, current
coding agents still struggle to reliably reproduce reported results. Our findings highlight both the
promise and the limitations of verification tasks on the artifact graph: they are valuable for evaluating
agent capabilities, yet they remain unsolved in practice. Building more robust auto-evaluation agents
for HuggingFace thus represents an important future direction for the ML research community.

8 DISCUSSION

Q1: What is the role of node attributes in the artifact graph? Node attributes provide essen-
tial context about models and benchmarks beyond evaluation results. We extract attributes such as
training methods, architectures, and benchmark statistics using LLMs, which serve two purposes.
First, for LLM-based predictors, these attributes activate relevant parameter knowledge and support
reasoning by analogy (e.g., if two models share architecture and training setup, their expected per-
formance is similar). For instance, an LLM may reason: “Since model A achieved 0.979 accuracy
on CIFAR-10, model B with the same architecture and training regime is expected to reach 0.978.”
Second, for GNN-based predictors, textual attributes are embedded using state-of-the-art embedding
models (e.g., voyage-3) to capture similarity between models and datasets. Empirically, when node
features are initialized randomly instead of using text embeddings, the MSE of attribute prediction
worsens from 0.01 to 0.22—showing that attributes are crucial for learning meaningful patterns.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Exec rate (easy)

Success rate (easy)

Exec rate (hard)

Success rate (hard)
0

20

40

60

80

100

P
er

ce
nt

ag
e

81.0

56.0

1.3 0.0

63.0

43.0

14.3

1.3

Exp. Setting
ReAct
ReAct-linker

Figure 3: Success rate and execution rate for
verification tasks on the artifact graph. Exe-
cution rate indicates whether code snippets gen-
erated by agents can be executed or not. Success
rate indicates whether code snippets generated
by agents can provide close performance com-
pared with reported ones.

ImageNet-1k MMLU
GSM8K

LLaMA3.2

Figure 4: Visualization of the artifact graph.
Larger dots represent the benchmarks and the
smaller dots represent the models. Both of them
are collected from the HuggingFace Hub. Dif-
ferent node colors represent models and datasets
in different domains. A famous benchmark like
ImageNet-1k is evaluated by multiple models.

Q2: Why are GNNs useful for predictions? GNNs are effective because machine learning com-
munities exhibit strong and predictable structural patterns. Popular benchmarks (e.g., CoNLL2003
for NER or CNN/DailyMail for summarization) attract consistent evaluation across related models,
while models sharing similar architectures or training methods tend to achieve similar performance.
The extreme central point for ImageNet-1k in Figure 4 is a strong evidence for that. These structural
regularities allow GNNs to achieve performance close to LLM-based predictors despite relying only
on graph structure and local attributes and without complicated reasoning. In short, GNNs succeed
because the artifact graph encodes community-wide regularities that are highly predictive of links.

9 CASE STUDY

To illustrate the value of ARTIFACTLINKER, we run it on SQuAD-v22. We first sample candidate
models for link prediction and then perform attribute prediction on the exact-match (EM) metric.
Our predictor ranks Llama-3-70B-Instruct highest with a predicted EM of 0.86, consistent with re-
ported results. Moreover, executing smaller high-ranked candidates reveals that SGPT-125M (tuned
on MS MARCO) achieves an EM of 0.41 on SQuAD-v2—surprisingly strong for a 125M model not
explicitly trained on SQuAD-v2. These verified findings provide actionable insight even when they
are not SOTA. However, large-scale verification remains the primary bottleneck: end-to-end
execution is constrained by environment setup and dependency drift, heterogeneous evaluation har-
nesses, API/rate limits, flaky runs, and substantial compute and orchestration overheads. In practice,
fully automated, high-throughput verification at community scale is still an open systems challenge.

10 CONCLUSION

In this paper, we introduce ARTIFACTLINKER, a framework for turning HuggingFace into an engine
for automatic SOTA discovery. By modeling models and benchmarks as an artifact graph, we define
the task of discovering valuable missing links that reveal promising model–benchmark interactions.
To address this, we propose a two-stage predict-and-verify framework, where prediction identifies
promising candidates and verification conducts execution-based experiments to validate their perfor-
mance. We further develop ARTIFACTBENCH, which provides systematic tasks for assessing both
prediction and verification. Our results show that graph-based prediction is effective for surfacing
high-potential links, and that automated verification can reproduce many benchmark results with-
out human intervention. Looking ahead, we envision extending this direction to dynamically grow
the artifact graph by incorporating new models and benchmarks, enabling continual and scalable
scientific discovery.

2https://huggingface.co/datasets/rajpurkar/squad_v2

9

https://huggingface.co/datasets/rajpurkar/squad_v2

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details of our method and baselines are given in Section §6 and Appendix §B.
We will release our benchmark and the codebase at the time of publication.

ETHICS STATEMENT

Our work focuses on building an automatic discovery framework over open-source artifacts avail-
able on HuggingFace. All experiments are conducted exclusively on publicly released models and
benchmarks that are freely accessible to the research community. We do not introduce any new
human or sensitive data, nor do we attempt to deanonymize or misuse existing artifacts.

The goal of our framework is to advance automated, reproducible, and scalable scientific discovery,
and to help researchers more efficiently identify promising model–benchmark interactions. Never-
theless, we acknowledge that automated benchmarking may propagate existing biases and limita-
tions present in the underlying models and datasets. To mitigate this, we emphasize transparency
in data collection and reproducibility in our verification pipeline. We encourage the community to
view our work as a step toward building more reliable, equitable, and responsible auto-discovery
systems, rather than a replacement for human oversight.

REFERENCES

Adem Ait, Javier Luis Cánovas Izquierdo, and Jordi Cabot. On the suitability of hugging face hub for
empirical studies. ArXiv, abs/2307.14841, 2023. URL https://api.semanticscholar.
org/CorpusId:260203268.

W. Bajwa. A guide to computational reproducibility in signal processing and machine learning
[tips & tricks]. IEEE Signal Processing Magazine, 40:141–151, 2021. URL https://api.
semanticscholar.org/CorpusId:246864036.

Joeran Beel, Min-Yen Kan, and Moritz Baumgart. Evaluating sakana’s ai scientist for autonomous
research: Wishful thinking or an emerging reality towards ’artificial research intelligence’
(ari)? ArXiv, abs/2502.14297, 2025. URL https://api.semanticscholar.org/
CorpusId:276482965.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine
learning for molecular and materials science. Nature, 559(7715):547–555, 2018.

Joel Castaño, Silverio Martı́nez-Fernández, Xavier Franch, and Justus Bogner. Analyzing the
evolution and maintenance of ml models on hugging face. 2024 IEEE/ACM 21st Interna-
tional Conference on Mining Software Repositories (MSR), pp. 607–618, 2023. URL https:
//api.semanticscholar.org/CorpusId:265351447.

Joel Castaño, Rafael Cabañas, Antonio Salmer’on, David Lo, and Silverio Mart’inez-Fern’andez.
How do machine learning models change? ArXiv, abs/2411.09645, 2024. URL https://
api.semanticscholar.org/CorpusId:274023512.

Qiaosheng Chen, Kaijia Huang, Xiaofang Zhou, Weiqing Luo, Yuanning Cui, and Gong Cheng.
Benchmarking recommendation, classification, and tracing based on hugging face knowledge
graph. In Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, 2025. URL https://api.semanticscholar.org/CorpusId:
278886655.

10

https://api.semanticscholar.org/CorpusId:260203268
https://api.semanticscholar.org/CorpusId:260203268
https://api.semanticscholar.org/CorpusId:246864036
https://api.semanticscholar.org/CorpusId:246864036
https://api.semanticscholar.org/CorpusId:276482965
https://api.semanticscholar.org/CorpusId:276482965
https://api.semanticscholar.org/CorpusId:265351447
https://api.semanticscholar.org/CorpusId:265351447
https://api.semanticscholar.org/CorpusId:274023512
https://api.semanticscholar.org/CorpusId:274023512
https://api.semanticscholar.org/CorpusId:278886655
https://api.semanticscholar.org/CorpusId:278886655

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ned Cooper, Tiffanie N. Horne, Gillian R. Hayes, Courtney Heldreth, Michal Lahav, Jess Holbrook,
and Lauren Wilcox. A systematic review and thematic analysis of community-collaborative ap-
proaches to computing research. Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, 2022. URL https://api.semanticscholar.org/CorpusId:
248419416.

Sarah Gao and Andrew Gao. On the origin of llms: An evolutionary tree and graph for 15, 821 large
language models. ArXiv, abs/2307.09793, 2023. URL https://api.semanticscholar.
org/CorpusId:259983028.

R. Heumüller, Sebastian Nielebock, J. Krüger, and F. Ortmeier. Publish or perish, but do not forget
your software artifacts. Empirical Software Engineering, 25:4585 – 4616, 2020. URL https:
//api.semanticscholar.org/CorpusId:220070385.

Peter Alexander Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi, Bod-
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. Discoveryworld: A virtual environ-
ment for developing and evaluating automated scientific discovery agents. ArXiv, abs/2406.06769,
2024. URL https://api.semanticscholar.org/CorpusId:270380311.

Peter Alexander Jansen, Oyvind Tafjord, Marissa Radensky, Pao Siangliulue, Tom Hope, Bhavana
Dalvi, Bodhisattwa Prasad Majumder, D. S. Weld, and Peter Clark. Codescientist: End-to-end
semi-automated scientific discovery with code-based experimentation. ArXiv, abs/2503.22708,
2025. URL https://api.semanticscholar.org/CorpusId:277451644.

Seth Johnson, F. Samsel, G. Abram, Daniel L. Olson, Andrew J. Solis, Bridger Herman, P. Wolfram,
C. Lenglet, and Daniel F. Keefe. Artifact-based rendering: Harnessing natural and traditional vi-
sual media for more expressive and engaging 3d visualizations. IEEE Transactions on Visualiza-
tion and Computer Graphics, 26:492–502, 2019. URL https://api.semanticscholar.
org/CorpusId:199001020.

Gyeongwon James Kim, Alex Wilf, Louis philippe Morency, and Daniel Fried. From reproduction
to replication: Evaluating research agents with progressive code masking. ArXiv, abs/2506.19724,
2025. URL https://api.semanticscholar.org/CorpusId:280000499.

H. Kitano. Nobel turing challenge: creating the engine for scientific discovery. NPJ Systems Biology
and Applications, 7, 2021. URL https://api.semanticscholar.org/CorpusId:
235476723.

Stefan Kramer, Mattia Cerrato, S. Džeroski, and R. King. Automated scientific discovery: From
equation discovery to autonomous discovery systems. ArXiv, abs/2305.02251, 2023. URL
https://api.semanticscholar.org/CorpusId:258461620.

Benjamin Laufer, Hamidah Oderinwale, and Jon Kleinberg. Anatomy of a machine learning
ecosystem: 2 million models on hugging face. ArXiv, abs/2508.06811, 2025. URL https:
//api.semanticscholar.org/CorpusId:280566415.

C. J. Lissa, A. Brandmaier, Loek Brinkman, Anna-Lena Lamprecht, Aaron Peikert, Marijn E. Stru-
iksma, and Barbara M. I. Vreede. Worcs: A workflow for open reproducible code in science.
Data Sci., 4:29–49, 2020. URL https://api.semanticscholar.org/CorpusId:
234357246.

Chris Lu, Cong Lu, R. T. Lange, J. Foerster, Jeff Clune, and David Ha. The ai scientist: Towards
fully automated open-ended scientific discovery. ArXiv, abs/2408.06292, 2024. URL https:
//api.semanticscholar.org/CorpusId:271854887.

T. Marić, Dennis Gläser, Jan-Patrick Lehr, Ioannis Papagiannidis, B. Lambie, Christian H. Bischof,
and Dieter Bothe. A pragmatic workflow for research software engineering in computational
science. ArXiv, abs/2310.00960, 2023. URL https://api.semanticscholar.org/
CorpusId:263605602.

Yanzhou Mu, Rong Wang, Juan Zhai, Chunrong Fang, Xiang Chen, Jiacong Wu, An Guo, Ji-
awei Shen, Bingzhuo Li, and Zhenyu Chen. Understanding llm-centric challenges for deep
learning frameworks: An empirical analysis. In unknown, 2025. URL https://api.
semanticscholar.org/CorpusId:279403056.

11

https://api.semanticscholar.org/CorpusId:248419416
https://api.semanticscholar.org/CorpusId:248419416
https://api.semanticscholar.org/CorpusId:259983028
https://api.semanticscholar.org/CorpusId:259983028
https://api.semanticscholar.org/CorpusId:220070385
https://api.semanticscholar.org/CorpusId:220070385
https://api.semanticscholar.org/CorpusId:270380311
https://api.semanticscholar.org/CorpusId:277451644
https://api.semanticscholar.org/CorpusId:199001020
https://api.semanticscholar.org/CorpusId:199001020
https://api.semanticscholar.org/CorpusId:280000499
https://api.semanticscholar.org/CorpusId:235476723
https://api.semanticscholar.org/CorpusId:235476723
https://api.semanticscholar.org/CorpusId:258461620
https://api.semanticscholar.org/CorpusId:280566415
https://api.semanticscholar.org/CorpusId:280566415
https://api.semanticscholar.org/CorpusId:234357246
https://api.semanticscholar.org/CorpusId:234357246
https://api.semanticscholar.org/CorpusId:271854887
https://api.semanticscholar.org/CorpusId:271854887
https://api.semanticscholar.org/CorpusId:263605602
https://api.semanticscholar.org/CorpusId:263605602
https://api.semanticscholar.org/CorpusId:279403056
https://api.semanticscholar.org/CorpusId:279403056

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol,
Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Con-
neau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,
Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim
Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe
Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel
Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Work-
man, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas
Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail
Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Ran-
dall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmat-
ullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino,
Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez
Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir
Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal
Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom
Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi,
Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Mohammad Shahedur Rahman, Peng Gao, and Yuede Ji. Hugginggraph: Understanding the
supply chain of llm ecosystem. ArXiv, abs/2507.14240, 2025. URL https://api.
semanticscholar.org/CorpusId:280270972.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic ai. Nature, 555(7698):604–610, 2018.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. ArXiv, abs/2504.17192, 2025. URL
https://api.semanticscholar.org/CorpusId:278033490.

D. Serrano, F. C. Luciano, B. J. Anaya, Baris Ongoren, Aytug Kara, Gracia Molina, Bianca I
Ramirez, Sergio A Sánchez-Guirales, Jesus A. Simon, Greta Tomietto, Chrysi Rapti, Helga K.
Ruiz, Satyavati Rawat, Dinesh Kumar, and A. Lalatsa. Artificial intelligence (ai) applications in
drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics, 16,
2024. URL https://api.semanticscholar.org/CorpusId:273366814.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dong-
sheng Li, and Y. Zhuang. Taskbench: Benchmarking large language models for task au-
tomation. ArXiv, abs/2311.18760, 2023. URL https://api.semanticscholar.org/
CorpusId:265506220.

Zachary S. Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. Trans. Mach. Learn. Res., 2024, 2024. URL https://arxiv.org/pdf/
2409.11363.pdf.

Kanishka Silva, Marcel R. Ackermann, Heike Fliegl, G. Gesese, Fidan Limani, Philipp Mayr, Pe-
ter Mutschke, A. Oelen, Muhammad Asif Suryani, Sharmila Upadhyaya, Benjamin Zapilko,
Harald Sack, and Stefan Dietze. Research knowledge graphs in nfdi4datascience: Key ac-
tivities, achievements, and future directions. ArXiv, abs/2508.02300, 2025. URL https:
//api.semanticscholar.org/CorpusId:280421789.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

R. Urbanowicz, Robert F. Zhang, Yuhan Cui, and Pranshu Suri. Streamline: A simple, transpar-
ent, end-to-end automated machine learning pipeline facilitating data analysis and algorithm
comparison. In Genetic Programming Theory and Practice, 2022. URL https://api.
semanticscholar.org/CorpusId:250048789.

13

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusId:280270972
https://api.semanticscholar.org/CorpusId:280270972
https://api.semanticscholar.org/CorpusId:278033490
https://api.semanticscholar.org/CorpusId:273366814
https://api.semanticscholar.org/CorpusId:265506220
https://api.semanticscholar.org/CorpusId:265506220
https://arxiv.org/pdf/2409.11363.pdf
https://arxiv.org/pdf/2409.11363.pdf
https://api.semanticscholar.org/CorpusId:280421789
https://api.semanticscholar.org/CorpusId:280421789
https://api.semanticscholar.org/CorpusId:250048789
https://api.semanticscholar.org/CorpusId:250048789

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A. Vis, an and I. Negut, . Integrating artificial intelligence for drug discovery in the context of revo-
lutionizing drug delivery. Life, 14, 2024. URL https://api.semanticscholar.org/
CorpusId:267570328.

Yanzheng Xiang, Hanqi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench:
Benchmarking llms in agent-driven algorithmic reproduction from research papers. ArXiv,
abs/2504.00255, 2025. URL https://api.semanticscholar.org/CorpusId:
277467991.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Xinyu Yang, Weixin Liang, and James Zou. Navigating dataset documentations in ai: A large-
scale analysis of dataset cards on hugging face. ArXiv, abs/2401.13822, 2024. URL https:
//api.semanticscholar.org/CorpusId:267212153.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yujie You, Xin Lai, Ying Pan, Huiru Zheng, J. Vera, Suran Liu, Senyi Deng, and Le Zhang. Artificial
intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted
Therapy, 7, 2022. URL https://doi.org/10.1038/s41392-022-00994-0.

Haofei Yu, Zhaochen Hong, Zirui Cheng, Kunlun Zhu, Keyang Xuan, Jinwei Yao, Tao Feng,
and Jiaxuan You. Researchtown: Simulator of human research community. arXiv preprint
arXiv:2412.17767, 2024.

14

https://api.semanticscholar.org/CorpusId:267570328
https://api.semanticscholar.org/CorpusId:267570328
https://api.semanticscholar.org/CorpusId:277467991
https://api.semanticscholar.org/CorpusId:277467991
https://api.semanticscholar.org/CorpusId:267212153
https://api.semanticscholar.org/CorpusId:267212153
https://doi.org/10.1038/s41392-022-00994-0

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the AI-generated writing and coding
components are manually checked and modified. There is no full AI-generated content in the paper.

B EXPERIMENTAL DETAILS

B.1 GNN-BASED MODELING AND TRAINING DETAILS

In this section, we describe the architecture of our GNN-based model and provide details on its
training setup for both link prediction and attribute regression tasks.

B.2 MODEL ARCHITECTURE

Our link prediction model, GNNLinkPredictor, combines a graph neural network encoder with
a flexible edge-scoring decoder. The encoder is based on GATv2 and stacks multiple convolutional
layers with GraphNorm, PReLU activations, and feature dropout. Residual connections are added
when input and output dimensions match, and self-loops as well as edge dropout can be applied
for stability. To integrate information across layers, we adopt Jumping Knowledge (JK), supporting
concatenation with projection, element-wise max pooling, or using the last layer only. The resulting
node embeddings are passed into the edge decoder (EdgePredictor), which supports various
scoring functions, including dot product, cosine similarity, bilinear transformation, linear projection
on concatenated features, and a two-layer MLP. This design balances expressiveness and flexibility:
the encoder captures rich multi-hop structure, while the decoder adapts to diverse relational patterns.

B.3 TRAINING FOR LINK PREDICTION

For binary edge classification, we train our GNN model over positive and negative edges sampled
from the artifact graph, using pre-computed node embeddings as input. We optimize with AdamW
(learning rate 5 × 10−3, weight decay 10−4) and use a ReduceLROnPlateau scheduler (patience
10, decay factor 0.8, minimum learning rate 10−6). Training runs for up to 300 epochs with early
stopping (patience 40) based on validation AUC, and class imbalance is corrected by weighting the
binary cross-entropy loss with Nneg

Npos
. Mixed-precision training is enabled on GPU. We evaluate every

50 epochs, select the best checkpoint by validation AUC, and report accuracy, precision, recall,
F1, ROC-AUC, and average precision on the test set. Unless otherwise noted, we use 64 hidden
dimensions, 3 layers, 3 heads, dropout 0.2, and seed 42.

B.4 TRAINING FOR ATTRIBUTE REGRESSION

For continuous edge-attribute prediction, we train on positive edges with metric values, normaliz-
ing values greater than 1 to [0, 1]. Node embeddings are pre-computed and message passing uses
the training graph’s edges. The model regresses edge scores directly in logit space: ground-truth
targets are transformed via logit(y) = log y

1−y , and MSE is computed against the raw decoder log-
its. This stabilizes training near the boundaries. We use Adam (learning rate 0.005, weight decay
10−5), Xavier-uniform initialization for linear layers, dropout 0.2, hidden size 128, 3 layers, and 8
heads (GATv2 backbone). Training runs up to 500 epochs, with frequent evaluation early (every 10
epochs for the first 50, then every 25), and the best checkpoint is selected by lowest validation MSE.
At evaluation, logits are clipped to [−10, 10] and mapped through sigmoid to report MSE, MAE,
RMSE, R2, and MAPE.

B.5 LLM-BASED MODELING DETAILS

We directly rely on in-context learning for LLM-based modeling without training. We provide
examples of our prompts for different tasks below:

Listing 1: LLM with graph link prediction example

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Given a machine learning model named ’tensorblock/bloomz-3b-GGUF’ and a
dataset named ’SetFit/rte’.

More information about this model: The model ’bloomz-3b1’ is a
multilingual text-generation model based on the BLOOM architecture.
It is fine-tuned on a variety of datasets such as the BigScience xP3,
which contributes to its ability to handle multiple languages and

tasks. The model supports a wide range of languages including English
, Spanish, French, Chinese, and many others, making it highly
versatile for global applications. It is also capable of
understanding and generating programming code in several languages,
like C++, Java, Python, and more. This flexibility is reflected in
its usage across diverse tasks, from sentiment analysis and question
answering to natural language inference and program synthesis. The
model operates under the bigscience-bloom-rail-1.0 license, ensuring
its use in accordance with open research and collaboration principles
.

More information about this dataset: The Glue RTE dataset is derived from
the Recognizing Textual Entailment (RTE) task, a subset of the GLUE

benchmark. It is designed to evaluate models on the task of natural
language inference, which involves determining if one sentence
logically follows from another. In the ported version hosted on
Hugging Face’s platform, it retains its original purpose but
introduces some modifications for easier processing. Notably, the
columns originally named ’sentence1’ and ’sentence2’ have been
renamed to ’text1’ and ’text2’ respectively. This dataset is often
used to train and evaluate machine learning models on their ability
to understand and process natural language, particularly in contexts
where discerning relationships between two text statements is crucial
. One important characteristic of the dataset is that its test split
is unlabeled, with all entries in the label column set to -1. This is
in line with many benchmark datasets where the test labels are

withheld to prevent overfitting and encourage robust model evaluation
.

There are other models that are evaluated on the dataset to judge whether
the model and dataset are connected:

- 42dot/42dot_LLM-PLM-1.3B: 42dot LLM-PLM is a pre-trained language model
developed by 42dot, designed to handle both Korean and English text.
It is part of the 42dot LLM series, leveraging a 1.3 billion

parameter configuration based on a Transformer decoder architecture,
akin to LLaMA 2. The model is trained with a corpus of diverse text
sources, both in Korean and English, aimed at providing a versatile
foundation for various natural language tasks. The architecture
consists of 24 layers, 32 attention heads, a hidden size of 2048, and
an FFN size of 5632. Pre-training involved 49,000 GPU hours using

NVIDIA A100, with specific hyperparameters such as a global batch
size of 4 million tokens and a learning rate of 4E-4. A Byte-level
BPE tokenizer was developed from scratch to support the model,
featuring a vocabulary size of approximately 50,000 tokens.

- CobraMamba/mamba-gpt-3b: The Mamba GPT-3B model is a fine-tuned version
of the open-lama model, providing enhanced performance across

several evaluation subtasks. It stands out as the best-performing 3B
model, achieving performance metrics comparable to the larger llama-7
b model. This model utilizes the transformers library and has been
optimized for GPU usage, requiring the installation of specific
versions of the transformers, accelerate, and torch libraries. The
Mamba GPT-3B is designed to generate text with a focus on maintaining
coherence and context, making it suitable for various applications

that require advanced language processing capabilities.
- ModelCloud/Meta-Llama-3.1-8B-Instruct-gptq-4bit: This model is a

quantized version of Llama-3.1 with 8 billion parameters, created
using the GPTQModel framework. It utilizes a 4-bit precision format,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

which allows for efficient storage and computation without
significant loss of model performance. The model’s configuration
includes a group size of 128, symmetric quantization, and true
sequential processing. These settings are optimized to maintain a
balance between model accuracy and computational efficiency. The
quantization process reduces the model’s footprint, making it
suitable for deployment in environments with limited resources, while
still providing robust performance on various tasks. The use of the

GPTQ quantization method ensures that the model can handle different
types of data inputs efficiently.

- ibm-research/ColD-Fusion: The ColD Fusion model is a finetuned language
model that builds upon the RoBERTa base architecture. It was trained
on 35 diverse datasets and is designed to serve as a robust base

model for various natural language processing tasks. The model
leverages a novel approach called ColD Fusion, which allows for
multitask learning benefits through distributed computation. Unlike
traditional multitask learning that requires simultaneous access to
all datasets and substantial computational resources, ColD Fusion
operates with limited communication and no data sharing. This enables
the recycling of finetuned models to iteratively enhance the

pretrained model. The resulting model achieves strong performance
across the datasets it was trained on and serves as an excellent
starting point for finetuning on new datasets. The model demonstrates
a 2.45-point improvement over RoBERTa base without architectural

changes and outperforms previous multitask models. For detailed
insights, refer to the paper linked in the README.

- PygmalionAI/metharme-1.3b: Metharme 1.3B is an instruction-tuned
language model based on EleutherAI’s Pythia 1.4B Deduped. It is
designed specifically for conversation, roleplaying, and storywriting
with a focus on fictional contexts. This model can be guided using

natural language like other instruct models. It has been fine-tuned
using a mixture of regular instruction data, alongside roleplay and
fictional stories, with synthetically generated instructions.
Metharme 1.3B utilizes a unique prompting system with three role
tokens: ‘<|system|>‘, ‘<|user|>‘, and ‘<|model|>‘. The ‘<|system|>‘
token can provide background information, ‘<|user|>‘ indicates user
input, and ‘<|model|>‘ signifies the model’s generated response.
These tokens can be chained to create conversation history. The model
is suitable for entertainment purposes, particularly in fictional

writing, and it is not optimized for safety or harmlessness. It may
produce offensive or socially unacceptable content and is not
reliable for factual accuracy.

- tensorblock/bloomz-7b1-mt-GGUF: The model ’bloomz-7b1-mt’ is a
multilingual text-generation model based on the BigScience Bloom
architecture. It supports a wide array of languages including common
ones like English, Spanish, and Chinese, as well as less common
languages such as Fon, Twi, and Tsonga. Additionally, it is capable
of understanding and generating code in several programming languages
, including Python, JavaScript, and C++. The model is designed to
handle various natural language processing tasks such as coreference
resolution, natural language inference, and sentence completion. It
uses datasets like Winogrande, XWinograd, and XNLI, among others, to
evaluate its performance across different tasks. The model is
distributed under the bigscience-bloom-rail-1.0 license and is part
of the ’bigscience/xP3mt’ dataset, reflecting its broad multilingual
and multitask focus. Its applications can range from sentiment
analysis and query suggestion to the generation of creative content
such as fairy tales and fables.

Please predict whether this model should be evaluated on this dataset.
Provide your answer as a JSON object with two keys: ’prediction’ (a
boolean, true or false) and ’reason’ (a brief explanation of your
reasoning).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Listing 2: LLM with graph attribute prediction example
Given a machine learning model named ’tasksource/ModernBERT-large-nli’

and a dataset named ’stanfordnlp/snli’.

More information about this model: ModernBERT is a multi-task fine-tuned
model specifically designed for natural language inference (NLI)
tasks. It has been trained on a diverse set of NLI datasets including
MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI,
and Label-NLI among others. The training was conducted over 200,000

steps using an Nvidia A30 GPU, resulting in a powerful model for
reasoning tasks. ModernBERT surpasses the performance of models like
llama 3.1 8B Instruct in specific tasks such as ANLI and FOLIO. It
excels in long context reasoning, sentiment analysis, and zero-shot
classification with new labels. The model is versatile, offering
significant potential for fine-tuning on single tasks like SST, but
it is particularly effective out-of-the-box for zero-shot
classification and NLI tasks.

More information about this dataset: The Stanford Natural Language Infer(
Pdb) ence (SNLI) corpus is a comprehensive dataset designed to
support the task of natural language inference (NLI), also known as
recognizing textual entailment (RTE). Version 1.0 of the dataset
comprises 570,000 human-written sentence pairs labeled with
entailment, contradiction, and neutral. These labels are crucial for
training and evaluating models that aim to determine the inference
relationship between two short texts. The SNLI dataset is an
essential resource for developing systems that can understand and
predict semantic relationships in natural language, making it a
benchmark for text representation learning methodologies. The dataset
was created through crowdsourcing efforts, with premises originating
from the Flickr 30k and VisualGenome corpora, and hypotheses

generated by crowdworkers on Amazon Mechanical Turk. Each sentence
pair includes a premise and a hypothesis, and the task is to classify
the relationship between them. The dataset provides a balanced

classification challenge, offering a rich source of data for training
machine learning models in natural language processing applications.

tasksource/ModernBERT-large-nli’s performance on other datasets:
- pietrolesci/nli_fever: accuracy: 0.780 (info: The dataset in question

is a modification of the FEVER dataset, tailored for Natural Language
Inference (NLI) research. Originally, the FEVER dataset consisted of
claims derived from Wikipedia, each paired with a label indicating

the veracity of the claim. However, this setup did not align with
standard NLI tasks which typically involve a pair of sequences (e.g.,
premise and hypothesis) mapped to a label. To bridge this gap and

facilitate NLI research, the creators of this dataset have
reformatted it to pair claims with textual evidence, thus converting
it into a pair-of-sequences to label dataset. This transformation
enables the application of NLI models on the FEVER dataset. The
labels are mapped using predefined categories, where ’SUPPORTS’ is
mapped to entailment, ’NOT ENOUGH INFO’ to neutral, and ’REFUTES’ to
contradiction. Additionally, the dataset includes a ’verifiable’
column encoded to indicate whether a claim can be verified. Despite
these modifications, the dataset maintains consistency with the
original FEVER dataset, ensuring reliability and validity for
research purposes.)

- yale-nlp/FOLIO: accuracy: 0.710 (info: The dataset is designed to
provide a comprehensive collection of data relevant to the training
and evaluation of machine learning models across various applications
. It comprises a wide range of data types and structures, ensuring
versatility and scalability for different research and development

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

purposes. The dataset is curated to support both supervised and
unsupervised learning tasks, facilitating experimentation with
classification, regression, clustering, and more advanced machine
learning methodologies. Each data entry in the dataset is
meticulously labeled and documented, providing clear context and
metadata to aid in the effective utilization of the data. The dataset
is continually updated to incorporate the latest advancements and

feedback from the user community, ensuring it remains relevant and
useful. It is distributed under the MIT license, allowing for broad
usage, adaptation, and distribution, making it an ideal resource for
both academic and commercial projects. The dataset’s accessibility
and comprehensiveness make it a valuable asset for data scientists,
researchers, and developers aiming to advance machine learning
capabilities.)

- rediska0123/puzzte: accuracy: 0.590 (info: The dataset is designed to
serve as a resource for binary question-answering models. It consists
of questions that require a true or false answer. The main features

of the dataset include a ’question’ field, which contains the text of
the question itself, and an ’answer’ field, which is a boolean

indicating whether the answer is true or false. The dataset is
available in a single configuration named ’default’ and contains a
single split, ’train’, which includes 911 examples. The total dataset
size is 242,839 bytes, while the download size is 64,267 bytes.)

- causal-nlp/CLadder: accuracy: 0.890 (info: The dataset consists of
multiple configuration files specifying different data splits. In the
provided configurations, there are two main data files: ’full_v1.5

_default’ and ’full_v1’. These files are likely CSV formatted and are
stored in the ’data’ directory. The ’default’ configuration suggests
that it might be the primary or recommended setup for working with

the dataset. Each configuration is defined under the ’configs’ key,
with each containing a ’config_name’ and associated ’data_files’. The
data files are specified with a ’split’ name and the corresponding

file path. This setup allows users to select different versions or
subsets of the data depending on their use case, facilitating
experiments with varied data distributions or updated datasets. Such
configuration flexibility is crucial for testing machine learning
models under different conditions or for ensuring reproducibility in
research.)

- MoritzLaurer/dataset_train_nli: accuracy: 0.950 (info: The dataset
comprises multiple features including ’text’, ’hypothesis’, ’labels’,
’task_name’, and ’label_text’. The ’labels’ feature is a class label
with two possible values: ’entailment’ (0) and ’not_entailment’ (1).
This dataset is primarily used for natural language inference tasks,
where the goal is to determine if a given hypothesis is entailed by

the premise text. The data is organized into a single configuration
named ’default’ and focuses on a training split. The training data
consists of 1,018,733 examples, occupying 315,017,473 bytes. The
total download size for the dataset is approximately 206 MB. This
structured setup allows for easy implementation of machine learning
models aimed at understanding the entailment relationship between
pairs of sentences.)

- tasksource/ruletaker: accuracy: 0.990 (info: The ’ruletaker’ dataset is
designed to evaluate the ability of transformer models to perform

reasoning over natural language. This dataset consists of synthetic
data generated to simulate logical reasoning tasks using controlled
language. The primary features of the dataset include ’context’, ’
question’, ’label’, and ’config’, each represented as a string, which
are structured to test the model’s capacity to infer and deduce

truths from given premises. The dataset is provided in three splits:
’train’ with 480,152 examples, ’dev’ with 75,872 examples, and ’test’
with 151,911 examples, collectively requiring a dataset size of

372,450,135 bytes. It is licensed under the Apache-2.0 license and
primarily intended for English language processing. The dataset is
based on the work presented in the paper ’Transformers as Soft
Reasoners over Language’ by Peter Clark, Oyvind Tafjord, and Kyle

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Richardson, which was presented at the Twenty-Ninth International
Joint Conference on Artificial Intelligence in 2020.)

- tasksource/babi_nli: accuracy: 0.980 (info: The babi_nli dataset is
designed for natural language inference tasks, specifically focusing
on logical reasoning capabilities. This dataset supports various
logic-based tasks by providing pairs of premises and hypotheses, each
labeled as either ’entailed’ or ’not-entailed.’ The dataset is

monolingual, using English language text, and is created through a
combination of expert-generated annotations and crowdsourcing efforts
. It falls under the size category with examples ranging between
1,000 and 10,000. The dataset offers multiple configurations, each
targeting different aspects of logical reasoning such as agents’
motivations, coreference, deduction, induction, and several others.
Each configuration provides its own train, validation, and test
splits, with varying dataset sizes and download sizes. The dataset
can be used to evaluate models on their ability to perform natural
language inference tasks, an essential component of many modern
applications in natural language processing.)

stanfordnlp/snli’s performance with other models:
- tasksource/ModernBERT-base-nli: accuracy: 0.830 (info: ModernBERT is a

multi-task fine-tuned transformer model specifically designed for
natural language inference (NLI) tasks. It incorporates datasets such
as MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI,

LogicNLI, and Label-NLI, among others. The model is an ’instruct’
version, optimized for tasks requiring reasoning and zero-shot
classification. ModernBERT’s training regime involved 200,000 steps
on an Nvidia A30 GPU, enhancing its capabilities in long-context
reasoning and sentiment analysis. It surpasses other models like
llama 3.1 8B Instruct in specific NLI tasks such as ANLI and FOLIO.
Though additional performance improvements can be achieved through
single-task fine-tuning (e.g., SST), the current version excels in
zero-shot classification and natural language inference across
various categories including contradiction, entailment, and neutral
classification. The model’s architecture employs different
classification heads on top of the same transformer, making it
versatile for multiple applications. Notably, ModernBERT benefits
from NLI training data such as the ’label-nli’ dataset, specifically
designed to enhance zero-shot classification abilities.)

Please predict the accuracy that tasksource/ModernBERT-large-nli would
achieve on stanfordnlp/snli. Provide your answer as a JSON object
with two keys: ’prediction’ (a float between 0 and 1) and ’reason’ (a
brief explanation of your reasoning).

20

	Introduction
	Related Work
	Building Artifact Graph from HuggingFace
	Linking Scientific Artifacts for Automatic SOTA Discovery
	Definition of Automatic SOTA Discovery
	Scalable Link Discovery Framework
	Prediction Stage with score function modeling
	Verification Stage with multi-stage planning

	Evaluating Link Discovery with Edge Masking
	Experimental Settings
	Experimental Results
	Experimental Results on Prediction Tasks
	Experimental Results on Verification Tasks

	Discussion
	Case Study
	Conclusion
	The Use of Large Language Models (LLMs)
	Experimental Details
	GNN-based Modeling and Training Details
	Model Architecture
	Training for Link Prediction
	Training for Attribute Regression
	LLM-based Modeling Details

