Under review as a conference paper at ICLR 2026

ARTIFACTLINKER: LINKING SCIENTIFIC ARTIFACTS
FOR AUTOMATIC SOTA DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific artifacts, such as models and benchmarks, are the foundation of ma-
chine learning research. With the rapid growth of repositories like HuggingFace,
researchers now have access to millions of high-quality artifacts contributed by
different researchers, yet the challenge remains: how can we automatically dis-
cover the state-of-the-art (SOTA) model for a given benchmark, fully leveraging
existing scientific artifacts? We address this task, abbreviated as automatic SOTA
discovery, by first modeling HuggingFace as an artifact graph, where nodes rep-
resent models or benchmarks and edges capture their relationships, labeled with
evaluation results. Within this graph, we formulate the automatic SOTA discovery
as the process of identifying new unobserved links with high potential perfor-
mance that could advance future research. To enable scalable and efficient dis-
covery of SOTA artifact links, we propose ARTIFACTLINKER, a two-stage frame-
work for automatic SOTA discovery: (1) prediction, which identifies promising
links with Graph Neural Networks (GNNs) or graph-augmented LLMs, and (2)
verification, which validates promising predicted links through reproducible and
automatic coding experiments and agents. To evaluate ARTIFACTLINKER, we fur-
ther propose ARTIFACTBENCH, collecting 1,372 models and 308 benchmarks for
systematically measuring prediction and verification performance and helping to
develop new SOTA discovery agents. Our key results indicate that the graph-based
prediction module in ARTIFACTLINKER is effective in prediction. Moreover, an
automatic verification pipeline in ARTIFACTLINKER can verify that the identi-
fied promising links indeed achieve high performance on existing benchmarks in
a fully automatic way.

1 INTRODUCTION

Scientific artifacts are the fundamental building blocks of research (Heumiiller et al.l 2020} |Cooper
et al., [2022; Johnson et al.l 2019). Codebases on the GitHub platform, papers available on arXiv,
models and benchmarks on the HuggingFace are all examples of such artifacts. Researchers who
targets at conducting reproducible and high-quality research share, interact with, and build upon
these artifacts, releasing new versions to demonstrate progress (Mari¢ et al., 2023} |Lissa et al.,
2020). In the machine learning community, a vast number of artifacts (>1M on HuggingFace) are
produced by researchers working in different domains (Castafio et al.| [2024; |Ait et al., 2023} |Laufer
et al.,|2025)). This naturally raises an important question: How can we leverage existing artifacts to
enable automatic discovery? Addressing this question would (1) allow us to utilize diverse types
of artifacts better, and (2) promote scalable and automated scientific discovery based on existing
resources. We focus on the HuggingFace community as a case study, since it is one of the largest
and most active hubs of open-source machine learning artifacts and targeting at making experiments
more accessible and easy to run. With countless models, benchmarks, and libraries hosted on the
platform, it provides an invaluable foundation for exploring automated discovery.

Building an automatic discovery system on HuggingFace presents several challenges. First, the con-
cept of “automatic discovery” itself is ill-defined (Beel et al., [2025} Kitanol 2021} Kramer et al.,
2023)—what does it really mean for a system to conduct research autonomously and contribute
to future applications? Second, although HuggingFace provides convenient access to models and
datasets, building a fully automated and reproducible pipeline to verify predicted model perfor-
mance is still difficult (Urbanowicz et al., [2022). The usability of models and benchmarks remains

Under review as a conference paper at ICLR 2026

Artifact Graph Link Discovery SOTA Discovery
4 L 2\
model bench metric\ Prediction 4 For benchmark2, A
(}) performance A>B>C
link or not? Link
O ___________ A Prediction
accuracy=? 5 Attribute
Prediction
L R

Verifiéation

F1=0.7 Coding
O——\ |Agent
code Verification

- .
_ collect) U VRN LPIGVE Y,

Figure 1: Overview of ARTIFACTLINKER. The overall automatic SOTA discovery process in AR-
TIFACTLINKER includes three main components: (1) artifact graph construction from HuggingFace
(models, benchmarks, evaluation relationships); (2) link prediction and verification as discovery
tasks; (3) state-of-the-art result filtering.

inconsistent, and many of them require specialized configurations to work properly and reproduce
research works built on them, even a frustrating process for human researchers (Mu et al., 2025).

Thinking HuggingFace as an artifact graph. Our key observation is that the Hugging Face com-
munity can be naturally represented as a graph (Chen et al.| 2025} Laufer et al., 2025)), where models
and benchmarks serve as nodes and their relationships form the edges. This perspective is moti-
vated by three characteristics of the platform: (1) it hosts a large collection of artifacts, including
both models and benchmarks; (2) many of these artifacts are high-quality and widely adopted by
researchers; and (3) it encodes rich relational information—for example, a model trained on one
dataset and evaluated on another with a reported F1 score. Such structured relationships are often
difficult to extract directly from research papers. Prior work has largely treated Hugging Face as an
information source for retrieval (Silva et al.,[2025)) or as an API hub (Shen et al., |2023)). In contrast,
we highlight its value for dynamic discovery. Rather than viewing it as a static data source, we aim
to actively uncover new relationships—particularly model-benchmark interactions defined through
evaluation metrics. These interactions naturally form the edges of an artifact graph.

Linking artifacts as automatic SOTA discovery. Within this artifact graph, we define the task of
automatic discovery as finding links with state-of-the-art evaluation results between artifacts (mod-
els and benchmarks). Concretely, our goal is to build an auto-discovery engine that leverages the
existing artifact graph structures in the Hugging Face community and their existing relationships to
propose unfounded connections. In this way, automatic discovery becomes a well-defined problem:
identifying state-of-the-art links—such as models that could perform well on unexplored bench-
marks—thereby enabling systematic and scalable research progress.

Novel framework for automatic discovery. To operationalize the linking problem as automatic
discovery, we propose a novel two-stage framework: (1) prediction and (2) verification. Given the
vast number of artifacts in the graph and the high cost of verifying evaluation results, directly iden-
tifying the small subset of valuable links through execution alone is prohibitively costly. Our frame-
work addresses this challenge by first performing prediction, where we use strong priors to filter
out the majority of unlikely links—analogous to how experienced researchers prioritize promising
directions. In the verification stage, we employ a coding agent to test and validate the predicted
links, grounding hypotheses into real, reproducible results. This division of labor enables scalable
automatic discovery while ensuring that results remain empirically verifiable.

Main Discovery. Our work makes three key contributions: (1) we construct ARTIFACTBENCH, a
benchmark for prediction, verification, and automatic discovery, (2) we design a two-stage frame-
work named ARTIFACTLINKER for scalable link discovery, and (3) we demonstrate the practical
value of this system through a case study for potential link discovery.

2 RELATED WORK

HuggingFace platform utilization. HuggingFace has increasingly become a natural platform for
studying automatic discovery. Prior work has largely relied on static analyses of its artifacts and

Under review as a conference paper at ICLR 2026

relationships to characterize trends in machine learning development (Chen et al.l 2025 Laufer
et al., 2025). Beyond serving as a repository, HuggingFace has been conceptualized in multiple
ways: as a knowledge graph (Silva et al., |2025), an API hub (Shen et al.| |2023), a model card
aggregator (Yang et al) 2024), and even an evolutionary tree (Gao & Gao, [2023)). Other studies
have examined its community dynamics (Rahman et al., 2025; (Castano et al., 2023). In contrast,
our work moves beyond static description and trend analysis, which are the traditional focus of data
mining. We instead leverage the intrinsic graph structure of HuggingFace artifacts for grounded,
execution-based prediction and verification. This perspective highlights HuggingFace not only as a
repository of information but also as a foundation for building an automatic discovery engine—one
that functions as a research scaffold.

Large-scale prediction for accelerating discoveries. Accelerating scientific discovery has been a
major focus in domains such as drug discovery (Stokes et al., 2020; [Serrano et al.l [2024; [Visan &
Negut, 2024; |You et al., [2022), materials science (Xie & Grossman, 2018; [Butler et al., 2018)), and
molecular design (Segler et al., |2018). In these settings, experimental verification is prohibitively
costly and time-consuming, which makes reliable prediction an indispensable first step. By nar-
rowing down the vast search space to a manageable set of promising candidates, prediction enables
researchers to prioritize what is worth validating in the lab. Without this predictive stage, discovery
in such domains would be prohibitively inefficient. Yet, these tasks remain highly flexible and diffi-
cult to evaluate systematically, often requiring research agents that can manage complex, multi-step
workflows. In contrast, our work focuses on a more tractable class of automatic discovery tasks.
By leveraging the intrinsic linking structure of HuggingFace artifacts, we perform prediction in a
structured research ecosystem with a large number of artifacts. This design preserves the bene-
fits of predictive discovery—guiding researchers toward promising directions—while avoiding the
prohibitive costs of physical experimentation.

LLM-based coding agent for reproducible experiment. Beyond prediction, an important charac-
teristic of machine learning research is its relatively high reproducibility (Bajwal,|2021). Unlike do-
mains such as biology or chemistry, where experimental verification is costly and time-consuming,
verification in machine learning is largely coding-based and thus far more accessible. This makes
it feasible to design coding execution tasks that reproduce experiments at scale. Prior work has
explored free-form discovery with generating executable code from research ideas (Lu et al.| 2024;
Jansen et al., [2024; 2025), though evaluating the quality of such code remains difficult because the
underlying ideas or intents are often ambiguous. Other efforts have focused on reproducing experi-
ments within specific codebases (Starace et al.| [2025} |[Kim et al., 2025} Seo et al.}|2025; Siegel et al.,
2024} Xiang et al., [2025)), a setting that is challenging and costly due to the complexity and idiosyn-
crasies of large software systems. In contrast, our task narrows the scope: we execute experiments
directly by combining a HuggingFace model artifact with a HuggingFace benchmark artifact under
a specified evaluation metric. This design preserves the reproducibility benefits of coding execution
while avoiding the complexity of open-ended idea generation or large codebase replication.

3 BUILDING ARTIFACT GRAPH FROM HUGGINGFACE

As the first stage of ARTIFACTLINKER, we first formally provide the definition of artifact graphs
that we conduct link discovery on. Furthermore, we provide details about how we extract the artifact
graph from the HuggingFace platform.

Definition of artifact graphs. We define the artifact graph as an undirected heterogeneous bipartite
graph G = (V, &), where the node set V = V,, UV, consists of two disjoint types of nodes:
model nodes V,,, and benchmark nodes V;. The edge set £ C V,,, X V4 x K encodes evaluation
relationships, where each edge (u, v, k) indicates that a model u € V), has an evaluation result on
a benchmark v € V,; with score k = ¢(u,v) defined by a metric function ¢ : V,,, x V; — K.
Besides edges, each benchmark node is associated with attributes such as metadata (e.g., download
counts) and task descriptions, while each model node is associated with metadata and specifications,
including architecture, number of parameters, and configuration. Such rich information on both
edges and nodes allows the graph to capture fine-grained performance relationships between models
and benchmarks.

Data collection. We construct edges in the artifact graph by extracting ground-truth evaluation
metrics from Hugging Face model cards. Specifically, we parse the README files to identify

Under review as a conference paper at ICLR 2026

model—-dataset pairs along with their reported performance scores. Model and dataset names are
then matched to their canonical entries on the Hugging Face platform to ensure consistency, yielding
a clean set of evaluation edges. In total, this process produces || = 2,067 perfectly matched
evaluation records, which serve as edge attributes in the graph. For nodes, we collect both models
and benchmarks. Each model is described by its model card, dataset card, and metadata fields
(e.g., architecture, parameters, tags), while each dataset includes metadata such as domain, size, and
license. To ensure relevance, we retain only nodes that participate in at least one evaluation edge,
filtering out isolated artifacts.

Graph statistics. The final artifact graph contains |V| = 1,680 nodes, consisting of |V,,| = 1,372
models and V4| = 308 benchmarks, with || = 2,067 edges in total. The average degree of
a model node is d,, = % ~ 1.51, while that of a benchmark node is d; = % ~ 6.71,
indicating a sparse bipartite structure. To quantify the community structure, we apply Louvain
community detection (Blondel et al., [2008)) and compute the modularity, obtaining @@ = 0.9233,
which highlights the presence of clear sub-community structures (e.g., NLP, audio, computer vision)

under sparse connectivity. Figure] shows the visualization of the artifact graph structure.

4 LINKING SCIENTIFIC ARTIFACTS FOR AUTOMATIC SOTA DISCOVERY

To describe the overall pipeline of ARTIFACTLINKER, we first formalize the problem definition of
automatic discovery using the artifact-graph formulation. We then introduce our scalable solution,
which addresses this problem via a two-stage prediction—verification framework.

4.1 DEFINITION OF AUTOMATIC SOTA DISCOVERY

Building on the artifact graph G = (V, &) defined in the previous section, each observed edge
(m,d) € & is annotated with a performance score given by the metric function ¢ : V,,, X V4 — K,
with realized score denoted as ¢(m, d). The ultimate goal of automatic discovery is to identify a
missing link (m,d) ¢ £,m € V,,,,d € Vg such that the predicted score under the same evaluation
function ¢(m, d) exceeds the best known performance on dataset d:

¢(m, d) > na P(m’,d). (D

In other words, automatic SOTA discovery seeks model-benchmark pairs not yet connected in G
but expected to advance the state of the art on d. The input of our proposed ARTIFACTLINKER
framework is the artifact graph G while the target output is these state-of-the-art (m, d) pairs.

4.2 SCALABLE LINK DISCOVERY FRAMEWORK

Because verification through actual model evaluation is computationally expensive, scalability re-
quires a mechanism to reduce the number of candidates before evaluation. To this end, we design a
two-stage framework that factors the problem into two sub-problems: (1) prediction and (2) verifica-
tion. In the prediction stage, we first produce a ranked set of candidate pairs (1, d) by modeling the
score function s(m, d). From this ranking we derive the candidate set C, which contains those pairs
whose predicted scores are close to or surpass the current state of the art. In the verification stage,
each candidate in C is executed and evaluated in practice, yielding the refined set C* of validated
state-of-the-art discoveries. This design focuses computational resources on the most promising
candidates while ensuring correctness through real evaluation.

4.2.1 PREDICTION STAGE WITH SCORE FUNCTION MODELING

The goal of prediction is not only to estimate (ﬁ(m, d) for missing edges but also to rank all candidate
links by their discovery potential. Concretely, each prediction model defines a scoring function
s : Vi X V4 — R, which assigns each unseen pair (m, d) ¢ £ a predicted performance. For each

model the objective is to approximate the score function ¢(m, d) and produce rankings consistent
with observed edges. Since all of our prediction models utilize graph information, we formulate
them using a general GNN-style notation. Formally, each score function is defined as:

B = AGG™M (B, (B e sue N(@)}), s(m,d) = (0 0{), @

4

Under review as a conference paper at ICLR 2026

where th“) is a model’s internal representation of node v after k iterations aggregated over all rep-

resentations hq(f) constructed from neighboring nodes « € A (v). The final score is s(m, d) is then

defined over the final node representations h%) and h&L) transformed via some function). As we
detail below, different instantiations of AGG and v lead to different modeling strategies.

LLM-based modeling. These models are based on ordinary prompt-based frozen LLMs. Following
the TextGNN formulation presented in | Yu et al.| (2024), we represent each hq(,k) directly with text
instead of embeddings. The aggregation function AGG is instantiated as a one-layer concat operator

that serializes neighborhood information into a textual prompt:

h{F+Y) = CoNcAT (hg’“), {h{® e, ue N(v)}) , 8(m,d)=LLM (hg,f),hElL)). (3)

Here, hq(,o) = X, corresponds to the textual description of node v. The CONCAT function converts all
neighbor attributes into natural language and concatenates them into a serialized context. The LLM
then consumes these prompts for m and d, jointly reasoning over their neighborhoods to predict
s(m,d). We typically adopt a single TextGNN layer due to the limited context window size of
LLMs.

GNN-based modeling. Alternatively, we instantiate AGG using standard message passing in Graph

Neural Networks. In this setting, node features are initialized as hg,o) = EMBED(x,) from the textual
description x,,, and representations are updated by:

n(kD) = a(W<k>h§,k> + AGGH ({WERP) e, ue N(v)})) ,s(m,d) = MLP([hS,? I h;”]) .

“4)
Here, AGG(k)(~) can be implemented with classical GNN operators such as GATv2Conv (Brody
et al.l 2021), which applies dynamic attention weights to neighbor embeddings. The edge scoring
function s(m, d) is then computed by an MLP over the concatenation of the final node embeddings

h%) and hElL). In contrast to the LLM models above, this model is tuned using a training set of
positive and negative links mined from the original artifact graph (see full details in Appendix. [B.T))

Ranking with score function. Given different modeling choices of s(m,d), the prediction stage
first produces a ranked list of all unseen pairs (m, d) ¢ £, ordered by their predicted score s(m, d).
This ranking reflects the discovery potential of each candidate, with higher scores indicating stronger
likelihood of advancing the state of the art.

From this ranked list, we further define the set of promising candidates as

C= {(m,d)‘(m,d) ¢E, meVy, deVy, s(m,d) > (mg)x€¢(m’,d) — 5}7 (5)
m’,d)e

where 6 > 0 is a tolerance parameter and ¢(m/, d) is the observed evaluation score of model m’
on dataset d. In other words, the score function s(m, d) serves a dual purpose: it provides a global
ranking over all candidates, and it defines a thresholded subset C to guide the verification stage by
focusing computation on the most promising discoveries.

4.2.2 VERIFICATION STAGE WITH MULTI-STAGE PLANNING

Given the candidate set C with a relatively small size, the goal of verification is to execute and
collect the concrete evaluation results. We verify each pair (m, d) with an agentic workflow, RE-
ACTLINKER, that plans, generates, executes, and refines code for automatic benchmarking at scale.
REACTLINKER performs node-first validation before any edge-level run via three sub-components:
(1) benchmark checker checky (resolve dataset on HuggingFace, validate version/splits, load a shard,
and materialize examples), (2) model checker check,, (resolve model, verify dependencies/device,
and dry-forward to confirm I/O contracts), and (3) metric checker check; (instantiate the evalua-
tion metric and sanity-check on synthetic (¢, y)). Each stage within REACTLINKER is a ReAct
loop (Yao et al.| [2023). Only if all three checks pass does REACTLINKER compose the pipeline
(model — dataset — metric) and run the edge evaluation to obtain a real score:

s*(m,d) = REACTLINKER (X, Xq).

Under review as a conference paper at ICLR 2026

H O
0o O 0.76 h 1
OOA by

Link prediction Link ranking Attribute prediction Attribute ranking

Figure 2: Four types of evaluation tasks for prediction. From left to right: (1) 0/1 binary link
prediction between existing edges and negative sampled edges; (2) link ranking between existing
edges and negative sampled edges; (3) attribute prediction to conduct regression on a single existing
edge; (4) attribute ranking between edges with smaller attributes and edges with higher attributes.

SOTA selection with execution. We keep only candidates that pass all node checks, execute suc-
cessfully, and beat the best known score on d:

cr = {(m, d)eC | s*(m,d)> max ¢(m’, d)}
(m/,d)e&
This multi-stage agnetic workflow design isolates configuration errors early, enables caching of
validated nodes across pairs, and avoids wasted full runs—making verification robust and scalable
under the standardized structure of HuggingFace artifacts.

5 EVALUATING LINK DISCOVERY WITH EDGE MASKING

In Section §4 we described how ARTIFACTLINKER is designed and used to perform automatic
SOTA link discovery. However, beyond training and inference, we also need systematic evaluation
tasks for both the prediction and verification stages. To this end, we design a mask-and-predict/verify
protocol based on the artifact graph. Instead of running inference in the real world, we directly
sample missing links (m, d) ¢ £ and evaluate them on ARTIFACTBENCH.

For evaluation, we consider two forms of masking. (i) Edge masking: a subset of observed edges
Emask C & is hidden from the graph, requiring the model to recover their existence. (ii) Attribute
masking: for another subset of edges, we keep the edge structure visible but hide their associated
attributes (e.g., evaluation scores), requiring the model to predict or rank the missing values.

Prediction evaluation. Given the masked graph G \ Enask, We benchmark prediction performance
with four tasks, as shown in Figure (1) Link prediction (edge masking): determine whether a
masked edge (m,d) € Emask eXists, i.e., §m.a = 1[s(m,d) > 7|, where s(m,d) is the predicted
score function. (2) Link ranking (edge masking): for each dataset d, rank all candidate models m
by s(m, d) and evaluate the rank of the true masked edges (m, d) € Enask- (3) Attribute prediction
(attribute masking): for each edge (m,d) with hidden attributes, predict its score ¢(m,d). (4)
Attribute ranking (attribute masking): for each dataset d, rank all candidate models m by predicted

attributes q@(m, d) and compare this ordering against ground-truth scores.

Verification evaluation. Finally, we define the reproduction task in the verification stage, which
also corresponds to attribute masking. Here, the coding agent re-evaluates edges (m, d) with hid-
den attributes to measure consistency between predicted scores s(m, d) and execution-based results
¢*(m, d). Formally, consistency is satisfied if | s(m, d) — ¢*(m, d) | < 6, where § is a tolerance pa-
rameter defined for the same metric. This criterion checks whether prediction and execution agree up
to an acceptable margin, ensuring that verification faithfully reproduces benchmarked performance.

6 EXPERIMENTAL SETTINGS

Prediction task settings. We split the overall artifact graph into train, development, and test edge
splits based on a 70%-10%-20% ratio. This leads to 1,448 edges in the train split, 206 edges in the
development split, and 413 edges in the test split.

Prediction baseline settings. Besides the LL.M-based TextGNN settings and GNN-based settings,
we include multiple baseline settings for comparison: (1) random, where for both the prediction and
ranking tasks we generate random results as a baseline; (2) metadata, where we directly use metadata
of the artifacts such as downloading times as a feature for prediction; (3) node degree, where we

Under review as a conference paper at ICLR 2026

Table 1: Link prediction results. We randomly
sample an equal number of negative samples
from the artifact graph for binary 0/1 link pre-
diction and keep existing edges as positive sam-
ples. More information about baselines is avail-

Table 2: Link ranking results. We build
a ranking task for each benchmark and sam-
ple 10 more as negative candidates for each
benchmark. More information about baselines
is available in Section §6| R®@Fk refers to

able in Section §6] Recall@k and P@F refers to Precision@k.

Method F1 P R Acc Method R@1 R@5 P@1 P@5
Random 50.0 50.0 50.0 50.0 Random 69 389 200 212
Metadata 522 58.6 47.0 569 Metadata 6.7 381 17.8 194
Node degree 87.2 915 833 87.8 Node degree 177 612 41.1 333
GPT-40 64.6 952 489 732 GPT-40 492 86.0 82.8 45.0
Qwen2.5-72B 773 946 654 80.8 Qwen2.5-72B 474 863 832 448
03 58.8 96.7 423 704 03 522 872 87.6 456

GPT-4o+graph 834 903 775 84.6
Qwen2.5+graph 773 946 654 80.8
03+graph 63.1 97.7 46.6 728
GATv2Conv 884 958 821 89.2

GPT-do+graph 53.7 90.6 89.9 47.4
Qwen2.5+graph 54.8 90.7 889 44.1
03+graph 541 89.0 917 47.6
GATv2Conv 369 842 558 34.0

utilize graph-related structural features like node degree for prediction; (4) LLM baselines, where
we only provide the model information and benchmark information to an LLM (we use GPT-40
(OpenAl et al.| 2024), Qwen2.5-72B (Qwen et al.| 2025)), and 03) and ask them to directly predict.

Verification task settings. We construct the verification benchmark by selecting model-benchmark
pairs from the artifact graph that include reported scores (e.g., F1, accuracy, BLEU, ROUGE). For
each pair, we test whether the reported result can be reproduced through execution-based evalu-
ation, given the model and benchmark specifications. To capture varying levels of difficulty, we
define two splits: (i) a hard split, consisting of large models, complex benchmarks, and metrics that
are more challenging to reproduce (e.g., MMLU with Mistral-7B); and (ii) an easy split, covering
straightforward settings such as evaluating BERT-based models on SST-2 with accuracy.

Verification baseline settings. As baselines, we adopt ReAct (Yao et al, [2023), which employs
a single coding agent that iteratively debugs execution errors. Importantly, this baseline does not
include HuggingFace-specific design choices, but simply uses model and benchmark descriptions
as inputs. For a fair comparison, both ReAct and our proposed ReActLinker use GPT-40 as the
underlying backbone model.

7 EXPERIMENTAL RESULTS

7.1 EXPERIMENTAL RESULTS ON PREDICTION TASKS

Structural information from the graph is useful for prediction. Across all tasks—including link
prediction (Table [I), link ranking (Table [2), attribute prediction (Table [3), and attribute ranking
(Table f)—we find that incorporating neighborhood information into the LLM-based score func-
tion substantially improves performance. The gains are especially pronounced for link prediction
and attribute prediction: for example, adding 1-hop neighborhood information increases GPT-40’s
F1 from 64.6 to 83.4 in link prediction and reduces MAE from 8.9 to 5.0 in attribute prediction.
Improvements on ranking tasks are smaller, likely because LLMs already receive rich contextual
information about candidate items. Nevertheless, the effect is consistent across different backbone
models (GPT-40, Qwen2.5-72B, and 03), validating the utility of the artifact graph.

GNN-based models achieve strong performance. Beyond LLM-based modeling, we also evaluate
GNN-based methods using a simple 3-layer GATv2Conv. Node embeddings are initialized with
Voyage—3[1_-] embeddings. Surprisingly, this lightweight GNN achieves competitive or even state-of-
the-art performance. For instance, it matches GPT-40 on attribute prediction MAPE (8.9 vs. 9.0)
and outperforms all methods on link prediction. While GNNs are relatively weaker on ranking tasks
compared with LLM-based approaches, they remain far stronger than baseline heuristics. These

'"https://docs.voyageai.com/docs/embeddings

https://docs.voyageai.com/docs/embeddings

Under review as a conference paper at ICLR 2026

Table 3: Attribute prediction results. We
focus on predicting the attributes on existing
edges. MSE refers to Mean Squared Error,
MAE refers to Mean Absolute Error, MAPE
refers to Mean Absolute Percentage Error, and
R? refers to Coefficient of Determination.

Table 4: Attribute ranking results. Similar to
link ranking tasks, we build an attribute ranking
task for each benchmark. Only models report-
ing the same metric are included for ranking.
We focus on ranking the attributes on existing
edges instead of sampling negative ones.

Method MSE MAE MAPE R? Method NDCG@1 Hit@1 Hit@5
Global mean 348 149 263 -05 Random 27.4 58.5 47.8
Local mean 1.94 8.6 147 439 Node degree 36.7 11.3 565
GPT-40 1.84 89 16.6 469 GPT-40 61.8 434 826
Qwen2.5-72B 237 105 207 315 Qwen2.5-72B 58.6 359 826
03 247 9.1 13.9 28.7 03 58.1 36.5 71.3

GPT-4o0+graph 090 5.0 9.0 741
Qwen2.5+graph 1.23 6.5 119 702
03+graph 1.05 4.1 6.8 693
GATv2Conv 132 6.0 89 493

GPT-40+graph 62.0 359 87.0
Qwen2.5+graph 62.3 38.5 81.8
03+graph 60.5 377 783
GATv2Conv 41.8 31.0 40.0

results suggest that structural patterns in the research community graph encode valuable signals for
predicting model—-dataset performance.

Overall: prediction and ranking tasks defined on the artifact graph are valuable but challeng-
ing. Our experiments show that, apart from link prediction (where random negative sampling is
used), other sub-tasks—Ilink ranking, attribute prediction, and attribute ranking—still leave substan-
tial room for improvement. We argue that progress on this benchmark will be crucial for enabling
scalable automatic discovery.

7.2 EXPERIMENTAL RESULTS ON VERIFICATION TASKS

Specialized workflows improve robustness under hard cases. As shown in Figure [3| specialized
multi-stage workflows influence both the execution rate and successful reproduction rate. While
execution rate may decrease a lot under the easy cases (from 81.0 to 63.0)—since the agent ex-
plores more possibilities and can become stuck at certain stages—the overall reproduction success
improves in harder scenarios. In particular, our proposed ReActLinker can handle stage-specific
errors independently, leading to substantially better performance in challenging cases.

Overall: verification on the artifact graph is valuable but cannot be solved trivially. Despite
HuggingFace providing a convenient infrastructure for running models and benchmarks, current
coding agents still struggle to reliably reproduce reported results. Our findings highlight both the
promise and the limitations of verification tasks on the artifact graph: they are valuable for evaluating
agent capabilities, yet they remain unsolved in practice. Building more robust auto-evaluation agents
for HuggingFace thus represents an important future direction for the ML research community.

8 DISCUSSION

Q1: What is the role of node attributes in the artifact graph? Node attributes provide essen-
tial context about models and benchmarks beyond evaluation results. We extract attributes such as
training methods, architectures, and benchmark statistics using LLMs, which serve two purposes.
First, for LLM-based predictors, these attributes activate relevant parameter knowledge and support
reasoning by analogy (e.g., if two models share architecture and training setup, their expected per-
formance is similar). For instance, an LLM may reason: “Since model A achieved 0.979 accuracy
on CIFAR-10, model B with the same architecture and training regime is expected to reach 0.978.”
Second, for GNN-based predictors, textual attributes are embedded using state-of-the-art embedding
models (e.g., voyage-3) to capture similarity between models and datasets. Empirically, when node
features are initialized randomly instead of using text embeddings, the MSE of attribute prediction
worsens from 0.01 to 0.22—showing that attributes are crucial for learning meaningful patterns.

Under review as a conference paper at ICLR 2026

100
Exp. Setting
80 B ReAct
) [ReAct-linker
8 60
<
8
o 40
o
20
00 1.3
0 —_—
o \eas\ﬂ e\“"a‘& o (“a(d\
ex eG‘ S‘ E‘/‘ o (;Gess

Figure 3: Success rate and execution rate for
verification tasks on the artifact graph. Exe-
cution rate indicates whether code snippets gen-
erated by agents can be executed or not. Success
rate indicates whether code snippets generated
by agents can provide close performance com-
pared with reported ones.

Figure 4: Visualization of the artifact graph.
Larger dots represent the benchmarks and the
smaller dots represent the models. Both of them
are collected from the HuggingFace Hub. Dif-
ferent node colors represent models and datasets
in different domains. A famous benchmark like
ImageNet-1k is evaluated by multiple models.

Q2: Why are GNNs useful for predictions? GNNs are effective because machine learning com-
munities exhibit strong and predictable structural patterns. Popular benchmarks (e.g., CoNLL2003
for NER or CNN/DailyMail for summarization) attract consistent evaluation across related models,
while models sharing similar architectures or training methods tend to achieve similar performance.
The extreme central point for ImageNet-1k in Figure[]is a strong evidence for that. These structural
regularities allow GNNss to achieve performance close to LLM-based predictors despite relying only
on graph structure and local attributes and without complicated reasoning. In short, GNNs succeed
because the artifact graph encodes community-wide regularities that are highly predictive of links.

9 CASE STUDY

To illustrate the value of ARTIFACTLINKER, we run it on SQuAD-vEEl We first sample candidate
models for link prediction and then perform attribute prediction on the exact-match (EM) metric.
Our predictor ranks Llama-3-70B-Instruct highest with a predicted EM of 0.86, consistent with re-
ported results. Moreover, executing smaller high-ranked candidates reveals that SGPT-125M (tuned
on MS MARCO) achieves an EM of 0.41 on SQuAD-v2—surprisingly strong for a 125M model not
explicitly trained on SQuAD-v2. These verified findings provide actionable insight even when they
are not SOTA. However, large-scale verification remains the primary bottleneck: end-to-end
execution is constrained by environment setup and dependency drift, heterogeneous evaluation har-
nesses, APl/rate limits, flaky runs, and substantial compute and orchestration overheads. In practice,
fully automated, high-throughput verification at community scale is still an open systems challenge.

10 CONCLUSION

In this paper, we introduce ARTIFACTLINKER, a framework for turning HuggingFace into an engine
for automatic SOTA discovery. By modeling models and benchmarks as an artifact graph, we define
the task of discovering valuable missing links that reveal promising model-benchmark interactions.
To address this, we propose a two-stage predict-and-verify framework, where prediction identifies
promising candidates and verification conducts execution-based experiments to validate their perfor-
mance. We further develop ARTIFACTBENCH, which provides systematic tasks for assessing both
prediction and verification. Our results show that graph-based prediction is effective for surfacing
high-potential links, and that automated verification can reproduce many benchmark results with-
out human intervention. Looking ahead, we envision extending this direction to dynamically grow
the artifact graph by incorporating new models and benchmarks, enabling continual and scalable
scientific discovery.

https://huggingface.co/datasets/rajpurkar/squad_v2

https://huggingface.co/datasets/rajpurkar/squad_v2

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All implementation details of our method and baselines are given in Section §6|and Appendix
We will release our benchmark and the codebase at the time of publication.

ETHICS STATEMENT

Our work focuses on building an automatic discovery framework over open-source artifacts avail-
able on HuggingFace. All experiments are conducted exclusively on publicly released models and
benchmarks that are freely accessible to the research community. We do not introduce any new
human or sensitive data, nor do we attempt to deanonymize or misuse existing artifacts.

The goal of our framework is to advance automated, reproducible, and scalable scientific discovery,
and to help researchers more efficiently identify promising model-benchmark interactions. Never-
theless, we acknowledge that automated benchmarking may propagate existing biases and limita-
tions present in the underlying models and datasets. To mitigate this, we emphasize transparency
in data collection and reproducibility in our verification pipeline. We encourage the community to
view our work as a step toward building more reliable, equitable, and responsible auto-discovery
systems, rather than a replacement for human oversight.

REFERENCES

Adem Ait, Javier Luis Canovas Izquierdo, and Jordi Cabot. On the suitability of hugging face hub for
empirical studies. ArXiv, abs/2307.14841, 2023. URL https://api.semanticscholar.
org/CorpusId:260203268.

W. Bajwa. A guide to computational reproducibility in signal processing and machine learning
[tips & tricks]. IEEE Signal Processing Magazine, 40:141-151, 2021. URL https://api.
semanticscholar.org/CorpusId:246864036.

Joeran Beel, Min-Yen Kan, and Moritz Baumgart. Evaluating sakana’s ai scientist for autonomous
research: Wishful thinking or an emerging reality towards ’artificial research intelligence’
(ari)? ArXiv, abs/2502.14297, 2025. URL |https://api.semanticscholar.org/
CorpusId:276482965.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh. Machine
learning for molecular and materials science. Nature, 559(7715):547-555, 2018.

Joel Castafio, Silverio Martinez-Fernandez, Xavier Franch, and Justus Bogner. Analyzing the
evolution and maintenance of ml models on hugging face. 2024 IEEE/ACM 2lst Interna-
tional Conference on Mining Software Repositories (MSR), pp. 607-618, 2023. URL https:
//api.semanticscholar.org/CorpusId:265351447.

Joel Castafo, Rafael Cabanas, Antonio Salmer’on, David Lo, and Silverio Mart’inez-Fern’andez.
How do machine learning models change? ArXiv, abs/2411.09645, 2024. URL https://
api.semanticscholar.org/CorpusId:274023512.

Qiaosheng Chen, Kaijia Huang, Xiaofang Zhou, Weiqing Luo, Yuanning Cui, and Gong Cheng.
Benchmarking recommendation, classification, and tracing based on hugging face knowledge
graph. In Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, 2025. URL https://api.semanticscholar.org/CorpusId:
278886655l

10

https://api.semanticscholar.org/CorpusId:260203268
https://api.semanticscholar.org/CorpusId:260203268
https://api.semanticscholar.org/CorpusId:246864036
https://api.semanticscholar.org/CorpusId:246864036
https://api.semanticscholar.org/CorpusId:276482965
https://api.semanticscholar.org/CorpusId:276482965
https://api.semanticscholar.org/CorpusId:265351447
https://api.semanticscholar.org/CorpusId:265351447
https://api.semanticscholar.org/CorpusId:274023512
https://api.semanticscholar.org/CorpusId:274023512
https://api.semanticscholar.org/CorpusId:278886655
https://api.semanticscholar.org/CorpusId:278886655

Under review as a conference paper at ICLR 2026

Ned Cooper, Tiffanie N. Horne, Gillian R. Hayes, Courtney Heldreth, Michal Lahav, Jess Holbrook,
and Lauren Wilcox. A systematic review and thematic analysis of community-collaborative ap-
proaches to computing research. Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, 2022. URL|https://api.semanticscholar.org/CorpusId:
248419416.

Sarah Gao and Andrew Gao. On the origin of 1lms: An evolutionary tree and graph for 15, 821 large
language models. ArXiv, abs/2307.09793, 2023. URL https://api.semanticscholar.
org/CorpusId:259983028.

R. Heumiiller, Sebastian Nielebock, J. Kriiger, and F. Ortmeier. Publish or perish, but do not forget
your software artifacts. Empirical Software Engineering, 25:4585 — 4616, 2020. URL https:
//api.semanticscholar.org/CorpusId:220070385.

Peter Alexander Jansen, Marc-Alexandre Co6té, Tushar Khot, Erin Bransom, Bhavana Dalvi, Bod-
hisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. Discoveryworld: A virtual environ-
ment for developing and evaluating automated scientific discovery agents. ArXiv, abs/2406.06769,
2024. URL https://api.semanticscholar.org/CorpusId:270380311.

Peter Alexander Jansen, Oyvind Tafjord, Marissa Radensky, Pao Siangliulue, Tom Hope, Bhavana
Dalvi, Bodhisattwa Prasad Majumder, D. S. Weld, and Peter Clark. Codescientist: End-to-end
semi-automated scientific discovery with code-based experimentation. ArXiv, abs/2503.22708,
2025. URL https://api.semanticscholar.org/CorpusId:277451644.

Seth Johnson, F. Samsel, G. Abram, Daniel L. Olson, Andrew J. Solis, Bridger Herman, P. Wolfram,
C. Lenglet, and Daniel F. Keefe. Artifact-based rendering: Harnessing natural and traditional vi-
sual media for more expressive and engaging 3d visualizations. /EEE Transactions on Visualiza-
tion and Computer Graphics, 26:492-502, 2019. URL https://api.semanticscholar.
org/CorpusId:199001020.

Gyeongwon James Kim, Alex Wilf, Louis philippe Morency, and Daniel Fried. From reproduction
to replication: Evaluating research agents with progressive code masking. ArXiv, abs/2506.19724,
2025. URL https://api.semanticscholar.org/CorpusId:280000499.

H. Kitano. Nobel turing challenge: creating the engine for scientific discovery. NPJ Systems Biology
and Applications, 7, 2021. URL https://api.semanticscholar.org/CorpusId:
235476723l

Stefan Kramer, Mattia Cerrato, S. DZeroski, and R. King. Automated scientific discovery: From
equation discovery to autonomous discovery systems. ArXiv, abs/2305.02251, 2023. URL
https://api.semanticscholar.org/CorpusId:258461620.

Benjamin Laufer, Hamidah Oderinwale, and Jon Kleinberg. Anatomy of a machine learning
ecosystem: 2 million models on hugging face. ArXiv, abs/2508.06811, 2025. URL https:
//api.semanticscholar.org/CorpusId:280566415.

C. J. Lissa, A. Brandmaier, Loek Brinkman, Anna-Lena Lamprecht, Aaron Peikert, Marijn E. Stru-
iksma, and Barbara M. 1. Vreede. Worcs: A workflow for open reproducible code in science.
Data Sci., 4:29-49, 2020. URL https://api.semanticscholar.org/CorpusId:
2343577246.

Chris Lu, Cong Lu, R. T. Lange, J. Foerster, Jeff Clune, and David Ha. The ai scientist: Towards
fully automated open-ended scientific discovery. ArXiv, abs/2408.06292, 2024. URL https:
//api.semanticscholar.org/CorpusId:271854887.

T. Marié, Dennis Gléaser, Jan-Patrick Lehr, Ioannis Papagiannidis, B. Lambie, Christian H. Bischof,
and Dieter Bothe. A pragmatic workflow for research software engineering in computational
science. ArXiv, abs/2310.00960, 2023. URL https://api.semanticscholar.org/
CorpusId:263605602.

Yanzhou Mu, Rong Wang, Juan Zhai, Chunrong Fang, Xiang Chen, Jiacong Wu, An Guo, Ji-
awei Shen, Bingzhuo Li, and Zhenyu Chen. Understanding llm-centric challenges for deep
learning frameworks: An empirical analysis. In wunknown, 2025. URL https://api.
semanticscholar.org/CorpusId:279403056.

11

https://api.semanticscholar.org/CorpusId:248419416
https://api.semanticscholar.org/CorpusId:248419416
https://api.semanticscholar.org/CorpusId:259983028
https://api.semanticscholar.org/CorpusId:259983028
https://api.semanticscholar.org/CorpusId:220070385
https://api.semanticscholar.org/CorpusId:220070385
https://api.semanticscholar.org/CorpusId:270380311
https://api.semanticscholar.org/CorpusId:277451644
https://api.semanticscholar.org/CorpusId:199001020
https://api.semanticscholar.org/CorpusId:199001020
https://api.semanticscholar.org/CorpusId:280000499
https://api.semanticscholar.org/CorpusId:235476723
https://api.semanticscholar.org/CorpusId:235476723
https://api.semanticscholar.org/CorpusId:258461620
https://api.semanticscholar.org/CorpusId:280566415
https://api.semanticscholar.org/CorpusId:280566415
https://api.semanticscholar.org/CorpusId:234357246
https://api.semanticscholar.org/CorpusId:234357246
https://api.semanticscholar.org/CorpusId:271854887
https://api.semanticscholar.org/CorpusId:271854887
https://api.semanticscholar.org/CorpusId:263605602
https://api.semanticscholar.org/CorpusId:263605602
https://api.semanticscholar.org/CorpusId:279403056
https://api.semanticscholar.org/CorpusId:279403056

Under review as a conference paper at ICLR 2026

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol,
Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Con-
neau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Kho-
rasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit,
Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming
Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun,
Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, lan Sohl, Ibrahim
Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Ja-
cob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James
Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei,
Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe
Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay,
Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld,
Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang,
Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood,
Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel
Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Work-
man, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka,
Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas
Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail
Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe
Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Ran-
dall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza
Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmat-
ullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino,
Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez
Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia,

12

Under review as a conference paper at ICLR 2026

Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir
Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal
Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom
Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi,
Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda
Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim,
Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov.
Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276,

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen?2.5 technical report, 2025.
URLhttps://arxiv.org/abs/2412.15115.

Mohammad Shahedur Rahman, Peng Gao, and Yuede Ji. Hugginggraph: Understanding the
supply chain of llm ecosystem. ArXiv, abs/2507.14240, 2025. URL https://api.
semanticscholar.org/CorpusId:280270972.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic ai. Nature, 555(7698):604—610, 2018.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code
generation from scientific papers in machine learning. ArXiv, abs/2504.17192, 2025. URL
https://api.semanticscholar.org/CorpusId:278033490.

D. Serrano, F. C. Luciano, B. J. Anaya, Baris Ongoren, Aytug Kara, Gracia Molina, Bianca I
Ramirez, Sergio A Sdnchez-Guirales, Jesus A. Simon, Greta Tomietto, Chrysi Rapti, Helga K.
Ruiz, Satyavati Rawat, Dinesh Kumar, and A. Lalatsa. Artificial intelligence (ai) applications in
drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics, 16,
2024. URL https://api.semanticscholar.org/CorpusId:273366814.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dong-
sheng Li, and Y. Zhuang. Taskbench: Benchmarking large language models for task au-
tomation. ArXiv, abs/2311.18760, 2023. URL https://api.semanticscholar.org/
CorpusId:265506220.

Zachary S. Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. Trans. Mach. Learn. Res., 2024, 2024. URL https://arxiv.org/pdf/
2409.11363.pdf.

Kanishka Silva, Marcel R. Ackermann, Heike Fliegl, G. Gesese, Fidan Limani, Philipp Mayr, Pe-
ter Mutschke, A. Oelen, Muhammad Asif Suryani, Sharmila Upadhyaya, Benjamin Zapilko,
Harald Sack, and Stefan Dietze. Research knowledge graphs in nfdi4datascience: Key ac-
tivities, achievements, and future directions. ArXiv, abs/2508.02300, 2025. URL https:
//api.semanticscholar.org/CorpusId:280421789.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688-702, 2020.

R. Urbanowicz, Robert F. Zhang, Yuhan Cui, and Pranshu Suri. Streamline: A simple, transpar-
ent, end-to-end automated machine learning pipeline facilitating data analysis and algorithm
comparison. In Genetic Programming Theory and Practice, 2022. URL https://api.
semanticscholar.org/CorpusId:250048789.

13

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusId:280270972
https://api.semanticscholar.org/CorpusId:280270972
https://api.semanticscholar.org/CorpusId:278033490
https://api.semanticscholar.org/CorpusId:273366814
https://api.semanticscholar.org/CorpusId:265506220
https://api.semanticscholar.org/CorpusId:265506220
https://arxiv.org/pdf/2409.11363.pdf
https://arxiv.org/pdf/2409.11363.pdf
https://api.semanticscholar.org/CorpusId:280421789
https://api.semanticscholar.org/CorpusId:280421789
https://api.semanticscholar.org/CorpusId:250048789
https://api.semanticscholar.org/CorpusId:250048789

Under review as a conference paper at ICLR 2026

A. Visan and I. Negut. Integrating artificial intelligence for drug discovery in the context of revo-
lutionizing drug delivery. Life, 14, 2024. URL https://api.semanticscholar.org/
CorpusId:267570328.

Yanzheng Xiang, Hangi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench:
Benchmarking Ilms in agent-driven algorithmic reproduction from research papers. ArXiv,
abs/2504.00255, 2025. URL https://api.semanticscholar.org/CorpusId:
277467991l

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Xinyu Yang, Weixin Liang, and James Zou. Navigating dataset documentations in ai: A large-
scale analysis of dataset cards on hugging face. ArXiv, abs/2401.13822, 2024. URL https:
//api.semanticscholar.org/CorpusId:267212153.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yujie You, Xin Lai, Ying Pan, Huiru Zheng, J. Vera, Suran Liu, Senyi Deng, and Le Zhang. Artificial
intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted
Therapy, 7,2022. URL https://doi.org/10.1038/s41392-022-00994-0.

Haofei Yu, Zhaochen Hong, Zirui Cheng, Kunlun Zhu, Keyang Xuan, Jinwei Yao, Tao Feng,
and Jiaxuan You. Researchtown: Simulator of human research community. arXiv preprint
arXiv:2412.17767, 2024.

14

https://api.semanticscholar.org/CorpusId:267570328
https://api.semanticscholar.org/CorpusId:267570328
https://api.semanticscholar.org/CorpusId:277467991
https://api.semanticscholar.org/CorpusId:277467991
https://api.semanticscholar.org/CorpusId:267212153
https://api.semanticscholar.org/CorpusId:267212153
https://doi.org/10.1038/s41392-022-00994-0

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used ChatGPT as a writing assistant to help us write part of the paper. Additionally, we utilize
the power of CodePilot to help us code faster. However, all the Al-generated writing and coding
components are manually checked and modified. There is no full Al-generated content in the paper.

B EXPERIMENTAL DETAILS

B.1 GNN-BASED MODELING AND TRAINING DETAILS

In this section, we describe the architecture of our GNN-based model and provide details on its
training setup for both link prediction and attribute regression tasks.

B.2 MODEL ARCHITECTURE

Our link prediction model, GNNLinkPredictor, combines a graph neural network encoder with
a flexible edge-scoring decoder. The encoder is based on GATV2 and stacks multiple convolutional
layers with GraphNorm, PReLU activations, and feature dropout. Residual connections are added
when input and output dimensions match, and self-loops as well as edge dropout can be applied
for stability. To integrate information across layers, we adopt Jumping Knowledge (JK), supporting
concatenation with projection, element-wise max pooling, or using the last layer only. The resulting
node embeddings are passed into the edge decoder (EdgePredictor), which supports various
scoring functions, including dot product, cosine similarity, bilinear transformation, linear projection
on concatenated features, and a two-layer MLP. This design balances expressiveness and flexibility:
the encoder captures rich multi-hop structure, while the decoder adapts to diverse relational patterns.

B.3 TRAINING FOR LINK PREDICTION

For binary edge classification, we train our GNN model over positive and negative edges sampled
from the artifact graph, using pre-computed node embeddings as input. We optimize with AdamW
(learning rate 5 x 1073, weight decay 10~*) and use a ReduceLROnPlateau scheduler (patience
10, decay factor 0.8, minimum learning rate 10~5). Training runs for up to 300 epochs with early
stopping (patience 40) based on validation AUC, and class imbalance is corrected by weighting the

binary cross-entropy loss with %“eg . Mixed-precision training is enabled on GPU. We evaluate every
pos

50 epochs, select the best checkpoint by validation AUC, and report accuracy, precision, recall,
F1, ROC-AUC, and average precision on the test set. Unless otherwise noted, we use 64 hidden
dimensions, 3 layers, 3 heads, dropout 0.2, and seed 42.

B.4 TRAINING FOR ATTRIBUTE REGRESSION

For continuous edge-attribute prediction, we train on positive edges with metric values, normaliz-
ing values greater than 1 to [0, 1]. Node embeddings are pre-computed and message passing uses
the training graph’s edges. The model regresses edge scores directly in logit space: ground-truth
targets are transformed via logit(y) = log ﬁ, and MSE is computed against the raw decoder log-
its. This stabilizes training near the boundaries. We use Adam (learning rate 0.005, weight decay
10~5), Xavier-uniform initialization for linear layers, dropout 0.2, hidden size 128, 3 layers, and 8
heads (GATv2 backbone). Training runs up to 500 epochs, with frequent evaluation early (every 10
epochs for the first 50, then every 25), and the best checkpoint is selected by lowest validation MSE.
At evaluation, logits are clipped to [—10, 10] and mapped through sigmoid to report MSE, MAE,
RMSE, R2, and MAPE.

B.5 LLM-BASED MODELING DETAILS

We directly rely on in-context learning for LLM-based modeling without training. We provide
examples of our prompts for different tasks below:

Listing 1: LLM with graph link prediction example

15

Under review as a conference paper at ICLR 2026

Given a machine learning model named ’tensorblock/bloomz-3b-GGUF’ and a
dataset named ’SetFit/rte’.

More information about this model: The model ’"bloomz-3bl’ is a
multilingual text-generation model based on the BLOOM architecture.
It is fine-tuned on a variety of datasets such as the BigScience xP3,

which contributes to its ability to handle multiple languages and
tasks. The model supports a wide range of languages including English
, Spanish, French, Chinese, and many others, making it highly
versatile for global applications. It is also capable of
understanding and generating programming code in several languages,
like C++, Java, Python, and more. This flexibility is reflected in
its usage across diverse tasks, from sentiment analysis and question
answering to natural language inference and program synthesis. The
model operates under the bigscience-bloom-rail-1.0 license, ensuring
its use in accordance with open research and collaboration principles

More information about this dataset: The Glue RTE dataset is derived from
the Recognizing Textual Entailment (RTE) task, a subset of the GLUE
benchmark. It is designed to evaluate models on the task of natural
language inference, which involves determining if one sentence
logically follows from another. In the ported version hosted on
Hugging Face’s platform, it retains its original purpose but
introduces some modifications for easier processing. Notably, the
columns originally named ’sentencel’ and ’sentence2’ have been
renamed to ’‘textl’ and ’'text2’ respectively. This dataset is often
used to train and evaluate machine learning models on their ability
to understand and process natural language, particularly in contexts
where discerning relationships between two text statements is crucial
One important characteristic of the dataset is that its test split
is unlabeled, with all entries in the label column set to -1. This is
in line with many benchmark datasets where the test labels are
withheld to prevent overfitting and encourage robust model evaluation

There are other models that are evaluated on the dataset to judge whether
the model and dataset are connected:
- 42dot/42dot_LLM-PLM-1.3B: 42dot LLM-PLM is a pre-trained language model
developed by 42dot, designed to handle both Korean and English text.
It is part of the 42dot LLM series, leveraging a 1.3 billion
parameter configuration based on a Transformer decoder architecture,
akin to LLaMA 2. The model is trained with a corpus of diverse text
sources, both in Korean and English, aimed at providing a versatile
foundation for various natural language tasks. The architecture
consists of 24 layers, 32 attention heads, a hidden size of 2048, and
an FFN size of 5632. Pre-training involved 49,000 GPU hours using
NVIDIA A100, with specific hyperparameters such as a global batch
size of 4 million tokens and a learning rate of 4E-4. A Byte-level
BPE tokenizer was developed from scratch to support the model,
featuring a vocabulary size of approximately 50,000 tokens.
— CobraMamba/mamba-gpt—-3b: The Mamba GPT-3B model is a fine-tuned version
of the open-lama model, providing enhanced performance across
several evaluation subtasks. It stands out as the best-performing 3B
model, achieving performance metrics comparable to the larger llama-7
b model. This model utilizes the transformers library and has been
optimized for GPU usage, requiring the installation of specific
versions of the transformers, accelerate, and torch libraries. The
Mamba GPT-3B is designed to generate text with a focus on maintaining
coherence and context, making it suitable for various applications
that require advanced language processing capabilities.
- ModelCloud/Meta-Llama—-3.1-8B-Instruct—-gptg-4bit: This model is a
quantized version of Llama-3.1 with 8 billion parameters, created
using the GPTQModel framework. It utilizes a 4-bit precision format,

16

Under review as a conference paper at ICLR 2026

which allows for efficient storage and computation without
significant loss of model performance. The model’s configuration
includes a group size of 128, symmetric quantization, and true
sequential processing. These settings are optimized to maintain a
balance between model accuracy and computational efficiency. The
quantization process reduces the model’s footprint, making it
suitable for deployment in environments with limited resources, while

still providing robust performance on various tasks. The use of the
GPTQ quantization method ensures that the model can handle different
types of data inputs efficiently.
- ibm-research/ColD-Fusion: The ColD Fusion model is a finetuned language
model that builds upon the RoBERTa base architecture. It was trained
on 35 diverse datasets and is designed to serve as a robust base
model for various natural language processing tasks. The model
leverages a novel approach called ColD Fusion, which allows for
multitask learning benefits through distributed computation. Unlike
traditional multitask learning that requires simultaneous access to
all datasets and substantial computational resources, ColD Fusion
operates with limited communication and no data sharing. This enables
the recycling of finetuned models to iteratively enhance the
pretrained model. The resulting model achieves strong performance
across the datasets it was trained on and serves as an excellent
starting point for finetuning on new datasets. The model demonstrates
a 2.45-point improvement over RoBERTa base without architectural
changes and outperforms previous multitask models. For detailed
insights, refer to the paper linked in the README.

- PygmalionAI/metharme-1.3b: Metharme 1.3B is an instruction-tuned
language model based on EleutherAI’s Pythia 1.4B Deduped. It is
designed specifically for conversation, roleplaying, and storywriting

with a focus on fictional contexts. This model can be guided using
natural language like other instruct models. It has been fine-tuned
using a mixture of regular instruction data, alongside roleplay and
fictional stories, with synthetically generated instructions.
Metharme 1.3B utilizes a unique prompting system with three role
tokens: ‘<|system|>', ‘<|user|>', and ‘<|model|>'. The ‘<|system|>"
token can provide background information, ‘<|user|>' indicates user
input, and ‘<|model|>" signifies the model’s generated response.
These tokens can be chained to create conversation history. The model
is suitable for entertainment purposes, particularly in fictional
writing, and it is not optimized for safety or harmlessness. It may
produce offensive or socially unacceptable content and is not
reliable for factual accuracy.

- tensorblock/bloomz-7bl-mt-GGUF: The model ’'bloomz-7bl-mt’ is a
multilingual text-generation model based on the BigScience Bloom
architecture. It supports a wide array of languages including common
ones like English, Spanish, and Chinese, as well as less common
languages such as Fon, Twi, and Tsonga. Additionally, it is capable
of understanding and generating code in several programming languages
, including Python, JavaScript, and C++. The model is designed to
handle various natural language processing tasks such as coreference
resolution, natural language inference, and sentence completion. It
uses datasets like Winogrande, XWinograd, and XNLI, among others, to
evaluate its performance across different tasks. The model is
distributed under the bigscience-bloom-rail-1.0 license and is part
of the ’'bigscience/xP3mt’ dataset, reflecting its broad multilingual
and multitask focus. Its applications can range from sentiment
analysis and query suggestion to the generation of creative content
such as fairy tales and fables.

Please predict whether this model should be evaluated on this dataset.
Provide your answer as a JSON object with two keys: ’"prediction’ (a
boolean, true or false) and ’'reason’ (a brief explanation of your
reasoning) .

17

Under review as a conference paper at ICLR 2026

Listing 2: LLM with graph attribute prediction example

Given a machine learning model named ’tasksource/ModernBERT-large-nli’
and a dataset named ’stanfordnlp/snli’.

More information about this model: ModernBERT is a multi-task fine-tuned
model specifically designed for natural language inference (NLI)
tasks. It has been trained on a diverse set of NLI datasets including

MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI,
and Label-NLI among others. The training was conducted over 200,000
steps using an Nvidia A30 GPU, resulting in a powerful model for
reasoning tasks. ModernBERT surpasses the performance of models like
llama 3.1 8B Instruct in specific tasks such as ANLI and FOLIO. It
excels in long context reasoning, sentiment analysis, and zero-shot
classification with new labels. The model is versatile, offering
significant potential for fine-—-tuning on single tasks like SST, but
it is particularly effective out-of-the-box for zero-shot
classification and NLI tasks.

More information about this dataset: The Stanford Natural Language Infer (
Pdb) ence (SNLI) corpus 1is a comprehensive dataset designed to
support the task of natural language inference (NLI), also known as
recognizing textual entailment (RTE). Version 1.0 of the dataset
comprises 570,000 human-written sentence pairs labeled with
entailment, contradiction, and neutral. These labels are crucial for
training and evaluating models that aim to determine the inference
relationship between two short texts. The SNLI dataset is an
essential resource for developing systems that can understand and
predict semantic relationships in natural language, making it a
benchmark for text representation learning methodologies. The dataset

was created through crowdsourcing efforts, with premises originating
from the Flickr 30k and VisualGenome corpora, and hypotheses
generated by crowdworkers on Amazon Mechanical Turk. Each sentence
pair includes a premise and a hypothesis, and the task is to classify
the relationship between them. The dataset provides a balanced
classification challenge, offering a rich source of data for training
machine learning models in natural language processing applications.

tasksource/ModernBERT-large—-nli’s performance on other datasets:

- pietrolesci/nli_fever: accuracy: 0.780 (info: The dataset in question
is a modification of the FEVER dataset, tailored for Natural Language

Inference (NLI) research. Originally, the FEVER dataset consisted of
claims derived from Wikipedia, each paired with a label indicating
the veracity of the claim. However, this setup did not align with
standard NLI tasks which typically involve a pair of sequences (e.g.,
premise and hypothesis) mapped to a label. To bridge this gap and
facilitate NLI research, the creators of this dataset have
reformatted it to pair claims with textual evidence, thus converting
it into a pair-of-sequences to label dataset. This transformation
enables the application of NLI models on the FEVER dataset. The
labels are mapped using predefined categories, where ’SUPPORTS’ is
mapped to entailment, ’'NOT ENOUGH INFO’ to neutral, and ’'REFUTES’ to
contradiction. Additionally, the dataset includes a ’'verifiable’
column encoded to indicate whether a claim can be verified. Despite
these modifications, the dataset maintains consistency with the
original FEVER dataset, ensuring reliability and validity for
research purposes.)

- yale-nlp/FOLIO: accuracy: 0.710 (info: The dataset is designed to
provide a comprehensive collection of data relevant to the training
and evaluation of machine learning models across various applications

It comprises a wide range of data types and structures, ensuring
versatility and scalability for different research and development

18

Under review as a conference paper at ICLR 2026

purposes. The dataset is curated to support both supervised and
unsupervised learning tasks, facilitating experimentation with
classification, regression, clustering, and more advanced machine
learning methodologies. Each data entry in the dataset is
meticulously labeled and documented, providing clear context and
metadata to aid in the effective utilization of the data. The dataset

is continually updated to incorporate the latest advancements and
feedback from the user community, ensuring it remains relevant and
useful. It is distributed under the MIT license, allowing for broad
usage, adaptation, and distribution, making it an ideal resource for
both academic and commercial projects. The dataset’s accessibility
and comprehensiveness make it a valuable asset for data scientists,
researchers, and developers aiming to advance machine learning
capabilities.)

- rediska0l23/puzzte: accuracy: 0.590 (info: The dataset is designed to
serve as a resource for binary question-answering models. It consists
of questions that require a true or false answer. The main features
of the dataset include a ’'question’ field, which contains the text of

the question itself, and an ’answer’ field, which is a boolean
indicating whether the answer is true or false. The dataset is
available in a single configuration named ’default’ and contains a
single split, ’'train’, which includes 911 examples. The total dataset

size is 242,839 bytes, while the download size is 64,267 bytes.)

- causal-nlp/CLadder: accuracy: 0.890 (info: The dataset consists of
multiple configuration files specifying different data splits. In the
provided configurations, there are two main data files: "full_wvl.5
_default’ and ’full_vl’. These files are likely CSV formatted and are
stored in the ’'data’ directory. The ’'default’ configuration suggests
that it might be the primary or recommended setup for working with

the dataset. Each configuration is defined under the ’configs’ key,
with each containing a ’"config_name’ and associated ’'data_files’. The
data files are specified with a ’split’ name and the corresponding
file path. This setup allows users to select different versions or
subsets of the data depending on their use case, facilitating
experiments with varied data distributions or updated datasets. Such
configuration flexibility is crucial for testing machine learning
models under different conditions or for ensuring reproducibility in
research.)
- MoritzLaurer/dataset_train_nli: accuracy: 0.950 (info: The dataset
comprises multiple features including ’'text’, ’hypothesis’, ’labels’,
"task_name’, and ’label_text’. The ’'labels’ feature is a class label
with two possible values: ’‘entailment’ (0) and ’"not_entailment’ (1).
This dataset is primarily used for natural language inference tasks,
where the goal is to determine if a given hypothesis is entailed by
the premise text. The data is organized into a single configuration
named ’'default’ and focuses on a training split. The training data
consists of 1,018,733 examples, occupying 315,017,473 bytes. The
total download size for the dataset is approximately 206 MB. This
structured setup allows for easy implementation of machine learning
models aimed at understanding the entailment relationship between
pairs of sentences.)
- tasksource/ruletaker: accuracy: 0.990 (info: The ’ruletaker’ dataset is
designed to evaluate the ability of transformer models to perform
reasoning over natural language. This dataset consists of synthetic
data generated to simulate logical reasoning tasks using controlled
language. The primary features of the dataset include ’'context’, '
question’, ’label’, and ’'config’, each represented as a string, which
are structured to test the model’s capacity to infer and deduce
truths from given premises. The dataset is provided in three splits:
"train’ with 480,152 examples, ’'dev’ with 75,872 examples, and ’'test’
with 151,911 examples, collectively requiring a dataset size of
372,450,135 bytes. It is licensed under the Apache-2.0 license and
primarily intended for English language processing. The dataset is
based on the work presented in the paper ’Transformers as Soft
Reasoners over Language’ by Peter Clark, Oyvind Tafjord, and Kyle

19

Under review as a conference paper at ICLR 2026

Richardson, which was presented at the Twenty-Ninth International
Joint Conference on Artificial Intelligence in 2020.)

- tasksource/babi_nli: accuracy: 0.980 (info: The babi_nli dataset is
designed for natural language inference tasks, specifically focusing
on logical reasoning capabilities. This dataset supports various
logic-based tasks by providing pairs of premises and hypotheses, each

labeled as either ’'entailed’ or ’'not-entailed.’ The dataset is
monolingual, using English language text, and is created through a
combination of expert-generated annotations and crowdsourcing efforts

It falls under the size category with examples ranging between

1,000 and 10,000. The dataset offers multiple configurations, each
targeting different aspects of logical reasoning such as agents’
motivations, coreference, deduction, induction, and several others.
Each configuration provides its own train, validation, and test
splits, with varying dataset sizes and download sizes. The dataset
can be used to evaluate models on their ability to perform natural
language inference tasks, an essential component of many modern
applications in natural language processing.)

stanfordnlp/snli’s performance with other models:

- tasksource/ModernBERT-base-nli: accuracy: 0.830 (info: ModernBERT is a
multi-task fine-tuned transformer model specifically designed for
natural language inference (NLI) tasks. It incorporates datasets such

as MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI,
LogicNLI, and Label-NLI, among others. The model is an ’instruct’
version, optimized for tasks requiring reasoning and zero-shot
classification. ModernBERT’s training regime involved 200,000 steps
on an Nvidia A30 GPU, enhancing its capabilities in long-context
reasoning and sentiment analysis. It surpasses other models like
llama 3.1 8B Instruct in specific NLI tasks such as ANLI and FOLIO.
Though additional performance improvements can be achieved through
single-task fine-tuning (e.g., SST), the current version excels in
zero—-shot classification and natural language inference across
various categories including contradiction, entailment, and neutral
classification. The model’s architecture employs different
classification heads on top of the same transformer, making it
versatile for multiple applications. Notably, ModernBERT benefits
from NLI training data such as the ’label-nli’ dataset, specifically
designed to enhance zero-shot classification abilities.)

Please predict the accuracy that tasksource/ModernBERT-large-nli would
achieve on stanfordnlp/snli. Provide your answer as a JSON object
with two keys: ’'prediction’ (a float between 0 and 1) and ’reason’ (a

brief explanation of your reasoning).

20

	Introduction
	Related Work
	Building Artifact Graph from HuggingFace
	Linking Scientific Artifacts for Automatic SOTA Discovery
	Definition of Automatic SOTA Discovery
	Scalable Link Discovery Framework
	Prediction Stage with score function modeling
	Verification Stage with multi-stage planning

	Evaluating Link Discovery with Edge Masking
	Experimental Settings
	Experimental Results
	Experimental Results on Prediction Tasks
	Experimental Results on Verification Tasks

	Discussion
	Case Study
	Conclusion
	The Use of Large Language Models (LLMs)
	Experimental Details
	GNN-based Modeling and Training Details
	Model Architecture
	Training for Link Prediction
	Training for Attribute Regression
	LLM-based Modeling Details

