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Abstract

Nash Learning from Human Feedback (NLHF) is a game-theoretic framework for1

aligning large language models (LLMs) with human preferences by modeling learn-2

ing as a two-player zero-sum game. However, using raw preference as the payoff3

in the game highly limits the potential of the game-theoretic LLM alignment frame-4

work. In this paper, we systematically study using what choices of payoff based5

on the pairwise human preferences can yield desirable alignment properties. We6

establish necessary and sufficient conditions for Condorcet consistency, diversity7

through mixed strategies, and Smith consistency. These results provide a theoretical8

foundation for the robustness of game-theoretic LLM alignment. Further, we show9

the impossibility of preference matching—i.e., no smooth and learnable mappings10

of pairwise preferences can guarantee a unique Nash equilibrium that matches a11

target policy, even under standard assumptions like the Bradley-Terry-Luce (BTL)12

model. This result highlight the fundamental limitation of game-theoretic LLM13

alignment.14

1 Introduction15

Large language models (LLMs), such as OpenAI-o3 (OpenAI, 2025) and DeepSeek-R1 (DeepSeek-16

AI et al., 2025), have demonstrated impressive capabilities across a wide range of domains, including17

code generation, data analysis, elementary mathematics, and reasoning (Hurst et al., 2024; Anthropic,18

2024; Chowdhery et al., 2023; Touvron et al., 2023; Ji et al., 2025). These models are increasingly19

being used to tackle previously unsolved mathematical problems, drive scientific and algorithmic20

discoveries, optimize complex code-bases, and support decision-making processes that were once21

considered unlikely to be automated in the near future (Bubeck et al., 2023; Eloundou et al., 2024;22

Novikov et al., 2025).23

A key factor behind the popularity and effectiveness of LLMs is alignment: the process by which24

models learn to interact with human users and accommodate diverse human opinions and values by25

aligning their outputs with human preferences (Christiano et al., 2017). The traditional method for26

alignment, reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Casper et al.,27

2023; Dong et al., 2024), typically begins by training a reward model on preference data collected28

from human labelers, often using the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952;29

Luce, 2012),30

P(y ≻ y′ | x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
, (1.1)

where r(x, y) is the reward function and P(y ≻ y′|x) is pairwise human preference, i.e., the fraction31

of individuals who prefer y over y′ under prompt x. In this framework, a higher scalar score assigned32
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by the reward model to an LLM-generated response indicates a stronger preference by human33

labelers. The LLM is then fine-tuned through maximizing the reward to produce responses that are34

more likely to align with these preferences. However, Munos et al. (2024) points out that reward35

model can not deal with preference with cycles, and proposes an alternative alignment approach36

called Nash learning from human feedback (NLHF). Unlike the reward-based methods, NLHF directly37

uses preference data to train a preference model and formulates LLM finetuning as finding Nash38

equilibrium in a two-player zero-sum game, also known as a von Neumann game (Myerson, 2013).39

Specifically, for a given prompt x, the LLM’s policy π competes against an opposing policy π′ in40

a pairwise preference contest, where the objective is to find a policy that maximizes its worst-case41

preference score. Formally, NLHF solves the following min-max optimization problem:42

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x),y′∼π′(·|x) [P (y ≻ y′ | x)]

]
,

where ρ is a given distribution over prompts. However, Munos et al. (2024) does not demonstrate the43

advantages of using the preference as the payoff in the game.44

Recently, criteria from both social choice theory (Conitzer et al., 2024; Dai and Fleisig, 2024;45

Mishra, 2023) and principles related to diversity (Xiao et al., 2024; Chakraborty et al., 2024) has46

been increasingly employed to scrutinize the alignment of LLM with human preference. Notably,47

RLHF has been shown to fail both social choice theory considerations (Noothigattu et al., 2020;48

Siththaranjan et al., 2024; Ge et al., 2024; Liu et al., 2025) and diversity considerations (Xiao et al.,49

2024; Chakraborty et al., 2024). In contrast, NLHF has been proved to enjoy these desirable properties.50

It is shown in Maura-Rivero et al. (2025); Liu et al. (2025) that NLHF is Condorcet consistent (see51

Definition 3.2), meaning that the method always outputs the Condorcet winning response, a response52

that beats every other alternative response in pairwise majority comparisons, whenever one exists.53

Further, under a no-tie assumption (see Assumption 2.1), Liu et al. (2025) shows that NLHF is Smith54

consistent (see Definition 4.1), meaning that the method always output responses from the Smith55

set, the smallest nonempty set of responses that pairwise dominate all alternatives outside the set.56

Moreover, Liu et al. (2025) shows that when human preference is diverse, i.e., there does not exist57

a single response that beat every other alternative, NLHF avoid collapsing to a single response by58

adopting a mixed strategy.59

Despite these advantages, there is no reason why we must use raw preference to design the payoff60

in the game-theoretic alignment approach. Using alternative payoffs in the game-theoretic LLM61

alignment framework might also lead to desirable alignment. In this work, we systematically62

investigate the fundamental limits of the game-theoretic LLM alignment framework by analyzing63

how various choices of payoff influence its ability to satisfy key alignment criteria. We consider the64

following general game-theoretic alignment problem, involving a mapping of the preference denoted65

by Ψ:66

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x) [Ψ (P(y ≻ y′ | x))]

]
. (1.2)

The general problem (1.2) encompasses a range of games. When Ψ(t) = t is the identity mapping, the67

objective in Equation (1.2) is equivalent to the standard NLHF objective. When Ψ(t) = log(t/(1− t))68

and the preference is generated by a BTL model, Equation (1.2) recovers the standard RLHF objective.69

More importantly, the preference model Pθ used in practice is an estimation of true human preference,70

which can be regarded as a noisy mapping of the ground-truth preference P . Allowing Ψ to be71

stochastic provides a way to account for the uncertainty and noise inherent in estimating human72

preferences. It is worthy to note that similar formalism has been proposed for non game-theoretic73

approach in Azar et al. (2024), which uses an non-decreasing mapping to process the preference.74

In this paper, we first discuss when the solution to problem (1.2) is Condorcet consistent and75

Smith consistent in Section 3 and 4 respectively. Our results show that these desirable properties76

is insensitive to the exact value of the payoff, revealing the robustness of game-theoretic alignment77

approaches. As a special case, we discover a natural generalization of RLHF objective that satisfy all78

these desirable properties. Technically, we develop novel proof techniques that can tackle a general79

non-symmetric game directly, instead of relying crucially on the symmetric nature of NLHF as in Liu80

et al. (2025).81

In addition, we examine the diversity of the solution by investigating whether the model produces82

a mixed strategy (Liu et al., 2025), and whether its output can satisfy the criterion of preference83

matching (Xiao et al., 2024), meaning that the model output exactly matches a target policy which84
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fully accounts for the diversity of human preference. Our findings suggest diversity can be ensured by85

mixed strategies, but exactly matching a target is difficult for any game-theoretic alignment approach.86

This reveal a fundamental limitation of game-theoretic alignment approaches.87

1.1 Summary of Contributions88

We summarize our contributions as follows:89

• We show that Condorcet consistency is insensitive to the exact value of the payoff (Theorem90

3.1), revealing the robustness of game-theoretic alignment approaches.91

• We show that Smith consistency can be ensured by further maintaining the symmetry of92

the game (Theorem 4.2). Moreover, Smith consistent methods automatically preserve the93

diversity in human preferences by adopting mixed strategies (Corollary 4.2).94

• We show that preserving the diversity in human preference strictly, in the sense of preference95

matching, is impossible in general (Theorem 5.1). This reveals a fundamental limitation of96

game-theoretic alignment approaches.97

Assuming Ψ is continuous, Table 1 provides a concise summary of our mathematical results.98

Table 1: Summary of our mathematical results: the necessary and sufficient conditions on Ψ to
guarantee certain desirable alignment properties.

Condorcet consistency Ψ(t) ⩾ Ψ(1/2) ,∀ 1/2 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2

Mixed & Condorcet consistency Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀ 1/2 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2

Smith consistency Ψ(t) + Ψ(1− t) = 2Ψ(1/2) ,∀ 1/2 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2

1.2 Related Works99

A general mapping Ψ is first introduced in Azar et al. (2024) to facilitate the analysis of traditional100

non game-theoretic LLM alignment methodologies. Their objective function, called ΨPO, applies a101

general mapping Ψ to the original human preference. In this way, they treat RLHF and DPO as special102

cases of ΨPO under BTL model and argue that they are prone to overfitting. To avoid overfitting, they103

take Ψ to be identity and arrive at a new efficient algorithm called IPO. Our problem (1.2) can be104

regarded as the analogy of ΨPO in the context of game-theoretic LLM alignment. Another difference105

is that rather than focusing on statistical properties like overfitting, our focus is on the alignment106

properties such as Smith consistency and preference matching. Moreover, they restrict Ψ to be an107

non-decreasing map, while we allow Ψ to be arbitrary, even stochastic.108

Condorcet consistency is one of the dominant concept in the theory of voting (Gehrlein, 2006; Balinski109

and Laraki, 2010), and Smith consistency is its natural generalization (Shoham and Leyton-Brown,110

2008; Börgers, 2010). They are not studied in the context of LLM alignment until recently (Maura-111

Rivero et al., 2025; Liu et al., 2025). In Maura-Rivero et al. (2025), the authors show that NLHF with a112

selection probability that deals with ties is Condorcet consistent. Under a no-tie assumption, Liu et al.113

(2025) show that NLHF is Condorcet consistent and Smith consistent, whereas RLHF is not unless the114

preference satisfies a BTL model. Further, they show that the probability that the preference satisfies115

a BTL model is vanishing under an impartial culture assumption, highlighting a key advantage of the116

NLHF framework.117

Several recent works also focus on aligning LLMs with the diverse human preference (Chakraborty118

et al., 2024; Xiao et al., 2024; Liu et al., 2025). In Chakraborty et al. (2024), the authors introduce a119

mixture model to account for the opinion of minority group and arrive at the MaxMin-RLHF method.120

In Xiao et al. (2024), the authors introduce the concept of preference matching and develop the121

PM-RLHF objective to pursue this goal. Liu et al. (2025) demonstrates that the original NLHF yields122

a mixed strategy when no Condorcet winning response exists, whereas standard RLHF produces a123

deterministic strategy, highlighting a potential advantage of NLHF in preserving the diversity of human124

preferences.125
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2 Preliminaries126

Consider a general mapping Ψ : [0, 1] → R. We apply Ψ to the preference and study the max-min127

problem (1.2) with this generalized payoff. Any solution π employed by the first player at the Nash128

equilibrium,129

π ∈ argmax
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x) [Ψ (P(y ≻ y′ | x))]

]
, (2.1)

is called a Nash solution to the problem (1.2). The Nash solution is the policy which fully aligned130

LLMs will perform. Note that the set of Nash solutions remain the same after an overall shift of131

payoff, that is, changing Ψ to Ψ+ C for any constant C will not affect the problem. The original132

NLHF objective (Munos et al., 2024) corresponds to the special case where Ψ(t) = t, equivalent to133

Ψ(t) = t− 1/2, and the resulting game is symmetric (Duersch et al., 2012), meaning that the two134

players are the same. However, for an arbitrary mapping Ψ, the game is usually not symmetric, and135

we only focus on the Nash solution employed by the first player.136

Given a prompt x, we consider the set of all possible responses generated by the LLM: {y1, . . . , yn},137

where n is the total number of possible responses. Without any loss of generality, we drop the138

dependence on the prompt x from now on. For any two distinct response y and y′, recall that139

P(y ≻ y′) denote the preference of y over y′, defined as the expected proportion of individuals who140

prefer y over y′. By definition, human preference satisfies the condition P(y ≻ y′) + P(y′ ≻ y) = 1141

and naturally we let P(y ≻ y) = 1/2 (Munos et al., 2024). For any distinct pair of responses y and142

y′, we say that y beats y′ if P(y ≻ y′) > 1/2. Additionally, following Liu et al. (2025), we adopt the143

No-Tie assumption throughout this paper.144

Assumption 2.1 (No-Tie). For any distinct responses y and y′, we assume that P(y ≻ y′) ̸= 1/2.145

This assumption is both minimal and practically reasonable. First, if the number of labelers is odd,146

it automatically holds. Even in cases where a tie occurs, it can always be resolved through a more147

precise comparison.148

Notation. For any set A, we denote its cardinality by |A|. For any n ∈ N+, we define [n] :=149

{1, . . . , n}. We use δij := 1{i = j} for 1 ⩽ i, j ⩽ n. We represent high-dimensional vectors using150

bold symbols. Any policy π over the set of possible responses {y1, . . . , yn} can be identified with a151

vector in Rn, where each entry πi corresponds to the probability assigned to yi for i ∈ [n]. We then152

define the support of a policy π as supp(π) := {yi | πi > 0 , i ∈ [n]}. We write π > 0 if πi > 0 for153

all i ∈ [n], and similarly, π ⩾ 0 if πi ⩾ 0 for all i ∈ [n].154

3 Condorcet Consistency155

In this section, we examine Condorcet consistency—a desirable property for LLM alignment inspired156

by social choice theory—within the generalized game-theoretic LLM fine-tuning framework (1.2).157

We begin by defining the Condorcet winning response and Condorcet consistency. We then present158

Theorem 3.1, which characterizes the necessary and sufficient conditions on the mapping Ψ to159

guarantee Condorcet consistency. Next, we examine the conditions under which Ψ preserves human160

preference diversity when no Condorcet winner exists and introduce Theorem 3.2. Finally, we discuss161

the continuity assumption underlying Theorem 3.2.162

Following Liu et al. (2025), a response that is preferred over all others in pairwise comparisons by163

the preference model is referred to as the Condorcet winning response.164

Definition 3.1 (Condorcet Winning Response). A response y⋆ is called a Condorcet winning response165

if P(y⋆ ≻ y) > 1/2 for all y ̸= y⋆.166

It is clear that there can be at most one Condorcet winning response. When such a response exists, a167

natural requirement for LLM alignment is that this response should be the output. This property is168

known as Condorcet consistency.169

Definition 3.2 (Condorcet Consistency). Problem (1.2) is Condorcet consistent if when there exists a170

Condorcet winning response, the Nash solution to (1.2) is unique and corresponds to this Condorcet171

winning response.172
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Liu et al. (2025); Maura-Rivero et al. (2025) show that the original NLHF objective, which corresponds173

to the case where Ψ(·) is identity, is Condorcet consistent. In this paper, we proceed further and174

investigate the following question:175

Which choices of Ψ ensure Condorcet consistency?176

We answer this question in Theorem 3.1. The proof is provided in Appendix A.177

Theorem 3.1. Problem (1.2) is Condorcet consistent if and only if Ψ(·) satisfies178 {
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 1/2 > t ⩾ 0
. (3.1)

Note that this condition is much weaker than requiring Ψ to be increasing. It only demands that Ψ179

maps any value greater than 1/2 to some value larger than Ψ(1/2), and any value less than 1/2 to some180

value smaller than Ψ(1/2). This implies that a wide range of mapping functions can be used within181

the game-theoretic LLM alignment framework (1.2) to ensure Condorcet consistency. Furthermore,182

in practice, we do not have access to the ground-truth preference model. Instead, we parameterize183

the preference model using a deep neural network, Pθ(y ≻ y′), trained on large-scale preference184

datasets (Munos et al., 2024). Due to the limitations of the datasets and the optimization process, the185

learned model only approximates the true human preferences. We can view this approximation as186

Ψ(P(y ≻ y′)) in our framework. In practice, we can enforce the parameterized preference model to187

satisfy Pθ(y ≻ y) = 1/2, then our results show that as long as this approximation yields the correct188

pairwise majority comparisons—specifically, that Pθ(y ≻ y′) ⩾ 1/2 > Pθ(y
′ ≻ y) whenever189

y beats y′—then the LLM alignment remains Condorcet consistent. This strongly highlights the190

robustness of the game-theoretic LLM alignment approach in achieving Condorcet consistency.191

When a Condorcet winning response does not exist, human preferences are diverse and there is no192

single response that is better than others. Therefore, in order to preserve the diversity inherent in193

human preferences, it is natural to require the Nash solution not to collapse to a single response. This194

motivation leads to the following characterization of diversity through mixed strategies.195

Definition 3.3 (Mixed Strategies). A Nash solution π is called a mixed strategy if | supp(π)| > 1.196

Liu et al. (2025) demonstrates that the original NLHF, which corresponds to the case where Ψ(·) is197

identity, yields a mixed strategy when no Condorcet winning response exists. Assuming that problem198

(1.2) is Condorcet consistent, we proceed further and investigate:199

Which choices of Ψ lead to a mixed strategy in the absence of a Condorcet winning response?200

We now focus on mappings Ψ that are continuous at 1/2, a condition commonly encountered in201

practical learning setups. Under this mild assumption, we answer this question in Theorem 3.2 and202

the proof is provided in Appendix C.203

Theorem 3.2. Assume that the mapping Ψ(·) is continuous at 1/2. Assuming the Condorcet204

consistency of problem (1.2), then any Nash solution is mixed when there is no Condorcet winning205

response if and only if Ψ(·) satisfies206

Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀ 0 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2 . (3.2)

The first condition arises from the requirement of mixed strategies, while the second condition is a207

reduction of the condition inherited from Theorem 3.1 under the assumption of Condorcet consistency208

and the first condition.209

Choices of payoff functions are harder to characterize when we relax the continuity assumption. The210

following example investigate a special piece-wise constant mapping, which does not satisfy the first211

condition in Theorem 3.2.212

Example 3.4. Let M− < Ψ(1/2) ⩽ M+ and take213

Ψ(t) =


M− , 0 ⩽ t < 1/2

Ψ(1/2) , t = 1/2

M+ , 1/2 < t ⩽ 1

.

Then, any Nash solution is mixed when there is no Condorcet winning response.214

The proof of Example 3.4 is deferred to Appendix B. This example implies that choices of payoff215

functions are considerably richer when we relax the continuity assumption.216
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4 Smith Consistency217

In this section, we extend the discussion of Condorcet consistency to Smith consistency. First,218

we define the Smith set and Smith consistency. Next, we present Theorem 4.2, which provides219

the necessary and sufficient condition for the mapping Ψ to ensure Smith consistency. Finally, we220

highlight that Smith-consistent methods inherently preserve the diversity present in human preferences221

and discuss the continuity assumption in Theorem 4.2.222

Condorcet consistency only ensures the method capture the right response when there exists a223

Condorcet winning response. In general, when there is no Condorcet winning response, we can224

expect that there might be a set of responses satisfying similar property, generalizing Definition 3.1.225

Under Assumption 2.1, Liu et al. (2025) revealed a more detailed decomposition of the preference226

structure. Specifically, the set of responses can be partitioned into distinct groups S1, . . . , Sk, where227

every response in Si is preferred over all responses in Sj for i < j, summarized in the following228

theorem.229

Theorem 4.1 (Liu et al. (2025)). Under Assumption 2.1, the set of responses can be partitioned into230

disjoint subsets S1, . . . , Sk such that:231

1. Each Si either forms a Condorcet cycle or is a single response.232

2. For any j > i, any response y ∈ Si and y′ ∈ Sj , P(y ≻ y′) > 1
2 .233

Moreover, this decomposition is unique.234

When |S1| = 1, the response in S1 is exactly the Condorcet winning response. Thus, S1 is the235

generalization of Condorcet winning response, and is referred as the Condorcet winning set in Liu236

et al. (2025). Traditionally, a subset with such property is also known as the Smith set in the literature237

of social choice theory (Shoham and Leyton-Brown, 2008). Here we choose to adopt the name Smith238

set to distinguish with the concept of Condorcet winning response. Given this decomposition, it is239

natural to desire that an aligned LLM adopts a strategy supported exclusively on the top group S1, as240

any response outside S1 is strictly less preferred than any response inside S1. This desirable property241

is referred to as Smith consistency:242

Definition 4.1 (Smith Consistency). Problem (1.2) is Smith consistent if the support of any Nash243

solution is contained in the Smith set S1.244

Liu et al. (2025) showed that the original NLHF payoff, which corresponds to the case where Ψ(t) = t,245

is Smith consistent. Here, we investigate this question for a general mapping Ψ:246

Which choices of Ψ ensure Smith consistency?247

Here, similar to Theorem 3.2, we answer this question in Theorem 4.2 for mappings that is continuous248

at 1/2. The proof is provided in Appendix E.249

Theorem 4.2. Suppose that the mapping Ψ(·) is continuous at 1/2, problem (1.2) is Smith consistent250

if and only if Ψ(·) satisfies251

Ψ(t) + Ψ(1− t) = 2Ψ(1/2) ,∀ t ∈ [0, 1] and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2 .

The first condition Ψ(t) + Ψ(1 − t) = 2Ψ(1/2) says nothing but the zero-sum game formed by252

problem (1.2) is equivalent to a symmetric two-player zero-sum game1 (Duersch et al., 2012). By253

definition, Smith consistency implies Condorcet consistency because when there is a Condorcet254

winning response, S1 is exactly the set whose only element is the Condorcet winning response. Thus,255

the second condition is just a reduction of the condition in Theorem 3.1 under the first condition. It is256

easy to see Ψ(t) = t satisfies these conditions, and thus our result generalize Theorem 3.6 in Liu et al.257

(2025). More interestingly, Ψ(t) = log(t/(1− t)) also satisfies these conditions. This implies that258

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x)

[
log

(
P(y ≻ y′ | x)
P(y′ ≻ y | x)

)]]
,

which is a natural generalization of standard RLHF when human preferences does not satisfy BTL259

model, is also Smith consistent.260

1This can be seen by shifting the payoff by Ψ(1/2), which leaves the Nash solution unchanged.
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The set of choices for Ψ that ensure Smith consistency is quite broad. We can easily construct261

such a Ψ by first defining Ψ(t) on [0, 1/2] to satisfy Ψ(t) < Ψ(1/2) for all t ∈ [0, 1/2), and then262

extending it to [0, 1] by setting Ψ(t) = 2Ψ(1/2) − Ψ(1 − t) for all t ∈ (1/2, 1]. Moreover, as263

discussed in Section 3, a practical preference model Pθ(y ≻ y′) can be seen as a mapping of the264

ground truth preference via Ψ, i.e., Ψ(P(y ≻ y′)). Thus, the first condition in Theorem 4.2 requires265

the preference model to satisfy Pθ(y ≻ y′) + Pθ(y
′ ≻ y) = 1, with Pθ(y ≻ y) = 1/2 enforced.266

However, several practically used preference models (Munos et al., 2024; Jiang et al., 2023; Wu et al.,267

2024) do not guarantee this condition, which may cause the aligned LLM strategy to fail to satisfy268

Smith consistency.269

As any mapping satisfying the condition in Theorem 4.2 also satisfies the condition in Theorem 3.2,270

we obtain the following corollary:271

Corollary 4.2. Suppose that the mapping Ψ(·) is continuous at 1/2. Then if problem (1.2) is Smith272

consistent, any Nash solution is also mixed.273

This shows that when |S1| > 1, the Nash solution to problem (1.2) with any Ψ such that Smith274

consistency holds will not only support on S1 but also be a mixed strategy on S1 without collapsing275

to a single response. As a conclusion, a Smith consistent method can preserve the diversity inherent276

in human preferences, at least partially.277

Lastly, we discuss what happens if Ψ is not continuous at 1/2. Choices of mappings Ψ are consider-278

ably richer and consequently harder to characterize when we relax the continuity assumption. The279

following example shows that the piece-wise constant mapping in Example 3.4 also ensures Smith280

consistency.281

Example 4.3. Let M− < Ψ( 12 ) < M+, and we take282

Ψ(t) =


M− 0 ⩽ t < 1/2

Ψ(1/2) t = 1/2

M+ 1/2 < t ⩽ 1

.

Then problem (1.2) is Smith consistent. The proof is provided in Appendix D.283

5 Impossibility of Preference Matching284

In this section, we first revisit the definition of preference matching in the BTL model (Xiao et al.,285

2024). Then we introduce a general theoretical framework of preference matching within the context286

of game-theoretic LLM alignment, and establish a general impossibility result, as stated in Theorem287

5.1. Finally we apply this general result to problem (1.2), concluding that preference matching is288

impossible.289

In previous sections, we have characterized the diversity of alignment result via mixed strategies. In290

Xiao et al. (2024), the authors propose a more refined criterion for diversity when the preference291

P(y ≻ y′ | x) follows a BTL model,292

P(y ≻ y′ | x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
,

as given by (1.1). They point out that it is unwise to completely disregard any minority opinions in293

the case that 51% of human labelers prefer y1 over y2 for a binary comparison. They suggest that the294

policy (5.1),295

π∗(y | x) = exp (r(x, y))∑
y′ exp (r(x, y′))

, (5.1)

referred to as the preference-matching policy, fully accounts for the diversity in human preferences.296

It is easy to see that there exists a Condorcet winning response under BTL model. According to297

Theorem 3.1, using preference Ψ(P(y ≻ y′ | x)) as payoff with Ψ(t) = t or Ψ(t) = log(t/(1− t))298

will lead the Nash solution to collapse to a single response instead of matching with π∗. This shows299

that both RLHF and NLHF do not accounts for the diversity inherent in human preferences from the300

perspective of preference matching (Xiao et al., 2024; Liu et al., 2025), even under BTL model.301

To achieve alignment fully accounting for diversity, we would like to match the Nash solution with the302

desired policy π∗. In Xiao et al. (2024), the authors answered this question for RLHF. They proposed303
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the preference matching RLHF (PM-RLHF) method which successfully achieves preference matching,304

by slightly modifying the RLHF objective. Here, we aim to explore the possibility of designing a new305

learnable payoff matrix that aligns with the desired strategy in a game-theoretic framework for LLM306

alignment:307

Which choices of Ψ ensure preference matching?308

Although it is currently unknown how to generalize the notion of preference matching policy to a309

general non-BTL preference, to maintain the generality of the discussion and drop the BTL model310

assumption, we suppose there exists an ideal policy, denoted by π∗, which captures the diversity of311

human preferences perfectly.312

Given a prompt x, we consider the set of all possible responses generated by the LLM: {y1, . . . , yn}.313

We further suppose that the policy π∗ has full support over these n responses, meaning π∗ > 0, as314

we exclude responses not supported by π∗ from consideration. Then our goal is to construct a game,315

represented by a payoff matrix {αij}ni,j=1, with its Nash solution the given policy π∗, i.e.,316

π∗ = argmax
π

min
π′

n∑
i=1

n∑
j=1

αijπiπ
′
j .

To answer this question, we characterize the Nash solution under the given payoff matrix {αij}ni,j=1,317

which is summarized by the following KKT condition. The proof is deferred to Appendix F.1.318

Lemma 5.1 (KKT Condition). Consider a game with payoff matrix {αij}ni,j=1. Then π∗ > 0 is a319

Nash solution to the game if and only if there exists u∗ ∈ Rn with u∗ ⩾ 0 and
∑n

i=1 u
∗
i = 1, and320

t∗ ∈ R such that the following KKT conditions hold:321 
∑n

i=1 π
∗
i αij − t∗ ⩽ 0 j = 1, · · · , n

u∗
j (
∑n

i=1 π
∗
i αij − t∗) = 0 j = 1, · · · , n∑n

j=1 αiju
∗
j = t∗ i = 1, · · · , n

.

According to Lemma 5.1, it is easy to verify that the payoff matrix322

αij = π∗
i + π∗

j − δij ,∀ 1 ⩽ i, j ⩽ n , (5.2)

and the payoff matrix323

αij = −
π∗
j

π∗
i

+ nδij ,∀ 1 ⩽ i, j ⩽ n , (5.3)

both guarantee that π∗ is a Nash solution (the details are provided in Appendix F.2). However, these324

payoff matrices do not depend on the given policy π∗ in a reasonable way. The payoff matrix in325

Equation (5.2) is symmetric, making it difficult to interpret. Even worse, it depends on the raw value326

of π∗. In practice, π∗ is often only known up to a normalizing constant. For instance, the preference327

matching policy (5.1) includes a normalizing constant in the denominator that involves summing328

over n terms. This constant is hard to determine when n is large and unknown, as is often the case in329

LLMs. The payoff matrix in Equation (5.3) faces a similar issue as it explicitly depends on n, which330

is an extremely large and unknown value in practice.331

In summary, the above two payoff matrices rely on information that is often unavailable in practice,332

such as n and the raw value of π∗. What we can obtain in practice for the design of αij is the333

preference information between two responses yi and yj , which we assume depends solely on the334

ratio between π∗
i and π∗

j . When the preference satisfies the BTL model (1.1), this assumption is335

justified by the fact that the preference between any two responses depends solely on the ratio of336

the values assigned by their corresponding preference matching policies (5.1). From this practical337

consideration, we assume that the payoff matrix satisfies the following assumptions:338

Assumption 5.2. Given any π∗ > 0, the payoff matrix {αij}ni,j=1 satisfies the following conditions:339

1. For all i ∈ [n], αii = C where C is a constant independent of π∗ and n. In other words,340

the diagonal elements are the same constant.341
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2. For all i, j ∈ [n] with i ̸= j, αij = f
(

π∗
i

π∗
j

)
for some smooth function f that is independent342

of π∗ and n. In other words, the off-diagonal elements depend on the ratio π∗
i

π∗
j

in the same343

way for all pairs (i, j) with i ̸= j.344

We emphasize that the above two assumptions are crucial for constructing a meaningful and practically345

learnable payoff matrix. Furthermore, for effective alignment, the payoff matrix should not only346

ensure π∗ to be a Nash solution, but π∗ must be the only Nash solution. The uniqueness requirement347

excludes trivial payoff matrices such as αij = C, where every π∗ > 0 is a Nash solution.348

Unfortunately, in Theorem 5.1, we prove that such a payoff matrix {αij}ni,j=1 does not exist generally.349

The proof can be found in Appendix F.3.350

Theorem 5.1 (Impossibility of Preference Matching for General Payoffs). There does not exist a351

payoff matrix {αij}ni,j=1 satisfying Assumption 5.2 such that for any given π∗ > 0, the Nash solution352

to the game is unique and equals to π∗.353

Remark 5.3. If we relax Assumption 5.2 and allow the entries of the payoff matrix to depend on n,354

then the design (5.3) is actually eligible for preference matching.355

Theorem 5.1 implies that no simple mapping of the preference can yield a payoff that leads to356

preference matching. As a special case of Theorem 5.1, under BTL model, the generalized game in357

Equation (1.2) with a smooth mapping Ψ,358

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x) [Ψ (P(y ≻ y′ | x))]

]
,

cannot achieve preference matching. Therefore, we obtain the following corollary.359

Corollary 5.4. Problem (1.2) with smooth mapping Ψ cannot achieve preference matching.360

6 Conclusion361

We investigate several properties motivated by social choice theory and diversity considerations362

within the general game-theoretic LLM alignment framework (1.2), where the payoff is designed as a363

mapping Ψ of the original preference. We identify the necessary and sufficient conditions on Ψ to364

guarantee Condorcet consistency and Smith consistency. These conditions allow for a considerably365

broad class of choices for Ψ, demonstrating that these desirable alignment properties are not sensitive366

to the exact values of the payoff, thereby providing a theoretical foundation for the robustness of the367

game-theoretic LLM alignment approach. Additionally, we examine conditions on Ψ that ensure the368

resulting policy is a mixed strategy, preserving diversity in human preferences. Finally, we prove369

that achieving exact preference matching is impossible under the general game-theoretic alignment370

framework with a smooth mapping, revealing fundamental limitations of this approach.371

Limitations and Discussion. Our findings suggest several promising directions for future research372

on LLM alignment. First, while we establish an impossibility result for preference matching under373

the assumption that Ψ is smooth, it remains an open question whether preference matching can be374

achieved when Ψ is merely continuous. Second, in practical settings, regularization terms based on375

the reference model are often added to problem (1.2). Regularization may be crucial for preference376

matching, for example, Xiao et al. (2024) modify the regularization term in RLHF to achieve preference377

matching. Analyzing the alignment properties of game-theoretic methods with such regularization378

is another interesting avenue for future work. Furthermore, how to explicitly define a preference-379

matching policy for general preferences that do not satisfy the BTL model, and how to develop380

alignment approaches capable of learning such a policy, remain open problems. Finally, our results381

highlight that practical preference models must satisfy certain anti-symmetry conditions to ensure382

Smith consistency — conditions that are not guaranteed by several currently used models. Thus,383

designing preference model architectures that enforce anti-symmetry is an important and interesting384

future direction.385

Broader Impacts. The goal of this paper is to investigate several theoretical properties of the386

general game-theoretic LLM alignment approach. There are many potential societal consequences of387

our work, none of which we feel must be specifically highlighted here.388
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Novikov, A., Vũ, N., Eisenberger, M., Dupont, E., Huang, P.-S., Wagner, A. Z., Shirobokov, S.,538

Kozlovskii, B., Ruiz, F. J. R., Mehrabian, A., Kumar, M. P., See, A., Chaudhuri, S., Holland,539

G., Davies, A., Nowozin, S., Kohli, P., and Balog, M. (2025). AlphaEvolve: A coding agent for540

scientific and algorithmic discovery. Technical report, Google DeepMind.541

OpenAI (2025). Openai o3 and o4-mini system card. Technical report, OpenAI.542

12



Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S.,543

Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder,544

P., Christiano, P., Leike, J., and Lowe, R. (2022). Training language models to follow instructions545

with human feedback. In Advances in Neural Information Processing Systems, volume 35, pages546

27730–27744.547

Shoham, Y. and Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-Theoretic, and548

Logical Foundations. Cambridge University Press.549

Siththaranjan, A., Laidlaw, C., and Hadfield-Menell, D. (2024). Distributional preference learn-550

ing: Understanding and accounting for hidden context in RLHF. In The Twelfth International551

Conference on Learning Representations.552

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,553

N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. (2023). Llama:554

Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.555

Wu, Y., Sun, Z., Yuan, H., Ji, K., Yang, Y., and Gu, Q. (2024). Self-play preference optimization for556

language model alignment. In Adaptive Foundation Models: Evolving AI for Personalized and557

Efficient Learning.558

Xiao, J., Li, Z., Xie, X., Getzen, E., Fang, C., Long, Q., and Su, W. J. (2024). On the algorithmic559

bias of aligning large language models with rlhf: Preference collapse and matching regularization.560

arXiv preprint arXiv:2405.16455.561

13



NeurIPS Paper Checklist562

1. Claims563

Question: Do the main claims made in the abstract and introduction accurately reflect the564

paper’s contributions and scope?565

Answer: [Yes]566

Justification: The claims in the abstract and introduction accurately reflect the contributions567

and scope of this paper.568

Guidelines:569

• The answer NA means that the abstract and introduction do not include the claims570

made in the paper.571

• The abstract and/or introduction should clearly state the claims made, including the572

contributions made in the paper and important assumptions and limitations. A No or573

NA answer to this question will not be perceived well by the reviewers.574

• The claims made should match theoretical and experimental results, and reflect how575

much the results can be expected to generalize to other settings.576

• It is fine to include aspirational goals as motivation as long as it is clear that these goals577

are not attained by the paper.578

2. Limitations579

Question: Does the paper discuss the limitations of the work performed by the authors?580

Answer: [Yes]581

Justification: The paper discusses the limitations of the work in Section 6 (see the "Limita-582

tions and Discussion" paragraph).583
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• The answer NA means that the paper has no limitation while the answer No means that585

the paper has limitations, but those are not discussed in the paper.586

• The authors are encouraged to create a separate "Limitations" section in their paper.587

• The paper should point out any strong assumptions and how robust the results are to588

violations of these assumptions (e.g., independence assumptions, noiseless settings,589

model well-specification, asymptotic approximations only holding locally). The authors590

should reflect on how these assumptions might be violated in practice and what the591

implications would be.592

• The authors should reflect on the scope of the claims made, e.g., if the approach was593

only tested on a few datasets or with a few runs. In general, empirical results often594

depend on implicit assumptions, which should be articulated.595

• The authors should reflect on the factors that influence the performance of the approach.596

For example, a facial recognition algorithm may perform poorly when image resolution597

is low or images are taken in low lighting. Or a speech-to-text system might not be598

used reliably to provide closed captions for online lectures because it fails to handle599

technical jargon.600

• The authors should discuss the computational efficiency of the proposed algorithms601

and how they scale with dataset size.602

• If applicable, the authors should discuss possible limitations of their approach to603

address problems of privacy and fairness.604

• While the authors might fear that complete honesty about limitations might be used by605

reviewers as grounds for rejection, a worse outcome might be that reviewers discover606

limitations that aren’t acknowledged in the paper. The authors should use their best607

judgment and recognize that individual actions in favor of transparency play an impor-608

tant role in developing norms that preserve the integrity of the community. Reviewers609

will be specifically instructed to not penalize honesty concerning limitations.610

3. Theory assumptions and proofs611

Question: For each theoretical result, does the paper provide the full set of assumptions and612

a complete (and correct) proof?613

14



Answer: [Yes]614

Justification: The full set of assumptions is introduced before theoretical result and the615

complete proof of theoretical result is provided in the appendix.616
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• The answer NA means that the paper does not include theoretical results.618

• All the theorems, formulas, and proofs in the paper should be numbered and cross-619

referenced.620

• All assumptions should be clearly stated or referenced in the statement of any theorems.621

• The proofs can either appear in the main paper or the supplemental material, but if622

they appear in the supplemental material, the authors are encouraged to provide a short623

proof sketch to provide intuition.624

• Inversely, any informal proof provided in the core of the paper should be complemented625

by formal proofs provided in appendix or supplemental material.626

• Theorems and Lemmas that the proof relies upon should be properly referenced.627

4. Experimental result reproducibility628

Question: Does the paper fully disclose all the information needed to reproduce the main ex-629

perimental results of the paper to the extent that it affects the main claims and/or conclusions630

of the paper (regardless of whether the code and data are provided or not)?631

Answer: [NA]632

Justification: This paper focuses on theoretical analysis and does not include experiments.633

Guidelines:634

• The answer NA means that the paper does not include experiments.635

• If the paper includes experiments, a No answer to this question will not be perceived636

well by the reviewers: Making the paper reproducible is important, regardless of637

whether the code and data are provided or not.638

• If the contribution is a dataset and/or model, the authors should describe the steps taken639

to make their results reproducible or verifiable.640

• Depending on the contribution, reproducibility can be accomplished in various ways.641

For example, if the contribution is a novel architecture, describing the architecture fully642

might suffice, or if the contribution is a specific model and empirical evaluation, it may643

be necessary to either make it possible for others to replicate the model with the same644

dataset, or provide access to the model. In general. releasing code and data is often645

one good way to accomplish this, but reproducibility can also be provided via detailed646

instructions for how to replicate the results, access to a hosted model (e.g., in the case647

of a large language model), releasing of a model checkpoint, or other means that are648

appropriate to the research performed.649

• While NeurIPS does not require releasing code, the conference does require all submis-650

sions to provide some reasonable avenue for reproducibility, which may depend on the651

nature of the contribution. For example652

(a) If the contribution is primarily a new algorithm, the paper should make it clear how653

to reproduce that algorithm.654

(b) If the contribution is primarily a new model architecture, the paper should describe655

the architecture clearly and fully.656

(c) If the contribution is a new model (e.g., a large language model), then there should657

either be a way to access this model for reproducing the results or a way to reproduce658

the model (e.g., with an open-source dataset or instructions for how to construct659

the dataset).660

(d) We recognize that reproducibility may be tricky in some cases, in which case661

authors are welcome to describe the particular way they provide for reproducibility.662

In the case of closed-source models, it may be that access to the model is limited in663

some way (e.g., to registered users), but it should be possible for other researchers664

to have some path to reproducing or verifying the results.665

5. Open access to data and code666
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Question: Does the paper provide open access to the data and code, with sufficient instruc-667

tions to faithfully reproduce the main experimental results, as described in supplemental668

material?669

Answer: [NA]670

Justification: This paper does not include experiments requiring code.671

Guidelines:672

• The answer NA means that paper does not include experiments requiring code.673

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/674

public/guides/CodeSubmissionPolicy) for more details.675

• While we encourage the release of code and data, we understand that this might not be676

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not677

including code, unless this is central to the contribution (e.g., for a new open-source678

benchmark).679

• The instructions should contain the exact command and environment needed to run to680

reproduce the results. See the NeurIPS code and data submission guidelines (https:681

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.682

• The authors should provide instructions on data access and preparation, including how683

to access the raw data, preprocessed data, intermediate data, and generated data, etc.684

• The authors should provide scripts to reproduce all experimental results for the new685

proposed method and baselines. If only a subset of experiments are reproducible, they686

should state which ones are omitted from the script and why.687

• At submission time, to preserve anonymity, the authors should release anonymized688

versions (if applicable).689

• Providing as much information as possible in supplemental material (appended to the690

paper) is recommended, but including URLs to data and code is permitted.691

6. Experimental setting/details692

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-693

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the694

results?695

Answer: [NA]696

Justification: This paper does not include experiments.697

Guidelines:698

• The answer NA means that the paper does not include experiments.699

• The experimental setting should be presented in the core of the paper to a level of detail700

that is necessary to appreciate the results and make sense of them.701

• The full details can be provided either with the code, in appendix, or as supplemental702

material.703

7. Experiment statistical significance704

Question: Does the paper report error bars suitably and correctly defined or other appropriate705

information about the statistical significance of the experiments?706

Answer: [NA]707

Justification: The paper does not include experiments.708

Guidelines:709

• The answer NA means that the paper does not include experiments.710

• The authors should answer "Yes" if the results are accompanied by error bars, confi-711

dence intervals, or statistical significance tests, at least for the experiments that support712

the main claims of the paper.713

• The factors of variability that the error bars are capturing should be clearly stated (for714

example, train/test split, initialization, random drawing of some parameter, or overall715

run with given experimental conditions).716

• The method for calculating the error bars should be explained (closed form formula,717

call to a library function, bootstrap, etc.)718
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• The assumptions made should be given (e.g., Normally distributed errors).719

• It should be clear whether the error bar is the standard deviation or the standard error720

of the mean.721

• It is OK to report 1-sigma error bars, but one should state it. The authors should722

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis723

of Normality of errors is not verified.724

• For asymmetric distributions, the authors should be careful not to show in tables or725

figures symmetric error bars that would yield results that are out of range (e.g. negative726

error rates).727

• If error bars are reported in tables or plots, The authors should explain in the text how728

they were calculated and reference the corresponding figures or tables in the text.729

8. Experiments compute resources730

Question: For each experiment, does the paper provide sufficient information on the com-731

puter resources (type of compute workers, memory, time of execution) needed to reproduce732

the experiments?733

Answer: [NA]734

Justification: The paper does not include experiments.735

Guidelines:736

• The answer NA means that the paper does not include experiments.737

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,738

or cloud provider, including relevant memory and storage.739

• The paper should provide the amount of compute required for each of the individual740

experimental runs as well as estimate the total compute.741

• The paper should disclose whether the full research project required more compute742

than the experiments reported in the paper (e.g., preliminary or failed experiments that743

didn’t make it into the paper).744

9. Code of ethics745

Question: Does the research conducted in the paper conform, in every respect, with the746

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?747

Answer: [Yes]748

Justification: Our research conforms with the NeurIPS Code of Ethics.749

Guidelines:750

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.751

• If the authors answer No, they should explain the special circumstances that require a752

deviation from the Code of Ethics.753

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-754

eration due to laws or regulations in their jurisdiction).755

10. Broader impacts756

Question: Does the paper discuss both potential positive societal impacts and negative757

societal impacts of the work performed?758

Answer: [Yes]759

Justification: The paper discusses broader impacts in Section 6 (see the "Broader Impacts"760

paragraph).761

Guidelines:762

• The answer NA means that there is no societal impact of the work performed.763

• If the authors answer NA or No, they should explain why their work has no societal764

impact or why the paper does not address societal impact.765

• Examples of negative societal impacts include potential malicious or unintended uses766

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations767

(e.g., deployment of technologies that could make decisions that unfairly impact specific768

groups), privacy considerations, and security considerations.769
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• The conference expects that many papers will be foundational research and not tied770

to particular applications, let alone deployments. However, if there is a direct path to771

any negative applications, the authors should point it out. For example, it is legitimate772

to point out that an improvement in the quality of generative models could be used to773

generate deepfakes for disinformation. On the other hand, it is not needed to point out774

that a generic algorithm for optimizing neural networks could enable people to train775

models that generate Deepfakes faster.776

• The authors should consider possible harms that could arise when the technology is777

being used as intended and functioning correctly, harms that could arise when the778

technology is being used as intended but gives incorrect results, and harms following779

from (intentional or unintentional) misuse of the technology.780

• If there are negative societal impacts, the authors could also discuss possible mitigation781

strategies (e.g., gated release of models, providing defenses in addition to attacks,782

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from783

feedback over time, improving the efficiency and accessibility of ML).784

11. Safeguards785

Question: Does the paper describe safeguards that have been put in place for responsible786

release of data or models that have a high risk for misuse (e.g., pretrained language models,787

image generators, or scraped datasets)?788

Answer: [NA]789

Justification: This paper poses no risk for misuse.790

Guidelines:791

• The answer NA means that the paper poses no such risks.792

• Released models that have a high risk for misuse or dual-use should be released with793

necessary safeguards to allow for controlled use of the model, for example by requiring794

that users adhere to usage guidelines or restrictions to access the model or implementing795

safety filters.796

• Datasets that have been scraped from the Internet could pose safety risks. The authors797

should describe how they avoided releasing unsafe images.798

• We recognize that providing effective safeguards is challenging, and many papers do799

not require this, but we encourage authors to take this into account and make a best800

faith effort.801

12. Licenses for existing assets802

Question: Are the creators or original owners of assets (e.g., code, data, models), used in803

the paper, properly credited and are the license and terms of use explicitly mentioned and804

properly respected?805

Answer: [NA]806

Justification: The paper does not use existing assets.807

Guidelines:808

• The answer NA means that the paper does not use existing assets.809

• The authors should cite the original paper that produced the code package or dataset.810

• The authors should state which version of the asset is used and, if possible, include a811

URL.812

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.813

• For scraped data from a particular source (e.g., website), the copyright and terms of814

service of that source should be provided.815

• If assets are released, the license, copyright information, and terms of use in the816

package should be provided. For popular datasets, paperswithcode.com/datasets817

has curated licenses for some datasets. Their licensing guide can help determine the818

license of a dataset.819

• For existing datasets that are re-packaged, both the original license and the license of820

the derived asset (if it has changed) should be provided.821
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• If this information is not available online, the authors are encouraged to reach out to822

the asset’s creators.823

13. New assets824

Question: Are new assets introduced in the paper well documented and is the documentation825

provided alongside the assets?826

Answer: [NA]827

Justification: The paper does not release new assets.828

Guidelines:829

• The answer NA means that the paper does not release new assets.830

• Researchers should communicate the details of the dataset/code/model as part of their831

submissions via structured templates. This includes details about training, license,832

limitations, etc.833

• The paper should discuss whether and how consent was obtained from people whose834

asset is used.835

• At submission time, remember to anonymize your assets (if applicable). You can either836

create an anonymized URL or include an anonymized zip file.837

14. Crowdsourcing and research with human subjects838

Question: For crowdsourcing experiments and research with human subjects, does the paper839

include the full text of instructions given to participants and screenshots, if applicable, as840

well as details about compensation (if any)?841

Answer: [NA]842

Justification: The paper does not involve crowdsourcing nor research with human subjects.843

Guidelines:844

• The answer NA means that the paper does not involve crowdsourcing nor research with845

human subjects.846

• Including this information in the supplemental material is fine, but if the main contribu-847

tion of the paper involves human subjects, then as much detail as possible should be848

included in the main paper.849

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,850

or other labor should be paid at least the minimum wage in the country of the data851

collector.852

15. Institutional review board (IRB) approvals or equivalent for research with human853

subjects854

Question: Does the paper describe potential risks incurred by study participants, whether855

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)856

approvals (or an equivalent approval/review based on the requirements of your country or857

institution) were obtained?858

Answer: [NA]859

Justification: The paper does not involve crowdsourcing nor research with human subjects.860

Guidelines:861

• The answer NA means that the paper does not involve crowdsourcing nor research with862

human subjects.863

• Depending on the country in which research is conducted, IRB approval (or equivalent)864

may be required for any human subjects research. If you obtained IRB approval, you865

should clearly state this in the paper.866

• We recognize that the procedures for this may vary significantly between institutions867

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the868

guidelines for their institution.869

• For initial submissions, do not include any information that would break anonymity (if870

applicable), such as the institution conducting the review.871

16. Declaration of LLM usage872
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Question: Does the paper describe the usage of LLMs if it is an important, original, or873

non-standard component of the core methods in this research? Note that if the LLM is used874

only for writing, editing, or formatting purposes and does not impact the core methodology,875

scientific rigorousness, or originality of the research, declaration is not required.876

Answer: [NA]877

Justification: The core method development in this research does not involve LLMs as any878

important, original, or non-standard components.879

Guidelines:880

• The answer NA means that the core method development in this research does not881

involve LLMs as any important, original, or non-standard components.882

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)883

for what should or should not be described.884
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A Proof of Theorem 3.1885

Notation. For simplicity, we denote Ψ(P(yi ≻ yj)) as Ψij for any 1 ⩽ i, j ⩽ n, and define the886

payoff matrix as Ψ := Ψij1⩽i,j⩽n. We then define the total payoff by:887

PΨ(π1,π2) :=

n∑
i=1

n∑
j=1

π1,iπ2,jΨij .

We denote by δi the policy supported solely on yi, i.e., supp(δi) = {yi}. The mixed policy888

(δi1 + . . .+ δik)/k is then defined as the policy π such that889

πi =

{
1/k , i ∈ {i1, · · · , ik}
0 , otherwise

,

for any subset {i1, . . . , ik} ⊆ [n].890

Proof of Theorem 3.1. Without any loss of generality, we assume that y1 is the Condorcet winning891

response. First, we show that a necessary condition that ensures the Condorcet consistency of problem892

(1.2) is:893 {
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 0 ⩽ t < 1/2
. (A.1)

To show this, we examine the case where n = 2. For any 1 ⩾ t > 1/2, we consider the game with894

the payoff in Table 2. By the definition of Condorcet consistency, all Nash equilibrium of this game895

is of the form (δ1,π
⋆) for some π⋆.896

Table 2: Payoff matrix with two responses {y1, y2}.

Ψ(P(y ≻ y′)) y′ = y1 y′ = y2

y = y1 Ψ(1/2) Ψ(t)
y = y2 Ψ(1− t) Ψ(1/2)

Case 1. If Ψ(t) > Ψ(1/2), we have897

π⋆ = argmin
π

PΨ(δ1,π) = argmin
π

{π1Ψ(1/2) + π2Ψ(t)} = δ1 .

Therefore, we have898

Ψ(1/2) = PΨ(δ1, δ1) = max
π

PΨ(π, δ1) ⩾ PΨ(δ2, δ1) = Ψ21 = Ψ(1− t) ,

Ψ(1/2) = PΨ(δ1, δ1) = min
π

PΨ(δ1,π) ⩽ PΨ(δ1, δ2) = Ψ12 = Ψ(t) .

Hence, we have Ψ(1− t) ⩽ Ψ(1/2) < Ψ(t). If Ψ(1/2) = Ψ(1− t), notice that899

PΨ(π, δ1) = π1Ψ(1/2) + π2Ψ(1− t) = Ψ(1/2) =⇒ δ2 ∈ argmax
π

PΨ(π, δ1) ,

PΨ(δ2,π) = π1Ψ(1− t) + π2Ψ(1/2) = Ψ(1/2) =⇒ δ1 ∈ argmin
π

PΨ(δ2,π) .

Therefore, (δ2, δ1) is also a Nash equilibrium, which causes a contradiction to the fact that problem900

(1.2) is Condorcet consistent. Therefore, we have Ψ(t) > Ψ(1/2) > Ψ(1− t) for any 1 ⩾ t > 1/2.901

Case 2. If Ψ(t) < Ψ(1/2), we have902

π⋆ = argmin
π

PΨ(δ1,π) = argmin
π

{π1Ψ(1/2) + π2Ψ(t)} = δ2 .

However, notice that903

Ψ(1/2) = PΨ(δ2, δ2) ⩽ max
π

PΨ(π, δ2) = PΨ(δ1, δ2) = Ψ(t) < Ψ(1/2) ,

which causes a contradiction.904
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Case 3. If Ψ(t) = Ψ(1/2). When Ψ(1− t) = Ψ(1/2), any (π1,π2) is a Nash equilibrium, which905

causes a contradiction to the fact that problem (1.2) is Condorcet consistent. When Ψ(1 − t) >906

Ψ(1/2), note that907

PΨ(δ2,π) = π1Ψ(1− t) + π2Ψ(1/2) ⩾ Ψ(1/2) =⇒ δ2 ∈ argmin
π

PΨ(δ2,π) ,

PΨ(π, δ2) = π1Ψ(t) + π2Ψ(1/2) = Ψ(1/2) =⇒ δ2 ∈ argmax
π

PΨ(π, δ2) .

Therefore, (δ2, δ2) is a Nash equilibrium, which also causes a contradiction to the fact problem (1.2)908

is Condorcet consistent. Hence, we have Ψ(1− t) < Ψ(1/2).909

In summary, for any 1 ⩾ t > 1/2, we have Ψ(1 − t) < Ψ(1/2) ⩽ Ψ(t). Hence, (A.1) holds if910

problem (1.2) is Condorcet consistent. Next, we prove that (A.1) is also sufficient for the Condorcet911

consistency of problem (1.2). Recall that Ψi1 = Ψ(P(yi ≻ y1)) < Ψ(1/2), and Ψ1i = Ψ(P(y1 ≻912

yi)) ⩾ Ψ(1/2) for any i ̸= 1. If (π⋆
1 ,π

⋆
2) is a Nash equilibrium. Notice that913

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(δ1,π

⋆
2) =

n∑
i=1

π⋆
2,iΨ1i ,

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , δ1) =

n∑
i=1

π⋆
1,iΨi1 .

Therefore, if π⋆
1 ̸= δ1, we have914

Ψ(1/2) ⩽
n∑

i=1

π⋆
2,iΨ1i ⩽ PΨ(π

⋆
1 ,π

⋆
2) ⩽

n∑
i=1

π⋆
1,iΨi1 < Ψ(1/2) , (A.2)

which causes a contradiction. Therefore, π⋆
1 = δ1, i.e., problem (1.2) is Condorcet consistent. Hence,915

we conclude our proof.916

B Proof of Example 3.4917

Proof of Example 3.4. We prove this conclusion by contradiction. Suppose that the Nash solution918

is δi⋆ for some i⋆ ∈ [n], and the Nash equilibrium is (δi⋆ ,π⋆). As there is no Condorcet winning919

response, by definition, there exists j′ such that P(yi⋆ ≻ yj′) < 1/2. Then we have920

PΨ(δi⋆ ,π
⋆) = min

π
PΨ(δi⋆ ,π) ⩽ PΨ(δi⋆ , δj′) = Ψ (P (yi⋆ ≻ yj′)) = M− . (B.1)

However, choosing i′ such that π⋆
i′ > 0, we have921

PΨ(δi⋆ ,π
⋆) = max

π
PΨ(π,π

⋆) ⩾ PΨ(δi′ ,π
⋆) =

n∑
i=1

π⋆
i Ψ(P (yi′ ≻ yi)) > M− ,

which causes a contradiction to (B.1). Hence, we conclude our proof.922

C Proof of Theorem 3.2923

Proof of Theorem 3.2. First, according to Theorem 3.1, when the Nash solution is Condorcet consis-924

tent, we have925 {
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 1/2 > t ⩾ 0
. (C.1)

In addition, we show that Ψ(·) must satisfy Ψ(t) + Ψ(1 − t) ⩾ 2Ψ(1/2) ,∀t ∈ [0, 1] for ensuring926

that the Nash solution is mixed when there is no Condorcet winning response. We consider the927

case where n = 4 and the game with the payoff in Table 3 for any t1, t2 > 1/2. Notice that if928

Ψ(t1) + Ψ(1− t1) + Ψ(1/2) ⩽ 3Ψ(1− t2), we have929

PΨ(δ4,π) = (π1 + π2 + π3)Ψ(1− t2) + π4Ψ(1/2) =⇒ δ1 + δ2 + δ3
3

∈ argmin
π

PΨ(δ4,π) ,
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and930

PΨ

(
π,

δ1 + δ2 + δ3
3

)
= (π1 + π2 + π3) ·

Ψ(1/2) + Ψ(t1) + Ψ(1− t1)

3
+ π4Ψ(1− t2)

=⇒ δ4 ∈ argmax
π

PΨ

(
π,

δ1 + δ2 + δ3
3

)
.

Therefore, (δ4, (δ1 + δ2 + δ3)/3) is a Nash equilibrium, which causes a contradiction to the fact931

that the Nash solution is mixed. Hence, we have Ψ(t1) + Ψ(1 − t1) + Ψ(1/2) > 3Ψ(1 − t2) for932

any t1, t2 > 1/2. Let t2 → 1/2, we have Ψ(t) + Ψ(1 − t) ⩾ 2Ψ(1/2) for any t ∈ [0, 1]. Hence,933

combining (C.1), we have shown that the necessary condition for ensuring that the Nash solution is934

mixed is:935

Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀t ∈ [0, 1] and
{
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 1/2 > t ⩾ 0
. (C.2)

Next, we prove that the condition (C.2) is also sufficient. Suppose that (δi⋆ ,π⋆) is a Nash equilibrium,936

then we have937

PΨ(δi⋆ ,π
⋆) = max

π
PΨ(π,π

⋆) ⩾ PΨ(π
⋆,π⋆)

=

n∑
i=1

n∑
j=1

π⋆
i π

⋆
jΨij =

1

2

n∑
i=1

n∑
j=1

π⋆
i π

⋆
j (Ψij +Ψji) ⩾ Ψ(1/2) .

However, notice that for any j, we have938

PΨ(δi⋆ ,π
⋆) = min

π
PΨ(δi⋆ ,π) ⩽ PΨ(δi⋆ , δj) = Ψi⋆j .

As there is no Condorcet winning response, there must exist j⋆ such that P(yi⋆ ≻ yj⋆) < 1/2, thus939

Ψi⋆j⋆ < Ψ(1/2). Hence, Ψ(1/2) ⩽ PΨ(δi⋆ ,π
⋆) ⩽ Ψi⋆j⋆ < Ψ(1/2), which causes a contradiction.940

Therefore, the Nash solution must be mixed.941

D Proof of Example 4.3942

Proof of Example 4.3. We prove this conclusion by contradiction. Suppose that the Nash solution is943

π⋆
1 that satisfies supp(π⋆

1) ∩ Sc
1 ̸= ∅, and the Nash equilibrium is (π⋆

1 ,π
⋆
2).944

Case 1. If supp(π⋆
1) ∩ S1 = ∅, taking j′ ∈ S1, we have945

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , δj′) =

∑
i∈Sc

1

π⋆
1,iΨij′ = M− .

However, we have946

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(Unif(S1),π

⋆
2) =

∑
i∈S1

n∑
j=1

π⋆
2,j

|S1|
Ψij > M− ,

which causes a contradiction.947

Case 2. If supp(π⋆
2) ∩ S1 = ∅ and supp(π⋆

1) ∩ S1 ̸= ∅, taking i′ ∈ supp(π⋆
1) ∩ S1, we have948

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(δi′ ,π

⋆
2) =

∑
j∈Sc

1

π⋆
2,jΨi′j = M+ .

However, we have949

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 ,Unif(S1)) =

n∑
i=1

∑
j∈S1

π⋆
1,i

|S1|
Ψij < M+ ,

which cause a contradiction.950
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Case 3. If If supp(π⋆
2)∩S1 ̸= ∅ and supp(π⋆

1)∩S1 ̸= ∅, taking i⋆2 ∈ supp(π⋆
2)∩S1, we consider951

the following strategy π′
1:952 

π′
1,i = 0 , i ∈ Sc

1

π′
1,i = π⋆

1,i , i ∈ S1\{i⋆2}
π′
1,i⋆2

= π⋆
1,i⋆2

+
∑

i∈Sc
1
π⋆
1,i , i = i⋆2

.

Then we have953

PΨ(π
′
1,π

⋆
2)− PΨ(π

⋆
1 ,π

⋆
2) =

n∑
i=1

n∑
j=1

(
π′
1,i − π⋆

1,i

)
π⋆
2,jΨij

= −
∑
i∈Sc

1

n∑
j=1

π⋆
1,iπ

⋆
2,jΨij +

n∑
j=1

∑
i∈Sc

1

π⋆
1,iπ

⋆
2,jΨi⋆2j

=

n∑
j=1

π⋆
2,j

∑
i∈Sc

1

π⋆
1,i

(
Ψi⋆2j

−Ψij

) > 0 .

(D.1)

where the last inequality follows from the following two facts: for any i ∈ Sc
1,954

Ψi⋆2j
−Ψij =

{
M+ −Ψij ⩾ 0 , j ∈ Sc

1

Ψi⋆2j
−M− ⩾ 0 , j ∈ S1

,

and when j = i⋆2,955

π⋆
2,i⋆2

∑
i∈Sc

1

π⋆
1,i

(
Ψi⋆2i

⋆
2
−Ψii⋆2

) = π⋆
2,i⋆2

(Ψ(1/2)−M−)
∑
i∈Sc

1

π⋆
1,i > 0 .

However, (D.1) causes a contradiction to the fact that PΨ(π
′
1,π

⋆
2) ⩽ maxπ PΨ(π,π

⋆
2) =956

PΨ(π
⋆
1 ,π

⋆
2).957

Hence, in summary, it must hold that supp(π⋆
1) ∩ Sc

1 = ∅, i.e., supp(π⋆
1) ⊆ S1.958

E Proof of Theorem 4.2959

Proof of Theorem 4.2. First, we show that the necessary condition for ensuring that problem (1.2) is960

Smith consistent is:961

Ψ(t) + Ψ(1− t) = 2Ψ(1/2) ,∀t ∈ [0, 1] and
{
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 0 ⩽ t < 1/2
. (E.1)

First, Condorcet consistency must hold when Smith consistency holds. According to Theorem 3.1,962

we have963 {
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 0 ⩽ t < 1/2

Next, we show that when Ψ(·) is continuous at 1/2, Ψ(·) must satisfy Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2)964

(Lemma E.1) and Ψ(t)+Ψ(1− t) ⩽ 2Ψ(1/2) (Lemma E.2) for any t ∈ [0, 1]. Therefore, combining965

the two results together, we obtain the condition (E.1).966

Lemma E.1. When Ψ(·) is continuous at 1/2. Achieving Smith consistency only if967

Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀t ∈ [0, 1] .

Proof of Lemma E.1. We consider the case where n = 4 and the game with the payoff in Table 3 for968

any t1, t2 > 1/2. Notice that if Ψ(t1) + Ψ(1− t1) + Ψ(1/2) ⩽ 3Ψ(1− t2), we have969

PΨ(δ4,π) = (π1 + π2 + π3)Ψ(1− t2) + π4Ψ(1/2) =⇒ δ1 + δ2 + δ3
3

∈ argmin
π

PΨ(δ4,π) ,
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and970

PΨ

(
π,

δ1 + δ2 + δ3
3

)
= (π1 + π2 + π3) ·

Ψ(1/2) + Ψ(t1) + Ψ(1− t1)

3
+ π4Ψ(1− t2)

=⇒ δ4 ∈ argmax
π

PΨ

(
π,

δ1 + δ2 + δ3
3

)
.

Therefore, (δ4, (δ1 + δ2 + δ3)/3) is a Nash equilibrium, which causes a contradiction to the fact that971

the Nash solution supports on S1 := {y1, y2, y3}. Hence, we have Ψ(t1) + Ψ(1− t1) + Ψ(1/2) >972

3Ψ(1 − t2) for any t1, t2 > 1/2. Let t2 → 1/2, we have Ψ(t) + Ψ(1 − t) ⩾ 2Ψ(1/2) for any973

t ∈ [0, 1].

Table 3: Payoff matrix with four responses {y1, y2, y3, y4}.

Ψ(P(y ≻ y′)) y′ = y1 y′ = y2 y′ = y3 y′ = y4

y = y1 Ψ(1/2) Ψ(t1) Ψ(1− t1) Ψ(t2)
y = y2 Ψ(1− t1) Ψ(1/2) Ψ(t1) Ψ(t2)
y = y3 Ψ(t1) Ψ(1− t1) Ψ(1/2) Ψ(t2)
y = y4 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(1/2)

974

Lemma E.2. When Ψ(·) is continuous at 1/2. Achieving Smith consistency only if975

Ψ(t) + Ψ(1− t) ⩽ 2Ψ(1/2) ,∀t ∈ [0, 1] .

Proof of Lemma E.2. We consider the case where n = 6 and the game with the payoff in976

Table 4 for any t1, t2 > 1/2. Notice that if Ψ(t1) + Ψ(1/2) + Ψ(1 − t1) > 3Ψ(t2)(⩾977

3Ψ(1/2) > 3Ψ(1 − t2)), there exists positive µ = (µ1/3, µ1/3, µ1/3, µ2/3, µ2/3, µ2/3) and978

µ′ = (µ′
1/3, µ

′
1/3, µ

′
1/3µ

′
2/3, µ

′
2/3, µ

′
2/3) such that µ1 + µ2 = µ′

1 + µ′
2 = 1, and979

µ1 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(t2)] = µ2 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(1− t2)] ,

µ′
1 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(1− t2)] = µ′

2 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(t2)] .

Hence, we have980

µ1(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ2Ψ(1− t2)

= µ2(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ1Ψ(t2) := 3A ,

µ′
1(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ′

2Ψ(t2)

= µ′
2(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ′

1Ψ(1− t2) := 3B .

Thus, we have981

PΨ(π,µ
′) = (π1 + π2 + π3)

[
µ′
1

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + µ′

2Ψ(t2)

]
+ (π4 + π5 + π6)

[
µ′
1Ψ(1− t2) +

µ′
2

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1))

]
= B ,

and982

PΨ(µ,π) = (π1 + π2 + π3)
[µ1

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + µ2Ψ(1− t2)

]
+ (π4 + π5 + π6)

[
µ1Ψ(t2) +

µ2

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1))

]
= A .

Therefore, µ ∈ argmaxπ PΨ(π,µ
′) , µ′ ∈ argminπ PΨ(µ,π), which provides that (µ,µ′) is a983

Nash equilibrium. However, this causes a contradiction to the fact that the Nash solution supports984

on S1 := {y1, y2, y3}. Thus, it must hold that Ψ(t1) + Ψ(1/2) + Ψ(1 − t1) ⩽ 3Ψ(t2) for any985

t1, t2 > 1/2. Let t2 → 1/2, we obtain Ψ(t) + Ψ(1− t) ⩽ 2Ψ(1/2) for any t ∈ [0, 1].986
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Table 4: Payoff matrix with six responses {y1, y2, y3, y4, y5, y6}.

Ψ(P(y ≻ y′)) y′ = y1 y′ = y2 y′ = y3 y′ = y4 y′ = y5 y′ = y6

y = y1 Ψ(1/2) Ψ(t1) Ψ(1− t1) Ψ(t2) Ψ(t2) Ψ(t2)
y = y2 Ψ(1− t1) Ψ(1/2) Ψ(t1) Ψ(t2) Ψ(t2) Ψ(t2)
y = y3 Ψ(t1) Ψ(1− t1) Ψ(1/2) Ψ(t2) Ψ(t2) Ψ(t2)
y = y4 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(1/2) Ψ(t1) Ψ(1− t1)
y = y5 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(1− t1) Ψ(1/2) Ψ(t1)
y = y6 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(t1) Ψ(1− t1) Ψ(1/2)

Finally, we prove that the condition (E.1) is also sufficient for Smith consistency. Suppose that987

(π⋆
1 ,π

⋆
2) is a Nash equilibrium, notice that988

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(π

⋆
2 ,π

⋆
2) = Ψ(1/2) ,

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 ,π

⋆
1) = Ψ(1/2) ,

(E.2)

which follows from the following fact: for any π,989

PΨ(π,π) =

n∑
i=1

n∑
j=1

πiπjΨij =
1

2

n∑
i=1

n∑
j=1

πiπj (Ψij +Ψji) = Ψ(1/2)

n∑
i=1

n∑
j=1

πiπj = Ψ(1/2) .

Thus, from (E.2), we have PΨ(π
⋆
1 ,π

⋆
2) = Ψ(1/2). Then we prove supp(π⋆

1) ⊆ S1. Hence, the Nash990

solution is Smith consistent, i.e., only supports on S1.991

Case 1. If supp(π⋆
1)
⋂
S1 = ∅, taking any j ∈ S1, we have992

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , δj) =

n∑
i=1

π⋆
1,iΨij =

∑
i∈Sc

1

π⋆
1,iΨij < Ψ(1/2) ,

which causes a contradiction to the fact that PΨ(π
⋆
1 ,π

⋆
2) = Ψ(1/2).993

Case 2. If supp(π⋆
1)
⋂
S1 ̸= ∅, and supp(π⋆

1)
⋂
Sc
1 ̸= ∅, taking π̃⋆

2 as:994

π̃⋆
2,j = 1 {j ∈ S1} ·

π⋆
1,j∑

j∈S1
π⋆
1,j

.

Then we have995

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , π̃

⋆
2)

=
∑
i∈S1

∑
j∈S1

π⋆
1,iπ̃

⋆
2,jΨij +

∑
i∈Sc

1

∑
j∈S1

π⋆
1,iπ̃

⋆
2,jΨij

<

∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,jΨij∑

j∈S1
π⋆
1,j

+Ψ(1/2)
∑
i∈Sc

1

∑
j∈S1

π⋆
1,iπ̃

⋆
2,j

= Ψ(1/2)
∑
i∈S1

π⋆
1,i +Ψ(1/2)

∑
i∈Sc

1

π⋆
1,i = Ψ(1/2) ,

(E.3)

which follows from the following fact:996 ∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,jΨij =

1

2

∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,j (Ψij +Ψji)

= Ψ(1/2)
∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,j = Ψ(1/2)

(∑
i∈S1

π⋆
1,i

)∑
j∈S1

π⋆
1,j


However, (E.3) also causes a contradiction to the fact that PΨ(π

⋆
1 ,π

⋆
2) = Ψ(1/2).997

Therefore, it must hold that supp(π⋆
1)
⋂
Sc
1 = ∅, i.e., supp(π⋆

1) ⊆ S1. We conclude our proof.998
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F Proofs of Results in Section 5999

F.1 Proof of Lemma 5.11000

Proof of Lemma 5.1. Suppose each player has n policies and the payoff matrix is {αij}ni=1. Then,

max
π

min
π′


n∑

i=1

n∑
j=1

αijπiπ
′
j

 =max
π

min
π′


n∑

j=1

(
n∑

i=1

αijπi

)
π′
j

 = max
π

min
j

{
n∑

i=1

αijπi

}
.

Let us reformulated it into a convex optimization problem.1001

min
π

max
j

n∑
i=1

αijπi

subject to − πi ⩽ 0, i = 1, . . . , n
n∑

i=1

πi − 1 = 0

(P )

Let us further reformulate this problem into the epigraph form by introducing a single variable t ∈ R:1002

min
π,t

t

subject to
n∑

i=1

αijπi − t ⩽ 0, j = 1, . . . , n

− πi ⩽ 0, i = 1, . . . , n
n∑

i=1

πi − 1 = 0

(P ′)

By introducing the dual variables u∗ ∈ Rn, ũ∗ ∈ Rn and v∗ ∈ R, the KKT conditions is:1003

• stationary condition:
n∑

j=1

αiju
∗
j − ũ∗

i = −v∗ i = 1, · · · , n

• complementary slackness:

u∗
j

(
n∑

i=1

π∗
i αij − t∗

)
= 0 j = 1, · · · , n

ũ∗
i π

∗
i = 0 i = 1, · · · , n

• primal feasibility:
n∑

i=1

π∗
i αij − t∗ ⩽ 0

π∗ ⩾ 0
n∑

i=1

π∗
i = 1

• dual feasibility:
u∗ ⩾ 0
n∑

i=1

u∗
i = 1

ũ∗ ⩾ 0
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We can easily see that Slater’s condition is satisfied for this problem, so the KKT points are equivalent1004

to primal and dual solutions. Then taking π∗ > 0 into account, we have ũ∗
i = 0 by the second1005

complementary slackness condition, and the above equations can be simplified to the following1006

system of equations:1007 

u∗ ⩾ 0∑n
i=1 u

∗
i = 1∑n

i=1 π
∗
i αij − t∗ ⩽ 0 j = 1, · · · , n

u∗
j (
∑n

i=1 π
∗
i αij − t∗) = 0 j = 1, · · · , n∑n

j=1 αiju
∗
j = −v∗ i = 1, · · · , n

Moreover, notice that1008

0 =

n∑
j=1

u∗
j

(
n∑

i=1

π∗
i αij − t∗

)
=

n∑
i=1

π∗
i

n∑
j=1

αiju
∗
j − t∗ = −v∗ − t∗ ,

thus v∗ = −t∗. Hence, we conclude our proof.1009

F.2 Verifying Equation (5.2) and Equation (5.3)1010

For (5.2), choosing t∗ = −v∗ =
∑n

i=1(π
∗
i )

2 and u∗
i = v∗i , π∗ is a Nash solution. For (5.3), choosing1011

t∗ = −v∗ = 0 and u∗
j =

(π∗
j )

−1∑n
j=1(π

∗
j )

−1 , π∗ is a Nash solution.1012

F.3 Proof of Theorem 5.11013

We first present a useful lemma (Lemma F.1) that further investigates the KKT conditions (Lemma1014

5.1) when the payoff matrix induces a unique Nash equilibrium.1015

Lemma F.1. If a game with the payoff matrix {αij}ni,j=1 has a unique Nash solution π∗, then for1016

any j ∈ [n], it must hold u∗
j > 0 in the KKT conditions, and1017

n∑
i=1

π∗
i αij = t∗.

Proof of Lemma F.1. Suppose that the KKT conditions provide the unique Nash solution (π∗,u∗, t∗).1018

Then we define:1019

J0 :=
{
j ∈ [n] : u∗

j ̸= 0
}
, and J̃0 :=

{
j ∈ [n] : u∗

j = 0
}
,

with J0∪J̃0 = [n]. Since u∗ ⩾ 0 and
∑

u∗
j = 1, there exists j ∈ [n], such that u∗

j ̸= 0, i.e., J0 ̸= ∅.1020

Now, we aim to show J̃0 = ∅. We prove by contradiction. Suppose J̃0 ̸= ∅, taking j0 ∈ J0, we1021

consider two spaces1022

V1 :=

{
π ∈ Rn :

n∑
i=1

πi (αij − αij0) = 0, ∀j ∈ J0\{j0}

}
,

V2 := V1

⋂{
π ∈ Rn :

n∑
i=1

πi(αij − αij0) ⩽ 0, ∀j ∈ J̃0

}
.

Then we claim that π∗ ∈ V2 and dim(V2) ⩾ 2. For the first claim, by the KKT conditions in Lemma1023

5.1, for any j ∈ J0, we obtain1024

n∑
i=1

π∗
i αij = t∗ =

n∑
i=1

π∗
i αij0 ,

thus π∗ ∈ V1. Moreover, again by the KKT conditions, for any j ∈ J̃0, we have1025

n∑
i=1

π∗
i αij ⩽ t∗ =

n∑
i=1

π∗
i αij0 ,
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which shows that π∗ ∈ V2. For the second claim, take j̃0 ∈ J̃0 and consider1026

V3 :=

{
π ∈ Rn :

n∑
i=1

πi (αij − αij0) = 0, ∀j ∈ [n]\{j0, j̃0}

}
,

V4 := V3

⋂{
π ∈ Rn :

n∑
i=1

πi(αij̃0
− αij0) ⩽ 0

}
.

We can easily see V4 ⊆ V2. Note that V3 can be regarded as a kernel space of a linear transfor-1027

mation from Rn to Rn−2. By the dimension theorem in linear algebra, we obtain dim(V3) =1028

n − dim(Im(A)) ⩾ n − (n − 2) = 2. For any π ∈ V3, it must hold that π ∈ V4 or −π ∈ V4, so1029

dim(V4) = dim(V3) ⩾ 2. Therefore, we have dim(V1) ⩾ dim(V2) ⩾ dim(V4) ⩾ 2.1030

Thus, we can take another π̃∗ ∈ V2 which is linear independent with π∗. Note that for any a, b ∈ R+,1031

aπ∗+ bπ̃∗ ∈ V2. Taking large a ∈ R+, we have aπ∗+ bπ̃∗ ∈ V2 and aπ∗+ bπ̃∗ > 0, since π∗ > 0.1032

Therefore, there exists a1 ∈ R+, such that π∗
2 := aπ∗+π̃∗

a1
∈ V2 that satisfies π∗

2 ̸= π∗, π∗
2 > 0, and1033 ∑

i π
∗
2,i = 1. Thus, we obtain another Nash equilibrium (π∗

2 ,u
∗, t∗), causing contradiction to the1034

uniqueness of Nash solution. Hence, it must hold that J̃0 = ∅.1035

Next we provide the proof for Theorem 5.1.1036

Proof of Theorem 5.1. Using Lemma F.1, uniqueness requires us to seek solutions that satisfies
n∑

i=1

π∗
i αij = t∗

for all j ∈ [n], where t∗ is a constant that may depend on π∗. Consider n ⩾ 5, for any four distinct1037

indices j1, j2, k1, k2, we have1038 ∑
i̸=j1,k1,k2

πif

(
πi

πj1

)
+ πk1f

(
πk1

πj1

)
+ πk2f

(
πk2

πj1

)
+ Cπj1

=
∑

i̸=j2,k1,k2

πif

(
πi

πj2

)
+ πk1f

(
πk1

πj2

)
+ πk2f

(
πk2

πj2

)
+ Cπj2

(F.1)

Let us consider the infinitesimal variation πk1 → πk1 + δ and πk2 → πk2 − δ, keeping others still.1039

We obtain that1040 ∑
i̸=j1,k1,k2

πif

(
πi

πj1

)
+ (πk1

+ δ)f

(
πk1

+ δ

πj1

)
+ (πk2

− δ)f

(
πk2

− δ

πj1

)
+ Cπj1

=
∑

i̸=j2,k1,k2

πif

(
πi

πj2

)
+ (πk1

+ δ)f

(
πk1 + δ

πj2

)
+ (πk2

− δ)f

(
πk2 − δ

πj2

)
+ Cπj2

(F.2)

Subtracting both sides of (F.1) from (F.2), we obtain that1041

(πk1
+ δ)f

(
πk1

+ δ

πj1

)
+ (πk2

− δ)f

(
πk2

− δ

πj1

)
− πk1

f

(
πk1

πj1

)
− πk2

f

(
πk2

πj1

)
= (πk1

+ δ)f

(
πk1 + δ

πj2

)
+ (πk2

− δ)f

(
πk2 − δ

πj2

)
− πk1

f

(
πk1

πj2

)
− πk2

f

(
πk2

πj2

) (F.3)

i.e., we have1042

(πk1
+ δ)

(
f

(
πk1

+ δ

πj1

)
− f

(
πk1

πj1

))
+ δf

(
πk1

πj1

)
+ (πk2 − δ)

(
f

(
πk2 − δ

πj1

)
− f

(
πk2

πj1

))
− δf

(
πk2

πj1

)
= (πk1 + δ)

(
f

(
πk1

+ δ

πj2

)
− f

(
πk1

πj2

))
+ δf

(
πk1

πj2

)
+ (πk2

− δ)

(
f

(
πk2

− δ

πj2

)
− f

(
πk2

πj2

))
− δf

(
πk2

πj2

)
.

(F.4)
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As f is smooth, using1043

lim
δ→0

f
(

x+δ
πj

)
− f

(
x
πj

)
δ

=
1

πj
f ′
(

x

πj

)
,

and taking δ → 0, we obtain the following identity from (F.4),1044

f

(
πk1

πj1

)
+

πk1

πj1

f ′
(
πk1

πj1

)
− f

(
πk2

πj1

)
− πk2

πj1

f ′
(
πk2

πj1

)
= f

(
πk1

πj2

)
+

πk1

πj2

f ′
(
πk1

πj2

)
− f

(
πk2

πj2

)
− πk2

πj2

f ′
(
πk2

πj2

)
.

(F.5)

Thus, we obtain that1045

f

(
πk1

πj1

)
+

πk1

πj1

f ′
(
πk1

πj1

)
− f

(
πk1

πj2

)
− πk1

πj2

f ′
(
πk1

πj2

)
= f

(
πk2

πj1

)
+

πk2

πj1

f ′
(
πk2

πj1

)
− f

(
πk2

πj2

)
− πk2

πj2

f ′
(
πk2

πj2

)
.

(F.6)

Since (F.6) holds for any π > 0, given any πj1 ̸= πj2 , for any x1, x2 ∈ (0, 1− πj1 − πj2), we have1046

f

(
x1

πj1

)
+

x1

πj1

f ′
(

x1

πj1

)
− f

(
x1

πj2

)
− x1

πj2

f ′
(

x1

πj2

)
= f

(
x2

πj1

)
+

x2

πj1

f ′
(

x2

πj1

)
− f

(
x2

πj2

)
− x2

πj2

f ′
(

x2

πj2

)
,

which induces the following for any x ∈ (0, 1− πj1 − πj2),1047

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
− f

(
x

πj2

)
− x

πj2

f ′
(

x

πj2

)
= C(πj1 , πj2). (F.7)

i.e., we have1048

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
= C(πj1 , πj2) + f

(
x

πj2

)
+

x

πj2

f ′
(

x

πj2

)
. (F.8)

Without any loss of generality, we assume πj1 < πj2 , then we obtain1049

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
= C(πj1 , πj2) + f

(
x

πj2

)
+

x

πj2

f ′
(

x

πj2

)
= 2C(πj1 , πj2) + f

(
πj1x

π2
j2

)
+

πj1x

π2
j2

f ′

(
πj1x

π2
j2

)
= · · · · · ·

= nC(πj1 , πj2) + f

(
πn−1
j1

x

πn
j2

)
+

πn−1
j1

x

πn
j2

f ′

(
πn−1
j1

x

πn
j2

)
= · · · · · · .

Taking limit, it must hold C(πj1 , πj2) = 0, i.e., we have1050

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
= f

(
x

πj2

)
+

x

πj2

f ′
(

x

πj2

)
. (F.9)

Since (F.9) holds for any π > 0, for any x1, x2 ∈ R+, we have1051

f(x1) + x1f
′(x1) = f ′(x2) + x2f

′(x2),

thus, for any x ∈ R+, we have1052

f (x) + xf ′ (x) = C1 . (F.10)
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Solving (F.10), we obtain that

f(x) =
C2

x
+ C3 .

Then we obtain that1053

n∑
i=1

πiαij = Cπj +
∑
i ̸=j

πi

(
C2πj

πi
+ C3

)
= C3 + (C + (n− 1)C2 − C3)πj ,

yielding C3 = C + (n− 1)C2, and1054

f(x) = C + C2

(
1

x
+ n− 1

)
,

which is contradictory to our assumptions.1055
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