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Abstract

Nash Learning from Human Feedback (NLHF) is a game-theoretic framework for
aligning large language models (LLMs) with human preferences by modeling learn-
ing as a two-player zero-sum game. However, using raw preference as the payoff
in the game highly limits the potential of the game-theoretic LLM alignment frame-
work. In this paper, we systematically study using what choices of payoff based
on the pairwise human preferences can yield desirable alignment properties. We
establish necessary and sufficient conditions for Condorcet consistency, diversity
through mixed strategies, and Smith consistency. These results provide a theoretical
foundation for the robustness of game-theoretic LLM alignment. Further, we show
the impossibility of preference matching—i.e., no smooth and learnable mappings
of pairwise preferences can guarantee a unique Nash equilibrium that matches a
target policy, even under standard assumptions like the Bradley-Terry-Luce (BTL)
model. This result highlight the fundamental limitation of game-theoretic LLM
alignment.

1 Introduction

Large language models (LLMs), such as OpenAl-03 (OpenAl, 2025) and DeepSeek-R1 (DeepSeek-
Al et al., 2025), have demonstrated impressive capabilities across a wide range of domains, including
code generation, data analysis, elementary mathematics, and reasoning (Hurst et al., 2024; Anthropic,
2024; Chowdhery et al., 2023; Touvron et al., 2023; Ji et al., 2025). These models are increasingly
being used to tackle previously unsolved mathematical problems, drive scientific and algorithmic
discoveries, optimize complex code-bases, and support decision-making processes that were once
considered unlikely to be automated in the near future (Bubeck et al., 2023; Eloundou et al., 2024;
Novikov et al., 2025).

A key factor behind the popularity and effectiveness of LLMs is alignment: the process by which
models learn to interact with human users and accommodate diverse human opinions and values by
aligning their outputs with human preferences (Christiano et al., 2017). The traditional method for
alignment, reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Casper et al.,
2023; Dong et al., 2024), typically begins by training a reward model on preference data collected
from human labelers, often using the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952;
Luce, 2012),
exp(r(z, y))

exp(r(z,y)) + exp(r(z,y’))’
where r(x,y) is the reward function and P(y > y’|z) is pairwise human preference, i.e., the fraction
of individuals who prefer y over 4’ under prompt x. In this framework, a higher scalar score assigned

Ply=y'|z)= (1.1)
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by the reward model to an LLM-generated response indicates a stronger preference by human
labelers. The LLM is then fine-tuned through maximizing the reward to produce responses that are
more likely to align with these preferences. However, Munos et al. (2024) points out that reward
model can not deal with preference with cycles, and proposes an alternative alignment approach
called Nash learning from human feedback (NLHF). Unlike the reward-based methods, NLHF directly
uses preference data to train a preference model and formulates LLM finetuning as finding Nash
equilibrium in a two-player zero-sum game, also known as a von Neumann game (Myerson, 2013).
Specifically, for a given prompt z, the LLM’s policy 7 competes against an opposing policy 7/ in
a pairwise preference contest, where the objective is to find a policy that maximizes its worst-case
preference score. Formally, NLHF solves the following min-max optimization problem:

max min By [Byn( o).y mm (o) [P (4 - 3" | 2)]]

where p is a given distribution over prompts. However, Munos et al. (2024) does not demonstrate the
advantages of using the preference as the payoff in the game.

Recently, criteria from both social choice theory (Conitzer et al., 2024; Dai and Fleisig, 2024;
Mishra, 2023) and principles related to diversity (Xiao et al., 2024; Chakraborty et al., 2024) has
been increasingly employed to scrutinize the alignment of LLM with human preference. Notably,
RLHF has been shown to fail both social choice theory considerations (Noothigattu et al., 2020;
Siththaranjan et al., 2024; Ge et al., 2024; Liu et al., 2025) and diversity considerations (Xiao et al.,
2024; Chakraborty et al., 2024). In contrast, NLHF has been proved to enjoy these desirable properties.
It is shown in Maura-Rivero et al. (2025); Liu et al. (2025) that NLHF is Condorcet consistent (see
Definition 3.2), meaning that the method always outputs the Condorcet winning response, a response
that beats every other alternative response in pairwise majority comparisons, whenever one exists.
Further, under a no-tie assumption (see Assumption 2.1), Liu et al. (2025) shows that NLHF is Smith
consistent (see Definition 4.1), meaning that the method always output responses from the Smith
set, the smallest nonempty set of responses that pairwise dominate all alternatives outside the set.
Moreover, Liu et al. (2025) shows that when human preference is diverse, i.e., there does not exist
a single response that beat every other alternative, NLHF avoid collapsing to a single response by
adopting a mixed strategy.

Despite these advantages, there is no reason why we must use raw preference to design the payoff
in the game-theoretic alignment approach. Using alternative payoffs in the game-theoretic LLM
alignment framework might also lead to desirable alignment. In this work, we systematically
investigate the fundamental limits of the game-theoretic LLM alignment framework by analyzing
how various choices of payoff influence its ability to satisfy key alignment criteria. We consider the
following general game-theoretic alignment problem, involving a mapping of the preference denoted
by W:

max min By [Eyor (o) By (12) [T (Ply =y | 2))]] . (1.2)

™ K

The general problem (1.2) encompasses a range of games. When W(¢) = t is the identity mapping, the
objective in Equation (1.2) is equivalent to the standard NLHF objective. When W(t) = log(¢t/(1 —t))
and the preference is generated by a BTL model, Equation (1.2) recovers the standard RLHF objective.
More importantly, the preference model Py used in practice is an estimation of true human preference,
which can be regarded as a noisy mapping of the ground-truth preference P. Allowing ¥ to be
stochastic provides a way to account for the uncertainty and noise inherent in estimating human
preferences. It is worthy to note that similar formalism has been proposed for non game-theoretic
approach in Azar et al. (2024), which uses an non-decreasing mapping to process the preference.

In this paper, we first discuss when the solution to problem (1.2) is Condorcet consistent and
Smith consistent in Section 3 and 4 respectively. Our results show that these desirable properties
is insensitive to the exact value of the payoff, revealing the robustness of game-theoretic alignment
approaches. As a special case, we discover a natural generalization of RLHF objective that satisfy all
these desirable properties. Technically, we develop novel proof techniques that can tackle a general
non-symmetric game directly, instead of relying crucially on the symmetric nature of NLHF as in Liu
et al. (2025).

In addition, we examine the diversity of the solution by investigating whether the model produces
a mixed strategy (Liu et al., 2025), and whether its output can satisfy the criterion of preference
matching (Xiao et al., 2024), meaning that the model output exactly matches a target policy which
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fully accounts for the diversity of human preference. Our findings suggest diversity can be ensured by
mixed strategies, but exactly matching a target is difficult for any game-theoretic alignment approach.
This reveal a fundamental limitation of game-theoretic alignment approaches.

1.1 Summary of Contributions
We summarize our contributions as follows:

* We show that Condorcet consistency is insensitive to the exact value of the payoff (Theorem
3.1), revealing the robustness of game-theoretic alignment approaches.

* We show that Smith consistency can be ensured by further maintaining the symmetry of
the game (Theorem 4.2). Moreover, Smith consistent methods automatically preserve the
diversity in human preferences by adopting mixed strategies (Corollary 4.2).

* We show that preserving the diversity in human preference strictly, in the sense of preference
matching, is impossible in general (Theorem 5.1). This reveals a fundamental limitation of
game-theoretic alignment approaches.

Assuming W is continuous, Table 1 provides a concise summary of our mathematical results.

Table 1: Summary of our mathematical results: the necessary and sufficient conditions on ¥ to
guarantee certain desirable alignment properties.

Condorcet consistency \ U(t) > U(1/2),V1/2<t<land ¥(t) < ¥(1/2),VO<t<1/2
Mixed & Condorcet consistency | W(t) + ¥(1—¢) > 20(1/2),V1/2 <t < land W(t) < ¥(1/2),V0 <t < 1/2
(1—¢)=2W(1/2),V1/2 <t < land U(t) < U(1/2) V0 <t < 1/2

Smith consistency | O(t)+ v

1.2 Related Works

A general mapping Y is first introduced in Azar et al. (2024) to facilitate the analysis of traditional
non game-theoretic LLM alignment methodologies. Their objective function, called UPO0, applies a
general mapping W to the original human preference. In this way, they treat RLHF and DPO as special
cases of WPO under BTL model and argue that they are prone to overfitting. To avoid overfitting, they
take U to be identity and arrive at a new efficient algorithm called IPO. Our problem (1.2) can be
regarded as the analogy of WPO in the context of game-theoretic LLM alignment. Another difference
is that rather than focusing on statistical properties like overfitting, our focus is on the alignment
properties such as Smith consistency and preference matching. Moreover, they restrict ¥ to be an
non-decreasing map, while we allow ¥ to be arbitrary, even stochastic.

Condorcet consistency is one of the dominant concept in the theory of voting (Gehrlein, 2006; Balinski
and Laraki, 2010), and Smith consistency is its natural generalization (Shoham and Leyton-Brown,
2008; Borgers, 2010). They are not studied in the context of LLM alignment until recently (Maura-
Rivero et al., 2025; Liu et al., 2025). In Maura-Rivero et al. (2025), the authors show that NLHF with a
selection probablhty that deals with ties is Condorcet consistent. Under a no-tie assumption, Liu et al.
(2025) show that NLHF is Condorcet consistent and Smith consistent, whereas RLHF is not unless the
preference satisfies a BTL model. Further, they show that the probability that the preference satisfies
a BTL model is vanishing under an impartial culture assumption, highlighting a key advantage of the
NLHF framework.

Several recent works also focus on aligning LLMs with the diverse human preference (Chakraborty
et al.,, 2024; Xiao et al., 2024; Liu et al., 2025). In Chakraborty et al. (2024), the authors introduce a
mixture model to account for the opinion of minority group and arrive at the MaxMin-RLHF method.
In Xiao et al. (2024), the authors introduce the concept of preference matching and develop the
PM-RLHF objective to pursue this goal. Liu et al. (2025) demonstrates that the original NLHF yields
a mixed strategy when no Condorcet winning response exists, whereas standard RLHF produces a
deterministic strategy, highlighting a potential advantage of NLHF in preserving the diversity of human
preferences.
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2 Preliminaries

Consider a general mapping ¥ : [0, 1] — R. We apply ¥ to the preference and study the max-min
problem (1.2) with this generalized payoff. Any solution 7 employed by the first player at the Nash
equilibrium,

7w € argmaxmin By [Byn (o) Eynm (o) ¥ (Py -y [ 2))] (2.1)

is called a Nash solution to the problem (1.2). The Nash solution is the policy which fully aligned
LLMs will perform. Note that the set of Nash solutions remain the same after an overall shift of
payoff, that is, changing ¥ to W + C' for any constant C' will not affect the problem. The original
NLHF objective (Munos et al., 2024) corresponds to the special case where ¥ (t) = ¢, equivalent to
U(t) =t — 1/2, and the resulting game is symmetric (Duersch et al., 2012), meaning that the two
players are the same. However, for an arbitrary mapping ¥, the game is usually not symmetric, and
we only focus on the Nash solution employed by the first player.

Given a prompt x, we consider the set of all possible responses generated by the LLM: {y1,...,yn},
where n is the total number of possible responses. Without any loss of generality, we drop the
dependence on the prompt z from now on. For any two distinct response y and 3/, recall that
P(y = y') denote the preference of y over /', defined as the expected proportion of individuals who
prefer y over y’. By definition, human preference satisfies the condition P(y = ') + P(y = y) = 1
and naturally we let P(y > y) = 1/2 (Munos et al., 2024). For any distinct pair of responses y and
y', we say that y beats 3/ if P(y = y’) > 1/2. Additionally, following Liu et al. (2025), we adopt the
No-Tie assumption throughout this paper.

Assumption 2.1 (No-Tie). For any distinct responses y and y', we assume that P(y = y') # 1/2.

This assumption is both minimal and practically reasonable. First, if the number of labelers is odd,
it automatically holds. Even in cases where a tie occurs, it can always be resolved through a more
precise comparison.

Notation. For any set A, we denote its cardinality by |A|. For any n € N, we define [n] :=
{1,...,n}. Weuse 0;; :== 1{i = j} for 1 < ¢,j < n. We represent high-dimensional vectors using
bold symbols. Any policy 7 over the set of possible responses {y1, . .., yn } can be identified with a
vector in R™, where each entry 7; corresponds to the probability assigned to y; for i € [n]. We then
define the support of a policy 7 as supp(w) := {y; | m; > 0,7 € [n]}. We write 7w > 0if m; > 0 for
all ¢ € [n], and similarly, 7« > 0 if m; > 0 for all i € [n].

3 Condorcet Consistency

In this section, we examine Condorcet consistency—a desirable property for LLM alignment inspired
by social choice theory—within the generalized game-theoretic LLM fine-tuning framework (1.2).
We begin by defining the Condorcet winning response and Condorcet consistency. We then present
Theorem 3.1, which characterizes the necessary and sufficient conditions on the mapping ¥ to
guarantee Condorcet consistency. Next, we examine the conditions under which ¥ preserves human
preference diversity when no Condorcet winner exists and introduce Theorem 3.2. Finally, we discuss
the continuity assumption underlying Theorem 3.2.

Following Liu et al. (2025), a response that is preferred over all others in pairwise comparisons by
the preference model is referred to as the Condorcet winning response.

Definition 3.1 (Condorcet Winning Response). A response y* is called a Condorcet winning response
if P(y* = y) > 1/2forall y # y*.

It is clear that there can be at most one Condorcet winning response. When such a response exists, a
natural requirement for LLM alignment is that this response should be the output. This property is
known as Condorcet consistency.

Definition 3.2 (Condorcet Consistency). Problem (1.2) is Condorcet consistent if when there exists a
Condorcet winning response, the Nash solution to (1.2) is unique and corresponds to this Condorcet
winning response.
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Liu et al. (2025); Maura-Rivero et al. (2025) show that the original NLHF objective, which corresponds
to the case where ¥(-) is identity, is Condorcet consistent. In this paper, we proceed further and
investigate the following question:

Which choices of W ensure Condorcet consistency?

We answer this question in Theorem 3.1. The proof is provided in Appendix A.

Theorem 3.1. Problem (1.2) is Condorcet consistent if and only if U(-) satisfies
U(t)=2¥(1/2),1>2t>1/2 3.1
U(t) < ¥(1/2),1/2>t>0 '
Note that this condition is much weaker than requiring ¥ to be increasing. It only demands that ¥
maps any value greater than 1/2 to some value larger than ¥(1/2), and any value less than 1/2 to some
value smaller than W (1/2). This implies that a wide range of mapping functions can be used within
the game-theoretic LLM alignment framework (1.2) to ensure Condorcet consistency. Furthermore,
in practice, we do not have access to the ground-truth preference model. Instead, we parameterize
the preference model using a deep neural network, Py(y > y’), trained on large-scale preference
datasets (Munos et al., 2024). Due to the limitations of the datasets and the optimization process, the
learned model only approximates the true human preferences. We can view this approximation as
U(P(y > ') in our framework. In practice, we can enforce the parameterized preference model to
satisfy Py(y = y) = 1/2, then our results show that as long as this approximation yields the correct
pairwise majority comparisons—specifically, that Py(y = ¢') = 1/2 > Py(y’ = y) whenever
y beats y'—then the LLM alignment remains Condorcet consistent. This strongly highlights the
robustness of the game-theoretic LLM alignment approach in achieving Condorcet consistency.

When a Condorcet winning response does not exist, human preferences are diverse and there is no
single response that is better than others. Therefore, in order to preserve the diversity inherent in
human preferences, it is natural to require the Nash solution not to collapse to a single response. This
motivation leads to the following characterization of diversity through mixed strategies.

Definition 3.3 (Mixed Strategies). A Nash solution 7 is called a mixed strategy if | supp ()| > 1.

Liu et al. (2025) demonstrates that the original NLHF, which corresponds to the case where U(-) is
identity, yields a mixed strategy when no Condorcet winning response exists. Assuming that problem
(1.2) is Condorcet consistent, we proceed further and investigate:

Which choices of W lead to a mixed strategy in the absence of a Condorcet winning response?

We now focus on mappings ¥ that are continuous at 1/2, a condition commonly encountered in
practical learning setups. Under this mild assumption, we answer this question in Theorem 3.2 and
the proof is provided in Appendix C.
Theorem 3.2. Assume that the mapping ¥(-) is continuous at 1/2. Assuming the Condorcet
consistency of problem (1.2), then any Nash solution is mixed when there is no Condorcet winning
response if and only if U (-) satisfies

Ut)+P(1—1t) >20(1/2),V0<t<1land ¥(t) < T(1/2),VO<t<1/2. (3.2)

The first condition arises from the requirement of mixed strategies, while the second condition is a
reduction of the condition inherited from Theorem 3.1 under the assumption of Condorcet consistency
and the first condition.

Choices of payoff functions are harder to characterize when we relax the continuity assumption. The
following example investigate a special piece-wise constant mapping, which does not satisfy the first
condition in Theorem 3.2.

Example 3.4. Ler M_ < ¥(1/2) < M and take

M_, 0<t<1/2
U(t) =S w(1/2), t=1/2
M, 1/2<t<1

Then, any Nash solution is mixed when there is no Condorcet winning response.

The proof of Example 3.4 is deferred to Appendix B. This example implies that choices of payoff
functions are considerably richer when we relax the continuity assumption.
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4 Smith Consistency

In this section, we extend the discussion of Condorcet consistency to Smith consistency. First,
we define the Smith set and Smith consistency. Next, we present Theorem 4.2, which provides
the necessary and sufficient condition for the mapping ¥ to ensure Smith consistency. Finally, we
highlight that Smith-consistent methods inherently preserve the diversity present in human preferences
and discuss the continuity assumption in Theorem 4.2.

Condorcet consistency only ensures the method capture the right response when there exists a
Condorcet winning response. In general, when there is no Condorcet winning response, we can
expect that there might be a set of responses satisfying similar property, generalizing Definition 3.1.
Under Assumption 2.1, Liu et al. (2025) revealed a more detailed decomposition of the preference
structure. Specifically, the set of responses can be partitioned into distinct groups S1, . .., Sk, where
every response in S; is preferred over all responses in S; for 7 < j, summarized in the following
theorem.

Theorem 4.1 (Liu et al. (2025)). Under Assumption 2.1, the set of responses can be partitioned into
disjoint subsets S1, ..., Sy such that:

1. Each S; either forms a Condorcet cycle or is a single response.
2. Forany j > i, any response y € S;andy' € S;, P(y = y') > 3.
Moreover, this decomposition is unique.

When |S;| = 1, the response in \S; is exactly the Condorcet winning response. Thus, S is the
generalization of Condorcet winning response, and is referred as the Condorcet winning set in Liu
et al. (2025). Traditionally, a subset with such property is also known as the Smith set in the literature
of social choice theory (Shoham and Leyton-Brown, 2008). Here we choose to adopt the name Smith
set to distinguish with the concept of Condorcet winning response. Given this decomposition, it is
natural to desire that an aligned LLM adopts a strategy supported exclusively on the top group 51, as
any response outside .Sy is strictly less preferred than any response inside S;. This desirable property
is referred to as Smith consistency:

Definition 4.1 (Smith Consistency). Problem (1.2) is Smith consistent if the support of any Nash
solution is contained in the Smith set S;.

Liu et al. (2025) showed that the original NLHF payoff, which corresponds to the case where ¥ (t) = ¢,
is Smith consistent. Here, we investigate this question for a general mapping ¥:

Which choices of ¥ ensure Smith consistency?

Here, similar to Theorem 3.2, we answer this question in Theorem 4.2 for mappings that is continuous
at 1/2. The proof is provided in Appendix E.

Theorem 4.2. Suppose that the mapping V(-) is continuous at 1/2, problem (1.2) is Smith consistent
if and only if U (-) satisfies

U(t) 4+ W(1 —t) = 2W(1/2),Vt € [0,1] and U (t) < ¥(1/2) V0 <t < 1/2.

The first condition ¥(¢) + ¥(1 — ¢) = 2¥(1/2) says nothing but the zero-sum game formed by
problem (1.2) is equivalent to a symmetric two-player zero-sum game' (Duersch et al., 2012). By
definition, Smith consistency implies Condorcet consistency because when there is a Condorcet
winning response, S is exactly the set whose only element is the Condorcet winning response. Thus,
the second condition is just a reduction of the condition in Theorem 3.1 under the first condition. It is
easy to see W(t) = t satisfies these conditions, and thus our result generalize Theorem 3.6 in Liu et al.
(2025). More interestingly, ¥ (¢) = log(t/(1 — t)) also satisfies these conditions. This implies that

~ Py -y |z)
m‘,?,XH}Tl/nIEmNp Ey~ﬂ'(|$)]Ey’Nﬂ"(‘CL) |:10g (7D(y/>-y|x) y

which is a natural generalization of standard RLHF when human preferences does not satisfy BTL
model, is also Smith consistent.

'This can be seen by shifting the payoff by W(1/2), which leaves the Nash solution unchanged.
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The set of choices for ¥ that ensure Smith consistency is quite broad. We can easily construct
such a U by first defining ¥(¢) on [0, 1/2] to satisfy ¥(¢) < ¥(1/2) for all ¢ € [0,1/2), and then
extending it to [0, 1] by setting U(¢) = 2¥(1/2) — ¥(1 —¢t) for all t € (1/2,1]. Moreover, as
discussed in Section 3, a practical preference model Py(y > y’) can be seen as a mapping of the
ground truth preference via U, i.e., U(P(y = y’)). Thus, the first condition in Theorem 4.2 requires
the preference model to satisfy Py(y > y') + Po(y' > y) = 1, with Pyp(y > y) = 1/2 enforced.
However, several practically used preference models (Munos et al., 2024; Jiang et al., 2023; Wu et al.,
2024) do not guarantee this condition, which may cause the aligned LLM strategy to fail to satisfy
Smith consistency.

As any mapping satisfying the condition in Theorem 4.2 also satisfies the condition in Theorem 3.2,
we obtain the following corollary:

Corollary 4.2. Suppose that the mapping V(-) is continuous at 1/2. Then if problem (1.2) is Smith
consistent, any Nash solution is also mixed.

This shows that when |S;| > 1, the Nash solution to problem (1.2) with any ¥ such that Smith
consistency holds will not only support on .S; but also be a mixed strategy on S; without collapsing
to a single response. As a conclusion, a Smith consistent method can preserve the diversity inherent
in human preferences, at least partially.

Lastly, we discuss what happens if ¥ is not continuous at 1/2. Choices of mappings ¥ are consider-
ably richer and consequently harder to characterize when we relax the continuity assumption. The
following example shows that the piece-wise constant mapping in Example 3.4 also ensures Smith
consistency.

Example 4.3. Let M_ < V() < M., and we take

M_ 0<t<1/2
U(t)=qP(1/2) t=1/2
My 1/2<t<1
Then problem (1.2) is Smith consistent. The proof is provided in Appendix D.

5 Impossibility of Preference Matching

In this section, we first revisit the definition of preference matching in the BTL model (Xiao et al.,
2024). Then we introduce a general theoretical framework of preference matching within the context
of game-theoretic LLM alignment, and establish a general impossibility result, as stated in Theorem
5.1. Finally we apply this general result to problem (1.2), concluding that preference matching is
impossible.

In previous sections, we have characterized the diversity of alignment result via mixed strategies. In
Xiao et al. (2024), the authors propose a more refined criterion for diversity when the preference
P(y >y | z) follows a BTL model,

exp(r(z, y))
exp(r(z,y)) + exp(r(z,y’)) ’
as given by (1.1). They point out that it is unwise to completely disregard any minority opinions in

the case that 51% of human labelers prefer y; over y» for a binary comparison. They suggest that the
policy (5.1),

Ply =y |z)=

exp (r(z,y))
y &P (r(z,9))
referred to as the preference-matching policy, fully accounts for the diversity in human preferences.

™yl =5 G.1

It is easy to see that there exists a Condorcet winning response under BTL model. According to
Theorem 3.1, using preference ¥(P(y > ¢’ | x)) as payoff with U(t) = ¢ or U(t) = log(¢/(1 —t))
will lead the Nash solution to collapse to a single response instead of matching with 7w*. This shows
that both RLHF and NLHF do not accounts for the diversity inherent in human preferences from the
perspective of preference matching (Xiao et al., 2024; Liu et al., 2025), even under BTL model.

To achieve alignment fully accounting for diversity, we would like to match the Nash solution with the
desired policy 7w*. In Xiao et al. (2024), the authors answered this question for RLHF. They proposed



304
305
306
307

308

309
310
311
312

313
314
315
316

317
318

319

320
321

322

323

324
325
326
327
328
329
330
331

332
333
334
335
336
337
338

339

340
341

the preference matching RLHF (PM-RLHF) method which successfully achieves preference matching,
by slightly modifying the RLHF objective. Here, we aim to explore the possibility of designing a new
learnable payoff matrix that aligns with the desired strategy in a game-theoretic framework for LLM
alignment:

Which choices of ¥ ensure preference matching?

Although it is currently unknown how to generalize the notion of preference matching policy to a
general non-BTL preference, to maintain the generality of the discussion and drop the BTL model
assumption, we suppose there exists an ideal policy, denoted by 7*, which captures the diversity of
human preferences perfectly.

Given a prompt x, we consider the set of all possible responses generated by the LLM: {y1, ..., yn}-
We further suppose that the policy 7* has full support over these n responses, meaning * > 0, as
we exclude responses not supported by 7v* from consideration. Then our goal is to construct a game,
represented by a payoff matrix {c;; }:‘ j=1. With its Nash solution the given policy 7*, i.e.,

n n
. /
7 = arg max min E E QT T
P pu J

i=1 j=1

To answer this question, we characterize the Nash solution under the given payoff matrix {c;;}7;_;,
which is summarized by the following KKT condition. The proof is deferred to Appendix F.1.
Lemma 5.1 (KKT Condition). Consider a game with payoff matrix {c;}';_,. Then w* > 0 is a
Nash solution to the game if and only if there exists u* € R™ with u* > 0 and Z?:l u; =1, and
t* € R such that the following KKT conditions hold:

Z?zlﬂ;‘aij—t*go j=1,---,n
W (S Ty — 1) =0 =1, ,n
Doy qiguy =t* i=1,-.,n

According to Lemma 5.1, it is easy to verify that the payoff matrix
Qij =T + T —0i,V1<4,5<n, (5.2)

and the payoff matrix

*
aij:—ﬁ—i+n5ij,v1<i,j<n, (5.3)

1
both guarantee that 7w* is a Nash solution (the details are provided in Appendix F.2). However, these
payoff matrices do not depend on the given policy 7v* in a reasonable way. The payoff matrix in
Equation (5.2) is symmetric, making it difficult to interpret. Even worse, it depends on the raw value
of v*. In practice, 7v* is often only known up to a normalizing constant. For instance, the preference
matching policy (5.1) includes a normalizing constant in the denominator that involves summing
over n terms. This constant is hard to determine when n is large and unknown, as is often the case in
LLMs. The payoff matrix in Equation (5.3) faces a similar issue as it explicitly depends on 7, which

is an extremely large and unknown value in practice.

In summary, the above two payoff matrices rely on information that is often unavailable in practice,
such as n and the raw value of w*. What we can obtain in practice for the design of «; is the
preference information between two responses ¥; and y;, which we assume depends solely on the
ratio between 7; and 7;. When the preference satisfies the BTL model (1.1), this assumption is
justified by the fact that the preference between any two responses depends solely on the ratio of
the values assigned by their corresponding preference matching policies (5.1). From this practical
consideration, we assume that the payoff matrix satisfies the following assumptions:

Assumption 5.2. Given any ©* > 0, the payoff matrix {aij}z j=1 satisfies the following conditions:

1. Foralli € [n), aj; = C where C is a constant independent of © and n. In other words,
the diagonal elements are the same constant.
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2. Foralli,j € [n]withi# j, oy = f (:—;) Sfor some smooth function f that is independent
of ™* and n. In other words, the off-diagonal elements depend on the ratio L in the same

*
o
J

way for all pairs (i,7) with i # j.

We emphasize that the above two assumptions are crucial for constructing a meaningful and practically
learnable payoff matrix. Furthermore, for effective alignment, the payoff matrix should not only
ensure 7t* to be a Nash solution, but 7v* must be the only Nash solution. The uniqueness requirement
excludes trivial payoff matrices such as o;; = C, where every * > 0 is a Nash solution.

Unfortunately, in Theorem 5.1, we prove that such a payoff matrix {a;; }? =1 does not exist generally.
The proof can be found in Appendix F.3.

Theorem 5.1 (Impossibility of Preference Matching for General Payoffs). There does not exist a
payoff matrix { o ; }f j—1 satisfying Assumption 5.2 such that for any given 7* > 0, the Nash solution
to the game is unique and equals to T*.

Remark 5.3. If we relax Assumption 5.2 and allow the entries of the payoff matrix to depend on n,
then the design (5.3) is actually eligible for preference matching.

Theorem 5.1 implies that no simple mapping of the preference can yield a payoff that leads to
preference matching. As a special case of Theorem 5.1, under BTL model, the generalized game in
Equation (1.2) with a smooth mapping W,

maxminE,; ., [Eywﬂ(.mEy/Nwl(.\x) (O (P(y =y | x))]] )

™ ™
cannot achieve preference matching. Therefore, we obtain the following corollary.

Corollary 5.4. Problem (1.2) with smooth mapping VU cannot achieve preference matching.

6 Conclusion

We investigate several properties motivated by social choice theory and diversity considerations
within the general game-theoretic LLM alignment framework (1.2), where the payoff is designed as a
mapping ¥ of the original preference. We identify the necessary and sufficient conditions on W to
guarantee Condorcet consistency and Smith consistency. These conditions allow for a considerably
broad class of choices for ¥, demonstrating that these desirable alignment properties are not sensitive
to the exact values of the payoff, thereby providing a theoretical foundation for the robustness of the
game-theoretic LLM alignment approach. Additionally, we examine conditions on W that ensure the
resulting policy is a mixed strategy, preserving diversity in human preferences. Finally, we prove
that achieving exact preference matching is impossible under the general game-theoretic alignment
framework with a smooth mapping, revealing fundamental limitations of this approach.

Limitations and Discussion. Our findings suggest several promising directions for future research
on LLM alignment. First, while we establish an impossibility result for preference matching under
the assumption that ¥ is smooth, it remains an open question whether preference matching can be
achieved when W is merely continuous. Second, in practical settings, regularization terms based on
the reference model are often added to problem (1.2). Regularization may be crucial for preference
matching, for example, Xiao et al. (2024) modify the regularization term in RLHF to achieve preference
matching. Analyzing the alignment properties of game-theoretic methods with such regularization
is another interesting avenue for future work. Furthermore, how to explicitly define a preference-
matching policy for general preferences that do not satisfy the BTL model, and how to develop
alignment approaches capable of learning such a policy, remain open problems. Finally, our results
highlight that practical preference models must satisfy certain anti-symmetry conditions to ensure
Smith consistency — conditions that are not guaranteed by several currently used models. Thus,
designing preference model architectures that enforce anti-symmetry is an important and interesting
future direction.

Broader Impacts. The goal of this paper is to investigate several theoretical properties of the
general game-theoretic LLM alignment approach. There are many potential societal consequences of
our work, none of which we feel must be specifically highlighted here.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the contributions
and scope of this paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations of the work in Section 6 (see the "Limita-
tions and Discussion" paragraph).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The full set of assumptions is introduced before theoretical result and the
complete proof of theoretical result is provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper focuses on theoretical analysis and does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper discusses broader impacts in Section 6 (see the "Broader Impacts"
paragraph).
Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 3.1

Notation. For simplicity, we denote U(P(y; > y;)) as ¥;; for any 1 < ¢, < n, and define the
payoff matrix as ¥ := ¥ We then define the total payoff by:

7T1,7l'2 = E E 7(-127[-2] 17 -

=1 j=1

1, j<n’

We denote by d; the policy supported solely on y;, i.e., supp(d;) = {y;}. The mixed policy
(8;; + ...+ 8;,)/k is then defined as the policy 7 such that

. {1/k, i€ {in, ik}

)

0, otherwise

for any subset {i1,...,ix} C [n].

Proof of Theorem 3.1. Without any loss of generality, we assume that y; is the Condorcet winning
response. First, we show that a necessary condition that ensures the Condorcet consistency of problem

(1.2) is:
U(t) > 0(1/2),1>t>1/2 N
() <U(1/2),0<t <1/2 (A.D)

To show this, we examine the case where n = 2. For any 1 > ¢ > 1/2, we consider the game with
the payoff in Table 2. By the definition of Condorcet consistency, all Nash equilibrium of this game
is of the form (87, 7*) for some 7*.

Table 2: Payoff matrix with two responses {y1,y2}.

YPy=y) | ¥=un ¥ =u

y=1u (1/2)  U()
y =1y v-t) v(1/2)

Case 1. If U(t) > ¥(1/2), we have
7 = argmin Py (d1, 7) = argmin {m U (1/2) + m¥(¢)} = ;.

Therefore, we have
U(1/2) = Py (d1,61) = mﬁqu,(ﬂ,(Sl) > Py(02,01) = Vo = V(1 —1t),
U(1/2) = Py(d1,61) = mgnP\p(él,ﬂ) < Py(01,02) = V10 = V().
Hence, we have U(1 —t) < ¥(1/2) < ¥(¢). If ¥(1/2) = ¥(1 — t), notice that
Py(m,61) =mP(1/2) + ¥ (1 —¢t) = U(1/2) = d2 € argmgxp\y(ﬂ,dl),
Py (02, 7) =m¥(1 —1t) +mV¥(1/2) = U(1/2) = 4, € aI‘gH;i_H,P\p((SQ,ﬂ').

Therefore, (d2, d1) is also a Nash equilibrium, which causes a contradiction to the fact that problem
(1.2) is Condorcet consistent. Therefore, we have ¥ (¢) > ¥(1/2) > ¥(1 —¢) forany 1 > ¢ > 1/2.

Case2. If U(t) < ¥(1/2), we have
7 = argmin Py (61, 7) = argmin {m U (1/2) + m¥(¢)} = ds.

However, notice that
\11(1/2) 'P\y(62752) maqu,(ﬂ 62) 77\1,(61762) = \I/(t) < \11(1/2) s

which causes a contradiction.
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Case3. If U(¢) = ¥(1/2). When ¥(1 —t) = ¥(1/2), any (7, 7o) is a Nash equilibrium, which
causes a contradiction to the fact that problem (1.2) is Condorcet consistent. When ¥(1 —¢) >
U(1/2), note that
Py (02, ) =m ¥ (1 —1t) + m¥(1/2) > U(1/2) = §2 € argmin Py (dz, ),
Py(m,d2) = mP(t) + mU(1/2) = ¥(1/2) = §2 € argmax Py(m, d2) .
Therefore, (42, d2) is a Nash equilibrium, which also causes a contradiction to the fact problem (1.2)
is Condorcet consistent. Hence, we have ¥(1 —¢) < ¥(1/2).

In summary, for any 1 > ¢ > 1/2, we have ¥(1 — ¢t) < ¥(1/2) < ¥(¢). Hence, (A.1) holds if
problem (1.2) is Condorcet consistent. Next, we prove that (A.1) is also sufficient for the Condorcet
consistency of problem (1.2). Recall that U;; = W(P(y; = y1)) < ¥(1/2), and ¥y; = V(P (y1 >
yi)) = W(1/2) for any i # 1. If (w7, w3) is a Nash equilibrium. Notice that

Py (77, 75) = max Py (m, w5) = Py (b1, 75) Z’ITQZ\IJM,
™

n

Py (nf,m3) = min Py}, ) < Py(n],81) Zwmu

Therefore, if w] # d;, we have

n

U(1/2) < Zm“\lfh\ vy, my) < U < U(1/2), (A2)

=1

which causes a contradiction. Therefore, 7§ = 41, i.e., problem (1.2) is Condorcet consistent. Hence,
we conclude our proof. O

B Proof of Example 3.4

Proof of Example 3.4. We prove this conclusion by contradiction. Suppose that the Nash solution
is 8;+ for some i* € [n], and the Nash equilibrium is (§;+,7*). As there is no Condorcet winning
response, by definition, there exists j such that P(y;« > y;/) < 1/2. Then we have

Py (0, 7m*) = min Py (;+, 7) < 7)\1;(51‘*,(%‘/) =0 (P (y» = yj/)) =M_. (B.1)

However, choosing i’ such that w7 > 0, we have
Py (0i«, ") = max Py (m, 7*) = Py (6, 7" Zw*\ll (yir = yi)) > M_,
™
which causes a contradiction to (B.1). Hence, we conclude our proof. ]

C Proof of Theorem 3.2
Proof of Theorem 3.2. First, according to Theorem 3.1, when the Nash solution is Condorcet consis-

tent, we have
Ut) =2 0(1/2),1=2t>1/2 .1
U(t) < ¥(1/2),1/2>t>0 '

In addition, we show that ¥(-) must satisfy U(¢) + ¥(1 —¢) > 2¥(1/2),Vt € [0, 1] for ensuring
that the Nash solution is mixed when there is no Condorcet winning response. We consider the
case where n = 4 and the game with the payoff in Table 3 for any ¢1,t, > 1/2. Notice that if
U(ty)+ U(1—t1)+ P(1/2) < 3¥(1 — t2), we have

61+ 02+ 03

IP\I/((S477T):(7T1+7T2+7T3)\I/(1—t2)+7T4\I’(1/2):> 3

€ argmin Py (44, 7) ,
T
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and

Py <ﬂ_751+t;2+53

\11(1/2) + \I/(tl) + \I/(l — tl)
3
61+ 02+ 03

) = (m + 72 +73) - + mU(1 — ta)

= 4 € argmax Py (71',
T

Therefore, (84, (81 + 02 + 83)/3) is a Nash equilibrium, which causes a contradiction to the fact
that the Nash solution is mixed. Hence, we have ¥ (¢1) + ¥(1 — ¢1) + ¥(1/2) > 3U(1 — ¢3) for
any t1,t2 > 1/2. Let to — 1/2, we have ¥ (¢) + U(1 —¢) > 2¥(1/2) for any ¢ € [0, 1]. Hence,
combining (C.1), we have shown that the necessary condition for ensuring that the Nash solution is
mixed is:

W(t) + (1 — 1) > 20(1/2), V¢ € 0,1] and {‘I’(t) > V(1/2),12t21/2 (C2)

U(t) < U(1/2),1/2>t>0

Next, we prove that the condition (C.2) is also sufficient. Suppose that (§;+, 7w*) is a Nash equilibrium,
then we have

Py (8, 7*) = max Py (m, %) = Py (m*, w*)

n

=> Zw*w*\ll Zzn;nj (T 4+ Uj5) > U(1/2).

i=1 j=1 24 j=1
However, notice that for any 7, we have

7)\11(57;*,71'*) = mgan,(éi*,fr) < ’P\I/((S,;*,(Sj) = \I/i*j .
As there is no Condorcet winning response, there must exist j* such that P(y;« > y;+) < 1/2, thus

U;vir < W(1/2). Hence, ¥(1/2) < Py (i, 7)) < ¥urj» < ¥(1/2), which causes a contradiction.
Therefore, the Nash solution must be mixed. O

D Proof of Example 4.3

Proof of Example 4.3. We prove this conclusion by contradiction. Suppose that the Nash solution is
7} that satisfies supp(77) N S§ # (), and the Nash equilibrium is (7}, 73).

Case 1. If supp(w}) NSy =0, taking j' € S, we have

P‘I’(ﬂfaﬂ-g)zngnlp\l/(ﬂ-lv ) P‘I/ 771; Zﬂ-lz ij’ =M_.
i€SY
However, we have
Py(rwy,735) = max’Pq,(ﬂ' 73) > Py (Unif(S1), Z Z s 2j\I/” > M_,
€Sy j=1

which causes a contradiction.
Case 2. If supp(wj) NSy = 0 and supp(w}) N Sy # 0, taking i’ € supp(w}) N Sy, we have

Py (my,w5) = max Py(m,75) = Py(dy,75) = ZTI‘2] i =Mj.
™
JEST
However, we have
. 7,
Py(wy,ws) = m#an/(ﬂ'f, 7) < Py(w], Unif(Sy)) Z Z I\I/U < M.,
i= 1]651

which cause a contradiction.
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Case 3. IfIf supp(m3) NSy # 0 and supp(w7) NSy # 0, taking i € supp(w}) N S, we consider
the following strategy 7r:

/ — ; c
m,; =0, i€ 5y
/ — * , Sk
M= T, i€ Si\{iz} .
/! — * * NI
My = My T Ziesg Tis =1

Then we have

/
Py (), 75) — Py (m], w5) ZZ 7T11—7T WQJ\I’ij

i=1 j=1
n n
_ * K - * o s
= - E E w17, Vg + E E :”1,1'”24‘1’6] (D.1)
i€Sf j=1 j=14ieS8¢

n
= E E 7'('1 i * — l]) > 0 .

j=1 i€S§

where the last inequality follows from the following two facts: for any ¢ € SY,
My -V, >0, j ¢
Vigj —Wij =g A 0. 7€5 ;
2 \I/iéj—M,>0, ]ESl

L
and when j = 3,

71'5’2-5 Z’frii (\I/Zglg—\:[fng) :’R';J ( 1/2 Z’]T11>0

iese iesg
However, (D.1) causes a contradiction to the fact that Py (7}, 75) < max, Pg(m,w5) =
Py(wi, 7w3).

Hence, in summary, it must hold that supp(w}) N S¢ = 0, i.e., supp(w}) C Si. O

E Proof of Theorem 4.2

Proof of Theorem 4.2. First, we show that the necessary condition for ensuring that problem (1.2) is
Smith consistent is:

V() > U(1/2),1> ¢ > 1/2
U(t)+W(l—t)=2¥(1/2),Vt 1] and . E.1
(04910 =2001/2) v € o.1]ana {50 = PR 0212 12 1)
First, Condorcet consistency must hold when Smith consistency holds. According to Theorem 3.1,
we have
V() > U(1/2),1>t>1/2
U(t) < T(1/2),0<t<1/2

Next, we show that when ¥(-) is continuous at 1/2, ¥(-) must satisfy U(¢) + U(1 —¢) > 2¥(1/2)
(Lemma E.1) and (¢) + ¥(1 —¢) < 2¥(1/2) (Lemma E.2) for any ¢ € [0, 1]. Therefore, combining
the two results together, we obtain the condition (E.1).

Lemma E.1. When V() is continuous at 1/2. Achieving Smith consistency only if
U(t)+T(1—t)>2¥(1/2),Vt € [0,1].

Proof of Lemma E.1. We consider the case where n = 4 and the game with the payoff in Table 3 for

any t1,t2 > 1/2. Notice that if ¥ (¢1) + U(1 — 1) + U(1/2) < 3U(1 — ¢2), we have

61+ 02+ 03

IP\I/((S477T):(7T1+7T2+7T3)\I/(1—t2)+7T4\I’(1/2):> 3

€ argmin Py (44, 7) ,
T
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and

61 +02+9

W(1/2) + U(t) + U1 —t)
3

61+ 02 + 03

PEEER)

> :(7'('1 —|—7T2—|—7T3)' —|—7T4\I/(1—t2)

— §4 € argmax Py (71',
T

Therefore, (84, (81 + d2 + d3)/3) is a Nash equilibrium, which causes a contradiction to the fact that
the Nash solution supports on S7 := {y1,y2,ys3}. Hence, we have U(¢;) + ¥(1 —¢1) + ¥(1/2) >
3U(1 — tg) for any t1,t2 > 1/2. Let t; — 1/2, we have U(t) + ¥(1 —¢) > 2¥(1/2) for any
t € 0,1]. O

Table 3: Payoff matrix with four responses {y1, y2, Y3, Y4 }-

Y(Py=y)| v=un Y = v=ys Y =uys

y=u v(1/2) W(t)  W(l—t) V(ty)
Y=y U(l—t) ¥(1/2) U(t) (L)
Yy=1ys3 (t1) U(l—t1)  P(1/2) U(t2)
Y =1Ya \I/(l—tg) \I/(l—tg) \I/(l—tg) \I/(l 2)

Lemma E.2. When V() is continuous at 1/2. Achieving Smith consistency only if

U(t)+U(1—t) <2¥(1/2),Vt € [0,1].

Proof of Lemma E.2. We consider the case where n = 6 and the game with the payoff in
Table 4 for any ¢;,t; > 1/2. Notice that if U(t1) + U(1/2) + U(1 — t1) > 3U(t2)(>
3U(1/2) > 3¥(1 — tq)), there exists positive u = (u1/3, p1/3, p1/3, p2/3, a/3, u2/3) and
po=(ph/3,11/3, 11 /3145 /3, W5 /3, p/3) such that py + pg = py + py =1, and

P [O(1/2) + W(t) + V(1 — 1) = 3W(1 —ta)] = 5 [U(1/2) + W (t1) + V(1 — 1) — 3U(L2)] -

Hence, we have

pa(W(1/2) + W (t1) + U(1 — 1)) + 3uW(1 — t2)
= p2(V(1/2) + U(t1) + U(1 —t1)) + 3 ¥ (t2) := 34,
ph(U(1/2) + T (ty) + T(1 —t1)) + 3ubT(ty)
= po(U(1/2) + U (t1) + (1 —t1)) + 3u) (1 — o) := 3B
Thus, we have
Pa(m, ) = (ma 4 72+ 7m0 | B (OD(1/2) 4 W(02) + 001 = 1))+ 140(0)|

et s ) [0 = 1)+ B2 (0(1/2) 4 9(0) + B0 - 1) = B,
and
Pu(pm) = (m 4+ + ) [ 55 (0(1/2) + W(0) + 01— 1) + o ¥(1 — 12)]
o (ma s+ 6) (k) + 5 (W(1/2) + 0 (t) + W1 - 1)) = 4.
Therefore, p € argmax, Py (mw, p'), ' € arg min, Py (u, ), which provides that (u, p') is a
Nash equilibrium. However, this causes a contradiction to the fact that the Nash solution supports

on S1 := {y1,y2,y3}. Thus, it must hold that ¥ (¢1) + ¥(1/2) + U(1 — ¢1) < 3¥(¢2) for any
ti,ta > 1/2. Letty — 1/2, we obtain W(t) + (1 — ¢) < 2¥(1/2) for any ¢ € [0, 1]. O
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Table 4: Payoff matrix with six responses {1, Y2, Y3, Y4, Ys, Y6 }-

Y(Py~y) | v=un Y =1y Y =ys3 Y =ya Y =ys Y = ys

Y=y U(1/2) U(ty) U(1—ty) U(ts) U(ts) U(ts)
Y=y W(l—t1) W(1/2) W(t) U(ts) W(ts) U(t)
Y=1ys3 U(ty) U(l—t) W(1/2) U(ts) U(ts) U(ts)
Y=Y U(1—t2) W(l—t2) W(1—-t2) W(1/2) U(t)  V(l-1t)
Yy=1yYs \I/(lftg) \If(lftg) \I’(lftg) \I/(lftl) 1’(1/2) \If(tl)
Y= Yo V(1 —ty) WA—t) W(l—t) V() V(-t) ¥(1/2)

987 Finally, we prove that the condition (E.1) is also sufficient for Smith consistency. Suppose that
988 (77, 7r) is a Nash equilibrium, notice that

Py (wy,5) —maXPq,(w 73) = Py(ry,wy) = U(1/2),

E.2
Py (7, 3) = min Py (i, ) < Pa(a,wi) = W(1/2), (2

989 which follows from the following fact: for any 7,

:ZZ U = szj (Wij +W55) = 0(1/2) Y Y mimy = U(1/2).

i=1 j=1 i=1 j=1

9s0 Thus, from (E.2), we have Py (7], w5) = ¥(1/2). Then we prove supp(my) C Si. Hence, the Nash
991  solution is Smith consistent, i.e., only supports on S.

992 Casel. Ifsupp(w?})()S1 =0, taking any j € S, we have

Py (mr, 75) = min Py (nf, w) < Py(nt,d Zw Wy = wf Uy < U(1/2),
i€SY

9e3  which causes a contradiction to the fact that Py (7], 75) = U(1/2).
994 Case 2. Ifsupp(w?)()S1 # 0, and supp(wy) (S5 # 0, taking 75 as:

TR RTRCIC) LS R
’ Z]GSl 7T-1

995 Then we have

Py (mi, m3) = min Py (77, m) < Py (77, 73)
=22 mam Yt ) D Ay
i€S1 jESL i€S§ jEST
Zzesl > jes, ™17 Vi s (E.3)
Do TN ) 3
JES ™ i€S¢ jES)
=W(1/2) Y 7w+ W(1/2) > wt, = 0(1/2),
€S, i€S¢

996 which follows from the following fact:

o> Aty = % o> At (Ui + 05)

i€S1 jES1 i€S1 JEST
* * *
=V(1/2) E E 1,715 = (1/2) (E US) 1) E UEWi
i€S1 jES1 1€SL JEST

97 However, (E.3) also causes a contradiction to the fact that Py (7}, 75) = U(1/2).

998 Therefore, it must hold that supp(«}) () S§ = 0, i.e., supp(w}) C S1. We conclude our proof. [J
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9o F Proofs of Results in Section 5
1000 F.1 Proof of Lemma 5.1

Proof of Lemma 5.1. Suppose each player has n policies and the payoff matrix is {c;; }—,. Then,

n n

n n n
. / . / :
max min E E O(ijﬂ'iﬂ'j = 1max min E E Q5 TG 7Tj = Imaxmin E Q5T o -
™ 7/ ™ 7/ — ™ j
1=

i=1 j=1 j=1 J i=1

1001 Let us reformulated it into a convex optimization problem.

n
H?;‘i'n mjaxz QTG
i=1
subjectto —m; <0, 1=1,...,n (P)

im——le
i=1

1002 Let us further reformulate this problem into the epigraph form by introducing a single variable ¢t € R:

min t
,t

n
subject to Zaijm—tgo, j=1....,n
=1 (P/)

-m <0, 1=1 n

im——lzo
i=1

1003 By introducing the dual variables u* € R"™, u* € R™ and v* € R, the KKT conditions is:

yoeeey

* stationary condition:

 primal feasibility:

o
Il
N

¢ dual feasibility:

<

8] »&
\Y
o
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We can easily see that Slater’s condition is satisfied for this problem, so the KKT points are equivalent
to primal and dual solutions. Then taking 7w* > 0 into account, we have @ = 0 by the second
complementary slackness condition, and the above equations can be simplified to the following
system of equations:

u* =0
Z?:l ujy =
Yo iy —t* <0 j=1,---,n
u;(zl_lﬂfaljft*):() ji=1, N
Z;.l:lalj;f——v* i=1,---,n
Moreover, notice that
n n n n
0=>_u; (ZWZ%‘ —t*> =D My ayuy — = —v" =t
j=1 i=1 =1 j=1
thus v* = —t*. Hence, we conclude our proof. O
F.2 Verifying Equation (5.2) and Equation (5.3)
For (5.2), choosing t* = —v* = Y"1 | (7})? and u} = v}, 7* is a Nash solution. For (5.3), choosing
*)—1
t* = —v* =0and u* = %, 7t* is a Nash solution.
J j:l(ﬂj)

F.3 Proof of Theorem 5.1

We first present a useful lemma (Lemma F.1) that further investigates the KKT conditions (Lemma
5.1) when the payoff matrix induces a unique Nash equilibrium.

Lemma F.1. If a game with the payoff matrix {c;; }f j=1 has a unique Nash solution 7*, then for
any j € [n], it must hold u} > 0 in the KKT conditions, and

n

* gk
E T Qg =1".
i=1

Proof of Lemma F.1. Suppose that the KKT conditions provide the unique Nash solution (7*, w*, t*).
Then we define:

jO::{jE[n]:u;;éO},andj()::{je[n]:ujzo},

with Jo U Jp = [n]. Since w* > 0and ) u} =1, there exists j € [n], such that uy #0,ie, Jo # (.

Now, we aim to show Jp = 0. We prove by contradiction. Suppose Jo # (), taking jo € Jo, we
consider two spaces

Vii= {77 eR": ) mi(aij —aiy;,) =0, Vj € Jo\{jo}}’

i=1
‘/2 I:%ﬂ{WERnZZWi(OQj _aijo) <07 Vj Ej()}.
i=1

Then we claim that 7w* € V5 and dim(V4) > 2. For the first claim, by the KKT conditions in Lemma
5.1, for any j € Jo, we obtain

n n

* gk *
g mioy; =1 = E T Qi s
i=1 i=1

thus 7v* € V;. Moreover, again by the KKT conditions, for any j € Jo, we have
n n
D omian <= wa,,
i=1 i=1
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which shows that w* € V5. For the second claim, take j’o S jo and consider

Vs = {TF ER": Y (i —aiy,) =0, Vj € [n]\{jo,jo}} ;

i=1

Vy = Vdm {ﬂ' eR™: Zﬂi(azﬁo — Qjjy) < 0} .
i=1

We can easily see V; C V5. Note that V3 can be regarded as a kernel space of a linear transfor-
mation from R” to R"~2, By the dimension theorem in linear algebra, we obtain dim(V3) =
n —dim(Im(A)) > n — (n — 2) = 2. For any w € V3, it must hold that w € V; or — € V, so
dim(Vy) = dim(V3) > 2. Therefore, we have dim(V;) > dim(Vz) > dim(Vy) > 2.

Thus, we can take another 7" € V5 which is linear independent with 7w*. Note that for any a,b € R,
am* +br* € Vo. Taking large a € R, we have am™ +bm* € V, and aw™ + bc* > 0, since 7° > 0.
Therefore, there exists a; € R, such that w3 := % € Vs that satisfies 75 # 7*, w5 > 0, and
> i T5; = L. Thus, we obtain another Nash equilibrium (73, u*,t*), causing contradiction to the

uniqueness of Nash solution. Hence, it must hold that jo = 0. O
Next we provide the proof for Theorem 5.1.

Proof of Theorem 5.1. Using Lemma F.1, uniqueness requires us to seek solutions that satisfies

n
E: * gk

’/TiOtij—t
i=1

for all j € [n], where ¢t* is a constant that may depend on 7v*. Consider n > 5, for any four distinct
indices j1, jo, k1, k2, we have

5 Tk Tk

Yoo omf <7TZ) + 7 f (W‘l> + Thy f (;) + Cmj,
i#j1,k1,k2 J1 J1 It
T Tk Tk

= Z mif (;) + i, f <7r-1> + g, f <7r-2> + Cmj,
i#j2,k1,k2 J2 J2 J2

Let us consider the infinitesimal variation 7, — 7, + 0 and 7, — 7, — &, keeping others still.
We obtain that

5wt (Z) 4+ 07 (B0 b (e, - 017 (220 o,

(F1)

i#j1,k1,k2 i T (F2)
e Tk, + 0 Ty — 0 '
= Y mf(=— )+ +0)f + (mhy — 0) f + Cj,
e . Tja T ja Tjo
i#j2,k1,k2
Subtracting both sides of (F.1) from (F.2), we obtain that
0 )
(7, +0)f (W) + (mk, — 6) f <Trk2 > i (ﬂkl) — Ty f <%>
Ty T 1 Tj1 T4y (F3)
Ty +0 Ty — 0 Thy Tk '
= (ﬂ-kl + 6)f - + (7Tk2 - 6)f - Wklf - Trk}zf
o Tjo Tja o
i.e., we have
. 1)
e (1 (252) -1 (52)) +or (22)
Ty Ty Ty
)
+ (i, =) ( f (”) -1 (”’”)) —of (’T’f)
Ty Ty Ty (F4)

bl =) (T2 ) - (22)) -ar (22,
J2 J2 J2
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1048

1049

As f is smooth, using

lim =
§—0 ) Uy

mﬁﬁ—Mz%;g(w)

and taking 6 — 0, we obtain the following identity from (F.4),

=f (77’%) 4 The g (7”“2> —f <7r;€2> L
Ty T Ty Tja Tja

Since (F.6) holds for any 7 > 0, given any 7;, # 7j,, forany 1,25 € (0,1 — m;, — 7;,), we have
s <fl) N (%) _ <w1> T (fl)
i T i1 Tja T2 Tj2
_f<fvz)+x2f/(wz>_f<fvz> _fczf/< )
Tj1 T Tj o o

which induces the following for any = € (0,1 — 7j, — 7}, ),

f <x> =+ if’ (1') — f <1‘) _ if/ (:E) — C(Trj177rj2)~ (E7)
e LS i Tj2 o o

H(E)+Zr () =cmomar (Z)+ 20 (). @
T Ty T Tj2 Mo T2

Without any loss of generality, we assume 7;, < 7;,, then we obtain

x r o, x
1(5) ()

P(E) e () () -2 (3)
T T Ty Ty Ty T (F 5)
(T () () 2 ()
Tz Ty Ty Ty Ty Tjo
Thus, we obtain that
f (77’91> +&f’ (7%1) _f <7r’f1> _ &f’ <7Tk1)
Ty T, Ty Ty Ty Ty (F6)
0

i.e., we have

1050 Taking limit, it must hold C'(7;, ,7;,) = 0, i.e., we have

1051

1052

1)) ) () ©
Ty Tj1 Tj1 iz Tja Tj2

Since (F.9) holds for any m > 0, for any x1, x5 € R4, we have
fl@1) + 1 f'(21) = f'(22) + 22 f (22),

thus, for any x € R, we have
fx)+af (z)=0C. (F.10)
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Solving (F.10), we obtain that

=2 +05.
T

f(x)

1053 Then we obtain that

Zmaij :Cﬂj+2m< 721_7(] +Cg> :C’3+(C+(n—1)02—03)7rj,

i=1 it i

1054 yielding Cs = C' + (n — 1)Cq, and

flx)=C+Cy (i—l—n—l),

1055 which is contradictory to our assumptions.
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