Explaining and Mitigating
Crosslingual Tokenizer Inequities

Catherine Arnett', Tyler A. Chang’, Stella Biderman', and Benjamin K. Bergen’

'EleutherAl, 2UC San Diego

Abstract

The number of tokens it takes to encode parallel text in different languages is
known to vary. These disparities are called foken premiums. Having high token
premiums leads to less throughput during training and increases costs at inference.
In this paper, we show that even after controlling for dataset size, vocabulary size,
and data content, monolingual tokenizers exhibit a wide range of token premiums
across languages. To understand the cross-linguistic differences that cause these
token premiums, we train a suite of approximately 7,000 comparable monolingual
tokenizers for 97 languages, manipulating tokenization algorithm, vocabulary
size, and dataset size. We measure token premiums and test for a relationship
between factors such as data similarity (between tokenizer training and evaluation),
vocabulary size, and pre-tokenization. We also investigate the role of language-
specific features such as writing system and word length. We find that similarity
between training and test data does not impact token premiums, but vocabulary
size and pre-tokenization do. While simply increasing vocabulary size does not
lead to reduced token premium effects, we can determine an “optimal” vocabulary
size for each language to achieve significantly reduced token premium effects. We
also train superword tokenizers which allow merges over whitespaces, and we find
that they both reduce token premium effects and improve compression overall.
Thus, intervening on the vocabulary size or the pre-tokenizer significantly reduces
crosslingual token premium effects.

2 MonTok Tokenizers €) Code and Data

1 Introduction

Multilingual tokenizers generally require different numbers of tokens to represent parallel text in
different languages. In other words, multilingual tokenizers are able to compress text better for some
languages than for others. This phenomenon, token premiums (Petrov et al.,2023), leads to increased
inference costs and latency for languages with high premiums (Ahia et al., 2023} |Petrov et al., 2023).
In previous work, these effects have been demonstrated only in multilingual tokenizers, which are
trained on different proportions of data per language. It is possible, therefore, that these effects could
be driven exclusively by the proportion of training data per language. However, in this paper, we
show that monolingual tokenizers trained with exactly the same implementation, dataset size, and
vocabulary size demonstrate widely variable token premium effects (Fig. [T).

We then ask why tokenizers trained in the same way lead to these different compression rates for
different languages. We first determine the effects of byte premiums (variable byte encoding lengths
for content-matched text in different languages; |Arnett et al., 2024) and tokenizer types (BPE and
Unigram) on compression (Section [3). We find that BPE tokenizers have the best compression rates
overall, and byte premium scaling of the training dataset size has little effect. We then identify
factors that correlate with token premiums (Section[d), including train-eval domain similarity, mean

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://huggingface.co/datasets/catherinearnett/montok
https://github.com/catherinearnett/explaining_tokenizer_inequities

Vocab Size
8192
16384
32768
49152
65536
81920
98304
114688
131072
262144

Density

40000 50000 60000 70000 80000 90000 100000 110000
FLORES CTC

Figure 1: Distribution of corpus token counts (CTCs) for all languages in our sample as a density plot
over CTC scores, for the BP-unscaled BPE tokenizers. Higher CTCs indicate worse compression.
The distribution for each vocabulary size is plotted separately. As vocabulary size increases, the
distribution shifts left and becomes more compressed, and the right tail becomes less extreme.

token length, and proportion of whitespaces in each language. In total, we train approximately 7000
monolingual tokenizers, which we make available on Hugging Face: https://huggingface.co/
datasets/catherinearnett/montokl

Finally, we explore ways to mitigate token premium inequities by training tokenizers on parallel data,
adjusting vocabulary sizes per language, and removing whitespace pre-tokenization (Section[5). We
find that training on parallel data does not meaningfully reduce token premium effects. However,
we can determine an “optimal” vocabulary size for each language, which significantly reduces
token premiums. Additionally, we find that removing whitespace pre-tokenization (i.e. SuperBPE
tokenizers; |Liu et al.,|2025) also substantially reduces token premium effects.

In order to fully address token premium effects and design more equitable multilingual tokenizers,
we need to understand all the factors that lead to token premium effects. In this work, we show
that interactions between tokenizer design and inherent features of a language largely determine
differences in compression. These findings represent a key step in understanding the implicit biases
that tokenizer design choices might incur.

2 Related Work

2.1 Token Premiums

Token premiums are the relative differences in the number of tokens used to encode the same content
in different languages (Petrov et al.,[2023). A higher token premium means that more tokens are
needed to encode the same content, which corresponds to lower compression. High token premiums
have sometimes been referred to as over-segmentation (Rust et al., [2021) or over-tokenization (Liang
et al., [2023)). |Ahia et al.[(2023) and |Petrov et al.| (2023) showed that multilingual tokenizers often
have variable token premiums for the different languages they are trained on.

Token premium effects have only previously been observed in multilingual tokenizers. Multilingual
tokenizers are trained on different amounts of data for different languages, and some languages are
over- or under-represented in the tokenizer vocabularies (Balhar, 2023)). In these tokenizers, therefore,
differences in token premiums may be due to training data amounts or vocabulary allocation per
language. The current paper, to the best of our knowledge, is the first to systematically document
token premiums in comparably trained monolingual tokenizers. In this paper, therefore, we make a
distinction between crosslingual and multilingual. By crosslingual, we mean differences between
languages that are observed in monolingual settings. We use multilingual to refer to settings where a
tokenizer or model is trained on multiple languages.

https://huggingface.co/datasets/catherinearnett/montok
https://huggingface.co/datasets/catherinearnett/montok

To reduce token premium inequities, byte-level tokenization (sometimes referred to as “tokenizer-
free”’; |Choe et al.l [2019; |Clark et al., 2022} | Xue et al., [2022] inter alia) has been considered as an
alternative tokenization approach. However, different languages require different numbers of bytes to
encode equivalent content (Arnett et al.,2024), a phenomenon known as “byte premiums”. Therefore
a byte-level tokenizer, such as that for ByT5 (Xue et al., [2022), still has token premiums—in this
case, identical to byte premiums. Some languages have extremely high byte premiums (Burmese:
3.51, Dzhongkha: 3.64; Shan: 3.94;|Petrov et al., 2023).

There have been at least two proposed methods to reduce token premiums in multilingual byte-based
tokenizers. First, [Limisiewicz et al| (2024) proposed MYTE, which replaces long byte strings
with unused bytes that represents meaningful word segments, morphemes. This method leads to
significantly reduced token premium, or byte premium, effects, but it requires a predefined dictionary
of morphemes. Relatedly,|Ahia et al.|(2024)) proposed MAGNET, which takes byte-level inputs and
uses script-specific boundary-predictor modules to dynamically predict segmentation boundaries.
Those boundaries are used to pool together byte-level representations before feeding them into the
language model as input. This leads to more equitable segmentation across languages. By contrast, in
this paper, we discuss methods to mitigate token premiums in subword tokenizers, without modifying
the tokenization algorithm.

2.2 Measuring Compression

It is generally desirable for a text to be encoded in as few tokens as possible, i.e. to be maximally
compressed, and therefore have a low token premium. In this paper, we measure compression using
corpus token count (CTC; [Schmidt et al., |2024)), which is the total number of tokens in a corpus.
We compute CTC over parallel texts, thereby holding information content constant. As a result, we
can compare CTCs across languages as an operationalization of compression, where lower CTC
corresponds to higher compression. CTCs can be converted to token premiums as in [Petrov et al.
(2023) by normalizing them by the CTC of a reference language (e.g. English).

Two other compression metrics are less well suited to the present work. First, fertility, another
common metric of compression, takes the average number of tokens per word (Rust et al.| 2021).
Lower fertility corresponds to better compression. This metric requires a functional definition of
wordhood, which does not exis Even if it did, different languages encode different amounts of
information per word. For example, Eastern Canadian Inuktitut has a single word which means “They
wanted to catch a walrus” (Gutierrez- Vasques et al.,2023| citing [Fortescue, |1992| [Dahl, [2017). We
thus opt not to use fertility, as it is unclear how to fairly calculate this across different languages.
Second, Schmidt et al.| (2025) use bytes-per-token as a metric for compression. However, because
different languages encode different amounts of information per byte (byte premiums; Arnett et al.,
2024), this measure is not suitable for comparing compression across languages.

2.3 The Relationship Between Compression and Performance

How compression relates to language model performance on downstream tasks remains uncertain.
Higher compression rates mean that sequences of a fixed length contain more information, which may
lead to improved model performance (Deletang et al.l 2024)), and several studies have demonstrated a
positive relationship between higher compression and task performance (Goldman et al.l [2024; |Gallé|
2019). However, through careful manipulation of various aspects of the tokenizer, Schmidt et al.
(2024)) recently found that there was no relationship between compression and model performance.
These experiments are limited to English, and it is thus unclear the extent to which they generalize
to other languages. We argue that the statistical properties of tokenizers are important in and of
themselves. Higher compression leads to lower training and inference costs due to shorter sequence
lengths for the same content. Therefore, compression dictates the computational and fiscal cost of
both inference and training over fixed dataset sizes.

'In English, this is often operationalized as whitespace-separated strings. However, there exist cases, e.g.
compound words like ‘ice cream’, which contain interword whitespaces, but otherwise behave like single words
(Zwicky, |1986). Some languages, e.g. Chinese, do not use whitespaces at all. There is not another definition of
wordhood that is widely accepted (Haspelmath, [2017).

3 Tokenizer Training

For the experiments below, we train a set of subword tokenizers to be comparable across languages,
matching training dataset size, vocabulary size, and training method. This allows us to fairly evaluate
differences in compression across languages. We use the text datasets from Chang et al.| (2024) for
all tokenizer training, restricting to the 97 languages with at least 300MB of text data and for which
the training data was not significantly contaminated with the FLORES dataset (see Appendix [C]
for details). We use the Hugging Face tokenizers (Hugging Face, 2020) package to train these
tokenizers. For each language, we train a tokenizer for two tokenizer types (BPE and Unigram;
Sennrich et al., 2016} [Kudol 2018)) on 300MB of text data, for seven vocabulary sizes ranging from
16384 to 114688. All vocabulary sizes we use are divisible by 128, because this has been shown to
lead to better model throughput (Anthony et al.| 2024} Groeneveld et al.l 2024). We also manipulate
whether we scale the tokenizer training dataset size by each language’s byte premium, the ratio of
bytes required to encode content-matched text in each language compared to English. We call this
byte-premium scaling (henceforth BP-scaling; |/Arnett et al., 2024). All 97 languages are listed in
Appendix [A]and additional details about tokenizer training can be found in Appendix [B]

One potential concern about our tokenizers is their relatively small training dataset size. Many
tokenizers are trained on gigabytes of text, e.g. [Schmidt et al.| (2024). Reddy et al.| (2025) recently
showed that up to training dataset sizes of 180GB, additional data may lead to better tokenization
quality as measured by morphological alignment and correlations with metrics of human language
processing. Our tokenizers are trained on substantially less data, in order to prioritize the inclusion
of lower-resource languages. 300MB was the largest dataset size available for the language in our
sample with the smallest amount of available data. Still, we find that our tokenizers have comparable
compression rates to those of OLMo , Pythia, and SmolLLM (Groeneveld et al., 2024} Biderman et al.|
2023; Allal et al., |2025; see Appendix . This suggests that our dataset size is not too small to draw
conclusions about the role of tokenizer type, vocabulary size, and other tokenizer training decisions
on compression.

Measuring Compression. We calculate token premiums by calculating CTC on parallel text for
the corresponding language for each tokenizer. We use the FLORES-200 dataset (Costa-Jussa et al.,
2022])), which is a high-quality parallel translation dataset and which includes all 97 languages in our
sample. The CTC for each language (for a given tokenizer type, BP-scaling, and vocabulary size) is
the un-normalized token premium; our results are equivalent to using the token premiums in [Petrov
et al.|(2023)), who normalize by the CTC of a reference language (English). In our results below, a
higher CTC indicates worse compression.

3.1 Effects of Byte Premium Scaling and Tokenizer Type

Byte Premium Scaling. First, we discuss the impact of BP-scaling the tokenizer training dataset
size. We fit a linear mixed effects model with the 1me4 package in R (Bates et al.}[2014), using CTC
as the dependent variable. As predictors, we include a fixed effect of BP-scaling (a binary variable
that indicates whether or not the training data is BP-scaled) and random effects for vocabulary size
and tokenizer type. We find no effect of BP-scaling the tokenizer training data (¢(3544)=-0.615,
p=0.539). We provide further motivation for this analysis and further results in Appendix [E] For the
remaining experiments, we use tokenizers trained with unscaled training dataset sizes.

Tokenizer Type. Next, we turn to the role of tokenizer type. Comparing our BPE and Unigram
tokenizers, we find that across vocabulary sizes, BPE and Unigram show a wide distribution of CTCs
and therefore a wide range of token premiums, with BPE exhibiting slightly lower CTCs (i.e. better
compression) overall. We provide further visualization in Appendix [F

We also compare with the SentencePiece (Kudo and Richardson, 2018]) implementation of Unigram
tokenizers. We use the tokenizers from the Goldfish models (Chang et al.||2024)), which were trained
on SMB of BP-scaled dateﬂ and with vocabulary size 50000}’| We evaluate all the Goldfish tokenizers
for which there exists a corresponding FLORES dataset, for a total of 183 tokenizers.

>Though we noted that we are using non-BP-scaled training data throughout, because we found no effect of
BP-scaling on compression, we do not expect this to impact the results.

3We note that our BPE and Unigram tokenizers have vocabulary sizes of 49152, while the SentencePiece
tokenizers have vocabulary sizes of exactly 50000.

Figure 3 (Ieft) shows the distribution of CTCs for the tokenizers of each type. All tokenizer types
show a wide spread of CTCs across languages, though the absolute CTCs vary. BPE tokenizers
demonstrate the most compact distribution and the lowest overall CTCs. This is consistent with
previous results in English contexts showing that BPE offers more compression than other tokenizers
(Gallg, [2019; |Schmidt et al., [2024), but to the best of our knowledge this has not been shown to be
true crosslinguistically. SentencePiece implementation of Unigram has the worst compression rates
of all tokenizer types tested.

3.2 Final Tokenizer Setup

The results in this section suggest that the wide range in token premiums across languages is
not unique to any tokenization algorithm, but BPE does exhibit slightly reduced cross-linguistic
differences in CTC as well as lower CTCs (better compression) overall. Therefore, for the remaining
analyses, we use only the BPE tokenizers with BP-unscaled training dataset sizes. We train tokenizers
with an even wider range of vocabulary sizes (from 8192 to 262144), which we use in the experiments
in Section 4

4 Explaining Token Premiums

In the previous section, we showed that tokenizers trained on the same amount of data, with the
same vocabulary size, and with the same training procedure, there is still show a wide range of
compression rates across languages. In this section, we test various potential factors which may drive
these crosslinguistic differences in token premiums. We fit linear regressions for each of the factors
and report the amount of variance explained by the top predictors (Table [I)).

Predictor R?

Data Similarity 0.239
Mean Token Length (vocab) 0.168
Proportion Whitespaces 0.157
Combined 0.297

Table 1: R? values for linear regressions predicting FLORES CTC from different predictors, for
tokenizers with a vocabulary size of 65536. Values for all predictors are provided in Appendix@

Data Similarity. The datasets we trained our tokenizers on come primarily from web text (Chang
et al., 2024), but the domain and quality may vary widely across languages, especially for lower-
resource languages (Kreutzer et al.,|2022). If the training data is low-quality or contaminated with
data from other languages, this may affect the ability of the tokenizer to learn a vocabulary that
leads to effective compression. Additionally, if the training data differs too much from the evaluation
dataset, e.g. as measured by word overlap, the tokenizer may also learn a sub-optimal vocabulary
(Dagan et al.l 2024). Here, we measure train-eval data similarity as the number of overlapping tokens
between the training and evaluation datasets, normalized by the vocabulary size. Data similarity is
the factor that explains the most variance in CTCs, suggesting that train-eval data similarity may be
important for token premiums. In Section[5.1] we train tokenizers on parallel data and test whether
this reduces token premiums.

Mean Token Length. Mean token length, which we measure in in characters, is directly related
to compression, as in order to represent a text with fewer tokens each token must be longer. We
calculate mean token length in two different ways. First, we calculate the mean length of each token
in the tokenizer’s vocabulary (this is the metric reported in Table[T). Second, we calculate the mean
token length when only including the tokens used to tokenize the FLORES dataset for each language.
The latter should be closely linked with FLORES CTC, as it measures token lengths in the evaluation
corpus itself.

We find that mean token length over the vocabulary is not a significant predictor of CTC, but mean
token length over FLORES has an R? of 0.168. This suggests that differences in CTC are not due to

FLORES CTC
FLORES CTC
FLORES CTC

Vocab Size Vocab Size Vocab Size

Luxembourgish English Khmer English —— Maltese English
Luxembourgish (parallel) English (parallel) Khmer (parallel) English (parallel) —~ Maltese (parallel) English (parallel)

Figure 2: Comparison of CTCs for tokenizers trained on non-parallel (solid lines) versus parallel
(dashed lines) data for three languages: Luxembourgish, Khmer, Maltese. Figures for the remaining
languages are in Appendix E}

shorter or longer tokens overall in the tokenizer. Instead, differences in CTC are related specifically
to the length of tokens that are actually used in the evaluation dataset; tokenizers with high CTCs
may have longer vocabulary items in their vocabularies, but they are not being used as frequently. To
mitigate CTC differences due to token length, we hypothesize that increasing the tokenizer vocabulary
size should increase mean token length and therefore lower CTC. In Section[5.2] we test not only the
effect of increasing vocabulary size, but also of identifying an “optimal” vocabulary size for each
language, on token premium effects.

Proportion of Whitespaces. Most BPE tokenizers use a pre-tokenization step, which splits text into
pre-tokens. During training, the tokenizer cannot learn merges that cross the pre-token boundaries.
One of the most common pre-tokenization steps splits texts at every whitespace. Languages differ
in how many whitespaces (equivalently, how many space-separated “words”) they use to encode
the same information (see examples in Appendix [G). This means that whitespace pre-tokenization
could affect different languages to different extents. Indeed, when we measure the proportion of
whitespaces in FLORES for each language, we find that it explains a substantial amount of variance
in CTCs (Table[I)). Motivated by this finding, in Section[5.3] we train “superword” tokenizers (Liu
et al.,[2025; [Schmidt et al.l2025) that allow merges across whitespaces.

Other Metrics. We also test various other metrics related to a language and its script (writing
system), including number of unique phonemes, entropies over characters and bigrams (character
pairs), and a language’s script itself when predicting CTCs. We provide more detailed discussion and
report full results for all metrics in Appendix [H] In the current section, we focused on data similarity,
mean token length, and proportion of whitespaces, because these metrics are predict significant
amounts of variance. Next, we propose interventions for each of these factors.

5 Mitigating Token Premiums

5.1 Data Quality and Data Similarity

If either data quality or train-eval data similarity is driving the token premiums, then we should
see that differences in CTC decrease when tokenizers are trained on parallel text. Parallel text is
content-matched and therefore has identical domain overlap with the evaluation dataset. To test this,
we selected seven languageﬂ which had the highest CTCs at at least one vocabulary size. We did this
in order to select the languages for which there were the greatest token premium effects, to provide
more opportunity for a reduction of the effects. We take the parallel data for each target language
and English in NLLB (Costa-Jussa et al., |2022)), and we create 300MB subsets for each language.
Because NLLB is not multi-parallel, we have a different English dataset for each target language. We
train new BPE tokenizers for each new parallel dataset using the same vocabulary sizes as described
in Section[3.2] We calculate CTC in the same way as previous sections, and we compare the CTCs
from the original monolingual tokenizers with those from the tokenizers trained on parallel data. We
show the results for three languages in Figure

“These languages are Cebuano, Khmer, Luxembourgish, Mandarin Chinese, Maltese, Japanese, and Burmese.

[Optimal Vocab (BPE)
[1 Same Vocab (BPE)

90000 -

80000 -

70000 q I

Density

FLORES CTC

60000 -
| |

50000 -

BPE‘(HF) Unigra}ww (HF) Unigra‘m (SP) 40000 50000 60000 70000 80000 90000
Tokenizer Type FLORES CTC

40000 -

Figure 3: Left: the distribution of CTCs for BPE and Unigram tokenizers using Hugging Face
(HF) or SentencePiece (SP) implementations, all with vocabulary sizes of approximately 50000.
Right: the distribution of CTCs for same-vocabulary and optimal-vocabulary BPE tokenizers. The
optimal-vocabulary tokenizers have target CTCs of 56000. The same-vocabulary tokenizers have a
vocabulary size of 32768.

Comparing the original and parallel-data tokenizers for the seveb languages in our sample, we find
that the parallel-data tokenizers have a statistically significant reduction in token premium effects
(paired t-test; £(152)=-2.356, p=0.0197). The difference between the CTCs is quite small, however:
on average about 1% of the total CTC. We also find that the majority of this effect is driven by the
tokenizers with the smallest vocabulary size (16384 for these tests). Statistical tests per vocabulary
size are reported in Appendix [[.2] Overall, these results indicate that training on parallel data has a
small effect on CTC, but it does not meaningfully reduce token premium effectsET

5.2 Vocabulary Size

Next, we evaluate whether different vocabulary sizes have greater or lesser token premium effects.
While increasing vocabulary size reduces CTC overall, even the largest vocabulary size has large
token premium effects (Figure [I). We test the difference in variance between CTC distributions
for the smallest and largest vocabulary sizes with a Fisher-Snedecor test (F-test), and we find no
significant difference (Fyg 96=1.125, p=0.565).

Then, we test whether we can find an “optimal” vocabulary size per language such that there is a
reduction in variation of CTCs. To do this, we fit a power law curve for the relationship between
CTC and vocabulary size for each language (e.g. the curves in Figure[2). Using these curves, for
each language, we predict the vocabulary size at which the tokenizer will reach a given CTC. We
then train new tokenizers at the “optimal” vocabulary size for a given target CTC. We provide more
detail on the training of these tokenizers and validation of our estimation method in Appendix [J}

Tokenizers with optimal vocabulary sizes per language have reduced token premium effects compared
to tokenizers with the same vocabulary size across languages (Figure 3} right). We find the optimal-
vocabulary tokenizers to have significantly less variance in CTCs (F-test; Fgo 337=0.150, p <0.001).
For BPE tokenizers, therefore, different languages need to be allocated different vocabulary sizes to
achieve more comparable compression.

5.3 Whitespace Pre-Tokenization

Finally, we intervene on the effect of whitespaces. To do this, we train superword tokenizers, which
allow merges over whitespaces. Therefore, tokens may be composed of multiple whitespace-separated
words and the effect of whitespace pretokenization on compression should be reduced. We use the
SuperBPE (Liu et al., 2025) implementation. Our tokenizers are the first non-English superword
tokenizers to the best of our knowledge. We train only tokenizers for vocabulary sizes over 64000, as

>We test whether the parallel-data tokenizers have higher data similarity between training and evaluation
data (as measured in Section[d). They do (paired ¢-test; £(270.55)=1.564, p=0.119). This may explain why this
intervention did not lead to greatly reduced token premium effects.

(=13 R
[SuperBPE Optimal Vocab (SuperBPE)

70000 T T T T [Same Vocab (SuperBPE)
65000
60000
55000 H

50000 H

45000

FLORES CTC
Density

40000

35000 + 40000 60000 80000 100000 120000
FLORES CTC

65536 81920 98304 114688 131072 262144
Vocab Size

Figure 4: Left: the distribution of CTCs for BPE and SuperBPE tokenizers for each vocabulary size.
Right: the distribution of CTCs for same-vocabulary and predicted CTCs for the optimal-vocabulary
SuperBPE tokenizers. The optimal-vocabulary tokenizers have target CTCs of 43000. The same-
vocabulary tokenizers have a vocabulary size of 49152.

we predict the superword tokenizers need larger vocabulary sizes to learn longer superword tokens.
Thus, we expect to see the biggest differences between BPE and SuperBPE tokenizers at the higher
vocabulary sizes. We include additional details about training SuperBPE tokenizers in Appendix [K]

We find that SuperBPE tokenizers demonstrate lower average CTCs and less variance in CTCs at
every vocabulary size (Table[I0]in Appendix [[). We plot the distributions in Figure[d We also run a
linear regression to test the relationship between proportion of whitespaces and CTC (as in Section
M), but find that there is still a significant relationship at all vocabulary sizes except 65536 (full results

in Table[T1]in Appendix [C).

We then test whether setting optimal vocabulary sizes for each language would lead to reduced
token premium effects in SuperBPE tokenizers. We use the same method to determine the optimal
vocabulary size for each language as we did for BPE (see Appendix [M). We did not train SuperBPE
tokenizers for each optimal vocabulary, however we demonstrated that our CTC estimation method
was accurate for BPE (Appendix [J.3). We estimate there to be significantly less variance in CTC
for the optimal-vocabulary set than the same-vocabulary set for SuperBPE (F-test; Frsg 76=3.8727,
p<0.001). This result suggests that training optimal vocabulary tokenizers for SuperBPE would lead
to further reduced token premium effects (Figure [} right).

5.4 Remaining Variance

There are still significant effects of length ratio and bytes-per-character after the interventions on
whitespace pre-tokenizers and optimal vocabulary sizes (results in Appendix [N). These are features
which are determined by inherent properties of the languages, the writing system, the way the
writing system is encoded in UTF-8, and their interactions. Future work can seek ways to address
remaining inequities, especially those introduced by UTF-8. Recent work has introduced a novel
encoding scheme to replace UTF-8 in the context of tokenization, in which all Unicode characters are
represented with the same number of byte-equivalent units (Land and Arnett, [2025). This encoding
scheme does not address any differences introduced by the length ratios, however.

6 Discussion

The Impact of Pre-Tokenization. Whitespace pre-tokenization is responsible for a large portion
of the crosslinguistic differences in compression. This is consistent with recent work that showed
that pre-tokenization had a larger impact on model performance than any other tokenizer design
choice tested, including the training corpus and vocabulary size (Wegmann et al., [2025). Relatedly,
Velayuthan and Sarveswaran| (2025)) show that many common pre-tokenizers segment text below the
grapheme level for multiple South Asian languages (Hindi, Tamil, Sinhala). In this case, this is due to
regular expression pre-tokenizers, which often pre-tokenize on punctuation and other symbols. This
may include common diacritics and sub-graphemic units in non-Latin scripts, leading to catastrophic

compression for some languages. The work in this paper contributes to a growing body of work that
shows the unequal impact of pre-tokenizer design decisions crosslinguistically.

Language-Specific Considerations for Language Model Design. We show that there is no
vocabulary size at which monolingual tokenizers will achieve similar compression across a wide
variety of languages. However, we can overcome this through setting language-specific vocabulary
sizes. Vocabulary size, therefore, should perhaps be a design choice that varies according to the
target language or languages. Relatedly, |Chang et al, (2024)) argue that it may be necessary to
scale language model training data in order to account for byte premiums and achieve comparable
performance across languages (Chang et al.,2024). The same settings that work well for English will
not necessarily work equally well for all languages.

Too Much Compression? One concern is that some of the tokenizers we train—especially the
SuperBPE tokenizers—provide too much compression. While there has been work discussing the
relative benefits (Gallé, [2019) (or lack thereof; Schmidt et al., [2024)) of increased compression, there
has been less work on the negative impacts of increased compression. Perhaps too much compression
could be giving the model effectively less time to think, by dedicating fewer FLOPS to predicting
each next token. |Goyal et al.|(2024) found that adding “pause” tokens allowed models to perform
additional computations before providing an answer and found that this increased performance.

Applications to Multilingual Tokenization. These findings inform future development of more eq-
uitable multilingual tokenizers. As it is increasingly common to train language models on multilingual
data, it is more important than ever to reconsider decisions that might be disadvantaging performance
or increasing cost for some languages more than others. Simply allocating more vocabulary to
some languages may drastically improve compression. Vocabulary allocation, or how much of the
vocabulary of a multilingual tokenizer is dedicated to a particular language, is correlated with model
performance (Limisiewicz et al.,[2023). Our results suggest that some languages might benefit from
an increase in vocabulary allocation more than others.

Petrov et al.|(2023)) proposed training monolingual tokenizers with similar compression and combining
them to achieve more balanced token premiums. Our work shows that if you did this with monolingual
tokenizers with the same vocabulary size, this would likely not mitigate token premium effects.
However, if this method were employed with optimal-vocabulary-size tokenizers for each language,
it might lead to reduced token premium effects.

The Link Between Compression and Performance. We have thoroughly tested the relationship
between different language features and compression, but we have not directly linked this to model
performance. Token premiums affect the cost of training and inference, as they determine the number
of computations needed for a text of a fixed length. Therefore, we believe the results of this paper
are informative, even if they do not impact model performance. While for English, small changes
in compression may not be correlated with better performance (Schmidt et al., 2024)), monolingual
English tokenizers have among the lowest CTCs (Figure [T3). Thus, differences in compression
may be smaller relative to other languages. For languages with higher CTCs, improvements in
compression may be more drastic and may lead to significant performance gains.

Additionally, there is likely to be a complex relationship between compression and other tokenizer
properties, which may impact performance. We showed that Unigram tokenizers showed the worst
compression across languages, but [Bostrom and Durrett| (2020) showed that Unigram tokenizers
segment text into more linguistically-aligned units than BPE. It remains unclear, however, whether
having linguistically-aligned tokens is clearly linked to better language model performance (Arnett
and Bergenl 2025).

7 Conclusion

This work investigates how different language-specific features interact with common tokenization
algorithms. First, we show that training monolingual tokenizers in the same way leads to different
compression rates for different languages, i.e. token premium effects. We identify three main factors
which might lead to this effect. First, we ask whether these effects are due to differences in the training
data. After training tokenizers on parallel data, we find that data similarity does not meaningfully

explain crosslingual differences in CTC. Second, we test whether manipulating vocabulary size
decreases differences in compression. Increasing vocabulary size does not decrease token premium
effects; however, we show that training a tokenizer with an “optimal” vocabulary size for each
language drastically reduces differences in CTC. Finally, we analyze the effect of pre-tokenization.
Different languages use varying amounts of whitespaces, meaning that whitespace pre-tokenization
affects languages differently. We train superword tokenizers, which allow merges over whitespace
boundaries. This not only reduces token premium effects, but overall improves compression. Together,
these results help to inform the development of efficient and equitable tokenizers for more languages.

8 Limitations

While we aimed to be comprehensive in our experiments and to carefully manipulate all variables,
some of our experiments were limited in breadth. For the tokenizers we trained on parallel data, we
could not train on as many languages due to the availability of parallel data. Additionally, for each
language, we had to train a new baseline tokenizer, doubling the compute and data requirements for
that experiment. For the parallel-data tokenizers, we were also not able to compare across languages,
but only between a target language and an English baseline. This was due to the availability of
parallel data, which is even more limited than multilingual pre-training data. This could potentially
also be a limitation of the analysis. It is unclear whether comparisons with different languages would
lead to different results.

While we showed that we achieved similar compression to pre-trained tokenizers with our small
dataset size, it may be the case that the dataset sizes we used were too small for the SuperBPE
tokenizers. It could be the case that SuperBPE tokenizers need more data than BPE tokenizers, in
order to prevent overfitting to the training data, especially for longer and lower-frequency tokens.

We solely used FLORES as the evaluation dataset for all of our experiments. FLORES is a dataset
created by translating from English into each of the languages represented in the dataset. Therefore
translation artifacts or differences in translation quality may affect our results.

Relatedly, we measured data similarity as the number of overlapping tokens, which could potentially
be measuring token diversity in addition to or instead of data similarity. This could explain why we
did not see large changes in data similarity between the non-parallel-data and parallel-data tokenizers.

Finally, we did not train any language models with our tokenizers, therefore we cannot make any
claims about the connection between our findings and changes in language model performance.

Acknowledgments

We would like to thank the UC San Diego Social Sciences Computing Facility Team for the use of the
Social Sciences Research and Development Environment (SSRDE) cluster. Tokenizers were trained
and evaluated using hardware provided by the NVIDIA Corporation as part of an NVIDIA Academic
Hardware Grant. We thank Alisa Liu and Jonathan Hayase for their assistance with the crosslingual
implementation of SuperBPE.

References

Ahia, O., Kumar, S., Gonen, H., Hofmann, V., Limisiewicz, T., Tsvetkov, Y., and Smith, N. A. (2024).
MAGNET: Improving the multilingual fairness of language models with adaptive gradient-based
tokenization. In The Thirty-eighth Annual Conference on Neural Information Processing Systems.

Ahia, O., Kumar, S., Gonen, H., Kasai, J., Mortensen, D., Smith, N., and Tsvetkov, Y. (2023). Do All
Languages Cost the Same? Tokenization in the Era of Commercial Language Models. In Bouamor,
H., Pino, J., and Bali, K., editors, Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9904-9923, Singapore. Association for Computational
Linguistics.

Allal, L. B., Lozhkov, A., Bakouch, E., Blazquez, G. M., Penedo, G., Tunstall, L., Marafioti, A.,
Kydlic¢ek, H., Lajarin, A. P, Srivastav, V., et al. (2025). SmolLM2: When Smol Goes Big—Data-
Centric Training of a Small Language Model. arXiv preprint arXiv:2502.02737.

10

Anthony, Q., Hatef, J., Narayanan, D., Biderman, S., Bekman, S., Yin, J., Shafi, A., Subramoni,
H., and Panda, D. (2024). The case for co-designing model architectures with hardware. In
Proceedings of the 53rd International Conference on Parallel Processing, pages 84-96.

Arnett, C. and Bergen, B. (2025). Why do language models perform worse for morphologically
complex languages? In Rambow, O., Wanner, L., Apidianaki, M., Al-Khalifa, H., Eugenio, B. D.,
and Schockaert, S., editors, Proceedings of the 31st International Conference on Computational
Linguistics, pages 6607-6623, Abu Dhabi, UAE. Association for Computational Linguistics.

Arnett, C., Chang, T. A., and Bergen, B. (2024). A Bit of a Problem: Measurement Disparities in
Dataset Sizes across Languages. In Melero, M., Sakti, S., and Soria, C., editors, Proceedings of
the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-
COLING 2024, pages 1-9, Torino, Italia. ELRA and ICCL.

Balhar, J. (2023). Improving subword tokenization methods for multilingual models. Master’s thesis,
Univerzita Karlova, Matematicko-fyzikalni fakulta, Prague, Czech Republic.

Bates, D., Michler, M., Bolker, B. M., and Walker, S. C. (2014). Ime4: Linear mixed-effects models
using eigen and s4. R package.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley, H., O’Brien, K., Hallahan, E., Khan, M. A.,
Purohit, S., Prashanth, U. S., Raff, E., et al. (2023). Pythia: A suite for analyzing large language
models across training and scaling. In International Conference on Machine Learning, pages
2397-2430. PMLR.

Bostrom, K. and Durrett, G. (2020). Byte Pair Encoding is Suboptimal for Language Model
Pretraining. In Cohn, T., He, Y., and Liu, Y., editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4617-4624, Online. Association for Computational Linguistics.

Chang, T. A., Arnett, C., Tu, Z., and Bergen, B. K. (2024). Goldfish: Monolingual language models
for 350 languages. arXiv preprint arXiv:2408.10441.

Choe, D., Al-Rfou, R., Guo, M., Lee, H., and Constant, N. (2019). Bridging the gap for tokenizer-free
language models. arXiv preprint arXiv:1908.10322.

Clark, J. H., Garrette, D., Turc, 1., and Wieting, J. (2022). Canine: Pre-training an efficient
tokenization-free encoder for language representation. Transactions of the Association for Compu-
tational Linguistics, 10:73-91.

Costa-Jussa, M. R., Cross, J., Celebi, O., Elbayad, M., Heafield, K., Heffernan, K., Kalbassi, E.,
Lam, J., Licht, D., Maillard, J., et al. (2022). No Language Left Behind: Scaling Human-Centered
Machine Translation. arXiv preprint arXiv:2207.04672.

Dagan, G., Synnaeve, G., and Roziere, B. (2024). Getting the most out of your tokenizer for
pre-training and domain adaptation. In Forty-first International Conference on Machine Learning.

Dahl, O. (2017). Polysynthesis and complexity. In Fortescue, M., Mithun, M., and Evans, N., editors,
The Oxford Handbook of Polysynthesis, Oxford Handbooks. Oxford University Press. Online
edition published 6 Nov. 2017, accessed 9 May 2025.

Daniels, P. T. (1990). Fundamentals of grammatology. Journal of the American Oriental Society,
pages 727-731.

Deletang, G., Ruoss, A., Duquenne, P.-A., Catt, E., Genewein, T., Mattern, C., Grau-Moya, J.,
Wenliang, L. K., Aitchison, M., Orseau, L., Hutter, M., and Veness, J. (2024). Language modeling
is compression. In The Twelfth International Conference on Learning Representations.

Ding, G., Peng, D., and Taft, M. (2004). The nature of the mental representation of radicals
in Chinese: A priming study. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 30(2):530.

Fenk-Oczlon, G. and Pilz, J. (2021). Linguistic complexity: relationships between phoneme inventory
size, syllable complexity, word and clause length, and population size. Frontiers in Communication,
6:626032.

11

Fortescue, M. (1992). The development of morphophonemic complexity in Eskimo languages. Acta
Linguistica Hafniensia, 25(1):5-27.

Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2):23-38.

Gallé, M. (2019). Investigating the effectiveness of BPE: The power of shorter sequences. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
1375-1381.

Goldman, O., Caciularu, A., Eyal, M., Cao, K., Szpektor, 1., and Tsarfaty, R. (2024). Unpacking
tokenization: Evaluating text compression and its correlation with model performance. In Ku,
L.-W., Martins, A., and Srikumar, V., editors, Findings of the Association for Computational
Linguistics: ACL 2024, pages 2274-2286, Bangkok, Thailand. Association for Computational
Linguistics.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar, S., and Nagarajan, V. (2024). Think before you
speak: Training language models with pause tokens. In The Tielfth International Conference on
Learning Representations.

Groeneveld, D., Beltagy, 1., Walsh, E., Bhagia, A., Kinney, R., Tafjord, O., Jha, A., Ivison, H.,
Magnusson, 1., Wang, Y., Arora, S., Atkinson, D., Authur, R., Chandu, K., Cohan, A., Dumas,
J., Elazar, Y., Gu, Y., Hessel, J., Khot, T., Merrill, W., Morrison, J., Muennighoff, N., Naik, A.,
Nam, C., Peters, M., Pyatkin, V., Ravichander, A., Schwenk, D., Shah, S., Smith, W., Strubell, E.,
Subramani, N., Wortsman, M., Dasigi, P., Lambert, N., Richardson, K., Zettlemoyer, L., Dodge,
J., Lo, K., Soldaini, L., Smith, N., and Hajishirzi, H. (2024). OLMo: Accelerating the science of
language models. In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
15789-15809, Bangkok, Thailand. Association for Computational Linguistics.

Gutierrez-Vasques, X., Bentz, C., and Samardzi¢, T. (2023). Languages through the looking glass of
BPE compression. Computational Linguistics, 49(4):943-1001.

Haspelmath, M. (2017). The indeterminacy of word segmentation and the nature of morphology and
syntax. Folia linguistica, 51(s1000):31-80.

Hugging Face (2020). tokenizers package. v0.21.1.
Hutong School (2012). How many chinese characters are there? Accessed: 2025-04-26.

Kreutzer, J., Caswell, 1., Wang, L., Wahab, A., van Esch, D., Ulzii-Orshikh, N., Tapo, A., Subramani,
N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S., Samb, S., Sagot, B., Rivera, C., Rios,
A., Papadimitriou, I., Osei, S., Suarez, P. O., Orife, 1., Ogueji, K., Rubungo, A. N., Nguyen,
T. Q., Miiller, M., Miiller, A., Muhammad, S. H., Muhammad, N., Mnyakeni, A., Mirzakhalov, J.,
Matangira, T., Leong, C., Lawson, N., Kudugunta, S., Jernite, Y., Jenny, M., Firat, O., Dossou, B.
F. P, Dlamini, S., de Silva, N., Cabuk Balli, S., Biderman, S., Battisti, A., Baruwa, A., Bapna, A.,
Baljekar, P, Azime, I. A., Awokoya, A., Ataman, D., Ahia, O., Ahia, O., Agrawal, S., and Adeyemi,
M. (2022). Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets. Transactions of
the Association for Computational Linguistics, 10:50-72.

Kudo, T. (2018). Subword regularization: Improving neural network translation models with multiple
subword candidates. In Gurevych, I. and Miyao, Y., editors, Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6675,
Melbourne, Australia. Association for Computational Linguistics.

Kudo, T. and Richardson, J. (2018). SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages 6671,
Brussels, Belgium. Association for Computational Linguistics.

Land, S. and Arnett, C. (2025). BPE stays on SCRIPT: Structured encoding for robust multilingual
pretokenization. In Tokenization Workshop (TokShop) at ICML.

12

Liang, D., Gonen, H., Mao, Y., Hou, R., Goyal, N., Ghazvininejad, M., Zettlemoyer, L., and Khabsa,
M. (2023). XLM-V: Overcoming the vocabulary bottleneck in multilingual masked language
models. In Bouamor, H., Pino, J., and Bali, K., editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 13142—-13152, Singapore. Association
for Computational Linguistics.

Limisiewicz, T., Balhar, J., and Marecek, D. (2023). Tokenization impacts multilingual language
modeling: Assessing vocabulary allocation and overlap across languages. In Rogers, A., Boyd-
Graber, J., and Okazaki, N., editors, Findings of the Association for Computational Linguistics:
ACL 2023, pages 5661-5681, Toronto, Canada. Association for Computational Linguistics.

Limisiewicz, T., Blevins, T., Gonen, H., Ahia, O., and Zettlemoyer, L. (2024). MYTE: Morphology-
driven byte encoding for better and fairer multilingual language modeling. In Ku, L.-W., Martins,
A., and Srikumar, V., editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 15059-15076, Bangkok, Thailand.
Association for Computational Linguistics.

Liu, A., Hayase, J., Hofmann, V., Oh, S., Smith, N. A., and Choi, Y. (2025). SuperBPE: Space travel
for language models. In Second Conference on Language Modeling.

Moran, S., McCloy, D., and Wright, R. (2014). PHOIBLE online.
Muppalaneni, N. B., Chilukuri, P, and Kumar Raja, D. R. (2019). Telugu handwritten vowels.

Nettle, D. (1995). Segmental inventory size, word length, and communicative efficiency. Linguistics,
33(2):359-367.

Petrov, A., La Malfa, E., Torr, P., and Bibi, A. (2023). Language model tokenizers introduce unfairness
between languages. Advances in neural information processing systems, 36:36963-36990.

Reddy, V., Schmidt, C. W., Pinter, Y., and Tanner, C. (2025). How Much is Enough? The Diminishing
Returns of Tokenization Training Data. arXiv preprint arXiv:2502.20273.

Rust, P., Pfeiffer, J., Vuli¢, 1., Ruder, S., and Gurevych, L. (2021). How good is your tokenizer? on
the monolingual performance of multilingual language models. In Zong, C., Xia, F., Li, W., and
Navigli, R., editors, Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 3118-3135, Online. Association for Computational Linguistics.

Schmidt, C. W., Reddy, V., Tanner, C., and Pinter, Y. (2025). Boundless byte pair encoding: Breaking
the pre-tokenization barrier. In Second Conference on Language Modeling.

Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A., Uzan, O., Pinter, Y., and Tanner, C. (2024).
Tokenization Is More Than Compression. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N., editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages
678-702, Miami, Florida, USA. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with
subword units. In Erk, K. and Smith, N. A, editors, Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin,
Germany. Association for Computational Linguistics.

Sun, C. C., Hendrix, P, Ma, J., and Baayen, R. H. (2018). Chinese lexical database (CLD) a large-scale
lexical database for simplified mandarin chinese. Behavior Research Methods, 50:2606-2629.

The CLI Team (2025). How many characters are there in chinese? Accessed: 2025-04-26.

Velayuthan, M. and Sarveswaran, K. (2025). Egalitarian language representation in language models:
It all begins with tokenizers. In Rambow, O., Wanner, L., Apidianaki, M., Al-Khalifa, H.,
Eugenio, B. D., and Schockaert, S., editors, Proceedings of the 31st International Conference on
Computational Linguistics, pages 5987-5996, Abu Dhabi, UAE. Association for Computational
Linguistics.

13

Wegmann, A., Nguyen, D., and Jurgens, D. (2025). Tokenization is sensitive to language variation.
In Che, W., Nabende, J., Shutova, E., and Pilehvar, M. T., editors, Findings of the Association

for Computational Linguistics: ACL 2025, pages 10958—10983, Vienna, Austria. Association for
Computational Linguistics.

Williams, C. and Bever, T. (2010). Chinese character decoding: a semantic bias? Reading and
Writing, 23:589-605.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A., and Raffel, C.
(2022). Byt5: Towards a token-free future with pre-trained byte-to-byte models. Transactions of
the Association for Computational Linguistics, 10:291-306.

Zwicky, A. M. (1986). Forestress and afterstress. In OSU Working Papers in Linguistics, volume 32,
pages 46—62. The Ohio State University.

A Language Sample

Table [2] lists the 97 languages in our sample, along with their language family and ISO codes
(comprised of the ISO 639-3, which denotes language, and ISO 15924 codes, which denotes script).

14

Table 2: Languages with their Codes and Families

Language Code

Language Name

Language Family

afr_latn
als_latn
amh_ethi
arb_arab
asm_beng
bak_cyrl
bel_cyrl
ben_beng
bos_latn
bul_cyrl
cat_latn
ceb_latn
ces_latn
ckb_arab
cym_latn
dan_latn
deu_latn
ell_grek
eng_latn
epo_latn
est_latn
eus_latn
fao_latn
fin_latn
fra_latn
gla_latn
gle_latn
glg_latn
guj_gujr
hat_latn
hau_latn
heb_hebr
hin_deva
hrv_latn
hun_latn
hye_armn
ibo_latn
ind_latn
isl_latn
ita_latn
jav_latn
jpn_jpan
kan_knda
kat_geor
kaz_cyrl
khm_khmr
kir_cyrl
kin_latn
kor_hang

Afrikaans
Tosk Albanian
Ambharic
Modern Standard Arabic
Assamese
Bashkir
Belarusian
Bengali
Bosnian
Bulgarian
Catalan
Cebuano
Czech

Central Kurdish
Welsh

Danish
German
Greek

English
Esperanto
Estonian
Basque
Faroese
Finnish
French
Scottish Gaelic
Irish

Galician
Gujarati
Haitian Creole
Hausa
Hebrew

Hindi
Croatian
Hungarian
Armenian
Igbo
Indonesian
Icelandic
Italian
Javanese
Japanese
Kannada
Georgian
Kazakh
Khmer
Kyrgyz
Kinyarwanda
Korean

Indo-European
Indo-European
Afro-Asiatic
Afro-Asiatic
Indo-European
Turkic
Indo-European
Indo-European
Indo-European
Indo-European
Indo-European
Austronesian
Indo-European
Indo-European
Indo-European
Indo-European
Indo-European
Indo-European
Indo-European
Constructed
Uralic
Language Isolate
Indo-European
Uralic
Indo-European
Indo-European
Indo-European
Indo-European
Indo-European
Creole
Afro-Asiatic
Afro-Asiatic
Indo-European
Indo-European
Uralic
Indo-European
Niger-Congo
Austronesian
Indo-European
Indo-European
Austronesian
Japonic
Dravidian
Kartvelian
Turkic
Austroasiatic
Turkic
Niger-Congo
Koreanic

15

Table 2: Languages with their Codes and Families (continued)

Language Code Language Name Language Family
lao_laoo Lao Tai-Kadai
lit_latn Lithuanian Indo-European
Itz_latn Luxembourgish Indo-European
mal_mlym Malayalam Dravidian
mar_deva Marathi Indo-European
mkd_cyrl Macedonian Indo-European
mlt_latn Maltese Afro-Asiatic
mri_latn Maori Austronesian
mya_mymr Burmese Sino-Tibetan
nld_latn Dutch Indo-European
nno_latn Norwegian Nynorsk Indo-European
nob_latn Norwegian Bokmal Indo-European
nya_latn Nyanja(Chewa, Chichewa) Niger-Congo
oci_latn Occitan Indo-European
pan_guru Punjabi Indo-European
pes_arab Persian Indo-European
plt_latn Plateau Malagasy Austronesian
pol_latn Polish Indo-European
por_latn Portuguese Indo-European
ron_latn Romanian Indo-European
rus_cyrl Russian Indo-European
sin_sinh Sinhala Indo-European
slk_latn Slovak Indo-European
slv_latn Slovenian Indo-European
sna_latn Shona Niger-Congo
snd_arab Sindhi Indo-European
som_latn Somali Afro-Asiatic
sot_latn Sotho Niger-Congo
spa_latn Spanish Indo-European
srp_cyrl Serbian Indo-European
sun_latn Sundanese Austronesian
swe_latn Swedish Indo-European
tam_taml Tamil Dravidian
tat_cyrl Tatar Turkic

tel _telu Telugu Dravidian
tgk_cyrl Tajik Indo-European
tgl_latn Tagalog (Filipino) Austronesian
tha_thai Thai Tai-Kadai
tur_latn Turkish Turkic
uig_arab Uyghur Turkic
ukr_cyrl Ukrainian Indo-European
urd_arab Urdu Indo-European
vie_latn Vietnamese Austroasiatic
xho_latn Xhosa Niger-Congo
yor_latn Yoruba Niger-Congo
zho_hans Chinese (Simplified) Sino-Tibetan
zsm_latn Malay Austronesian
zul_latn Zulu Niger-Congo

16

B Tokenizer Training Details

Tokenizer Data and Language Sample. We create training datasets of 300MB, sourced from
Chang et al.| (2024). Links to individual source corpora are included at https://github.com/
tylerachang/curse-of-multilinguality. We do not redistributed the compiled datasets, as
the original source dataset licenses do not permit us to do so. However, all datasets are publicly
available.

For each language, we also create a dataset where the dataset size is scaled according to its byte
premium (Arnett et al.} 2024). Byte-premium scaling (BP-scaling) the data is intended to achieve
more comparable information content in datasets across languages. There are 98 languages with at
least 300MB of BP-scaled data from |Chang et al.| (2024). However, we exclude Samoan, because
we found the training data to be severely contaminated with portions of FLORES (Appendix [C). We
list all 97 languages included in our experiments in Appendix[A] For languages with byte premiums
over 1 and therefore a BP-scaled dataset of over 300MB, the unscaled dataset is a subset of the
scaled dataset. For languages with a byte premium less than one, this is not the case, as the unscaled
dataset is larger than the scaled dataset. While the datasets are not parallel in content, the datasets are
generally comprised of text from similar genres and domains.

All tokenizers were trained using the CPUs from one server equipped with an NVIDIA RTX A6000.

Tokenizers. For each language and dataset size, we train tokenizers which differ in vocabulary size
and tokenizer type. We use seven vocabulary sizes: 16384, 32768, 49152, 65536, 81920, 98304,
114688. These vocabulary sizes were chosen to cover the range of frequently used vocabulary
sizes (between 32000 and 64000) as well as additional vocabulary sizes above and below this
range. The vocabulary sizes constitute an arithmetic progression, where each vocabulary size is
16384 higher than the previous one, with the exception of the largest size, which is double the
next smallest size. The smallest vocabulary size we use is 16384, because the smaller vocabulary
size we tried, 8192, was too small forthe Unigram tokenizers to converge in many languages. All
vocabulary sizes are divisible by 128, following |/Anthony et al.|(2024)) and |Groeneveld et al.| (2024),
which makes our tokenizers more suitable for training language models in the future. For each
vocabulary size, we train both BPE (Gagel |1994; [Sennrich et al.| |2016)) and Unigram (Kudo} 2018)
tokenizers. For each language (n=98), we train a tokenizer for each possible combination of
vocabulary size (7), tokenizer type (2), and BP-scaling (2) for a total of 2,744 tokenizers. We release
all tokenizers and training datasets Hugging Faceﬂ Code for training and evaluation is released:
https://github.com/catherinearnett/explaining_tokenizer_inequities,

C Contamination Analysis

Our training data are subsets of the training data from [Chang et al.|(2024), who claim to exclude the
FLORES dataset from their training datasets, but there is still the possibility that FLORES could be
contaminated inadvertently in the web data sources. To check for any potential contamination of
FLORES in the datasets, we tokenize each FLORES sequence and the entire training dataset from
Chang et al|(2024) for each language that is in both their dataset and FLORES (208 languages,
which is a superset of the languages used in the analyses in this paper). We compute the total number
of times that the first 10 tokens of any FLORES example appears in the training dataset for the
language. For 72% of languages, no FLORES examples appear in the training dataset at all. For
98% of languages, less than 10 FLORES examples appear in the training dataset (out of over 2000
FLORES examples total). The only language with notable FLORES contamination is smo_latn
(Samoan; 7155 occurrences of FLORES examples in the training dataset). As it is an extreme outlier
in the contamination analyses, we do not include it in the analyses in this paper.

D Comparing CTC to Pre-trained Tokenizers

In order to determine that our training data size is not too small, we compare the FLORES CTC of
existing English-centric tokenizers, OLMo (Groeneveld et al.| 2024), Pythia (Biderman et al.,|2023),

SWe then exclude Samoan per Appendix@ for a total of 97 languages included in our analyses.
"https://huggingface.co/datasets/catherinearnett/montok

17

https://github.com/tylerachang/curse-of-multilinguality
https://github.com/tylerachang/curse-of-multilinguality
https://github.com/catherinearnett/explaining_tokenizer_inequities
https://huggingface.co/datasets/catherinearnett/montok

and SmolLM (Allal et al.;|2025)), all of which have vocabulary sizes of approximately 5000@ These
are represented by dashed horizontal lines (Figure[5). We compare these to the BPE and Unigram
tokenizers we trained on English data (solid lines; Fig. E]) ‘We note that our BPE tokenizers in
particular have lower token premiums than all three tokenizers at most vocabulary sizes.

BPE
Unigram
OLMo
Pythia
SmolLM

©

(@)

2]

w \ ~

o4

o - —

)

[y

20K 40K 60K 80K 100K

Vocabulary Size

Figure 5: The solid curves, fit using a power law, represent the measured CTCs for each vocabulary
size, plotted as points along the curve. The horizontal dashed lines indicate the CTCs of the OLMo,
Pythia, and SmolLM tokenizers.

E BPE vs. Unigram Tokenizers

We ask whether there is a direct relationship between byte and token premiums. We hypothesize
that if there is, it would only be for Byte-pair Encoding (BPE) tokenizers. Byte premiums capture
the observation that some languages need more bytes to convey the same amount of information
compared to other languages. BPE tokenizers work by first splitting a sequence into individual
bytes. The tokenizer learns to merge pairs of bytes iteratively. For a given token, the more bytes
it is composed of, the more merges the tokenizer has to execute in order to create that token. For
languages with higher byte premiums, for a sequence with a fixed amount of information, a BPE
tokenizer will have to execute more merges in order to create tokens with the same amount of content.
Therefore, for languages with higher byte premiums, BPE tokenizers will be less likely to learn the
correct number of merges, and thus will exhibit stronger token premium effects across monolingual
tokenizers trained on the same amount of data for each language.

Unigram, by contrast, during training creates the vocabulary by first adding each unique whitespace-
separated word to the vocabulary. It then iteratively removes items until the vocabulary is the
desired size. The final vocabulary maximizes the unigram token probability over the training corpus.
Therefore, we hypothesize that byte premiums should not directly impact Unigram tokenization.

In Section we tested whether byte premium scaling the training data affects CTC. Here, we test
the hypothesis about the effect of byte premiums on CTC and its interaction with tokenizer type.

Do tokenizers show a relationship between byte premium and token premium? We fit a linear
mixed effects model, predicting token premium with a fixed effect of byte premium and random
intercepts for both vocabulary size and tokenizer type. We test this only for tokenizers trained
on unscaled data. We find an extremely small, but significant, negative relationship between byte
premium and token premium (5 = -0.0418, SE = 0.00542, #(1362) = -7.712, p < 0.001), such that
as byte premium goes up, token premiums go down. This is the opposite of what was predicted by
our hypothesis. The effect can be interpreted such that as byte premium goes up by one (which is a

80LMo’s vocabuary size is 50279, Pythia’s is 50253, and SmolLM’s is 49152.

18

relatively large difference, equivalent to different in byte premium between English and Greek), the
CTC goes down by 3.7%. Due to this extremely small effect size, this result does not support our
hypothesis that there is a correlation between byte premium.

Is there a difference in the relationship between byte and token premiums between BPE and
Unigram tokenizers? Our hypothesis predicts that there is a stronger (positive) correlation between
byte and token premiums for BPE tokenizers than for Unigram tokenizers. We fit a linear mixed
effects model predicting token premiums with both byte premium and tokenizer type as fixed effects.
We also fit this model so that we test for the interaction between byte premium and tokenizer type. As
in the previous linear mixed effects model, we fit a random intercept for vocabulary size. While we
find the effect of byte premium to be significant (5=-0.0350, SE=0.00676, #(1553)=-5.166, p<0.001),
there is no significant interaction between byte premium and tokenizer type (8=-0.0156, SE=0.0102,
1(1553)=-1.528, p=0.127). We also note that there is no significant difference between token premiums
between the BPE and Unigram tokenizers (¢-test; #(1553)=-1.528, p=0.127). Therefore, it does not
seem to be the case that BPE is more sensitive to byte premium effects in terms of token premiums.

F Comparison of Tokenizers by Vocabulary Size

We compare the Unigram and BPE tokenizers across all vocabulary sizes (Figure [6). Unigram shows
a similar pattern, where increased vocabulary size does not lead to decreased token premiums across
languages.

110000 A
100000 A
1000004 ¢
90000 1
90000 1

80000 4 80000 1

.

70000 70000

60000 60000 [i]

500001 50000 s
—

Flores CTC
Flores CTC

40000 1
40000 -

T T T T T T T T
5V > D v © Q > D v ol 42
o (el © e) 2 QO 2 Q > 9
3) N 5y e} 9 2 © Q "4 3
? ,\‘o ,b"l/ > 6’) g q‘b \,b‘ ,,)N Qv ®

% N Vv
Vocab Size Vocab Size

T T T T
> 2 v ©
Q' © 2)
2 N > “
T w2 &

Figure 6: Left: BPE CTC distribution by vocabulary size. Right: Unigram CTC distribution by
vocabulary size.

G Example FLORES Texts

Below, we include examples from the FLORES dataset for three languages: Scottish Gaelic, Finnish,
and English. Each of these sentences are translation equivalents of each other. We observe that
languages like Gaelic have higher occurrences of very short words (1-3 characters) and more whites-
paces.

H Analyses of Additional Metrics

In Section[d] we test a variety of language features. Here, we explain what each of the metrics indexes
and how the metrics were calculated (Appendices [H.T|and [H.2). We also report the correlation metrics
for each vocabulary size. We report full results for each metric at each vocabulary size in Appendix

H3l

H.1 Factors Impacting Sequence and Word Length

We hypothesize that word length should be correlated with compression for a related reason to
proportion of whitespaces. Languages with longer words are likely to have fewer words, and—for

19

Language Sentence

Scottish Dh’innis luchd-saidheans o Sgoil an Leigheis aig Oilthigh Stanford Diluain gun do

Gaelic dh’innlich iad inneal diagnosachd ur a tha comasach air ceallan a sheorsachadh:
sgealb chlo-bhuailte bheag bhiodach as urrainnear clo-bhualadh air clo-bhualadair
ince abhaisteach ’s a chosgas mu aon seant Aimeireaganach gach te.

Finnish Stanfordin yliopiston lidfketieteen laitoksen tutkijat ilmoittivat maanantaina uuden
diagnostiikkatyokalun keksimisesté: solut tyypin mukaan lajitteleva pienenpieni
tulostettava siru, joka voidaan valmistaa normaaleilla mustesuihkutulostimilla
mahdollisesti noin yhden Yhdysvaltain sentin kappalehintaan.

English On Monday, scientists from the Stanford University School of Medicine announced
the invention of a new diagnostic tool that can sort cells by type: a tiny printable
chip that can be manufactured using standard inkjet printers for possibly about one
U.S. cent each.

Table 3: Example from FLORES for three languages: Scottish Gaelic, Finnish, and English.

languages that use whitespaces—fewer whitespace-separated words. This, therefore would also be
impacted by whitespace pre-tokenization. Therefore, we expect that languages with longer words
will have better compression.

Number of Phonemes. As not all languages use whitespaces to indicate word boundaries and
the notion of wordhood is a fraught concept in linguistic{’} we calculated four metrics, which we
believe to be related to word length. The first relates to differences in sound systems between
languages. There has been an observed relationship between the number of unique sounds (called
phoneme inventory) and the average word length across languages. Nettle| (1995) found that in a
small sample of languages, phoneme inventory was predicted to correlate with word length. More
recently, [Fenk-Oczlon and Pilz| (2021) found that phoneme inventory size was negatively correlated
with word length as measured by number of syllables, but not by number of phonemes.

We calculated phoneme inventory size for each language in our sample using PHOIBLE (Moran et al.|
2014), a phonological inventory database. We predicted that there would be an inverse relationship
between phoneme inventory and word length, and therefore larger inventory size should correspond
to lower CTC.

Number of Characters and Character Distribution. Following this logic, we also hypothesized
that languages with smaller inventories of characters would have longer words and sequences, because
you need longer sequences to get enough unique sequences to represent all the words in a language.
The benefit of using this metric over phoneme inventory size is that it does not assume that longer
words in number of sounds will correspond directly to sequence length in characters, as writing
systems differ wildly in the information they encode. Different writing systems may encode each
sound roughly (alphabets), entire syllables (abugidas), just consonants (abjads) (Daniels}|1990), or
semantic meaning (logographies, e.g. Chinese characters) (Williams and Bever, [2010; |Ding et al.,
2004). We hypothesize that languages with more unique characters will have shorter words, as there
are more unique sequences

Following basic combinatorial principles, with a larger set of unique characters, you can make more
unique sequences (e.g. words) with shorter sequence length. English has 26 basic letters in its
writing system. This means there are 262 (676) possible two-letter words. For a language like Telugu,
which has approximately 52 characters (Muppalaneni et al., [2019), therefore there are 522 (2,704)
possible two-letter words. Chinese has between 50,000 and 100,000 unique characters (The CLI
Team| 2025)), depending on the dictionary. However, the most common 3,500 characters make up
over 99% of text seen in daily life (Hutong School, [2012). Therefore, Chinese may have 12,250,000
unique two-character words. And, indeed (Sun et al.,[2018) 70% of the words in the Chinese Lexical
Database (Sun et al.| 2018)) are two-character words.

See Haspelmath|(2017) for an overview.

20

We calculate the number of character unigrams (i.e. unique characters) and character bigram entropy.
If alanguage has fewer unique characters, then we expect longer words according to the combinatorics
described above. Therefore, we predict that the more unique characters a language has, the shorter
its words will be. If a language has fewer unique characters, then we expect higher bigram entropy,
because each character should be used in more unique contexts (bigrams) High bigram entropy,
therefore, should be correlated with fewer unique characters and longer words. We calculate both
metrics over the training corpus for our tokenizers for each language.

Length Ratios. We also take a measure of sequence length from the Byte Premium Tool (Arnett
et al} 2024). One of the metrics released is the “length ratio”, which is the ratio of number of
characters needed to represent a text in one language relative to the number of characters needed to
express parallel text in English. (also called called the “length ratio” (Arnett et al.| |2024))). Higher
length ratios corresponds to longer sequences.

Number of phonemes was the only metric relating to sequence length that did not significantly predict
FLORES CTC. This is likely due to the arbitrary relationship between aspects of spoken languages
and written language.

Length ratio is the most direct measurement of sequence length and explained the most variance. We
tested whether unigram entropy or bigram entropy explain additional variance on top of length ratio.
We fit a reduced linear mixed effects model with just length ratio as a fixed effect, and vocabulary
size as a random intercept. We then fit two full models: one with length ratio and unigram entropy as
fixed effects and one with length ratio and bigram entropy as fixed effects. We compare model fit
with an ANOVA. Each unigram entropy and bigram entropy improve model fit (unigram entropy:
x2(1) = 9.830, p = 0.002; bigram entropy: x*(1) = 22.613, p < 0.001). Furthermore, model with
length ratio, unigram entropy, and bigram entropy is even better than just one with length ratio and
unigram entropy (x2(1) = 82.736, p < 0.001). In general, these effects are small, however.

H.2 Script

We also wanted to know what the influence of script was on CTC. As mentioned at the end of Section
M} different writing systems encode different things. For instance, abjads are writing systems which
represent each consonant with a symbol (Daniels, |1990), but vowels are often not represented. The
scripts used for Arabic and Hebrew are examples languages that use abjads.

Flores CTC

Latin Arabic Cyrillic Other
Script

Figure 7: Boxplot showing CTCs across languages according to their ISO 15924 code, which
indicates script type.

We first looked at scripts according to their ISO 15924 codes (Figure[7). Under this classification
system, all scripts using a modified version of Latin script are classified as ‘Latin’. The vast majority
of the languages in our sample use Latin script. The only other scripts used by at least than three

21

languages were Arabic and Cyrillic. After grouping the languages using remaining scripts into an
‘other’ category, we found that script explains some variance (k2= 0.109 for the tokenizers with a
vocabulary size of 65536). We report pairwise in Table[d] Latin script languages have significantly
higher CTCs languages using Cyrillic or ‘other’ scripts. We believe this is likely another way that we
can see the effect of the number of whitespace.

Script1 Script2 p-value Adjusted p-value Significant

Arabic Cyrillic 0.3560 2.1359 False
Arabic Latin 0.0370 0.2222 False
Arabic Other 0.0172 0.1033 False
Cyrillic Latin < 0.001 < 0.001 True
Cyrillic ~ Other 0.0319 0.1912 False
Latin Other < 0.001 < 0.001 True

Table 4: Pairwise Mann-Whitney U test results with Bonferroni correction. Significant comparisons
(adjusted p < 0.05) are highlighted in bold.

Another possible way that we might see the effect of script is with the bytes-per-character (or, byte
coefficient) metric. We measure this using the byte coefficients released as part of the Byte Premium
Tool (Arnett et al.,|2024). This metric, however, does not show any significant effects.

H.3 Results for All Predictors at All Vocab Sizes

Tables [5] [6] and [7] report the results of individual linear correlations between these factors and
FLORES CTC, as we did in Table[T} Some of these predictors are colinear and explain some of the
same variance. We report these results so it is easier to interpret the amount of variance explained by
each of the predictors.

Vocab Size ‘ 16384 32768 49152
Predictor | p-value R? | p-value R?> | p-value R?
n_phonemes 0.543 0.004 | 0.601 0.003 | 0.747 0.001
proportion_whitespace 0.180 0.019 | 0.002 0.094 | 0.000 0.132
unigrams_unique 0.000 0.130 | 0.265 0.013 | 0.107 0.027

bigrams_entropy_nospace 0.011 0.066 | 0.043 0.042 | 0.010 0.067
unigrams_entropy_nospace | 0.001 0.107 | 0.105 0.027 | 0.031 0.048

char_coef 0.825 0.001 0.004 0.085 | 0.003 0.089
byte_coef 0.126 0.024 | 0.125 0.025 | 0.107 0.027
byte_premium 0.126 0.024 | 0.125 0.025 | 0.107 0.027
vocab_mean_token_len 0.000 0.270 0.128 0.024 0.185 0.018
flores_mean_token_len 0.000 0.403 0.000 0.137 0.000 0.150
data_sim 0.000 0.315| 0.000 0.242 | 0.000 0.193
script 0.683 0.042 | 0953 0.128 | 0.828 0.138

Table 5: Significance is indicated with bolding.

22

Vocab Size \ 65536 81920 98304

Predictor | p-value R® | p-value R? | p-value R?

n_phonemes 0.843 0.000 | 0.906 0.000 | 0.951 0.000
proportion_whitespace 0.000 0.157 | 0.000 0.175 | 0.000 0.189
unigrams_unique 0.072 0.034 | 0.051 0.040 | 0.040 0.044

bigrams_entropy_nospace 0.005 0.079 | 0.003 0.089 | 0.002 0.096
unigrams_entropy_nospace | 0.017 0.058 | 0.010 0.067 | 0.008 0.073

char_coef 0.003 0.088 | 0.003 0.088 | 0.003 0.087
byte_coef 0.090 0.030 | 0.080 0.032 | 0.073 0.033
byte_premium 0.090 0.030 | 0.080 0.032 | 0.073 0.033
vocab_mean_token_len 0.166 0.020 | 0.145 0.022 0.122 0.025
flores_mean_token_len 0.000 0.168 0.000 0.182 0.000 0.195
data_sim 0.000 0.239 | 0.000 0.296 | 0.000 0.325
script 0.692 0.144 | 0.612 0.148 | 0.559 0.151

Table 6: Significance is indicated with bolding.

Vocab Size \ 114688 131072 262144
Predictor | p-value R* | p-value R*> | p-value R?
n_phonemes 0.989 0.000 | 0.981 0.000 | 0.871 0.000
proportion_whitespace 0.000 0.199 | 0.000 0.207 | 0.000 0.247
unigrams_unique 0.034 0.046 | 0.030 0.049 | 0.015 0.061

bigrams_entropy_nospace 0.002 0.100 | 0.001 0.104 | 0.000 0.123
unigrams_entropy_nospace | 0.006 0.077 | 0.005 0.081 | 0.002 0.098

char_coef 0.004 0.085 | 0.004 0.084 | 0.005 0.079
byte_coef 0.066 0.035 | 0.061 0.036 | 0.043 0.043
byte_premium 0.066 0.035 | 0.061 0.036 | 0.043 0.043
vocab_mean_token_len 0.102 0.028 0.088 0.030 0.031 0.048
flores_mean_token_len 0.000 0.206 | 0.000 0.215 | 0.000 0.253
data_sim 0.000 0347 | 0.000 0.426 | 0.000 0.442
script 0.522 0.154 | 0497 0.156 | 0414 0.164

Table 7: Significance is indicated with bolding.

I Parallel Data

1.1 Plots

Figure[§]shows the CTCs for all seven outlier languages (Cebuano, Khmer, Luxembourgish, Mandarin
Chinese, Maltese, Japanese, and Burmese) for tokenizers trained on parallel data.

1.2 Statistical Tests for Parallel-Data Tokenizers

In Table 8] we report the results from the #-tests between the FLORES CTCs of the parallel and
non-parallel tokenizers, by vocabulary size. None of the differences are significant.

23

FLORES CTC

FLORES CTC

FLORES CTC

Figure 8: Cebuano, Khmer, Luxembourgish, Mandarin Chinese, Maltese, Japanese, Burmese

FLORES CTC

Vocab Size

Cebuano
Cebuano (parallel)

Vocab Size

Khmer
Khmer (parallel)

English
English (parallel)

Vocab Size

= Mandarin
= = Mandarin (parallel)

English

English (parallel)

Vocab Size

-~ Japanese
- = Japanese (parallel)

English
English (parallel)

J Optimal-Vocabulary BPE Tokenizers

Here we describe our method for estimating optimal vocabularies, provide detail on training tokenizers

English
English (parallel)

FLORES CTC

Vocab Size

Luxembourgish
Luxembourgish (parallel)

English
English (parallel)

FLORES CTC

Vocab Size

—— Maltese
== Maltese (parallel)

English
English (parallel)

FLORES CTC

Vocab Size

= Burmese
== Burmese (parallel)

with optimal vocabularies, and evaluate our estimation procedure.

24

English
English (parallel)

Vocab Size r-Statistic p-value Mean Difference

16384 -2.075 0.054 -5509
32768 -1.862 0.081 =787
49152 -1.232 0.236 -395
65536 -0.777 0.449 -225
81920 -0.438 0.667 -116
98304 -0.338 0.739 -85
114688 -0.195 0.848 -48
131072 -0.034 0.973 -8
262144 0.650 0.525 165

Table 8: #-test results and mean difference between parallel and non-parallel tokenizer CTCs for the
seven languages in the sample. Significance is indicated with bolding.

J.1 Estimating Optimal Vocabularies

In order to estimate the vocabulary size at which a tokenizer for a given language will reach a given
CTC, we use the CTCs for the existing tokenizers and fit a power law curve, e.g. Figure[9]

FLORES CTC

Vocab Size
Figure 9: Power law relationship fit to the CTC values for the BP-unscaled BPE tokenizer for English.

The goal is to find the vocabulary size for each language at which the tokenizers are predicted to have
the same CTC. For example, Figure [I0] (left) shows the curves for English (eng_latn), Georgian
(kat_geor), and Burmese (mya_mymr). There exists a vocabulary size for each language such that
we predict a tokenizer would achieve a FLORES CTC of 52000 (indicated with the horizontal dashed
line). However, this is not the case for all languages, e.g. Figure[T0] (right). There is no vocabulary
at which Telugu (tel_telu), Khmer (khm_khmr), and German (deu_latn) can achieve the same
CTC.

Instead, for a range of CTCs (from 50000 to 74000 in increments of 1000) and estimated the
vocabulary size at which every language would achieve the closest CTC to that target CTC. If our
curve didn’t predict a tokenizer could ever reach a target CTC, we used the CTC from the closest
existing tokenizer. If the target CTC was below what we predicted could be achieved for a given
language, we set the vocabulary size to the largest size we tested (262144) and set the predicted CTC
to be the observed CTC at that size. If the prediction was higher than the worst CTC we observed, we
set the vocab size to the lowest vocabulary size we tested (8192).

In Figure[TT|we show the distribution of predicted CTCs for every target CTC. At the target CTC of
69000 there is the least amount of variance. This means if you wanted to select a vocabulary size at
which most languages had a CTC closest together it would be approximately 69000. As target CTC
gets lower, there are more languages which cannot achieve CTCs as low as the target and “get stuck”

25

eng_latn o tel_telu
kat_geor khm_khmr
mya_mymr deu_latn
---- FLORES CTC = 52000

2 2

o o

(%2} (%2}

w w

o \ o

[e] [e]

- -

e = e

- . .
Vocab Size Vocab Size

Figure 10: Left: CTCs across vocabulary sizes for English, Georgian, and Burmese. Horizontal black
dashed line indicates a FLORES CTC of 52000. Intersections with the black line correspond to the
“optimal” vocabulary size for each language. Right: CTCs for three languages, which do not have any
vocabulary size at which all three languages can achieve the same CTC.

at a much higher CTC. For BPE tokenizers, there is a limit to the level of compression that can be
achieved. This is reflected in the asymptote we see in the power law curves for each language.

85000 1

o o g g 8 8
o o
80000 . .
[e] o]
Q o] ° e
75000 o © g
o © o o @@
o] ° [_;L]
370000— . ° %% [%] T !
g o o o o 1% ‘%% 5 é e B8 8
Ses000/8 8 8 8 8 8 6 B8 O © 8
E ° 8 8 8 8 o] 8 [e] o [e]
ki o o 0o o o o o o o © ggé o 8 g
meoooo— £ T o 2 6 o o 6 8 8 g
.g_ 8 s 8 9 8 8 8 o ©
o o o o ©O g 8 § g ¢ 8
§ § 58828 o ©
55000 S o
ii% e 8 6 0o 8 o c g 8 0 0o 0 3 8 o g 88 88
g i o 8 g o B o g o 800 o o S e oo
so000 | &] o8 § e e 88 088 6 8 68 © e
© o o ©
o]

45000

Q Q O S Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q S Q Q Q Q Q
S L, L, S, LSS, LSS S

) N \) Q" QO) Q QO \))) Qo Q' Q" QO) Q Q))) N \) Q" N
G P PGPS FEE T F QA A A A AT
Target CTC

Figure 11: Each box plot shows the distribution of estimated CTCs for a given target CTC. In many
cases, the distribution is so compressed that there is simply a gold line where the mean CTC is, and
no box is visible.

J.2 Tokenizer Training

For each target CTC, we trained the tokenizer with the vocabulary size that we estimated. If the
vocabulary size was estimated at 8192 or 262144, we did not train a new tokenizer, and instead used
the existing one with that vocabulary size. In total there are 2055 optimal-vocabulary tokenizers, 25
for each language. We used the same BPE implementation to train the tokenizers and trained them on
the same training datasets.

J.3 Estimated Vocab Validation

Next, we test how accurate our CTC estimation method was. We plot the distribution of CTCs for the
estimated optimal-vocabulary tokenizers and actual optimal-vocabulary tokenizers in Figure[T2] with
the same-vocabulary tokenizers as reference. The estimated and actual optimal-vocabulary tokenizers
have much less variance in their CTCs. The estimated CTCs are not perfectly accurate, but shows
greatly reduced token premium effects compared to the same-vocabulary tokenizers.

26

1 Optimal (Estimated) Vocab
/\ Optimal (Actual) Vocab
[Same Vocab

Density (log scale)

FLORES CTC

Figure 12: Density plot of same-vocab tokenizer CTCs, estimated optimal-vocab CTCs and actual
optimal-vocab CTCs across languages. Y-axis is log-scaled to improve readability.

Overall, the RMSE between the actual and predicted values was 3733. We plot the distribution of
CTCs across all languages in Figure[I2} In Table[0] we report the RMSEs for each target CTC. As
target CTC goes up, the RMSE goes down until CTC = 59000, then it increases monotonically.

Target CTC RMSE Target CTC RMSE
50000 3536 60000 2913
51000 3185 61000 2992
52000 2975 62000 3059
53000 2938 63000 3144
54000 2982 64000 3283
55000 2933 65000 3445
56000 2921 66000 3563
57000 2880 67000 3758
58000 2870 68000 3981
59000 2870 69000 4384

70000 4601
71000 4892
72000 5083
73000 5350
74000 5651

Table 9: RMSE for estimated CTC method for each target CTC. RMSE decreases as target CTC
increases on the left-hand column. Then, after 59000, RMSE increases as target CTC increases.

27

K SuperBPE Training

SuperBPE training works in two phases. In the first phase, the tokenizer trains like a normal BPE
tokenizer. In the second half, the tokenizer learns merges over whitespace boundaries. In the first
phase, the tokenizer learns a vocabulary of the desired size. Therefore, to learn superword tokens,
you determine the number of tokens you wish to keep from the first phase, remove the rest, and then
fill up the rest of the vocabulary in the second phase. The recommendation by the authors is to keep
180000 tokens from the first phase of training out of a total vocabulary size of 200000. The number
of tokens retained from the first phase is called the transition point. In the original implementation of
SuperBPE, they do not manipulate vocabulary size to the extent we do here. Therefore, in order to
scale this appropriately to different vocabulary sizes, we set the transition point as a proportion of the
full vocabulary size. Since the original recommendation was 90% of the full vocabulary, this was the
highest transition point we tested. We also trained tokenizers with more aggressive transition points
(see Section [K.1|below), but in the paper all reported results are for tokenizers with a transition point
of 0.9. We tested five different transition points: 0.5, 0.6, 0.7, 0.,8, and 0.9.

We trained SuperBPE tokenizers for all languages for all the vocabulary sizes we used before over
64000 (six sizes). In total, we train up to 2940 SuperBPE tokenizers. There were come cases where
the training failed and additionally, we found some cases where there was an apparent error with byte
fallback, which we describe in the following section.

The decrease in token premium effects is visualized in Figure [I3] For a random sample of ten
languages there is no vocabulary for each language such that a BPE tokenizer can achieve even
approximately the same CTC. For SuperBPE, on the other hand, it is possible to achieve almost
exactly the same CTC for the ten languages by training a tokenizer with each languages’ optimal
vocabulary size.

BPE Tokenizer SUPERBPE Tokenizer
65000 \\\\1 | Languages
—— urd_arab
L T e —e— B — kaz_cyrl
€] ~ 8) — zul_latn
5 55000 - —— G — mit_latn
I}] cat_latn
4 == G| s i
& 50000 A L4 = bel_cyrl
— - - .
w w 2 ~—— ibo_latn
45000 _‘ 1 = - mkd_cyrl
\\\ . kir_cyrl
40000 - 7 — _ eng_latn
7\
T T T T T T T T
N N N N o N o o
& & & & & & & &
N ~ R 04 N ~ ~» 2
Vocabulary Size Vocabulary Size

Figure 13: CTC curves for a random sample of ten languages for BPE and SuperBPE. This includes
only tokenizers with vocabulary sizes greater than 64000.

K.1 Transition Point Analysis

Here we report the distribution of CTCs by transition point. None of the transition points show
greatly reduced token premium effects, however as transition point decreases, i.e. as the number of
tokens retained from the first phase decreases, the compression trends downward. Figure [14] shows
the distribution for each transition point.

L. Additional SuperBPE Statistical Tests

We conduct an F-test to test whether there is a difference in the variance between the BPE and
SuperBPE tokenizers. We also conduct a paired t-test to test whether the CTC is different between
the two tokenizer types. All results are reported in Table [I0] For all vocabulary sizes, SuperBPE
tokenizers have less variance in CTC and have lower CTCs.

28

70000
65000 -
60000 -

55000

- o

I

Flores CTC

35000 -

65536 81920 98304 114688 131072 262144
Vocab Size

mmmm SuperBPE, t=0.5 == SuperBPE, t=0.6 === SuperBPE, t=0.7 === SuperBPE, t=0.8 SuperBPE, t=0.9 BPE

Figure 14: Distribution of CTCs by vocabulary size and transition point. These results do not include
the outlier languages.

F-test \ t-test
Vocab Size F DFl DF2 p-value | ¢ p-value
65536 2.187 73 96 < 0.001 | -2.42 0.016
81920 2.006 70 96 0.002 -2.67 0.008
98304 1.660 71 96 0.021 -3.47 < 0.001
114688 1.607 67 96 0.033 -3.36 < 0.001
131072 1.404 73 96 0.119 -4.32 < 0.001

262144 0.745 65 96 0.207 | -7.28 < 0.001
Table 10: F-test and ¢-test results for SuperBPE tokenizers by vocabulary size.

Here we report the significance (p-value) and variance explained (R?) for a linear regression predicting
CTC from proportion of whitespaces for SuperBPE tokenizers. The relationship is not significant for
any vocabulary size.

Vocab Size R? Adj. R?> p-value

65536 0.057 0.042 0.057

81920 0.086 0.070 0.023

98304 0.069 0.053 0.039
114688 0.079 0.062 0.034
131072 0.082 0.066 0.023
262144 0.111 0.094 0.012

Table 11: R? and p-value for regressions predicting CTC based on proportion of whitespaces for
SuperBPE tokenizer with a threshold of 0.9.

M Optimal-Vocabulary SuperBPE Tokenizers

We use the same method to estimate CTCs for SuperBPE tokenizers as we did for BPE tokenizers
(Appendix [I). We plot the distribution of estimated CTCs for all target CTCs (Figure[I3). The target
CTCs at which there is near-perfect achievement of the same CTC across languages are much lower
for SuperBPE tokenizers (48000 to 57000) than for BPE (69000). And there is a larger range of
CTC:s for which it is possible to get a tokenizer for every language to achieve.

29

Estimated CTC by Target FLORES CTC for Different Languages

90000 1
80000 1

70000 4 q

Estimated CTC

60000 1

@®OoO00 O®
®?000 O®
o0 O®
®00 O ®
@0 OO
i oo

® O®
[oNeN ()

10 ©

o0

f¢: o)

oD

o a

50000 1

Cb——@®O00 O®
O—00®»W 000 O ®
O€moe® OO0 O @

@mWOC® 000 O ®
@oa 000 OO
@® OO0 O ®
®® 000 OO

C—— 000 O®
}—0 000 O @

40000 1

P O PP OO E RO LR EE E RO LR EE L PEE PP EE L LEE L EEELEELLEELPEE
QAQ; Q. O Q. QA0 O Qa9 O QA0 Q; OO
ORI O R R GV PPN PP P PP S TP PGS P OAATAVATATAIACA N APA PV e 0% P e
Target FLORES CTC

Figure 15: Distribution of estimated CTCs for each target CTC for SuperBPE tokenizers.

N Remaining Variance

We fit a linear mixed effects model with unigram entropy, bigram entropy, length ratio (character
coefficient), and bytes-per-character ratio (byte coefficient) as predictors. We included vocabulary
size as a random intercept. The results of the ANOVA are reported in Table

Predictor SS MS df (num) df (den) F p-value
Unigram entropy 10,084,887 10,084,887 1 356.05 0.68 411
Bigram entropy 1,031,215 1,031,215 1 356.06 0.07 793
Length ratio 185,829,302 185,829,302 1 356.00 12.48 <.001
Byte coef 68,017,284 68,017,284 1 356.01 4.57 .033

Table 12: ANOVA results for each of the fixed effects

30

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We train and release all the tokenizers mentioned in the paper. We show
evidence for token premium effects in Figure[I] we identify relevant factors in Section 4]
and finally provide interventions which reduce token premium effects in Section 3}

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section 8]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

31

Answer: [NA]
Justification: Our results are empirical and any claims made are grounded in those results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release all training and evaluation code. The datasets used to train the
tokenizers are publicly available (see Appendix [B). We use openly available evaluation data.
We also release the tokenizers themselves. We release all result datasets, analysis code, and
code used to generate the figures in the paper. This allows any and all parts of the paper to
be reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

32

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data are released on OSF. Datasets and tokenizers are released on
Hugging Face.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details, e.g. vocabulary sizes, exact tokenizer implementations,
are provided in the main body of the paper and/or in the appendices.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Experiments are supported with appropriate statistical tests, which are reported
either in the main body of the paper or the appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe our CPU resources in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: To the best of our knowledge, the work in this paper conforms to the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper aims to contribute to a solution to inequities across languages that
are the result of tokenization, which we address in the Introduction and Discussion sections.
Therefore, we hope our work has positive societal impacts. We do not believe there are any
possible negative societal impacts of the work.

34

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: In Appendix [B] we discuss that our reason for not releasing our training data is
in order to adhere to the permissions from the original data licenses.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, see Appendix [B]
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

35

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We describe in detail the process for training the tokenizers we release. The
tokenizers will be released on Hugging Face and will have their own model card, which will
re-iterate critical details about the tokenizers, how they were trained, and how to use them.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not conduct any human subjects research in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not do any human subjects research, therefore we did not need IRB
approval.

Guidelines:

36

paperswithcode.com/datasets

The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Related Work
	Token Premiums
	Measuring Compression
	The Relationship Between Compression and Performance

	Tokenizer Training
	Effects of Byte Premium Scaling and Tokenizer Type
	Final Tokenizer Setup

	Explaining Token Premiums
	Mitigating Token Premiums
	Data Quality and Data Similarity
	Vocabulary Size
	Whitespace Pre-Tokenization
	Remaining Variance

	Discussion
	Conclusion
	Limitations
	Language Sample
	Tokenizer Training Details
	Contamination Analysis
	Comparing CTC to Pre-trained Tokenizers
	BPE vs. Unigram Tokenizers
	Comparison of Tokenizers by Vocabulary Size
	Example FLORES Texts
	Analyses of Additional Metrics
	Factors Impacting Sequence and Word Length
	Script
	Results for All Predictors at All Vocab Sizes

	Parallel Data
	Plots
	Statistical Tests for Parallel-Data Tokenizers

	Optimal-Vocabulary BPE Tokenizers
	Estimating Optimal Vocabularies
	Tokenizer Training
	Estimated Vocab Validation

	SuperBPE Training
	Transition Point Analysis

	Additional SuperBPE Statistical Tests
	Optimal-Vocabulary SuperBPE Tokenizers
	Remaining Variance

