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Abstract
Recent entity and relation extraction works fo-001
cus on investigating how to obtain a better002
span representation from the pre-trained en-003
coder. However, a major limitation of ex-004
isting works is that they ignore the interre-005
lation between spans (pairs). In this work,006
we propose a novel span representation ap-007
proach, named Packed Levitated Markers (PL-008
Marker), to consider the interrelation between009
the spans (pairs) by strategically packing the010
markers in the encoder. In particular, we pro-011
pose a neighborhood-oriented packing strat-012
egy, which considers the neighbor spans inte-013
grally to better model the entity boundary in-014
formation. Furthermore, for those more com-015
plicated span pair classification tasks, we de-016
sign a subject-oriented packing strategy, which017
packs each subject and all its objects to model018
the interrelation between the same-subject019
span pairs. The experimental results show020
that, with the enhanced marker feature, our021
model advances baselines on six NER bench-022
marks, and obtains a 3.5%-3.6% strict relation023
F1 improvement with higher speed over pre-024
vious state-of-the-art models on ACE04 and025
ACE05. All the code and data of this paper026
will be made publicly available.027

1 Introduction028

Recently, pre-trained language models (PLMs) (De-029

vlin et al., 2019; Liu et al., 2019) have achieved030

significant improvements in Named Entity Recog-031

nition (NER, Luo et al. (2020); Fu et al. (2021))032

and Relation Extraction (RE, Wadden et al. (2019);033

Zhou and Chen (2021)), two key sub-tasks of in-034

formation extraction. Recent works (Wang et al.,035

2021c; Zhong and Chen, 2021) regard these two036

tasks as span classification or span pair classifi-037

cation, and thus focus on extracting better span038

representations from the PLMs.039

Three span representation extraction methods are040

widely used: (1) T-Concat (Lee et al., 2017; Jiang041

et al., 2020) concatenates the representation of the042

David assaulted a pair of restaurant workers during a night out with 
national squad teammates in [S]Copenhagen[/S]. 

[O]David[/O] assaulted a pair of restaurant workers during a night 
out with national squad teammates in [S]Copenhagen[/S].

David assaulted a pair of restaurant [O]workers[/O] during a night 
out with national squad teammates in [S]Copenhagen[/S].

David assaulted a pair of restaurant workers during a night out with 
national squad [O]teammates[/O] in [S]Copenhagen[/S].

Soild Marker

Packed Levitated Marker

[O David][/O]          [O workers][/O]          [O teammates][/O]

Levitated Marker

[S Copenhagen][/S] [O David][/O]

David assaulted a pair of restaurant workers during a night out with 
national squad teammates in Copenhagen.

[S Copenhagen][/S] [O workers][/O]           

[S Copenhagen][/S] [O teammates][/O]           

Training Process

[S Copenhagen][/S] [O David][/O]
[S Copenhagen][/S] [O workers][/O]
[S Copenhagen][/S] [O teammates][/O]                      

Inference Process

Figure 1: An example in the RE task. Solid Marker
separately processes three pairs of spans with different
insertions of markers. Levitated Marker processes the
span pairs independently during training and processes
them in batches during inference. Our proposed Packed
Levitated Marker packs three objects for the same sub-
ject into an instance to process.

span’s boundary (start and end) tokens to obtain 043

the span representation. It collects information at 044

the token level but ignores the connection between 045

boundary tokens of a span when they pass through 046

the network; (2) Solid Marker (Soares et al., 2019; 047

Zhou and Chen, 2021) explicitly insert two solid 048

markers before and after the span to highlight the 049

span in the input text. And it inserts two pair of 050

markers to locate the subject and object of a span 051

pair. However, the method cannot handle multiple 052

span pairs at the same time because of its weakness 053

in specifying the solid markers of a span pair from 054

more than two pairs of markers in the sequence. (3) 055

Levitated Marker (Zhong and Chen, 2021) first 056

sets a pair of levitated markers to share the same 057

position with the span’s boundary tokens and then 058
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ties a pair of markers by a directional attention. To059

be specific, the markers within a pair are set to be060

visible to each other in the attention mask matrix,061

but not to the text token and other pairs of mark-062

ers. Existing work (Zhong and Chen, 2021) simply063

replaces solid markers with levitated markers for064

an efficient batch computation, but sacrifices the065

model performance.066

As the RE example shown in Figure 1, to cor-067

rectly identify that David, workers and teammates068

are located_in Copenhagen, it is important to sep-069

arate out that David attacked the restaurant work-070

ers and he had social relation with his teammates.071

However, prior works with markers (Zhong and072

Chen, 2021) independently processes the span pairs073

with different insertions of markers in the training074

phrase, and thus ignore interrelation between spans075

(pairs) (Sorokin and Gurevych, 2017; Luan et al.,076

2019; Wadden et al., 2019).077

In this work, we introduce Packed Levitated078

Marker (PL-Marker), to model the interrelation079

between spans (pairs) by strategically packing lev-080

itated markers in the encoding phase. A key chal-081

lenge of packing levitated markers together for082

span classification tasks is that the increasing num-083

ber of inserted levitated markers would exacerbate084

the complexity of PLMs quadratically (Ye et al.,085

2021). Thus, we have to divide spans into several086

groups to control the length of each input sequence087

for a higher speed and feasibility. In this case, it088

is necessary to consider the neighbor spans inte-089

grally, which could help the model compare neigh-090

bor spans, e.g. the span with the same start token,091

to acquire a more precise entity boundary. Hence,092

we propose a neighborhood-oriented packing strat-093

egy, which packs the spans with the same start094

token into a training instance as much as possible095

to better distinguish the entity boundary.096

For the more complicated span pair classifica-097

tion tasks, an ideal packing scheme is to pack all098

the span pairs together with multiple pairs of levi-099

tated markers, to model all the span pairs integrally.100

However, since each pair of levitated markers is101

already tied by directional attention, if we continue102

to apply directional attention to bind two pairs of103

markers, the levitated marker will not be able to104

identify its partner marker of the same span. Hence,105

we adopt a fusion of solid markers and levitated106

markers, and use a subject-oriented packing strat-107

egy to model the subject with all its related objects108

integrally. To be specific, we emphasize the subject109

span with solid markers and pack all its candidate 110

object spans with levitated markers. Moreover, we 111

apply an object-oriented packing strategy for an 112

intact bidirectional modeling (Wu et al., 2020). 113

We examine the effect of PL-Marker on two typ- 114

ical span (pair) classification tasks, NER and end- 115

to-end RE. The experimental results indicate that 116

PL-Marker with neighborhood-oriented packing 117

scheme performs much better than the model with 118

random packing scheme on NER, which shows 119

the necessity of considering the neighbor spans 120

integrally. And our model also advances the T- 121

Concat model on six NER benchmarks, which 122

demonstrates the effectiveness of the feature ob- 123

tained by span marker. Moreover, compared with 124

the previous state-of-the-art RE model, our model 125

gains a 3.5%-3.6% strict relation F1 improvement 126

with higher speed on ACE04 and ACE05 and 127

also achieves comparable performance on SciERC, 128

which shows the importance of considering the in- 129

terrelation between the subject-oriented span pairs. 130

2 Related Work 131

In recent years, span representation has attracted 132

great attention from academia, which facilitates 133

various NLP applications, such as named entity 134

recognition (Ouchi et al., 2020), relation and event 135

extraction (Luan et al., 2019), coreference resolu- 136

tion (Lee et al., 2017), semantic role labeling (He 137

et al., 2018) and question answering (Lee et al., 138

2016). Existing methods to enhance span represen- 139

tation can be roughly grouped into three categories: 140

Span Pre-training The span pre-training ap- 141

proaches enhance the span representation for PLMs 142

via span-level pre-training tasks. Sun et al. (2019); 143

Lewis et al. (2020); Raffel et al. (2020) mask and 144

learn to recover random contiguous spans rather 145

than random tokens. Joshi et al. (2020) further 146

learns to store the span information in its boundary 147

tokens for downstream tasks. 148

Knowledge Infusion This series of methods fo- 149

cuses on infusing external knowledge into their 150

models. Zhang et al. (2019); Peters et al. (2019); 151

Wang et al. (2021a) learn to use the external en- 152

tity embedding from the knowledge graph or the 153

synonym net to acquire knowledge. Soares et al. 154

(2019); Xiong et al. (2020); Wang et al. (2021b); 155

Yamada et al. (2020) conduct specific entity-related 156

pre-training to incorporate knowledge into their 157

models with the help of Wikipeida anchor texts. 158
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Structural Extension The structural extension159

methods add reasoning modules to the existing160

models, such as biaffine attention (Wang et al.,161

2021d), graph propagation (Wadden et al., 2019)162

and memory flow (Shen et al., 2021). With the sup-163

port of modern pre-training encoders (e.g. BERT),164

the simple model with solid markers could achieve165

state-of-art results in RE (Zhou and Chen, 2021;166

Zhong and Chen, 2021). However, it is hard to spec-167

ify the solid markers of a span pair from more than168

two pairs of markers in the sequence. Hence, pre-169

vious work (Zhong and Chen, 2021) has to process170

span pairs independently, which is time-consuming171

and ignores the interrelation between the span172

pairs. In this work, we introduce the neighborhood-173

oriented and the subject-oriented packing strategies174

to take advantage of the levitated markers to pro-175

vide an integral modeling on spans (pairs).176

To our best knowledge, we are the first to apply177

the levitated markers on the NER. On the RE, the178

closest work to ours is the PURE (Approx.) (Zhong179

and Chen, 2021), which independently encodes180

each span pair with two pairs of levitated markers181

in the training phase and batches multiple pairs of182

markers to accelerate the inference process. Com-183

pared to their work, our model adopts a fusion184

subject-oriented packing scheme and thus handle185

multiple span pairs well in both the training and in-186

ference process. We detail the differences between187

our work and PURE in Section 4.4.2 and explain188

why our model performs better.189

3 Method190

In this section, we first introduce the architecture191

of the levitated marker. Then, we present how192

we pack the levitated marker to obtain the span193

representation and span pair representation.194

3.1 Background: Levitated Marker195

Levitated marker is used as an approximation of196

solid markers, which allows models to classify mul-197

tiple pairs of entities simultaneously to accelerate198

the inference process (Zhong and Chen, 2021). A199

pair of levitated markers, associated with a span,200

consists of a start token marker and an end token201

marker. These two markers share the same position202

embedding with the start and end tokens of the cor-203

responding span, while keeping the position id of204

original text tokens unchanged. In order to spec-205

ify multiple pairs of levitated markers in parallel, a206

directional attention mask matrix is applied. Specif-207

ically, each levitated marker is visible to its partner 208

marker within pair in the attention mask matrix, but 209

not to the text tokens and other levitated markers. 210

In the meantime, the levitated markers are able to 211

attend to the text tokens to aggregate information 212

for their associated spans. 213

3.2 Neighborhood-oriented Packing for Span 214

Benefiting from the parallelism of levitated mark- 215

ers, we can flexibly pack a series of related spans 216

into a training instance. In practice, we append 217

multiple associated levitated markers to an input 218

sequence to conduct a comprehensive modeling on 219

each span. 220

However, even though the entity length is re- 221

stricted, some of the span classification tasks still 222

contain a large number of candidate spans. Hence, 223

we have to group the markers into several batches 224

to equip the model with higher speed and feasibil- 225

ity in practice. To better model the connection be- 226

tween spans with the same start tokens, we adopt a 227

neighborhood-oriented packing scheme. As shown 228

in Figure 2, we first sort the pairs of levitated mark- 229

ers by taking the position of start marker as the first 230

keyword and the position of end marker as the sec- 231

ond keyword. After that, we split them into groups 232

of size up to K and thus gather adjacent spans into 233

the same group. We packs each groups of markers 234

and dispersedly process them in multiple runs. 235

Formally, given a sequence of N text tokens, 236

X = {x1, . . . , xN} and a maximum span length 237

L, we define the candidate spans set as S(X) = 238

{(1, 1), .., (1, L), ..., (N,N−L), .., (N,N))}. We 239

first divide S(X) into multiple groups up to the 240

size of K in order. For example, we cluster K 241

spans, {(1, 1), (1, 2), ..., (dKL e,K − b
K−1
L c ∗ L)}, 242

into a group S1. We associate a pair of levitated 243

markers to each span in S1. Then, we provide 244

the combined sequence of the text token and the 245

inserted levitated markers to the PLM (e.g. BERT) 246

to obtain the contextualized representations of the 247

start token marker H(s) = {h(s)i } and that of the 248

end token marker H(e) = {h(e)i }. Here, h(s)a and 249

h
(e)
b are associated with the span si = (a, b), for 250

which we obtain the span representations: 251

ψ(si) = [h(s)a ;h
(e)
b ] (1) 252

where [A;B] denotes the concatenation operation 253

on the vector A and B. 254

For instance, we apply the levitated marker to a 255

typical overlapping span classification task, NER, 256
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David Green and are doctors in[S] [/S] wife [O2] [/O2] [O3] [/O3]Dallas

PER-SOC PHYS

[O1] [/O1]his

NA

Bank of China is open

1 2 3 4 5

[O1] [O2] [O3] [O4] [O5][/O1] [/O2] [/O3] [/O4] [/O5]
1 11 1 1 12 3 4 5

[O6] [O7] [O8] [O9] [O10][/O6] [/O7] [/O8] [/O9] [/O10]
2 2 2 2 2 33 4 5 3

… …[O11] [O15][/O11] [/O15]
3 4 5 5

Neighborhood-oriented Packing

Subject-oriented Packing

GPE

PER (his) PER (wife) GPE (Dallas)

Position ID:

PER

Figure 2: An overview of our neighborhood-oriented packing and subject-oriented packing strategies. [S][/S] are
solid markers. [O][/O] are levitated markers. With a maximum group size, the neighborhood-oriented packing
strategy clusters the neighbor spans, e.g. {(1,1),(1,2),...,(1,5)}, in the same group. The subject-oriented packing
strategy encloses the subject span, David Green, with solid markers, applies levitated markers on its candidate
object spans, his, wife and Dallas, and packs them into an instance.

which aims to assign an entity type or a non-entity257

type to each possible span in a sentence. We ob-258

tain the span representation from the PLM via the259

packed levitated markers and then combine the fea-260

tures of PL-Marker and T-Concat to better predict261

the entity type of the cadidate span.262

3.3 Subject-oriented Packing for Span Pair263

To obtain a span pair representation, a feasible264

method is to adopt levitated markers to emphasize265

a series of the subject and object spans simultane-266

ously. Commonly, each pair of levitated markers is267

tied by the directional attention. But if we continue268

to apply directional attention to bind two pairs of269

markers, the levitated marker will not be able to270

identify its partner marker of the same span. Hence,271

as shown in Figure 2, our span pair model adopts a272

fusion subject-oriented packing scheme to offer an273

integral modeling for the same-subject spans.274

Formally, given an input sequence X , a subject275

span, si = (a, b) and its candidate object spans276

(c1, d1), (c2, d2), ...(cm, dm), We insert a pair of277

solid markers [S] and [/S] before and after the sub-278

ject span. Then, we apply levitated markers [O]279

and [/O] to all candidate object spans, and pack280

them into an instance. Let X̂ denotes this modified281

sequence with inserted markers:282

X̂ = ...[S], xa, ..., xb, [/S], ..., xc1 ∪ [O1], ...,283

xd1 ∪ [/O1], ..., xc2 ∪ [O2], ..., xd2 ∪ [/O2]...,284

where the tokens jointed by the symbol ∪ share285

the same position embedding. We apply a pre-286

trained encoder on X̂ and finally obtain the span 287

pair representation for si = (a, b) and sj = (c, d): 288

φ(si, sj) = [ha−1;hb+1;h
(s)
c ;h

(e)
d ] (2) 289

where [ ; ] denotes the concatenation operation. 290

ha−1 and hb+1 denote the contextualized represen- 291

tation of the inserted solid markers for si; h
(s)
c and 292

h
(e)
d are the contextualized representation of the 293

inserted levitated markers for sj . 294

Compared to the method that applies two pairs 295

of solid markers on the subject and object respec- 296

tively (Zhong and Chen, 2021), our fusion marker 297

scheme replaces the solid markers with the levi- 298

tated markers for the object span, which would 299

impair the emphasis on the object span to some 300

extent. To provide the supplemental information, 301

we introduce an inverse relation from the object to 302

the subject for a bidirectional prediction (Wu et al., 303

2020). 304

For instance, we evaluate our model on a typ- 305

ical span pair classification task, end-to-end RE, 306

which concentrates on identifying whether all span 307

pairs are related and their relation types. Following 308

Zhong and Chen (2021), we first use a NER model 309

to filter candidate entity spans, and then acquire the 310

span pair representation of the filtered entity span 311

pairs to predict the relation between them. More- 312

over, to build the connection between entity type 313

and relation type, we add an auxiliary loss for pre- 314

dicting the type of object entity (Zhou and Chen, 315

2021; Han et al., 2021). 316
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3.4 Complexity Analysis317

Dominated by the large feed-forward network, the318

computation of PLM rises almost linearly with the319

increase in small sequence length (Dai et al., 2020;320

Ye et al., 2021). Gradually, as the sequence length321

continues to grow, the computation dilates quadrat-322

ically due to the Self-Attention module (Vaswani323

et al., 2017). Obviously, the insertion of levitated324

markers extends the length of input sequence. For325

the span pair classification tasks, the number of can-326

didate spans is relatively small , thus the increased327

computation is limited. For the span classification328

tasks, we group the markers into several batches,329

which can control the sequence length within the330

interval in which the complexity increases nearly331

linearly. For the NER, we enumerate candidate332

spans in a small-length sentence and then use its333

context words to expand the sentence to 512 to-334

kens, for which the number of candidate spans in335

a sentence is usually less than the context length336

in practice. Hence, with a small number of pack-337

ing groups, the complexity of PL-Marker is still338

near-linearly to the complexity of previous models.339

Moreover, to further alleviate the inference cost,340

we adopt PL-Marker as a post-processing module341

of a two-stage model, in which it is used to identify342

entities from a small number of candidate entities343

proposed by a simpler and faster model.344

4 Experiment345

4.1 Experimental Setup346

4.1.1 Dataset347

For the NER task, we conduct experiments on348

both flat and nested benchmarks. Firstly, on the349

flat NER, we adopt CoNLL03 (Sang and Meulder,350

2003), OntoNotes 5.0 (Pradhan et al., 2013) and351

Few-NERD (Ding et al., 2021). Then, on the nested352

NER, we use ACE04 (Doddington et al., 2004),353

ACE05 (Walker et al., 2006) and SciERC (Luan354

et al., 2018). The three nested NER datasets are355

also used to evaluate the end-to-end RE. The details356

of the adopted datasets are shown in the Appendix.357

4.1.2 Evaluation Metrics358

For NER task, we follow a span-level evaluation359

setting, where the entity boundary and entity type360

are required to correctly predicted. For the end-361

to-end RE, we report two evaluation metrics: (1)362

Boundaries evaluation (Rel) requires the model363

to correctly predict the boundaries of the subject364

entity and the object entity, and the entity relation;365

(2) Strict evaluation (Rel+) further requires the 366

model to predict the entity types on the basis of the 367

requirement of the boundary prediction. Moreover, 368

following Wang et al. (2021d), we regard each sym- 369

metric relational instance as two directed relational 370

instances. 371

4.1.3 Implementation Details 372

We adopt bert-base-uncased (Devlin et al., 2019) 373

and albert-xxlarge-v1 (Lan et al., 2020) encoders 374

for ACE04 and ACE05. For SciERC, we use the in- 375

domain scibert-scivocab-uncased (Beltagy et al., 376

2019) encoder. For flat NER, we adopt roberta- 377

large encoder. We also leverage the cross-sentence 378

information (Luan et al., 2019; Luoma and Pyysalo, 379

2020), which extends each sentence by its context 380

and ensures that the original sentence is located 381

in the middle of the expanded sentence as much 382

as possible. As discussed in Section 4.4.1, for the 383

packing scheme on NER, we set the group size to 384

256 to improve efficiency. We run all experiments 385

with 5 different seeds and report the average score. 386

See the appendix for the standard deviations and 387

the detailed training configuration. 388

Moreover, inspired by the success of prompt 389

tuning (Brown et al., 2020; Schick and Schütze, 390

2021), we use the embedding of meaningful words 391

instead of randomness to intialize the embedding 392

of markers , denoted as prompt init. For NER, we 393

initialize a pair of markers for the span with the 394

words [MASK] and entity. For RE, we initialize a 395

pair of solid markers for a subject with the words 396

[MASK] and subject and initialize the markers for 397

an object with the words [MASK] and object. 398

4.2 Named Entity Recognition 399

4.2.1 Baselines 400

Our packing scheme allows the model to apply the 401

levitated markers to process massive span pairs and 402

to our best knowledge, we are the first to apply the 403

levitated markers on the NER task. We compare 404

our neighborhood-oriented packing scheme with 405

the Random Packing, which randomly packs the 406

candidate spans into groups. We adopt two com- 407

mon NER models: (1) SeqTagger (Devlin et al., 408

2019) regards NER as a sequence tagging task and 409

applies a token-level classifier to distinguish the 410

IOB2 tags for each word (Sang and Veenstra, 1999). 411

(2) T-Concat (Jiang et al., 2020; Zhong and Chen, 412

2021) assigns an entity type or a non-entity type 413

to each span based on its T-Concat span represen- 414

tation. Note that solid markers cannot deal with 415
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Model CoNLL03 OntoN5 F-NERD

Ma and Hovy (2016) 91.0 86.3 -
Devlin et al. (2019) 92.8 89.2 68.9
Li et al. (2020) 93.0 91.1 -
Yu et al. (2020) 93.5 91.3 -
Yan et al. (2021) 93.2 90.4 -
SeqTagger (Our impl.) 93.6 91.2 69.0
T-Concat (Our impl.) 93.0 91.7 70.6

Random Packing 93.9 91.7 61.5
PL-Marker (Our model) 94.0 91.9 70.9

Table 1: Micro F1 on the test set for the flat NER. On-
toN5: OntoNotes 5.0; F-NERD: Few-NERD.

the overlapping spans simultaneously, thus it is too416

inefficient to apply solid markers independently on417

the NER task.418

4.2.2 Results419

We show the flat NER results in the Table 1 and420

the nested NER results in the Ent column of Ta-421

ble 2, where PURE (Zhong and Chen, 2021) ap-422

plies the T-Concat feature on its NER module. As423

follow, some observations are summarized from424

the experimental results: (1) The model with our425

neighborhood-oriented packing strategy outper-426

forms the model with random packing strategy on427

all three flat NER datsets, especially obtaining a428

9.4% improvement on Few-NERD. Few-NERD429

includes 325 candidate spans on average, while430

CoNLL03 and OntoNotes 5.0 only contain 90 and431

174 respectively. It shows that the neighborhood-432

oriented packing strategy can well handle the433

dataset with more groups of markers to better434

model the interrelation among neighbor spans. (2)435

With the same pre-trained encoder, PL-Marker436

achieves an absolute F1 improvement of +0.1%-437

1.1% over T-Concat on all six NER benchmarks,438

which shows the advantage of levitated markers439

in aggregating span-wise representation for the en-440

tity type prediction; (3) PL-Marker outperforms441

SeqTagger by an absolute F1 of +0.4%, +0.7%,442

+1.9% in CoNLL03, OntoNote 5.0 and Few-NERD443

respectively, where CoNLL03, OntoNote 5.0 and444

Few-NERD contain 4, 18 and 66 entity types re-445

spectively. Such improvements prove the effective-446

ness of PL-Marker in handling diverse interrelation447

between entities of diverse types.448

4.3 Relation Extraction449

4.3.1 Baselines450

For the end-to-end RE, we compare our model,451

PL-Marker, with a series of state-of-the-art models.452

Here, we introduce two of the most representative 453

works with T-Concat and Solid Markers span rep- 454

resentation: (1) DyGIE++ (Wadden et al., 2019) 455

first acquires the T-Concat span representation, and 456

then iteratively propagates coreference and relation 457

type confidences through a span graph to refine the 458

representation; (2) PURE (Zhong and Chen, 2021) 459

adopts independent NER and RE models, where 460

the RE model processes each possible entity pair 461

in one pass. In their work, PURE (Full) adopts two 462

pairs of solid markers to emphasize a span pair and 463

the PURE (Approx) employs two pairs of levitated 464

markers to underline the span pair. 465

4.3.2 Results 466

As shown in Table 2, with the same BERTBASE en- 467

coder, our approach outperforms previous methods 468

by strict F1 of +1.5% on ACE05 and +2.1% on 469

ACE04. With the SciBERT encoder, our approach 470

also achieves almost the best performance on Sci- 471

ERC. Using a larger encoder, ALBERTXXLARGE, 472

both of our NER and RE models are further im- 473

proved. Compared to the previous state-of-the-art 474

model, PURE (Full) (Zhong and Chen, 2021), our 475

model gains a substantially +3.5% and +3.6% strict 476

relation F1 improvement on ACE05 and ACE04 477

respectively. Such improvements over PURE indi- 478

cate the effectiveness of modeling the interrelation 479

between the same-subject or the same-object entity 480

pairs in the training process. 481

4.4 Inference Speed 482

In this section, we compare the models’ inference 483

speed on an A100 GPU with a batch size of 32. We 484

use the BASE size encoder for ACE05 and SciERC 485

in the experiments and the LARGE size encoder for 486

flat NER models. 487

4.4.1 Speed of Span Model 488

We evaluate the inference speed of PL-Marker with 489

different group size K on CoNLL03 and Few- 490

NERD. We also evaluate a cascade Two-stage 491

model, which uses a fast BASE-size T-Concat 492

model to filter candidate spans for our model. As 493

shown in Table 3, PL-Marker achieves a 0.4 F1 im- 494

provement on CoNLL03 but sacrifices 60% speed 495

compared to the SeqTagger model. And we observe 496

that our proposed Two-stage model achieves simi- 497

lar performance to PL-Marker with 3.1x speedup 498

on Few-NERD, which shows it is more efficient to 499

use PL-Marker as a post-processing module to elab- 500

orate the coarse prediction from a simple model. 501
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Model Encoder Rep ACE05 ACE04 SciERC
Type Ent Rel Rel+ Ent Rel Rel+ Ent Rel Rel+

Li and Ji (2014) - - 80.8 52.1 49.5 79.7 48.3 45.3 - - -
SPtree (Miwa and Bansal, 2016) LSTM T 83.4 - 55.6 81.8 - 48.4 - - -
DYGIE (Luan et al., 2019)3 ELMo T 88.4 63.2 - 87.4 59.7 - 65.2 41.6 -
Multi-turn QA (Li et al., 2019) BERTL - 84.8 - 60.2 83.6 - 49.4 - - -
OneIE (Lin et al., 2020) BERTL T 88.8 67.5 - - - - - - -

DYGIE++ (Wadden et al., 2019)3

BERTB/
SciBERT

T 88.6 63.4 - - - - - - -
TriMF (Shen et al., 2021)3 T 87.6 66.5 62.8 - - - 70.2 52.4 -
UniRE (Wang et al., 2021d)3 T 88.8 - 64.3 87.7 - 60.0 68.4 - 36.9
PURE-F (Zhong and Chen, 2021)3 S 90.1 67.7 64.8 89.2 63.9 60.1 68.9 50.1 36.8
PURE-A (Zhong and Chen, 2021)3 L - 66.5 - - - - - 48.1 -
PL-Marker (Our Model)3 S&L 89.7 68.8 66.3 88.9 65.7 62.2 69.9 52.0 40.6

TableSeq (Wang and Lu, 2020)

ALBXXL

T 89.5 67.6 64.3 88.6 63.3 59.6 - - -
UniRE (Wang et al., 2021d)3 T 90.2 - 66.0 89.5 - 63.0 - - -
PURE-F (Zhong and Chen, 2021)3 S 90.9 69.4 67.0 90.3 66.1 62.2 - - -
PL-Marker (Our Model)3 S&L 91.1 72.3 70.5 90.4 69.2 65.8 - - -

Table 2: Overall entity and relation F1 scores on the test sets of ACE04, ACE05 and SciERC. The encoders used
in different models: BERTB =BERTBASE, BERTL = BERTLARGE = ALBXXL = ALBERTXXLARGE. Specially, TriMF,
UniRE, PURE and PL-Marker apply BERTBASE on ACE04/05 and apply the SciBERT on SciERC. 3 denotes
that the model leverages the cross-sentence information. Representation Type: T–T-Concat; S–Solid Marker; L–
Levitated Marker. Model name abbreviation: PURE-F: PURE (Full); PURE-A: PURE (Approx.).

Model K
CoNLL03 Few-NERD

Ent Speed Ent Speed
(F1) (sent/s) (F1) (sent/s)

SeqTagger - 93.6 138.7 69.0 142.0
T-Concat - 93.0 137.2 70.6 126.8

PL-Marker
128 94.0 54.8 70.9 23.8
256 - 39.6 - 25.8
512 - 22.9 - 18.3

Two-stage 16 93.7 87.1 70.8 80.6
32 94.0 83.3 70.9 79.8

Table 3: Micro F1 and efficiency on NER benchmarks
with respect to the model and different packing group
size K. We adopt a maximum span length of 8 for
CoNLL03 and 16 for Few-NERD.

Model
ACE05 SciERC

Rel Speed Rel Speed
(F1) (sent/s) (F1) (sent/s)

PURE (Full) 67.7 76.5 50.1 88.3
PURE (Approx.) 66.5 593.7 48.8 424.2
PL-Marker 69.1 211.7 51.6 190.9

Table 4: Comparison of our RE model and PURE in
relation F1 (boundaries) and speed. We report the result
with BASE encoders. All models adopt the same entity
input from the entity model of PURE.

In addition, when the group size grows to 512, PL-502

Marker slows down due to the increased complexity503

of the Transformer. Hence, we choose a group size504

of 256 in practice.505

4.4.2 Speed of Span Pair Model 506

We apply the subject-oriented and the object- 507

oriented packing strategies on levitated markers 508

for RE. Here, we compare our model with the 509

other two marker-based models. Firstly, PURE 510

(Full) (Zhong and Chen, 2021) applies solid mark- 511

ers to process each entity pair independently. Sec- 512

ondly, PURE (Approx.) packs the levitated mark- 513

ers of all entity pairs into an instance for batch 514

computation. Since the performance and the run- 515

ning time of the above methods rely on the quality 516

and the number of predicted entities, for a fair com- 517

parison, we adopt the same entity input from the 518

entity model of PURE on all the RE models. Ta- 519

ble 4 shows the relation F1 scores and the inference 520

speed of the above three methods. On both datasets, 521

our RE model, PL-Marker, achieves the best perfor- 522

mance and PURE (Approx.) has highest efficiency 523

in the inference process. Compared to the PURE 524

(Full), our model obtains a 2.2x-2.8x speedup and 525

better performance on ACE05 and SciERC. Com- 526

pared to PURE (Approx.), our model achieves a 527

2.6%-2.8% relation F1 (boundaries) improvement 528

on ACE05 and SciERC, which again demonstrates 529

the effectiveness of our fusion markers and packing 530

strategy. Overall, our model, with a novel subject- 531

oriented packing strategy for markers, has been 532

proven effective in practice, with satisfactory accu- 533

racy and affordable cost. 534
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Named Entity Recognition

Text: This is the Cross Strait program on CCTV Inter-
national Channel. ... Candidates for the giant pandas to
be presented to Taiwan as gifts from the mainland may
increase. ...
T-Concat: (Cross Strait, WORK OF ART), (CCTV Inter-
national Channel, ORG), (Taiwan, GPE)
Our: (Cross Strait, ORG), (CCTV International Channel,
ORG), (Taiwan, GPE)

Relation Extraction

Text: Liana drove 10 hours from Pennsylvania to attend
the rally in Manhattan with her parents
PURE: (Liana, located in, Manhattan)
Our: (Liana, located in, Manhattan), (her parents, lo-
cated in, Manhattan)

Table 5: Case study of our NER and RE model.

Model
ACE05 SciERC

gold e2e gold e2e

PL-Marker 73.4 68.8 70.5 52.0
w/o solid marker 69.3 64.5 61.8 45.0
w/o inverse relation 70.5 65.2 63.7 46.3
w/o entity type loss 72.8 67.8 70.1 51.8
w/o prompt init 73.0 67.9 69.7 51.2

Table 6: The relation F1 (boundaries) on the test set
of ACE05 and SciERC with different input features for
the ablation study. gold: the gold entities; e2e: the
entities are predicted by our entity model.

4.5 Case Study535

We show several cases to compare our span model536

with T-Concat and to compare our span pair model537

with PURE (Full). As shown in Table 5, our span538

model could collect contextual information, such as539

Taiwan and mainland, for underlined span, Cross540

Strait, assisting in predicting its type as organiza-541

tion rather than work of art. Our span model learns542

to integrally consider the interrelation between the543

same-object relational facts in training phase, so as544

to successfully obtain the fact that both Liana and545

her parents are located in Manhattan.546

4.6 Ablation Study547

In this section, we conduct ablation studies to inves-548

tigate the contribution of different components to549

our RE model, where we apply BASE size encoder550

in the experiments.551

Two pairs of Levitated Markers We evaluate552

the w/o solid marker baseline, which applies two553

pairs of levitated markers on the subject and object554

respectively and packs all the span pairs into an555

instance. As shown in Table 6, compared to PL-556

Marker, the model without solid markers drops a557

huge 4.3%-8.7% F1 on ACE05 and SciERC when 558

the golden entities are given. The result demon- 559

strates that it is sub-optimal to continue to apply 560

directional attention to bind two pairs of levitated 561

markers, since a pair of levitated marker is already 562

tied by the directional attention. 563

Inverse Relation We establish an inverse rela- 564

tion for each asymmetric relation for a bidirectional 565

prediction. We evaluate the model without inverse 566

relation, which replaces the constructed inverse 567

relation with a non-relation type and adopts a uni- 568

directional prediction. As shown in Table 6, the 569

model without inverse relation significantly drops 570

2.9%-6.8% F1 on both datasets with the gold enti- 571

ties given, indicating the significance of modeling 572

the information from the object entity to the subject 573

entity in our asymmetric framework. 574

Entity Type We add an auxiliary entity type loss 575

to RE model to introduce the entity type informa- 576

tion. As shown in Table 6, when the gold entities 577

are given, the model without entity type loss drops 578

0.6% F1 on ACE05 and 0.4% F1 on SciERC, which 579

shows the importance of entity type information 580

to RE. We also attempt to apply the entity type 581

prediction from the RE model to refine the entity 582

type prediction from the NER model. Please refer 583

to the Appendix for details. 584

Prompt Init As illustrated in the implementation 585

details, we initialize the embeddings of markers 586

with the embeddings of practical words. Table 6 587

shows the results of the model without prompt 588

initialization, which decreases 0.4%-0.8% F1 on 589

ACE05 and SciERC when gold entities are given. 590

It suggests that initializing markers with meaning- 591

ful words helps the model to find the optimized 592

direction during the training phase. As shown in 593

the Appendix, the prompt initialization also brings 594

a certain positive effects to our NER models. 595

5 Conclusion 596

In this work, we present a novel packed levitated 597

markers, with a neighborhood-oriented packing 598

strategy and a subject-oriented packing strategy, to 599

obtain the span (pair) representation. Considering 600

the interrelation between spans and span pairs, our 601

model achieves the state-of-the-art F1 scores and 602

a promising efficiency on both NER and RE tasks 603

across six standard benchmarks. In future, we will 604

further investigate how to generalize the marker- 605

based span representation to more NLP tasks. 606
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A Training Configuration830

We follow Luan et al. (2019) to split ACE04 into 5831

folds and split ACE05 into train, development, and832

test sets. For other datasets, we adopt the official833

split. Table 7 shows the statistics of each dataset.834

For the bidirectional prediction on RE, we set the835

forward and inverse relation of symmetric labels836

to be consistent. The symmetric labels include the837

PER-SOC in the ACE04/05 and the Compare and838

Conjunction in the SciERC.839

We train all the models with Adam opti-840

mizer (Kingma and Ba, 2015) and 10% warming-841

up steps. And we adopt a learning rate of 2e-5 for842

models with BASE size and a learning rate of 1e-5843

for models with LARGE or XXLARGE size. We run844

all experiments with 5 different seeds (42, 43, 44,845

45, 46).846

For NER model, we set the maximum length of847

expanded sentence C as 512. For RE model, we set848

C as 256 for ACE05 and SciERC and set C as 384849

for ACE04, whose original sentence might exceed850

256 tokens. To enumerate possible spans, we set851

the maximum span length L as 16 for OntoNote852

5.0 and Few-NERD and set 8 for the other datasets.853

For the NER of CoNLL03 and the RE of ACE05,854

we search the batch size in [4,8,16,32] and observe855

the model with a batch size of 8 achieves a sightly856

better performance. Hence, we choose a batch size857

of 8 for all the datasets. We search the number858

of epochs in [3,5,8,10,15,50] for all the datasets859

and finally choose 8 for CoNLL03, 5 for OntoNote860

5.0, 3 for Few-NERD, 10 for ACE05-NER, 15 for861

ACE04-NER, 50 for SciERC-NER and 10 for all862

the RE models.863

B NER Results864

We illustrate the span representation for NER in865

Figure 3. We show the average scores of the base-866

lines and PL-Marker on flat NER with standard867

deviations in Table 8.868

Dataset #Sents #Ents (#Types) #Rels (#Types)

CoNLL03 22.1k 35.1k (4) -
OntoNotes 5.0 103.8k 161.8k (18) -
Few-NERD 188.2k 491.7k (66) -
ACE05 14.5k 38.3k (7) 7.1k (6)
ACE04 8.7k 22.7k (7) 4.1k (6)
SciERC 2.7k 8.1k (6) 4.6k (7)

Table 7: The statistics of the adopted datasets.

The Bank of China is [M] [/M]Levitated Marker

Share Position ID

Directional Attention

The Bank of China isToken Concat open

The [M] Bank of China [/M] is openSolid Marker

open

Figure 3: An illustration of T-Concat, Solid Marker and
Levitated Marker in the entity typing task. We high-
light the attention direction for the levitated marker and
omit the bidirectional attention line between other to-
ken pairs. Token Concat conveys the representation of
edged token, [Bank] and [China], through the classifier,
while Solid Marker and Levitated Marker employ the
features of two markers, [M] and [/M] for classifica-
tion.

C RE Results 869

We show the average scores of PL-Marker on RE 870

with standard deviations in Table 9. 871

C.1 Refine Entity Type 872

As shown in Table 10, using the entity type pre- 873

dicted by the RE model brings +0.6% and -0.3% 874

strict relation F1 on ACE05 and SciERC respec- 875

tively. We observe that the most frequent entity 876

type pair for each relation occupies 48.5% for 877

ACE05, 52.0% for ACE04 and 19.1% for SciERC, 878

which shows that the relation is more relevant to the 879

entity type in ACE05 than that in SciERC. Hence, 880

we only use the RE model to refine the NER results 881

for ACE04 and ACE05. 882

D Prompt Initialization for NER 883

As shown in Table 11, using meaningful words, en- 884

tity and [MASK], as prompt to initialize the mark- 885

ers can bring a slight improvement to all six NER 886

benchmarks. 887
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Model CoNLL03 OntoNotes 5 Few-NERD

SeqTagger 93.6±0.1 91.2±0.2 69.0±0.1

Token Concat 93.0±0.2 91.7±0.1 70.6±0.1

Random Packing 93.9±0.2 91.7±0.2 61.5±0.1

PL-Marker 94.0±0.1 91.9±0.1 70.9±0.1

Table 8: Overall entity and relation F1 scores of the
baselines and PL-Marker on the test set of CoNLL03,
OntoNotes 5.0 and Few-NERD. We report average
scores across five random seeds, with standard devia-
tions as subscripts.

Dataset Encoder Ent Rel Rel+

ACE05 BERTB 89.7±0.27 68.8±0.50 66.3±0.45

ALBXXL 91.1±0.29 72.3±0.88 70.5±0.69

ACE04 BERTB 88.9±0.70 65.7±1.98 62.2±1.67

ALBXXL 91.1±0.45 72.3±2.02 70.5±1.58

SciERC SciBERT 69.9±0.71 52.0±0.61 40.6±0.56

Table 9: Overall entity and relation F1 scores of
PL-Marker on the test set of ACE04, ACE05 and
SciERC. BERTB denotes BERTBASE; ALB denotes
ALBERTXXLARGE; We report average scores across five
random seeds with standard deviations as subscripts.

Entity Type Source ACE05 SciERC
Ent Rel+ Ent Rel+

NER Model 89.8 65.7 69.9 40.6
+RE Model Refine 89.7 66.3 69.5 40.3

Table 10: The entity F1 and the strict relation F1 on
the test set of ACE05 and SciERC when the RE model
is used to refine the NER prediction or when it is not
used.

Init Strategy CoNLL03 OntoNote 5.0 Few-NRED

Random 93.9±0.12 91.8±0.12 70.8±0.11

Prompt 94.0±0.09 91.9±0.08 70.9±0.05

Init Strategy ACE05 ACE04 SciERC

Random 91.0±0.28 90.3±0.45 69.4±0.50

Prompt 91.1±0.29 90.4±0.42 69.9±0.71

Table 11: The entity F1 on test set of NER datasets
when the PL-Marker is initialized with prompt or when
it is initialized randomly. We use the RoBERTaLARGE
for flat NER datasets and ALBERTXXLARGE for the
nested NER datasets.
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