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Abstract

In this paper, we find a sample complexity bound
for learning a simplex from noisy samples. As-
sume a dataset of size n is given which includes
i.i.d. samples drawn from a uniform distribution
over an unknown simplex in RK , where samples
are assumed to be corrupted by a multi-variate
additive Gaussian noise of an arbitrary magnitude.
We prove the existence of an algorithm that with
high probability outputs a simplex having a ℓ2-
distance of at most ε from the true simplex (for
any ε > 0). Also, we theoretically show that
in order to achieve this bound, it is sufficient to
have n ≥

(
K2/ε2

)
eΩ(K/SNR2) samples, where

SNR stands for the signal-to-noise ratio. This
result solves an open problem in this area of re-
search and shows as long as SNR ≥ Ω

(
K1/2

)
,

the sample complexity of the noisy regime has
the same order to that of the noiseless case. Our
proofs are a combination of the so-called sam-
ple compression technique from (Ashtiani et al.,
2018), mathematical tools from high-dimensional
geometry, and Fourier analysis. In particular, we
have proposed a general Fourier-based technique
for recovery of a more general class of distribu-
tion families from additive Gaussian noise, which
can be further used in a variety of other related
problems.

1. Introduction
Many practical problems in machine learning and data
science can be naturally modeled by learning of high-
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dimensional geometric shapes from a given set of unla-
beled data points. In particular, learning of simplices from
randomly scattered points arises in many fields ranging
from bioinformatics to remote sensing (Chan et al., 2009;
Schwartz & Shackney, 2010; Satas & Raphael, 2017). A
simplex is defined as the set of all convex combinations of
K + 1 points in RK , for K ∈ N. Formally speaking, our
problem can be stated as follows: assume n i.i.d. samples
are drawn from a uniform measure over an unknown sim-
plex in RK . Also, each sample is assumed to be corrupted
by an additive multi-variate Gaussian noise with a covari-
ance of σ2IK×K , for an unknown σ. The main question
that we try to address is: How large n needs to be in terms of
parameters K, σ, SNR and etc., such that the true simplex
can be consistently recovered with high probability?

Learning of simplices is a well-studied problem. Due to its
practical importance, several heuristic algorithms have been
proposed for different scenarios such as noisy and sparse
cases. In this paper, we focus on the theoretical aspects of
this problem which still has several open questions. There
exists at least one efficient algorithm for learning of sim-
plices that comes with a theoretical guarantee (see Section
1.1), but still suffers from a very large sample complex-
ity, i.e., requires n ≥ Ω

(
K22

)
. Concurrently, researchers

work on deriving information-theoretic sample complexity
bounds for this task irrespective time and memory require-
ments. Recently, the optimal sample complexity bound is de-
rived for the noiseless case which is achieved by Maximum
Likelihood Estimator (MLE). The MLE for this problem
is the minimum volume simplex that contains all the sam-
ples, which runs in exponential time1. Najafi et al. (2021)
proved that MLE in this case is a PAC-learning algorithm
with an asymptotically decreasing Total Variation (TV) dis-
tance from the true simplex. They showed that Ω̃

(
K2/ε

)
(Logarithmic terms are ignored) samples are sufficient to
estimate the true simplex up to a TV distance of ε > 0.
However, the noiseless case is unrealistic since we do not
have access to clean data in real world. On the other hand,
the minimum-volume inclusive simplex proposed by Najafi
et al. (2021) is no longer a ‘proper’ solution when samples

1Finding a polynomial algorithm with provable guarantees that
comes with a reasonable dependency on K is still an open problem.
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are noisy, since the corrupted samples are not necessarily
contained inside the true simplex.

In this work, we aim at finding the information-theoretic
sample complexity of learning simplices in noisy regimes.
Mathematically speaking, we assume samples are generated
according to the following model:

yi = V ϕi + zi , i = 1, . . . , n, (1)

where V is a K × (K + 1) matrix including the ver-
tices of the true simplex ST as its columns. Each ϕi ∈
RK is drawn from a uniform Dirichlet distribution and
zi ∈ RK are sampled from the multivariate Gaussian
distribution N

(
0, σ2IK

)
. We tackle the task of estimat-

ing the true simplex via an exponential-time estimator
Ŝ = Ŝ (y1:n). In particular, we prove that having at most
Ω̃
(
K2/ε2

)
eΩ(K/SNR2) noisy samples from a K-simplex

is sufficient to estimate the simplex with a ℓ2-distance of at
most ε, for any ϵ > 0. Here, SNR denotes the ratio of the
signal (maximum standard deviation of the noiseless mea-
sure over ST ) to the component-wise standard deviation of
the noise, i.e., σ. This result solves one of the open problems
in this area and might justify a mysterious observation in
practice: Almost all heuristic algorithms perform close the
noiseless case as long as SNR is larger than a presumably
sub-linear function of dimension K. However, they experi-
ence a sudden decline in performance as SNR is decreased
further from that point (Najafi et al., 2021; Agathos et al.,
2014; Lin et al., 2013).

Our approach to proving the above has four main steps: 1)
We find a ball in RK which with high probability contains
the true simplex. 2) We quantize this ball by an ε-cover of
isolated points. Each K + 1 combination of such points
forms a candidate simplex for approximating ST . By as-
suming that the covering has a sufficient precision, we prove
the existence of at least one candidate that has a small TV-
distance from the main simplex. 3) Then, we choose a
noise-corrupted density, i.e., the convolution of the uniform
measure over a candidate simplex with a Gaussian distribu-
tion, from the candidate set such that, with high probability,
it has a small TV distance from the noisy version of the
true simplex. This can be done using some aspects of the
“sample compression” technique in (Ashtiani et al., 2018).
4) In the final step, we propose a novel Fourier-based tech-
nique to show that as long as the noise-smoothed versions
of any two simplices are close in TV-distance, their under-
lying simplices are also close to each other in the sense of
ℓ2-distance.

1.1. Related Works

We categorize the existing works based on their focus, which
could be the efficiency of the proposed algorithms, or the
fundamental sample complexity of the problem irrespective

of its time complexity. In the former, the main purpose
to provide a heuristic solution with promising results in
practice. However, papers in the latter category aim to find
fundamental and information-theoretic limitations for the
problem. In the remainder of this part, we review a number
of works from both categories.

Anderson et al. (2013) proved that by having Ω
(
K22

)
noiseless samples, one can estimate the true simplex via
a polynomial-time algorithm. The core idea is to utilize
the third moment and local search techniques from Indepen-
dent Component Analysis (ICA) research. To the best of our
knowledge, finding polynomial-time algorithms with a more
relaxed dependence to K is still an open problem. Concur-
rently, Najafi et al. (2021) proved that sample complexity of
the MLE in the noiseless case is Ω̃

(
K2/ε

)
, where ε is the

permissible TV-distance of the output of the algorithm from
the true simplex. Since MLE in this case runs in exponential
time, they also provide an alternative heuristic approach as a
practical surrogate to MLE, which still does not come with
a rigid theoretical guarantee.

Theoretical attempts to tackle this problem in the noisy
setting is limited to the work of Bhattacharyya & Kannan
(2020). Their work is also based on the sample compression
technique, originally used in the seminal work of Ashtiani
et al. (2018) in learning high-dimensional Gaussian mixture
models. Bhattacharyya & Kannan (2020) prove that a noisy
simplex can be learned using Ω̃

(
K2
)

samples only if there
exists at least one sample near each vertex of the simplex.
This assumptions is very strong, and a back of the envelope
calculation shows that one needs around Ω̃

(
1/εK

)
samples

to hold with high probability.

From a practical point of view, several heuristic methods
have been introduced so far in order to deal with real-world
problems in bioinformatics, hyper-spectral imaging, and
etc. (Piper et al., 2004; Bioucas-Dias et al., 2012; Lin et al.,
2013). In hyper-spectral imaging, one aims at finding the
distribution of the constituent elements in an area by exam-
ining remote hyper-spectral images. Each pixel in such an
image can be thought as a random convex combination of
a finite set of fixed prototypes which correspond to pure
elements that exist in that region. Therefore, the problem
of finding constituent minerals would naturally translate
into estimating an unknown simplex from a set of presum-
ably uniform samples (Ambikapathi et al., 2011; Agathos
et al., 2014; Zhang et al., 2017). Learning of simplices in
bioinformatics usually arises in the study of complex tis-
sues. A complex tissue is composed of multiple cell-types
–a group of cells with similar characteristics– such as blood,
brain, or even tumor cells (Tolliver et al., 2010; Zuckerman
et al., 2013). Bulk data from complex tissues, such as gene
expression level vectors, can again be modeled as convex
combinations of its constituent cell-type profiles. In this
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line of work, researchers aim at finding the structure of tis-
sues through studying the state of cell-types, which again
translates into learning a high-dimensional simplex (Shoval
et al., 2012; Korem et al., 2015).

With respect to using Fourier-based techniques for distri-
bution learning, a recent body of work has mainly focused
on the special case of Gaussian mixture models (Regev &
Vijayaraghavan, 2017; Chakraborty & Narayanan, 2020;
Chen & Moitra, 2021; Liu & Li, 2022; Qiao et al., 2022).
In particular, Qiao et al. (2022) have utilized the techniques
developed by Candès & Fernandez-Granda (2014) for “su-
per resolution” research in recovering the parameters of
mixtures of well-separated Gaussians. Even though there
are similarities between our noise analysis tools and those
proposed by the above researchers in the application stage,
the theoretical nature of what we propose in Section 3.4 is
completely distinct from existing works.

The rest of the paper is organized as follows: In Section 2,
we formally define the problem and present our notation
and definitions. Our main theoretical results as well as the
algorithm that achieves our bounds are discussed in Section
3. Finally, Section 4 concludes the paper and presents some
suggestions for future works.

2. Notation and Definitions
We use the same notations as Najafi et al. (2021). A K-
simplex is defined as the set of all convex combination
of K + 1 affinely independent points in RK . Let V =
[v0|v1| · · · |vk] ∈ RK×(K+1) be a matrix whose columns
represent vertices of the simplex, then K-simplex S can be
defined as

S =

{
V ϕ

∣∣∣∣ ϕ ∈ [0, 1]
K+1

, ϕT1 = 1

}
.

Also, let us denote the set of all possible K-simplices in RK

by SK . We denote the uniform probability measure over
a simplex S by PS , and its probability density function by
fS (x). Thus, fS (x) can be written as

fS (x) =
1 (x ∈ S)
Vol (S)

, ∀x ∈ RK ,

where Vol (S) denotes the Lebesgue measure (or volume)
of S. The noisy simplex family, i.e., the class of dis-
tributions formed by convolving fS (for S ∈ SK) by
Gσ ≜ N

(
0, σ2I

)
, is denoted by GK,σ. Mathematically

speaking,

GK,σ ≜ {fS ∗Gσ| S ∈ SK} , (2)

where ∗ denotes the convolution operator. Obviously, the
distribution of input data points yi lie in GK,σ. With a
little abuse of notation, we use the term “class of simplices”

to both refer to SK and also {fS | S ∈ SK} whenever the
difference is clear from the context. In a similar fashion, we
refer to GK,σ as the class of “noisy simplices”.

In order to measure the difference between two distributions,
we use both ℓ2 and total variation distances. Consider two
probability measures P1 and P2, with respective density
functions f1 and f2, which are defined over RK . Then, TV
distance between P1 and P2 can be defined as

TV(P1,P2) ≜ sup
A∈B

|P1 (A)− P2 (A) | = 1

2
∥f1 − f2∥1,

where B is the set of all Borel sets in RK .

Definition 2.1 (PAC-Learnability of a distribution class in
realizable setting). We say a class of distributions F is
PAC learnable in realizable setting, if there exists a learning
method which for any distribution g ∈ F and any ϵ, δ >
0, outputs an estimator ĝ using n ≥ poly (1/ϵ, 1/δ) i.i.d.
samples from g, which with probability at least 1−δ satisfies

∥ĝ − g∥TV ≤ ϵ. (3)

We also need to define a series of geometric restrictions
for the simplex in noisy cases. In fact, those simplices that
are significantly stretched toward on particular direction
can be shown to be more prune to noise than those with
some minimum levels of geometric regularity. We discuss
the necessity of such definitions in later stages. Similar to
Najafi et al. (2021), let us denote the volume of the largest
facet of a K-simplex (here, volume needs be calculated
in RK−1) by Amax (S), and the length of the largest line
segment inside the simplex (diameter) by Lmax (S). In this
regard, we define the isoperimetricity of a K-simplex as
follow:

Definition 2.2 (
(
θ, θ̄
)
-isoperimetricity of simplices). A K-

simplex S ∈ SK is defined to be
(
θ, θ̄
)
-isoperimetric if the

following inequalities hold:

Amax (S) ≤ θ̄Vol (S)
K−1
K ,

Lmax (S) ≤ θKVol (S)
1
K .

The importance of isoperimetricity arises from the fact that
for a simplex to be (even partially) recoverable from noisy
data, it must not be stretched too much in any direction or
having highly acute angles. In other words, sample com-
plexity in noisy regimes is also affected by the geometric
shape of the underlying simplex.

Definition 2.3 (ϵ-representative set). For any ϵ > 0, we
say that a finite set of distributions G is an ϵ-representative
set for a distribution class F , if for any distribution f ∈ F ,
there exists at least one g ∈ G that satisfies

∥f − g∥TV ≤ ϵ.
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Throughout the paper, and for the sake of simplicity in no-
tation, for any fixed θ̄, θ > 0, whenever we say the class of
simplices we actually mean the class of

(
θ, θ̄
)
-isoperimetric

simplices.

2.1. Problem Definition

In the first three parts of the paper, we aim at proving the
PAC-learnability of the noisy simplex family GK,σ. The
final part is devoted to showing that if two members in
GK,σ are close to each other, e.g., the true noisy simplex
and its consistent estimator, then their underlying noiseless
simplices are also consistently close.

In this regard and based on Definition 2.1, and in or-
der to show that the class of noisy K-simplices is PAC-
learnable, one should find an algorithm that for all fS∗Gσ ∈
GK,σ, any positive ε, δ > 0, and given a dataset D =
{y1,y2, · · · ,yn} of i.i.d. samples drawn from fS ∗ Gσ,
as long as n ≥ poly (1/ε, 1/δ), outputs a noisy simplex
fŜ ∗Gσ such that

P
[∥∥(fŜ − fS

)
∗Gσ

∥∥
TV

≥ ε
]
≤ δ. (4)

Our ultimate goal in Sections 3.1, 3.2, and 3.3 is the fol-
lowing: To derive explicit polynomial forms for the above-
mentioned sample complexity n ≥ poly (1/ε, log (1/δ)),
which (as we show in Theorem 3.5) turns out to be

n ≥ Ω̃

[
K2

ε2
log

1

δ

]
.

The final part is dedicated to show that as long as (with high
probability)

(
fŜ − fS

)
∗Gσ ≤ ε, then we also have∥∥fŜ − fS
∥∥
2
≤ εeΩ(

K
SNR2 ),

where SNR ≜ Lmax (S) / (Kσ) denotes the signal-to-
noise ratio, since based on the definition of a uniform
Dirichlet distribution, Lmax/K represents the maximum
component-wise standard deviation associated to fS . This
will prove our claims in Section 1.

3. Statistical Learning of Noisy Simplices
Before going through the details, let us first present an
sketch of proof for PAC-learnability of noisy simplices.

(Bounding the candidate set): In order to estimate the true
simplex from noisy i.i.d. samples, we first split our data in
half and use the first half to restrict the set of all K-simplices
in SK to a compact subset of RK , denoted by SDK , which
consists of all the simplices that happen to entirely fall
within a bounded ball. We propose a way to construct SDK
based on data such that it includes (with high probability)
the true underlying simplex. This way, we can eliminate

very far candidates and thus focus on simplices that are
placed near the data samples.

(Quantization): We quantize this bounded set and create
a finite ϵ-representative set of K-simplices denoted by
ŜDK = {S1,S2, · · · ,SM} for M ∈ N, such that for each
simplex S ∈ SDK , there exists some i ∈ {1, 2, · · · ,M}
where ∥PSi

− PS∥TV ≤ ϵ.

(Density selection): In this part, we use the second half of
data and try to choose the best simplex in ŜDK . By the best
simplex, we mean the one with the minimum TV-distance
from the true simplex. We show that as long as the proposed
sample complexity bound is satisfied, the output of this
selection procedure falls within a ε TV-distance of fST

∗Gσ .

(Noise analysis): Finally, we show that estimating a noisy
version of a simplex leads to consistent estimation for the
simplex as well. This completes our proof.

3.1. Bounding The Candidate Set

In this part, we show how the first half of the dataset can be
utilized in order to bound the set of all candidate simplices
into a ball with a finite radius in RK . This procedure is
crucial for later stages of the proof. In this regard, first let
us review the generation process of noisy samples yi for
i ∈ [n]:

y ∼ fST
∗Gσ =⇒ y = x+ z,

x = V Sϕ, ϕ ∼ Dir (1, 1, · · · , 1) ,
z ∼ N

(
0, σ2I

)
, (5)

where V S denotes the vertex matrix for S.

The following lemma shows that having enough samples
from a noisy simplex fS ∗Gσ , one can find a hyper-sphere
in RK which (with high probability) contains S.

Lemma 3.1 (Creating SDK). Suppose that we have a set of
i.i.d. samples D = {y1,y2, · · · ,y2m} from fS ∗ Gσ for
m ∈ N. If m ≥ 1000(K + 1)(K + 2) log 6

δ , then the true
simplex S with probability at least 1 − δ is confined in a
K-dimensional sphere with center point p and radius R,
where R and p are defined as follows:

R = 8
√

(K + 1)(K + 2)D , p =
1

2m

2m∑
i=1

yi, (6)

and the variance of the noise can be upper-bounded as
σ2 ≤ D

K−2 = Rn, where D is defined as

D =
1

2m

m∑
i=1

∥y2i − y2i−1∥22.

Proof can be found in Section B of the Appendix. This
way, the set SDK can be fixed. Next, we discuss how to
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properly quantize this set in order to choose an appropriate
final candidate for the true simplex, denoted by Ŝ.

3.2. Quantization

Let us call the hyper-sphere of Lemma 3.1 as CK(p, R),
which with high probability contains the true simplex. In
this part, we choose a set of points Tl

ϵ(C
K(p, R)) =

{p1,p2, · · · ,pl} inside this sphere such that for any point
x ∈ CK(p, R), there exists some i ∈ {1, 2, · · · , l} such
that ∥x− pi∥2 ≤ ϵ. We call Tl

ϵ(C
K(p, R)) a covering set

for CK(p, R). One way to construct such covering set is to
uniformly draw points from the sphere. We show that if the
number of drawn random points exceeds O

((
1 + 2R

ϵ

)2K)
,

then with high probability, they form an ϵ-covering set for
CK(p, R).

Suppose that we construct a random covering set as de-
scribed above and denote it with Tϵ(C

K(p, R)). Now, us-
ing each K + 1 distinct points in Tϵ(C

K(p, R)) we can
build a K-simplex. Assume we collect all such simplices in
a set called Ŝ(CK(p, R)), i.e.,

Ŝ(CK(p, R)) ={
S(x1, . . . ,xK+1)

∣∣∣∣ xi ∈ Tϵ(C
K(p, R)), i ∈ [K + 1]

}
.

Obviously, there exist at most
(|Tϵ(C

K(p,R))|
K+1

)
simplices in

Ŝ(CK(p, R)). The following lemma states that this set is a
sufficiently good representative for all

(
θ, θ̄
)
-isoperimetric

K-simplices inside CK(p, R).

Lemma 3.2. For any ϵ ∈ (0, 1), denote the set of all pos-
sible K-simplices with the vertices in T αϵ

K+1
(CK(p, R)) as

Ŝ(CK(p, R)). Then, the resulting set is an ϵ-representative
set for all

(
θ, θ̄
)
-isoperimetric K-simplices in CK(p, R),

as long as we have:

α =
Vol (S)1/K

5θ̄
.

The proof can be found in Section B of the Appendix. This
way, the finite candidate set SDK can be formed and we can
jump to the next stage of our algorithm for finding a “good”
candidate for the true simplex.

3.3. Density Selection

We take advantage of the fundamental result in Devroye &
Lugosi (2012) which plays a central role in the remainder
of our derivations in this subsection. At this stage, we have
already created a finite set of representative simplices ŜDK
and set out to find the “best” simplex in this set. This can
be done using the following theorem:

Theorem 3.3 (Theorem 6.3 of (Devroye & Lugosi, 2012)).
Let F be a finite class of distributions consisting of M dis-
tinct members {f1, f2, · · · , fM}. Also, suppose we have
n ≥ log (3M2/δ)

2ϵ2 i.i.d. samples from an arbitrary distribu-
tion g for some ϵ, δ > 0. Then, there exist a deterministic
algorithm A , which outputs a number j ∈ {1, . . . ,M}
satisfying the following inequality with probability at least
1− δ:

∥fj − g∥TV ≤ 3 min
i∈{1,2,··· ,M}

∥fi − g∥TV + 4ϵ. (7)

Proof can be found inside the reference. The above theorem
is also the core of the “sample compression” technique used
by Ashtiani et al. (2018) for learning mixtures of Gaussian
distributions. By combining the results of Theorem 3.3
and Lemmas 3.1 and 3.2, we can present our first main
results as follows: The set of all shape-restricted simplices
in RK which entirely fall inside a sphere with radius R is
PAC-learnable:
Theorem 3.4 (PAC-Learnability of Simplices in CK(p, R)
Corrupted by Gaussaim Noise with Bounded Variance). As-
sume p ∈ RK , and R,Rn > 0. Then, the class of

(
θ, θ̄
)
-

isoperimetric K-simplices contained in the K-dimensional
hyper-sphere CK(p, R) and convolved with an isotropic
Gaussian noise N

(
0, σ2I

)
, with σ ≤ Rn, is PAC-learnable.

Specifically, for some ϵ, δ > 0, assume we have at least n
i.i.d. samples from a distribution fS ∗Gσ with σ ≤ Rn and
S ∈ CK(p, R), where the the following bound is satisfied:

n ≥ 50

log 30Rn

√
K

δϵ + 2(K + 1)2 log

(
1 + 100Rθ̄(K+1)

ϵVol(S)
1
K

)
ϵ2

.

(8)
Then, there exists an algorithm A whose outputs SA and
σA satisfy the following inequality with probability at least
1− δ:

∥fS ∗Gσ − fSA ∗GσA ∥TV ≤ ϵ. (9)

The proof can be found in Section A of the Appendix. Let
GK,σ (p, R) represent the distribution set{

fS ∗Gσ|S ⊆ CK (p, R)
}
.

In an agnostic setting, so far we have actually proved
that for any ϵ, R,Rn > 0, p ∈ RK , and having n ≥
Ω̃
(
K2 logR/ϵ2

)
samples from “any” distribution in⋃
σ≤Rn

GK,σ (p, R) ,

there exists an algorithm A that outputs a simplex SA

and noise standard deviation σA such that with a positive
probability we have

∥fSA ∗GK,σA − fS ∗Gσ∥TV

≤ 4 min
S∗⊆CK (p,R)

σ∗≤Rn

∥fS∗ ∗Gσ∗ − fS ∗Gσ∥TV + ϵ, (10)
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while the first term in the r.h.s. becomes zero in the realiz-
able case. Also, note that θ̄ which represents the regularity
level in the shape of simplices is also present inside the
bounds. In fact, trying to learn a highly stretched simplex
from noisy data can become very challenging since even
a small amount of noise can shoot almost all the samples
outside of the simplex. Speaking in a more rigorous fash-
ion, suppose that we put no constraints on the shape of
the simplices. Then, there may exist a direction u such
that the diameter of the simplex ST along u is small, say
≤ ϵ. Let us shift the whole simplex ST towards u by 2ϵ
and call this new simplex by S ′

T . Then, one can show that
TV (ST ,S ′

T ) = 1 since they do not overlap. However, the
total variation distance between the convolution of ST and
S ′
T with a Gaussian distribution can be shown to go to 0,

when ϵ → 0 and σ = Ω(1).

Another limitation of Theorem 9 is that it requires the sim-
plices to be inside an sphere of radius R. Using Lemma
3.1, we show that this is not needed. The following theorem
completes our first main result in this paper by showing
PAC-learnability of the whole class of noisy simplices:

Theorem 3.5 (PAC-Learnability of Noisy Simplices in Gen-
eral). The class of

(
θ, θ̄
)
-isoperimetric K-simplices which

are corrupted with Gaussian white noise, i.e.,⋃
σ>0

GK,σ

is PAC-learnable. In other words, assume n ≥ Õ
(
K2/ε2

)
i.i.d. samples from a noisy simplex fS ∗Gσ , for any S ∈ SK
and σ > 0, are given. Then, there exists an algorithm A
which outputs a noisy simplex fSA ∗GσA which with high
probability satisfies

∥fSA ∗GσA − fS ∗Gσ∥TV ≤ ε. (11)

Proof of the above theorem can be found in Section A of
the Appendix. Obviously, the logR dependence inside the
sample complexity of Theorem 9 has been disappeared in
that of Theorem 3.5.

3.4. Noise Analysis

So far, we have shown that for a simplex S ∈ SK with some
levels of geometric regularity, one can learn fS ∗Gσ up to
an arbitrarily small error as long as n satisfies the bound
in Theorem 3.5. What remains to prove is that a consistent
estimation of fS ∗Gσ leads to the same type of estimate for
fS as well. Our approach is based on showing the following
three important properties:

• The difference function between any two distinct and
geometrically regular members of {fS | S ∈ SK} cor-
responds to a low-frequency function in the Fourier

domain. In other words, it means that the majority of
the energy of the difference function concentrates near
the origin.

• Corruption by Gaussian additive noise is equivalent to
convolving each fS with Gσ, which transforms into
the much simpler form of point-wise multiplication in
the Fourier domain.

• Finally, convolution with a Gaussian kernel Gσ pre-
serves the low-frequency parts of the difference func-
tion. Therefore, the two simplices remain distinguish-
able even after corruption via additive Gaussian noise.

Mathematically speaking, assume S1,S2 ∈ SK are distinct
and have a minimum degree of geometric regularity, e.g.,
Lmax (Si) is bounded for i = 1, 2. Our aim is to show that
if fS1

∗Gσ and fS2
∗Gσ have a total variation distance of

at least ϵ > 0, then the ℓ2-distance between fS1
and fS2

is
also bounded away from zero according to a function of ϵ, σ
and the geometric regularity of simplices S1 and S2. The
theoretical core behind our method is stated in the following
general theorem.
Theorem 3.6 (Recovery of Low-Frequency Objects from
Additive Noise). For K ∈ N, consider a probability density
function family F which is supported over RK . Assume for
sufficiently large α > 0, the following bound holds for all
f, g ∈ F :

1

(2π)
K

∫
∥ω∥∞≥α

|F {f − g} (ω)|2 ≤ ζ
(
α−1

) ∫
RK

|f − g|2 ,

where F {·} denotes the Fourier transform and ζ is an
increasing function with ζ (0) = 0 and continuity at 0. Also,
assume the probability density function Q (also supported
over RK) has the following property:

inf
∥ω∥∞≤α

|F {Q} (ω)| ≥ η (α) ,

where η (·) is a non-negative decreasing function. Then,
there exists a non-negative constant C where for any σ, ε >
0 and f, g ∈ F with ∥f − g∥2 ≥ ε, we have

∥(f − g) ∗Q∥2 ≥ ε

(2π)
K/2

(
sup
α≥0

η (α)
√

1− ζ (α−1)

)
,

Proof. For the sake of simplicity in notations, let F ,G,Q :
RK → C denote the Fourier transforms of f, g and Q,
respectively. Due to Parseval’s theorem, we have

∥f − g∥22 =
1

(2π)
K

∥F − G∥22 .

Also, due to the properties of the Fourier transform, which is
the transformation of convolution into direct multiplication,
one can write

F {(f − g) ∗Q} = Q (F − G) .

6
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Thus, for sufficiently large α we have:

(2π)
K ∥(f − g) ∗Q∥22 =

∫
RK

|Q (ω) (F (ω)− G (ω))|2

≥
∫
∥ω∥∞≤α

|Q (ω)|2 |F (ω)− G (ω)|2

≥ η2 (α)

∫
∥ω∥∞≤α

|F (ω)− G (ω)|2

≥ ε2η2 (α)
[
1− ζ

(
α−1

)]
. (12)

The above chain of inequalities hold for all α > C, therefore
we have:

∥(f − g) ∗Q∥2 ≥ ε

(2π)
K/2

sup
α

η (α)
√
1− ζ (α−1),

which completes the proof.

Theorem 3.6 presents a general approach to prove the re-
coverability of latent functions (or objects, which are the
main focus in this work) from a certain class of independent
additive noise distributions. This approach works as long as
the function class as well as the noise distribution are mostly
comprised of low-frequency components in the Fourier do-
main. For example, the Gaussian noise hurts low-frequency
parts of a geometric object far less than its high-frequency
details. More specifically, we prove the following corollary
for Theorem 3.6:

Corollary 3.7 (Recoverability from Additive Gaussian
Noise N

(
0, σ2I

)
). Consider the setting in Theorem 3.6,

and assume the noise distribution follows Q ≜ N
(
0, σ2I

)
for σ > 0. Then, as long as for f, g ∈ F we have
∥f − g∥2 ≥ ε for some ε ≥ 0, we also have

∥(f − g) ∗Q∥2 ≥

ε

(2π)
K/2

(
sup
α>C

√
1− ζ

(
1

α

)
e−K(σα)2/2

)
(13)

Proof. The Fourier transform of Q = N
(
0, σ2I

)
can be

computed as follows:

F {Q} (ω) =

K∏
i=1

F
{
N
(
0, σ2

)}
(ωi) = e−σ2∥ω∥2

2/2.

Also, it can be easily checked that

inf
∥ω∥∞≤α

e−σ2∥ω∥2
2/2 = e−σ2/2(α2+...+α2) = e−K(ασ)2/2.

By substitution into the end result of Theorem 3.6, the
claimed bounds can be achieved and the proof is com-
plete.

In this regard, our main explicit theoretical contribution in
this section with respect to simplices has been stated in the
following theorem:

Theorem 3.8 (Recoverability of Simplices from Additive
Noise). For any two

(
θ̄, θ
)
-isoperimetric simplices S1,S2 ∈

SK , given that

∥fS1
∗Gσ − fS2

∗Gσ∥TV ≤ ε

for some ε ≥ 0, we have

∥fS1
− fS2

∥2 ≤ εeO(
K

SNR2 ),

where SNR denotes the effective signal-to-noise ratio which
is defined earlier.

Proof is given in Section C of the supplementary document.
The core idea is to first showing that simplices, in general,
are low-frequency objects in the Fourier domain which holds
due to their convexity and simple geometric shape. More
specifically, Lemma C.3 shows that for a geometrically
regular simplex S ∈ SK , we have

1

(2π)
K

∫
∥ω∥∞≥α

|F {fS} (ω)|2 ≤ 1

Vol (S)
O
(
K

α

)
,

for a sufficiently large α > 0, where constants in O (·) only
depend on regularity parameters of S . This inequality is triv-
ial when K = 1, since a one-dimensional simplex is a pulse
function whose Fourier transform is a sinc(x) = sin ax

ax for
some a > 0. However, showing this relation for larger val-
ues of K requires more mathematical effort which is already
carried out in the proof of Theorem 3.8. Furthermore, we
show a similar inequality holds for the difference of sim-
plices as well. This would ultimately enable us to use the
result of Corollary 3.7 to prove the main claim of the paper.

So far in the noise analysis section, we have treated the
parameter σ as if it is a known entity. However, the output
of algorithm A from Theorem 3.5 returns only an estimated
value σA with no direct guarantees. In Section C.1 of
Appendix, we have theoretically dealt with this issue in
details.

4. Conclusions
We present the first sample complexity bounds for consis-
tent learning of high-dimensional simplices in noisy regimes.
Formally speaking, we prove that given a sufficient amount
of noisy data, one can estimate the true simplex up to an
arbitrarily small ℓ2-error. Also, a presumably optimal poly-
nomial dependence on a number of parameters, such as
dimension has been achieved which matches those of the
already-solved noiseless case. More interestingly, we have
found theoretical justification for an already observed phe-
nomenon in practice: The performance of most heuristic

7
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methods in learning of high-dimensional simplices undergo
a rather sharp phase transition w.r.t. the noise power, where
for SNR ≥ Ω

(
K1/2

)
they behave almost identical to the

noiseless case, but their performance severely degrades
when SNR becomes smaller. Our proofs are based on a
number of recent techniques which have been previously
used on learning of Gaussian mixture models, a number of
tools from high-dimensional geometry and a novel Fourier-
based technique for denoising. The latter technique has
applications a broader spectra of problems where general
recovery of distribution families with certain low-frequency
properties from additive Gaussian noise is under question.
For future directions in this area, one can think of analyz-
ing this problem under a broader noise and distortion model
which might match the practice even more. Also, finding the
first non-trivial and amenable polynomial-time algorithms
for this problem is an interesting line of work which has
remained open until this day.
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A. Proof of Theorems
proof of Theorem 3.4. Suppose that S is a

(
θ, θ̄
)
-isoperimetric simplex in RK which is confined in a K-dimensional hyper-

sphere CK(p, R). From Lemma 3.2, we know how to build an ϵ-representative set, for any ϵ > 0, for all
(
θ, θ̄
)
-isoperimetric

K-simplices in CK(p, R). Let us denote this set with Ŝ(CK(p, R)).

Now Consider the class of all isotropic Gaussian noise, N
(
0, σ2I

)
, with σ ≤ Rn. We denote this class of distributions

with NK (Rn). Consider a set Cϵ/
√
K

Rn
=
{
0, ϵ√

K
, 2ϵ√

K
, · · · , Rn

}
, which ϵ√

K
-covers the interval [0, Rn]. Now for all

σi ∈ C
ϵ/

√
K

Rn
we put N

(
0, σ2

i I
)

in a set called N̂K (Rn). From Theorem 1.1 in (Devroye et al., 2018) it can be shown that

N̂K (Rn) is an ϵ-representative set for NK (Rn). According to the way we build N̂K (Rn), we have |N̂K (Rn) | ≤ Rn

√
K

ϵ .
Now we build a set of noisy simplices as follows:

ĜK,σ(R,Rn) ≜
{
fS (x) ∗Gσ (x) |S ∈ Ŝ(CK(p, R)), Gσ ∈ N̂K (Rn)

}
. (14)

Now for any density function fS (x) ∗Gσ (x), where S ∈ CK(p, R) and σ ≤ Rn, we can find some S⋆ ∈ Ŝ(CK(p, R)),
and Gσ⋆ ∈ N̂K (Rn) such that

∥fS − fS⋆∥TV ≤ ϵ,

∥Gσ −Gσ⋆∥TV ≤ ϵ,

fS⋆ ∗Gσ⋆ ∈ ĜK,σ(R,Rn).

Now for the distance between fσ⋆

S⋆ and fσ
S we have:

∥fS⋆ ∗Gσ⋆ − fS ∗Gσ∥TV ≤∥fS⋆ ∗Gσ⋆ − fS⋆ ∗Gσ∥TV + ∥fS⋆ ∗Gσ − fS ∗Gσ∥TV

≤∥Gσ⋆ −Gσ∥TV + ∥fS⋆ − fS∥TV

≤2ϵ. (15)

From the above inequalities it can be seen that for any density function fS ∗Gσ , where S ∈ CK(p, R) and σ ≤ Rn, there
exist some density function f⋆ ∈ Ŝn(CK(p, R), Rn) where ∥f⋆ − fS ∗Gσ∥TV ≤ 2ϵ. Therefore the set ĜK,σ(R,Rn) is a
2ϵ-representative set for the class of K-simplices confined in a hyper-sphere with radius R which convolved with a Gaussian
noise with variance σ ≤ Rn. We show this class with

GK,σ (R,Rn) ≜
{
fS ∗Gσ| S ∈ SK ,S ∈ CK(p, R), σ ≤ Rn

}
(16)

Assume that we have a set of i.i.d. samples from some distribution fS ∗Gσ ∈ GK,σ (R,Rn). From Theorem 3.3, we know
that there exists a deterministic algorithm A such that given

n ≥ log (3|ĜK,σ(R,Rn)|2/δ)
2ϵ2

i.i.d. samples from fS ∗Gσ , the output of the algorithm denoted by fSA ∗GσA , with probability at least 1− δ, satisfies:

∥fSA ∗GσA − fS ∗Gσ∥TV ≤ 3 min
f∈ĜK,σ(R,Rn)

∥f − fS ∗Gσ∥TV + 4ϵ

≤ 6ϵ+ 4ϵ = 10ϵ. (17)

For the cardinality of ĜK,σ(R,Rn) we have:

|ĜK,σ(R,Rn)| =|Ŝ(CK(p, R))||N̂K (Rn) |

≤|Ŝ(CK(p, R))|Rn

√
K

ϵ
. (18)
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And, according to Lemma 3.2 the followings hold for the cardinality of Ŝ(CK(p, R)):∣∣∣∣Ŝ(CK(p, R))

∣∣∣∣ =(
∣∣∣T αϵ

K+1
(CK(p, R))

∣∣∣
K + 1

)
≤
∣∣∣∣T αϵ

K+1
(CK(p, R))

∣∣∣∣K+1

≤

((
1 +

2(K + 1)R

αϵ

)K
)K+1

=

(
1 +

2(K + 1)R

αϵ

)K(K+1)

. (19)

Now from 19 and 18 we have:

|ĜK,σ(R,Rn)| ≤
Rn

√
K

ϵ

(
1 +

2(K + 1)R

αϵ

)K(K+1)

. (20)

Then using 20 and 17, we can say that for any ϵ,δ > 0, there exists a PAC-learning algorithm A for the class of noisy(
θ, θ̄
)
-isoperimetric K-simplices in GK,σ (R,Rn), whose sample complexity is bounded as follows:

n ≥ 50
log 10Rn

√
K

ϵ + 2(K + 1)2 log
(
1 + 20(K+1)R

αϵ

)
+ log 3

δ

ϵ2

= 50

log 30Rn

√
K

δϵ + 2(K + 1)2 log

(
1 + 100Rθ̄(K+1)

ϵVol(S)
1
K

)
ϵ2

. (21)

In other words, given that the number of samples n satisfies the above lower-bound, then with probability at least 1− δ we
have

∥fSA ∗GσA − fS ∗Gσ∥TV ≤ ϵ.

This completes the proof. Using simple algebra, the bound can be further simplified into n ≥ O
(

K2

ϵ2 log K
ϵ

)
which

completes the proof.

proof of Theorem 3.5. From Theorem 3.4, we know that the class of
(
θ, θ̄
)
-isoperimetric K-simplices contained in the

K-dimensional hyper-sphere CK(p, R) and convolved with an isotropic Gaussian noise N
(
0, σ2I

)
, with σ ≤ Rn, is

PAC-learnable, with sample complexity O
(

K2

ϵ2 log K
ϵ

)
, where ϵ is defined accordingly. And from Lemma 3.1, we know

that if we have O
(
K2
)

samples from a noisy simplex fS ∗Gσ , we can find a K-dimensional sphere which with probability
at least 1− δ/2 contains the true simplex as long as the radius R of the sphere and the upper-bound of the noise variance
Rn satisfy

R ≤ 4
√
K + 1

(
1 +

K + 2

dS/σ

)
dS (22)

Rn ≤ K + 2

K − 3

(
1 +

dS/σ

K + 2

)
σ. (23)

Therefore, it can be shown that there exists an algorithm A such that given n i.i.d samples from GS with

n ≥ 50

log 30Rn

√
K

δϵ + 2(K + 1)2 log

(
1 + 100Rθ̄(K+1)

ϵVol(S)
1
K

)
ϵ2

+ 2000(K + 1)(K + 2) log
6

δ

= 100

log 6/δ + (K + 2)2 log

(
1 + 100θ̄(K+1)3/2

ϵVol(S)
1
K

(
1 + K+2

dS/σ

)
dS

)
ϵ2

= O

(
K2

ϵ2
log

K

ϵ

)
, (24)
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the output of the algorithm fSA ∗GσA with probability at least 1− δ satisfies

∥fSA ∗GσA − fS ∗Gσ∥TV ≤ ϵ.

It should be noted that R and Rn in (24) is already replaced with the bound in the r.h.s of (22) and (23). This way, the proof
is completed.

B. Proof of Lemmas
proof of Lemma 3.1. To find a K-dimensional sphere containing the true simplex, it suffices to find a point p inside the
simplex and an upper-bound R for its diameter, i.e., the maximum distance between two points in the simplex. Obviously,
this ensures that the K-dimensional sphere with center point p and radius R contains the true simplex. For the maximum
distance between any two points inside S ∈ SK , denoted by dS , we have

dS = max
x,y∈S

∥x− y∥2

= max
ϕx,ϕy∈SK

S

∥V Sϕx − V Sϕy∥2

= max
ϕx,ϕy∈SK

S

∥V S
(
ϕx − ϕy

)
∥2, (25)

where SK
S represents the standard simplex in RK and V S denotes the vertex matrix of S (Equation 4 in the main paper).

Let σmax (S) denote the maximum singular-value for the matrix V S , and assume vmax be the unitary eigenvector that
corresponds to σmax (S). To be more precise, let V S = UΣV T be the singular value decomposition of the vertex matrix.
Then, σmax (S) refers to the largest singular value on the main diagonal of Σ, and vmax represents the corresponding
column in V . Then, for any point x ∈ RK+1, one can write

∥V Sx∥22 =
∑
i

Σ2
i,i

∥∥∥U iV
T
i x
∥∥∥2
2
=
∑
i

Σ2
i,i

(
V T

i x
)2

,

which results in the following useful inequality:

∥V Sx∥2 ≥ σmax (S)
∣∣vT

maxx
∣∣ .

For ϕx ̸= ϕy, let r ≜
(
ϕx − ϕy

)
/
∥∥ϕx − ϕy

∥∥
2
, and ℓ ≜

∥∥ϕx − ϕy

∥∥
2
. In other words, let r represent the unitary

direction vector for the difference, and ℓ to denote the corresponding length. In this regard, we have

max
ϕx,ϕy∈SK

S

∥∥V S
(
ϕx − ϕy

)∥∥
2
≥ σmax (S)max

r,ℓ
ℓ
∣∣vT

maxr
∣∣ ≥ σmax (S) max

ℓ| r=vmax

ℓ. (26)

Now we should find a lower-bound for maximum possible ℓ that can be achieved for some fixed direction r = vmax. To this
aim, assume the difference vector ϕx − ϕy starts from any arbitrary vertex, i.e., ϕx is a one-hot vector with K components
equal to zero and the remaining one equal to 1. In this regard, the minimum possible ℓ that can be achieved (minimum is
taken w.r.t. direction of the difference vector) occurs when the difference vector becomes perpendicular to its front facet.
Since all ϕ vectors belong to the standard simplex, such difference vectors can be easily shown to be of the form ∆ with

∆i = 1 and ∆j|j ̸=i = −1/K,

for any i ∈ 0, . . . ,K. The ℓ2-norm of all such vectors equals to
√
1 + 1/K. Thus, we have

dS ≥
√

K + 1

K
σmax (S) ≥ σmax (S) . (27)

Assume we have 2m i.i.d. samples drawn from a noisy simplex fS ∗ Gσ, denoted by {y}2mi=1. This way, we have
yi = V Sϕi + zi for i = 1, . . . , 2m, where ϕi represents the weight vector for the ith sample (drawn from a uniform
Dirichlet distribution), while zi ∼ N

(
0, σ2I

)
is an independently drawn noise vector. Let us define D as

D =
1

2m

m∑
i=1

∥y2i − y2i−1∥22. (28)
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To find an upper-bound for dS , it is enough to find a high probability lower-bound for D in terms of dS . To this aim, we
rewrite D as

D =
1

2m

m∑
i=1

∥V Sϕ2i − V Sϕ2i−1 + z2i − z2i−1∥22 (29)

=
1

2m

m∑
i=1

∥V Sϕ2i − V Sϕ2i−1∥22 +
1

2m

m∑
i=1

∥z2i − z2i−1∥22 +
1

m

m∑
i=1

(
V Sϕ2i − V Sϕ2i−1

)T
(z2i − z2i−1)

=
1

2m

m∑
i=1

∥V Sϕ2i − V Sϕ2i−1∥22 +
2σ2

2m

m∑
i=1

∥z̃2i − z̃2i−1∥22 +
σ
√
2

m

m∑
i=1

(
V Sϕ2i − V Sϕ2i−1

)T
(z̃2i − z̃2i−1).

Let us denote the three terms in r.h.s. of (29) as I, II and III, respectively. Also, we have z̃i = zi/σ. To find a lower-bound
for D, we should find respective lower-bounds for I, II and III. First, let us discuss about (I):

I =
1

2m

m∑
i=1

∥∥V Sϕ2i − V Sϕ2i−1

∥∥2
2
= fV S (ϕ1,ϕ2, · · · ,ϕ2m) . (30)

For the term inside of the summation, we have

∥V Sϕ2i − V Sϕ2i−1∥22
a.s.
≤ d2S , (31)

Var
(
∥V Sϕ2i − V Sϕ2i−1∥22

)
≤ 12σ4

max (S)
K3

≤ 12d4S
K3

(32)

From the above inequalities we can see that ∥V Sϕ2i − V Sϕ2i−1∥22 satisfies the Bernstein’s condition with b = 2d2S (see
eq. 2.15 in Wainwright (2019)). Then, from proposition 2.10 in Wainwright (2019), the following inequality holds with
probability at least 1− δ/6, for any δ ∈ (0, 1):

fV S (ϕ1, · · · ,ϕ2m) ≥ E [fV S (ϕ1, · · · ,ϕ2m)]− 2

√
max

{
4 log 6

δ

m
,
3

K3

}
·
d4S
m

log
6

δ
, (33)

where for the expected value of the function f we have:

E [fV S (ϕ1, · · · ,ϕ2m)] =
1

2m

m∑
i=1

E
[
∥V Sϕ2i − V Sϕ2i−1∥22

]
=

1

2
E
[
∥V Sϕ− V Sϕ

′∥22
]

=
1

2
E
[(
V Sϕ− V Sϕ

′)T (V Sϕ− V Sϕ
′)]

=
1

2
E
[(
ϕ− ϕ′)T V T

SV S
(
ϕ− ϕ′)]

=
1

2
E
[
Tr
(
V T

SV S
(
ϕ− ϕ′) (ϕ− ϕ′)T)]

=
1

2
Tr
(
V T

SV SE
[(
ϕ− ϕ′) (ϕ− ϕ′)T ])

=
1

2
Tr

V T
SV S

1

(K + 1)2(K + 2)


K −1 . . . −1
−1 K . . . −1

...
...

. . .
...

−1 −1 . . . K




=
1

2(K + 1)2(K + 2)
Tr
(
V T

SV S
(
(K + 1)I − 11T

))
=

1

2(K + 1)2(K + 2)

(
(K + 1)Tr

(
V T

SV S

)
− Tr

(
1TV T

SV S1
))

13
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=
1

2(K + 2)

 K∑
i=1

1

K + 1

K+1∑
j=1

V 2
S(i, j)−

K∑
i=1

 1

K + 1

K+1∑
j=1

V S(i, j)

2


=
1

2(K + 2)

K∑
i=1

1

K + 1

K+1∑
j=1

V S(i, j)−
1

K + 1

K+1∑
j=1

V S(i, j)

2

=
1

2(K + 2)

K∑
i=1

1

K + 1

K+1∑
j=1

V̂ S(i, j)−
1

K + 1

K+1∑
j=1

V̂ S(i, j)

2

=
1

2(K + 2)

K∑
i=1

1

K + 1

K+1∑
j=1

Ṽ S(i, j)
2

=
1

2(K + 2)(K + 1)

K+1∑
j=1

∥Ṽ
j

S∥22 (34)

where Ṽ S and V̂ S are defined as

V S = [v1,v2, · · · ,vK+1] (35)

V̂ S = [0,v2 − v1,v3 − v1, · · · ,vK+1 − v1] = [v̂1, v̂2, · · · , v̂K+1]

Ṽ S =

[
v̂1 −

∑K
1 v̂i

K + 1
, v̂2 −

∑K
1 v̂i

K + 1
, · · · , v̂K −

∑K
1 v̂i

K + 1

]
= [ṽ1, ṽ2, · · · , ṽK , ṽK+1] , (36)

And Ṽ
j

S is the jth column of Ṽ S . We know that the maximum distance between any two points inside a simplex is equal
to the length of the biggest edge of the simplex. Now without loss of generality suppose that v2 and v3 are the vertices
related to this edge (if more than one edge have the maximum length, suppose that, v2 and v3 are belong to one of them).
Therefore the length of the vector v3 − v2 associated with the maximum distance satisfies the following

d2S =∥v3 − v2∥22
=∥ṽ3 − ṽ2∥22
≤∥ṽ3∥22 + ∥ṽ2∥22 + 2∥ṽ3∥2∥ṽ2∥2
≤2
(
∥ṽ3∥22 + ∥ṽ2∥22

)
. (37)

Now the following inequality can be deduced from 34 and 37

E [fV S (ϕ1, · · · ,ϕ2m)] ≥ 1

4(K + 1)(K + 2)
d2S . (38)

From 33 and 38, it is easy to show that if we have 2m ≥ 2000(K + 1)(K + 2) log 6
δ i.i.d. samples from PS , then with

probability at least 1− δ
6 (for any 0 < δ ≤ 1), we have

f (ϕ1,ϕ2, · · · ,ϕ2m) ≥ d2S
8(K + 1)(K + 2)

. (39)

Next, we should find a lower-bound for the second term in the r.h.s. of 29, i.e., II.

In 29, zis are drawn from a multivariate Gaussian distribution with mean vector 0 and covariance matrix σ2I. Then,
z′
i = z̃2i − z̃2i−1 is also a zero-mean Gaussian random vector with covariance matrix I, and as a result ∥z′

i∥22 is a
Chi-squared random variable with K degrees of freedom. We know that a Chi-squared random variable with K degrees of
freedom is sub-exponential with parameters

(
2
√
K, 4

)
and therefore 1

2m

∑m
i=1 ∥z′

i∥22 is a sub-exponential random variable

14
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with parameters
(√

K/m, 2/m
)

. Then the following holds with probability at least 1− δ/6:

1

2m

m∑
i=1

∥z̃2i − z̃2i−1∥22 ≥ 1

2m

m∑
i=1

E
[
∥z̃2i − z̃2i−1∥22

]
−
√

2K

m
log

6

δ

≥ K

2
−
√

2K

m
log

6

δ

≥ K

2
−

√
K

1000(K + 1)(K + 2)

≥ K

2
− 1 =

K − 2

2
. (40)

Based on the above inequalities, we can give a lower-bound for the second term in the r.h.s. of 29:

II =
2σ2

2m

m∑
i=1

∥z̃2i − z̃2i−1∥22 ≥ (K − 2)σ2. (41)

Now to find a lower bound for D(S), we only need to give a lower bound for III, in the last inequality of 29. For this part
we have:

III =
σ
√
2

m

m∑
i=1

(
V Sϕ2i − V Sϕ2i−1

)T
(z̃2i − z̃2i−1)

=
σ
√
2

m

m∑
i=1

(
V Sϕ2i − V Sϕ2i−1

)T
z′
i

=
σ
√
2

m

m∑
i=1

gϕ2i,ϕ2i−1

(
z′1i , z′2i , · · · , z′mi

)
, (42)

where in the above equations we have:

E
(
gϕ2i,ϕ2i−1

(
z′1i , z′2i , · · · , z′mi

))
= E

(
V Sϕ2i − V Sϕ2i−1

)T E (z′
i) = 0. (43)

To find a lower bound for III we try to bound gϕ2i,ϕ2i−1

(
z′1i , z′2i , · · · , z′mi

)
from below. To do so, we write the concentration

inequality for this function as follow:

P
(
gϕ2i,ϕ2i−1

(
z′1i , z′2i , · · · , z′mi

)
≥ ϵ
)
≤

Eϕ2i,ϕ2i−1,z
′
i

[
e
λgϕ2i,ϕ2i−1(z

′1
i ,z′2

i ,··· ,z′m
i )
]

eλϵ

≤
Eϕ2i,ϕ2i−1,z

′
i

[
e
λgϕ2i,ϕ2i−1(z

′1
i ,z′2

i ,··· ,z′m
i )
]

eλϵ

=
Eϕ2i,ϕ2i−1

[
Ez′

i

[
e
λgϕ2i,ϕ2i−1(z

′1
i ,z′2

i ,··· ,z′m
i )
]]

eλϵ
, (44)

where gϕ2i,ϕ2i−1
(z) is a lipschitz function with respect to z′:

|gϕ2i,ϕ2i−1
(z1)− gϕ2i,ϕ2i−1

(z2) | ≤ ∥V Sϕ2i − V Sϕ2i−1∥2∥z1 − z2∥2
≤ 2dS∥z1 − z2∥2. (45)

From Lemma (2.27) in Wainwright (2019) we know that any L-lipschitz function of a Gaussian R.V. is sub-Gaussian. As a
result, we have

Ez′
i

[
e
λgϕ2i,ϕ2i−1(z

′1
i ,z′2

i ,··· ,z′m
i )
]
≤ e

4π2d2Sλ2

8 . (46)
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From inequalities 46, 44 and equation 42 we have:

P

(
σ
√
2

2m

m∑
i=1

gϕ2i,ϕ2i−1
(zi) ≤ −ϵ

)
≤ min

λ≥0

Eϕ1,···ϕ2m

[
e

λ2π2d2Sσ2

2m ·
]

eλϵ
≤ e

− mϵ2

2π2d2Sσ2
. (47)

Then if we have 2m ≥ 2000(K + 1)(K + 2) log 6
δ , i.i.d samples, then with probability at least 1− δ

6 we have:

1

2m

m∑
i=1

(
V Sϕ2i − V Sϕ2i−1

)T
(z2i − z2i−1) ≥ − πσdS

20
√
(K + 2)(K + 1)

. (48)

Now from inequalities 39,41, 48 and equation 29 we have:

D ≥ d2S
8(K + 1)(K + 2)

+ (K − 2)σ2 − πσdS

20
√
(K + 2)(K + 1)

=
d2S

8(K + 1)(K + 2)
+

(
σ
√
K − 2− dS

√
π

40
√

(K + 1) (K + 2) (K − 2)

)2

−

d2Sπ

1600 (K + 1) (K + 2) (K − 2)
(49)

=(K − 2)σ2 +

(
πσ

10
√
2
− dS

2
√
2
√

(K + 1)(K + 2)

)2

− π2σ2

200
. (50)

From the inequalities 50 and 49 it can be seen that if we have 2m ≥ 2000(K + 1)(K + 2) log 6
δ then the following

inequalities with probability at least 1− δ/2 give upper-bounds for the maximum distance between two points in the simplex
S, and the noise variance σ:

dS ≤4
√

(K + 1)(K + 2)D = R. (51)

σ2 ≤ D

K − 3
= Rn (52)

In the same way we could also give an upper bound for D. The following inequalities hold with probability more than
1− δ/2:

D ≤ d2S
K + 2

+ σ2(K + 2) +
πσdS

20
√
(K + 2)(K + 1)

≤
(

dS√
K + 2

+ σ
√
K + 2

)2

=
d2S

K + 2

(
1 +

K + 2

dS/σ

)2

(53)

=σ2 (K + 2)

(
1 +

dS/σ

K + 2

)2

. (54)

Based on equation 51 and inequations in 53 and 54, we can give an upper bound for the radius R in 51 and noise radius Rn.
The following inequality holds with probability at least 1− δ:

R ≤4
√
K + 1

(
1 +

K + 2

dS/σ

)
dS (55)

Rn ≤K + 2

K − 3

(
1 +

dS/σ

K + 2

)
σ. (56)
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Now the only thing we should do is to find a point inside of the simplex. To do this we define a new statistic p as follows:

p =
1

2m

2m∑
i=1

xi =
1

2m

2m∑
i=1

V Sϕi + zi = V S

(
1

2m

2m∑
i=1

ϕi

)
+

1

2m

2m∑
i=1

zi = I + II (57)

It is clear that ‘’I” is placed inside of the true simplex. So the distance between p and a point inside the main simplex can be
calculated as follows:

min
x∈S

∥p− x∥2 ≤

∥∥∥∥∥ 1

2m

2m∑
i=1

zi

∥∥∥∥∥
2

. (58)

In the above equation 1
2m

∑2m
i=1 zi, is a zero mean Gaussian random vector with covariance matrix σ2

2mI , therefore
∥ 1
2m

∑2m
i=1 zi∥22 is a chi-squared random variable with K degrees of freedom, and so we can write concentration inequality

for it:

P

∣∣∣∣∣∣
∥∥∥∥∥ 1

2m

2m∑
i=1

zi

∥∥∥∥∥
2

2

− Kσ2

2m

∣∣∣∣∣∣ ≥ ϵ

 ≤ 2e−
m2ϵ2

2Kσ4 . (59)

Then with probability at least 1− δ we have the following inequality:

min
x∈S

∥p− x∥22 ≤ Kσ2

2m
+

σ2

m

√
2K log

2

δ

≤ Kσ2

m
log

2

δ
(60)

Now if we have 2m ≥ 2000(K + 1)(K + 2) log 6
δ , then we can rewrite the above inequality as follows:

min
x∈S

∥p− x∥2 ≤ σ

10
√
10
√
K + 2

. (61)

As we mentioned earlier, the first part in the right hand side of the inequality 57 , 1
2m

∑2m
i=1 V Sϕi, belongs to the interior of

the simplex. Then a K-dimensional sphere with radius R and centered at this point, with probability at least 1− δ contains
the simplex S . However, in the process of learning we do not have access to the noiseless data and thus cannot have such a
point as the center of the sphere. Let us show the distance between p and 1

2m

∑2m
i=1 V S with d. Then, it is clear to see that

the K-dimensional sphere with radius R+ d and center point p, contains the sphere with center point at 1
2m

∑2m
i=1 V Sϕi

and radius R. So any simplex which is placed in sphere CK( 1
2m

∑2m
i=1 V Sϕi, R) is also placed in sphere CK(p, R+ d).

So we conclude that if we have 2m ≥ 2000(K + 1)(K + 2) log 6
δ i.i.d. samples from GS then the main simplex S with

probability more than or equal to 1− δ will be confined in a K-dimensional sphere with center point at p and with radius R:

R = 4
√
(K + 1)(K + 2)D +

√
D

40
√
K + 2

≤ 4
√
(K + 1)(K + 2)D

(
1 +

1

160(K + 2)
√
K + 1

)
≤ 8
√

(K + 1)(K + 2)D. (62)

This completes the proof.

proof of Lemma 3.2. Consider a
(
θ, θ̄
)
-isoperimetric K-simplex S , which is bounded in a sphere CK(p, R). It is clear that

all vertices of this simplex {v1, . . . ,vK+1} are placed in CK(p, R). From the definition of T αϵ
K+1

(CK(p, R)), we know
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that for each vertex of the simplex vi, there exists some v′
i ∈ T αϵ

K+1
(CK(p, R)) such that ∥vi − v′

i∥2 ≤ αϵ
K+1 . Assume for

each vertex vi of S, we denote its closest point in T αϵ
K+1

(CK(p, R)) as

v̂i = argmin

{
∥vi − v̂∥2

∣∣∣∣ v̂ ∈ T αϵ
K+1

(CK(p, R))

}
.

Using these points we make a new simplex Ŝ. It is clear that Ŝ belongs to Ŝ
(
CK(p, R)

)
. Assume fS and fŜ denote the

probability density functions that correspond to S and Ŝ, respectively. Then, the TV-distance between fS and fŜ can be
written and bounded as

TV
(
PS ,PŜ

)
= sup

A
PS (A)− PŜ (A)

=

∫
x∈{x′:fS(x′)≥fŜ(x′)}

fS (x)− fŜ (x)

=

∫
x∈S−Ŝ

fS (x)− fŜ (x) +

(∫
x∈S∩Ŝ

fS (x)− fŜ (x)

)
1
(
Vol (S) ≤ Vol

(
Ŝ
))

≤
∫
x∈S−Ŝ

fS (x)− fŜ (x) +

∫
x∈S∩Ŝ

∣∣∣∣fS (x)− fŜ (x)

∣∣∣∣
=
Vol

(
S − Ŝ

)
Vol (S)

+ Vol
(
S ∩ Ŝ

) ∣∣∣∣ 1

Vol(S)
− 1

Vol(Ŝ)

∣∣∣∣, (63)

where S−Ŝ shows the set difference between S and Ŝ . Let us denote the two terms in the r.h.s. of 63 as I and II, respectively.
To find an upper-bound for the TV-distance in 63 we find respective upper-bounds for I and II. In order to do so, first let us
discuss about I:

I =
Vol

(
S − Ŝ

)
Vol (S)

. (64)

The distance between vertices of S and Ŝ are less than αϵ
K+1 , then the maximal difference set (in terms of volume) between

S and Ŝ can be bounded as follows: simplex has K + 1 facets, and the difference set that can occur from altering each of
them is upper-bounded as ≤ Ai (S)× αϵ/(K + 1), where i = 1, . . . ,K + 1 denotes the facet index. This way, for I we
have:

I ≤
K+1∑
i=1

αϵ

K + 1

Ai (S)
Vol (S)

≤ αϵAmax (S)

≤ αϵθ̄Vol
1
K , (65)

where Amax (S) is the volume of the largest facet of S . In the final inequality of 65, we take advantage of the isoperimetricity
property of S. Next, we should find an upper-bound for the second term in the r.h.s. of 63, i.e., II:

II = Vol
(
S ∩ Ŝ

) ∣∣∣∣ 1

Vol(S)
− 1

Vol(Ŝ)

∣∣∣∣. (66)

To find an upper-bound for II we should find an upper-bound for Vol
(
Ŝ
)

. To do so, we create a “rounded” simplex Sr

which forms by adding a K-dimensional sphere with radius r = αϵ
K+1 to the original simplex S. It can be shown that Ŝ is
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definitely placed inside Sr and therefore Vol(Ŝ) ≤ Vol(Sr). In this regard, we have

II = Vol
(
S ∩ Ŝ

) ∣∣∣∣ 1

Vol(S)
− 1

Vol(Ŝ)

∣∣∣∣
≤
∣∣∣∣Vol(Ŝ)−Vol(S)

Vol(S)

∣∣∣∣
≤
∣∣∣∣Vol(Sr)−Vol(S)

Vol(S)

∣∣∣∣
≤

(
K+1∑
i=1

αϵ

K + 1
Ai (S) + (K + 1)Cα

(
αϵ

K + 1

)K
)

1

Vol(S)

≤

(
(K + 1)

αϵ

K + 1
Amax (S) + (K + 1)Cα

(
αϵ

K + 1

)K
)

1

Vol(S)

≤ 2αϵθ̄Vol
1
K , (67)

where Cα
(

αϵ
K+1

)K
is the volume of a K-dimensional sphere with radius r = αϵ

K+1 . Now, using 65 and 67 we have

TV
(
PS ,PŜ

)
≤ 3αϵθ̄Vol

1
K ≤ 3

5
ϵ ≤ ϵ. (68)

From 68, it can be seen that for any
(
θ, θ̄
)
-isoperimetric simplex S which is bounded in a K-dimensional sphere CK(p, R),

there exists at least one simplex in Ŝ(CK(p, R)) within a TV-distance of ϵ from S. Thus the proof is complete.

In the end, it is worth mentioning one possible method to build an ϵ-covering set for a K-dimensional sphere CK(p, R).
Although there exists deterministic ways to build this set, an alternative approach is by uniformly sampling points from the
sphere. Consider an ϵ/2-packing set with size L for the sphere. Based on the result of the “coupon collector problem” we
know that having L log(L) uniform samples from the sphere guarantees with high probability that there exists at least one
sample within a distance of ϵ/2 from each element of the packing set. Therefore, the resulting samples are an ϵ-covering set
for the sphere. Hence, the cardinality of an ϵ-covering set built in this way is at most

(
1 + 4R

ϵ

)2K
.

C. Consistency Analysis
Assume S1,S2 ∈ SK represent two arbitrary simplices in RK . In this regard, let PS1 and PS2 denote the probability
measures, and fS1 and fS2 represent the probability density functions associated to S1 and S2, respectively. Let us assume
that S1,S2 have a minimum degree of geometric regularity in the following sense.

Definition C.1. For a simplex S ∈ SK with vertices θ0, . . . ,θK ∈ RK , we say S is
(
λ̄, λ

)
-regular if

λ ≤ λmin (Θ) ≤ λmax (Θ) ≤ λ̄,

where λmax (·) and λmin (·) denotes the largest and smallest eigenvalues of a matrix, respectively. Here, Θ represents the
zero-centerd vertex matrix of S, i.e.,

Θ ≜ [θ1 − θ0| · · · |θK − θ0] .

This definition has tight connections to the previously used notion of
(
θ̄, θ
)
-isoperimetricity which is already used in the

main body of the manuscript. In fact, it can be shown that Lmax = O
(
λ̄
)

and vice versa.

Our aim is to show that if the noisy versions of S1 and S2, which we denote by fS1 ∗Gσ and fS2 ∗Gσ , respectively, have a
maximum total variation distance of at least ϵ > 0, then the TV distance between PS1

and PS2
is also bounded away from

zero according to a function of ϵ, σ and the geometric reqularity of simplices S1 and S2. The theoretical core behind our
method is stated in the following general theorem.

Theorem C.2 (Recovery of Low-Frequency Objects from Additive Noise). For K ∈ N, consider a probability density
function family F ⊆ M

(
RK
)
, i.e., a subset of distributions supported over RK . Assume for sufficiently large α > 0, the
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following bound holds for all f, g ∈ F :

1

(2π)
K

∫
∥ω∥∞≥α

|F {f} (ω)−F {g} (ω)|2 ≤ ζ
(
α−1

) ∫
RK

|f − g|2 ,

where F {·} denotes the Fourier transform, and ζ is an increasing fuction with ζ (0) = 0 and continuity at 0. Also, assume
the probability density function Q ∈ M

(
RK
)

again for a sufficiently large α > 0 has the following property:

inf
∥ω∥∞≤α

∥F {Q} (ω)∥ ≥ η (α) ,

where η (·) is a non-negative decreasing function. Then, there exists a non-negative constant C where for any σ, ε > 0 and
f, g ∈ F with ∥f − g∥2 ≥ ε, we have

∥(f − g) ∗Q∥2 ≥ ε

(2π)
K

(
sup
α>C

η (α)
√

1− ζ (α−1)

)
,

with ∗ denoting the multi-dimensional convolution operator.

Proof. For the sake of simplicity in notations, let F ,G,Q : RK → C denote the Fourier transforms of f, g and Q,
respectively. Due to Parseval’s theorem, we have

∥f − g∥22 =
1

(2π)
K

∥F − G∥22 .

Also, due to the properties of the Fourier transform, which is the transofrmation of convolution into direct multiplication,
one can write

F {(f − g) ∗Q} = Q (F − G) .

Thus, there exists universal constant C > 0 such that for any α > C:

(2π)
K ∥(f − g) ∗Q∥22 =

∫
RK

|Q (ω) (F (ω)− G (ω))|2 (69)

≥
∫
∥ω∥∞≤α

|Q (ω)|2 |F (ω)− G (ω)|2

≥ η2 (α)

∫
∥ω∥∞≤α

|F (ω)− G (ω)|2

≥ ε2η2 (α)
[
1− ζ

(
α−1

)]
.

The above chain of inequalities hold for all α > C, therefore we have:

∥(f − g) ∗Q∥22 ≥ ε

(2π)
K

sup
α>C

η (α)
√
1− ζ (α−1), (70)

which completes the proof.

Theorem C.2 presents a general approach to prove the recoverability of latent functions (or objects, which are the main
focus in this work) from a certain class of independent additive noise. This approach works as long as the function class as
well as the noise distribution are mostly comprised of low-frequency components in the Forier domain. For example, the
Gaussian noise hurts low-frequency parts of a geometric object far less than its high-frequency details. More specifically, we
prove the following corollary for Theorem C.2:

Corollary C.3 (Recoverability from Additive Gaussian Noise N
(
0, σ2I

)
). Consider the setting in Theorem C.2, and

assume the noise distribution follows Q ≜ N
(
0, σ2I

)
for σ > 0. Then, as long as for f, g ∈ F we have ∥f − g∥2 ≥ ε for

some ε ≥ 0, we also have

∥(f − g) ∗Q∥2 ≥ ε

(2π)
K

(
sup
α>C

√
1− ζ

(
1

α

)
e−K(σα)2/2

)

20



Sample Complexity Bounds for Learning High-dimensional Simplices in Noisy Regimes

Proof. The Fourier transform of Q = N
(
0, σ2I

)
can be computed as follows:

F {Q} (ω) =

K∏
i=1

F
{
N
(
0, σ2

)}
(ωi) = e−σ2∥ω∥2

2/2. (71)

Also, it can be easily checked that

inf
∥ω∥∞≤α

e−σ2∥ω∥2
2/2 = e−σ2/2(α2+...+α2) = e−K(ασ)2/2.

By subsititution into the end result of Theorem C.2, the claimed bounds can be achieved and the proof is complete.

In this regard, our main explicit theoretical contribution in this section with respect to simplices has been stated in the
following theorem:

Theorem C.4 (Recoverability of Simplices from Additive Noise). For any two
(
λ̄, λ

)
-regular simplices S1,S2 ∈ SK with

λ̄, λ > 0, given that

DTV (PS1∗Gσ ,PS2∗Gσ ) =
1

2

∫
|(fS1 − fS2) ∗Gσ| ≤ ε

for some ε ≥ 0, where Gσ (for σ ≥ 0) represents the density function associated to a Gaussian measure with zero mean and
covariance matrix of σ2IK×K in RK , i.e., N

(
0, σ2I

)
. Then, we have

DTV (PS1
,PS2

) ≤ εeΩ(
K

SNR2 ),

where SNR ≜ λ̄
Kσ denotes the effective signal-to-noise ratio, which is the ratio of the standard deviation of a scaled uniform

Dirichlet distribution to that of the noise, per dimension.

Proof. Proof is based on properties of the Fourier transforms of simplices S1 and S2. For K ∈ N, and any integrable
function f : RK → R, the Fourier transform of f , denoted by F {f} (ω) : RK → C is defined as follows:

F {f} (ω) ≜
∫
x∈RK

f (x) e−iωTxdx. (72)

Throughout this proof, for S ∈ SK , let us denote by FS the Fourier transform of fS , i.e., the uniform proability density
function over S. Also, the inverse Fourier transform which recovers fS from FS can be written as

fS (x) =
1

2π

∫
ω∈RK

FS (ω) eiω
Txdω.

In this regard, let ∆K represent the standard simplex in RK which means a K-simplex with θ0 = 0 and Θ = I . We begin
by deriving a number of useful properties for ∆K through the following lemmas.

Lemma C.5. Let F∆k
(ω1, . . . , ωk) : Rk → C for k ∈ [K] represent the Fourier transform of f∆k

in Rk. Also, we have
ω1:k ≜ (ω1, . . . , ωk). Then, the following recursive relation holds for k > 1:

F∆k
(ω1:k) =

k

iωk

[
F∆k−1

(ω1:k−1)− e−iωkF∆k−1
(ω1 − ωk, . . . , ωk−1 − ωk)

]
.

Proof. For any (x1, . . . , xk) ∈ ∆k, Let Zi ≜ x1 + . . .+ xi for i ∈ [k]. Then

F∆k
(ω1:k) =

∫ 1

0

∫ 1−Z1

0

· · ·
∫ 1−Zk−1

0

k!e−i(ω1x1+...+ωkxk)dx1 . . . dxk (73)

=

∫ 1

0

· · ·
∫ 1−Zk−2

0

k!e−i(ω1x1+...+ωk−1xk−1)

(∫ 1−Zk−1

0

e−iωkxkdxk

)
dx1 . . . dxk−1,
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where a uniform probability density function over ∆k has been assumed to be f∆k
(x) = (k!)1 (x ∈ ∆k) for all x ∈ Rk,

due to the fact the Lebesgue measure (or volume) of the standard simplex is 1/k!. Since we have∫ 1−Zk−1

0

e−iωkxkdxk =
1

iωk

(
1− e−iωk(1−Zk−1)

)
,

the Fourier transform can be rewritten as follows:

F∆k
(ω1:k) =

k

iωk

∫ 1

0

· · ·
∫ 1−Zk−2

0

(k − 1)!e−i(ω1x1+...+ωk−1xk−1)dx1 . . . dxk−1

− ke−iωk

iωk

∫ 1

0

· · ·
∫ 1−Zk−2

0

(k − 1)!

(
k−1∏
i=1

e−i(ωi−ωk)xi

)
dx1 . . . dxk−1

=
k

iωk

[
F∆k−1

(ω1:k−1)− e−iωkF∆k−1
(ω1 − ωk, . . . , ωk−1 − ωk)

]
, (74)

which completes the proof.

Lemma C.5 gives us a recursive procedure to produce the Fourier transform, or derive usefull properties for K-dimensional
standard simplex through tools such as induction. The following lemma establishes a relation between the Fourier transform
of the standard simplex and that of an arbitrary simplex in SK with a non-zero Lebesgue measure.

Lemma C.6. For a simplex S ∈ SK with vertices θ0, . . . ,θK and a reversible zero-translated vertex matrix Θ, we have

FS (ω1:k) = e−iωT
1:kθ0F∆K

(
ΘTω1:k

)
.

Proof. Let fS : RK → R≥0 denote the probability density function associated to S. Then, it can be seen that

fS (x) =
1

det (Θ)
f∆K

(
Θ−1 (x− θ0)

)
, ∀x ∈ RK .

In this regard, one just needs to write down the definition of Fourier transform for simplex S and utilizes the change of
variables technique as follows:

FS (ω1:k) =

∫
RK

fS (x1:k) e
−iωT

1:kx1:kdx1 . . . dxk (75)

=
1

det (Θ)

∫
RK

f∆K

(
Θ−1 (x− θ0)

)
e−iωT

1:kx1:kdx1 . . . dxk

= e−iωT
1:kθ0

∫
RK

f∆K
(u1:k) e

−iωT
1:kΘu1:kdu1 . . . duk

= e−iωT
1:kθ0F∆K

(
ΘTω1:k

)
. (76)

Therefore, the proof is complete.

In the following lemma, we show that the uniform measure over the standard simplex ∆K corresponds to a low-frequency
probability density function. This would be the first step toward using Corollary C.3, in order to prove Theorem C.4.

Lemma C.7 (Low-Pass Property of ∆K). There exists a universal constant C > 0, such that for α > C and K ∈ N the
uniform probability density function over ∆K , i.e., f∆K

: RK → R≥0, is a low-frequency function in the following sense:

Vol (∆K)

(2π)
K

∫
∥ω∥∞≥α

|F∆K
(ω)|2 ≤ O

(
K

α

)
, (77)

where by ∥ω∥∞ we simply mean maxi∈[K] |ωi|.
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Proof. Proof is based on the direct analysis of the Fourier transform of f∆k
, which we denoted as F∆K

(ω). We take
advantage of the fact that the K-dimensional unit hypercube [0, 1]

K can be thought as the union of K! properly rotated and
translated versions of ∆K .

Mathematically speaking, assume the ordered tuple of unit axis-aligned vectors E = (11, . . . ,1K), where 1i for i ∈ [K]
denotes the one-hot vector over the ith component. Then, let V 1, . . . ,V K! ∈ RK×K be the set of orthonormal matrices,
where each matrix transforms E into one of its K! possible permutations, i.e.,

(V i11, . . . ,V i1K) =
(
1pi,1 , . . . ,1pi,K

)
, pi ∈ Perm ([K]) .

In this regard, we already know that there exist K! corresponding vectors b1, . . . , bK! ∈ RK , such that the following
combined probability density function

1

K!

K!∑
i=1

f(V i[∆K+bi]) = f□K
, (78)

where f□K
denotes the pdf over the K-dimensional unit hypercube. Also, it should be noted that any two distinct summands

in (78) have an empty overlap. In fact, each V i [∆K + bi] represents a translated and rotatated version of the standard
simplex ∆K .

Next, one can see that

F

{
1

K!

K!∑
i=1

f(V i[∆K+bi])

}
=

1

K!

K!∑
i=1

F
{
f(V i[∆K+bi])

}
=

1

K!

K!∑
i=1

e−iωT biF∆K

(
V −1

i ω
)
, (79)

where we have used the result of Lemma C.6. Also, note that V −1
i = V i for all i, and Viω represents a permutation of the

components of ω. As a result and due to the symmtery of the standard simplex ∆K and also the ℓ∞-norm w.r.t. the ordering
of the edges, we have∫

∥ω∥≤α

∣∣F {f(V i[∆K+bi])

}
(ω)
∣∣2 =

∫
∥ω∥≤α

|F∆K
(V iω)|2 =

∫
∥ω∥≤α

|F∆K
(ω)|2 , ∀i ∈ [K]. (80)

Now, using (78) we have:∫
∥ω∥≤α

∣∣∣∣∣ 1K!

K!∑
i=1

F
{
f(V i[∆K+bi])

}∣∣∣∣∣
2

=
1

(K!)
2

K!∑
i,j

∫
∥ω∥≤α

∣∣∣FV −1
i ∆K

F̄V −1
j ∆K

∣∣∣ ∣∣∣e−iωT (bi−bj)
∣∣∣

=
1

K!

∫
∥ω∥≤α

|F∆K
(ω)|2 +

(
1− 1

K!

)
O
(
1

α

)
. (81)

The latter term in the r.h.s. of (81) corresponds to the (K!)
2 −K! summands for which we have i ̸= j. In fact, if i ̸= j and

based on the fact that Fourier transform preserves inner product2, we have∫
RK

∣∣∣FV i∆K
F̄V j∆K

e−iωT (bi−bj)
∣∣∣ = ∫

RK

fV i[∆K+bi]fV j [∆K+bj ] = 0,

which holds since ∆i ≜ V i [∆K + bi] and ∆j ≜ V j [∆K + bj ] do not overlap with each other. However, when we add
the constraint ∥ω∥∞ ≤ α, we effectively take the integral over the hypercube [−α, α]

K instead of the whole RK . This
procedure is equivalent to the innner product of the two “smoothed” versions of f∆i

and f∆j
in the spatial domain. Here, by

“smoothed” we simply mean being convolved with a K-dimensional sinc function with parameter α, i.e.,

sincα,K (x) ≜
K∏
i=1

sin (αxi)

αxi
.

2This is a direct result of the fact that Fourier transform is an “orthonormal” transformation.
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Hence, we have ∫
∥ω∥∞≤α

∣∣F∆i
F̄∆j

∣∣ = ∫
RK

[f∆i
∗ sincα,K ]

[
f∆j

∗ sincα,K
]
, (82)

which is at most O (1/α), since only the leakages that are due to sincα,K overlap with each other.

On the other hand, the l.h.s. of (81) represents the integration of the Fourier transform of □K within [−α, α]
K . Therefore,

we have

1

(2π)
K
K!

∫
∥ω∥≤α

|F∆K
(ω)|2 ≥ 1

(2π)
K

∫
∥ω∥≤α

|F□K
(ω)|2 −O

(
1

α

)

=

K∏
i=1

1

2π

(∫ α

−α

∣∣∣∣∫ 1

0

e−iωixi

∣∣∣∣2
)

−O
(
1

α

)

=

(
1− 2

πα
+ o

(
α−1

))K

−O
(
1

α

)
= 1−O

(
K

α

)
, (83)

where we have used Laurent series expansion for the integral of sinc function to derive the bound. Finally, noting the fact
that we have Vol (∆K) = 1/K!, and also the Parseval’s theorem:

1

(2π)
K

∫
RK

|F∆K
(ω)|2 =

∫
RK

f2
∆K

(x) =
Vol (∆K)

Vol2 (∆K)
= Vol−1 (∆K)

completes the proof.

So far, we have managed to show that the standard simplex ∆K is associated to a low-frequency PDF and thus would
preserve a minimum level of information even after getting corrupted by additive Gaussian noise. Using Lemma C.6, one
can simply extend this notion to any

(
λ̄, λ

)
-regular simplex. Before that, let us also extend this notion of “low-frequency”

property to the difference function
f∆K

− fAε(∆K+bε), (84)

where the linear transformation matrix Aε and translation vector bε (for ε > 0) are ε-controlled perturbations that alter the
standard simplex with the following magnitude

DTV

(
P∆K

,PAε(∆K+bε)

)
= ε.

This task is more challenging since the difference PDF function in (84) can be both positive and negative, and in fact,
integrates to zero over RK . However, the following lemma states that such functions for any Aε and bε are “band-pass” in
nature: even though in the Fourier domain they become exactly zero at the origin, they also become infinitesimally small in
terms of magnitude as one asymotitically increases ∥ω∥∞.

Lemma C.8 (Low-Frequency Property for Difference of Simplices). For ε ≥ 0, Assume the linear transformation matrix
Aε ∈ RK×K where Ai,j = δij +O (ε), with δij denoting the kroecker’s delta function. Also, assume the translation vector
bε ∈ RK where bi = O (ε). Let ∆̂K,ε denote the simplex Aε (∆K + bK), and assume the total variation distance between
P∆K

and P∆̂K,ε
is ε. Then

1

(2π)
K

∫
∥ω∥∞≥α

∥∥∥F∆K
− F∆̂K,ε

∥∥∥2 ≤ O
(
Kε

α

)
,

for sufficiently large α > 0.

Proof. Based on Lemmas C.7 and C.6 and for sufficiently small ε, we already know that both F∆K
and F∆̂K,ε

are

low-frequency functions in the following sense: their normalized ℓ2 energy outside of the hypercube [−α, α]
K is at most

O (K/α). We also know that
1

(2π)
K

∫
∥ω∥∞≥α

∥∥∥F∆K
− F∆̂K,ε

∥∥∥2 = O (ε) ,
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due to the assumption of the lemma. However, in order to prove the ≤ O (Kε/α) bound, we need to prove another
important property: that the energy distribution of the difference function is not significantly controlled by ε, e.g., it does not
concentrate on high-frequency regions with ∥ω∥∞ ≥ O (1/ε).

Before going further into the mathematical details of the above statement, let us present a better view on the Fourier
transform of a simplex. We start this procedure with computing F∆K

. In this regard, we show the following relation holds
for k ∈ N:

F∆k
=

k!

ik

k∑
ℓ=1

(
1− e−iωℓ

)ωℓ

k∏
j ̸=ℓ

(ωj − ωℓ)

−1

. (85)

Proof of (85) is by induction. Base: First, we show the equality holds for the simple case of k = 1. Step: Then, we prove
that for k ≥ 2, if the relation holds for k − 1, then it also holds for k.

Base For k = 1, it can be readily seen that a uniform measure over ∆1 is a unit pulse function over the interval [0, 1].
Therefore, the Fourier transform of f∆1

is already known to be a sinc function, i.e.,

F∆1
(ω) =

∫ 1

0

e−iωxdx =
1− e−iω

iω
, (86)

which matches the formulation of (85) if one sets k = 1.

Induction step Assume (85) holds for k − 1. By taking advantage of Lemma C.5, we have:

F∆k
=

k

iωk

(
F∆k−1

(ω1, . . . , ωk−1)− e−iωkF∆k−1
(ω1 − ωk, . . . , ωk−1 − ωk)

)
(87)

=
(k − 1)!

ik−1

k

iωk

k−1∑
ℓ=1

(
1− e−iωℓ

)ωℓ

k−1∏
j ̸=ℓ

(ωj − ωℓ)

−1

− e−iωk

k−1∑
ℓ=1

(
1− e−i(ωℓ−ωk)

)(ωℓ − ωk)

k−1∏
j ̸=ℓ

(ωj − ωℓ)

−1


=
k!

ik

k−1∑
ℓ=1

(
(ωk − ωℓ)

(
1− e−iωℓ

)
− ωℓ

(
e−iωℓ − e−iωk

))ωℓωk

k−1∏
j ̸=ℓ

(ωj − ωℓ) (ωk − ωℓ)

−1

=
k!

ik

k−1∑
ℓ=1

(
ωk

(
1− e−iωℓ

)
− ωℓ

(
1− e−iωk

))ωℓωk

k−1∏
j ̸=ℓ

(ωj − ωℓ) (ωk − ωℓ)

−1

=
k!

ik

k−1∑
ℓ=1

(
1− e−iωℓ

)ωℓ

k∏
j ̸=ℓ

(ωj − ωℓ)

−1

− k!

ik

(
1− e−iωk

ωk

) k−1∑
ℓ=1

k∏
j ̸=ℓ

1

ωj − ωℓ

=
k!

ik

k∑
ℓ=1

(
1− e−iωℓ

ωℓ

) k∏
j ̸=ℓ

1

ωj − ωℓ
,

which again matches with the formulation of (85) and therefore completes the induction step. Here, for the last equality we
have used the following mathematical identity:

k∑
ℓ=1

k∏
j ̸=ℓ

1

ωj − ωℓ
= 0.

End of induction
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Based on this explicit formula, the difference function F∆K
− F∆̂K,ε

can be written as follows:

F∆K
− F∆̂K,ε

=
K!

iK

K∑
ℓ=1

(
1− e−iωℓ

)ωℓ

K∏
j ̸=ℓ

(ωj − ωℓ)

−1

(1− rℓ (ω)) , (88)

where

rℓ (ω) ≜ e−iωT bε

(
1− e−iωTaℓ

1− e−iωℓ

)
ωℓ

ωTaℓ

∏
j ̸=ℓ

ωj − ωℓ

ωT (aj − aℓ)

= e−iωT (bε−δℓ)
sin
(
ωℓ/2 + δTℓ ω/2

)
sin (ωℓ/2)

1

1 + (ω/ωℓ)
T
δℓ

∏
j ̸=ℓ

1

1 +
(δj−δℓ)

Tω
(ωj−ωℓ)

, (89)

where ai denotes the ith row of Aε. Also, we have assumed ai = 1i + δi with ∥δi∥∞ , i ∈ [K] being upper bounded by
O (ε) according to the definition of Aε. It can be readily checked that rℓ (ω) = 1 +O (ε). Also, the multiplicative factors
that form rℓ (ω) are either not dependent on ∥ω∥2 (dependence is only on the direction, and not the magnitude) or they
oscillate as a function of magnitude. This implies that rℓ (ω) which appears solely due to the difference between the two
simplices does not behave differently in regions which are far from the origin or the areas in its vicinity.

Due to the above derivations, the difference function has a similar behaviour to that of F∆K
(ω) and thus we have

1

(2π)
K

∫
∥ω∥∞≥α

∥∥∥F∆K
− F∆̂K,ε

∥∥∥2 ≤ O
(
Kε

α

)
,

which completes the proof.

With the help of Corollary C.3 and Lemmas C.6, C.7 and C.8, we can finally prove the claimed bound. Let simplex S1 and
S2 to have the vertex matrices Θ1 and Θ2, respectively. Also, we have already assumed

λ ≤ λmin (Θi) , λmax (Θi) ≤ λ̄ for i = 1, 2.

Then, based on Lemma C.6 and for a sufficiently large α > 0, we have∫
∥ω∥∞≥α

|FSi
(ω)|2 =

∫
∥ω∥∞≥α

∣∣∣F∆K

(
ΘT

i ω
)∣∣∣2

≤ 1

det (Θ)

∫
∥ω∥∞≥λ̄α

|F∆K
(ω)|2

≤ (2π)
K

Vol (Si)
O
(

K

λ̄α

)
, (90)

for i = 1, 2. Therefore, Lemma C.8 would consequently imply the following relation for the difference function of the two
simplices:

1

(2π)
K

∫
∥ω∥∞≥α

|FS1 − FS2 |
2 ≤ O

(
K

λ̄α

)∫
RK

(fS1 − fS2)
2
, (91)

which facilitates the usage of our main general result in Theorem C.2, and more specifically Corollary C.3 which leads to
the following relation:

∥(fS1
− fS2

) ∗Gσ∥2 ≥ ∥fS1
− fS2

∥2 sup
α

(√
1−O

(
K

λ̄α

)
e−K(σα)2

)
≥ ∥fS1

− fS2
∥2 e

−O( K
SNR2 ), (92)
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since α ≥ Ω
(
K/λ̄

)
guarantees that the l.h.s. of the bound remains positive, while gives the minimum possible exponent (at

least order-wise) to the exponential term. Combining the fact ℓ2-norm ≤ ℓ1-norm together with theorem’s assumptions, we
have

∥(fS1
− fS2

) ∗Gσ∥2 ≤ ∥(fS1
− fS2

) ∗Gσ∥1 ≤ 2ε.

Consequently, (92) implies the following upper-bound on the ℓ2-norm of the difference PDF function fS1 − fS2 as follows:

∥fS1 − fS2∥2 ≤ εeO(
K

SNR2 ),

and completes the proof.

C.1. The case of unknown σ

In this final part, we take care of the fact that σ might not be known at first and could be estimated during the learning
procedure. We show that the outputs of the algorithm A from Theorem 3.5, which is an estimated simplex SA and an
estimated standard variation σA are both at worst εeO(

K
SNR2 )-close to their respective true counterparts. Recall from

Theorem 3.5 that the class of
(
θ, θ̄
)
-isoperimetric K-simplices which are corrupted with Gaussian white noise, i.e.,⋃

σ>0

GK,σ

is PAC-learnable in the following sense: Assume n ≥ Õ
(
K2/ε2

)
i.i.d. samples from a noisy simplex fS ∗ Gσ, for any

S ∈ SK and σ > 0, are given. Then, there exists an algorithm A which outputs a noisy simplex fSA ∗GσA which with
high probability satisfies

∥fSA ∗GσA − fS ∗Gσ∥TV ≤ ε. (93)

Without loss of generality, let us assume σA ≥ σ. Therefore, we have already proved that

∥(fS − fSA ∗GσA −σ) ∗Gσ∥TV ≤ ε,

which holds due to the fact that Gaussian distributions are invariant w.r.t. convolution.

Using the same techniques introduced in the prior parts of this section, we already know that both fS and fSA have the
desired “low frequency” property in the Fourier domain. Also, it is easy to see that fSA ∗GσA −σ should also possess the
same attribute since convolution with a Gaussian further weakens high frequency details of the function. As a result, we can
apply the result of Theorem 3.8 and deduce the following bound:

∥fS − fSA ∗GσA −σ∥2 ≤ εeΩ(
K

SNR2 ). (94)

Using the parseval’s theorem, we have

∥fS − fSA ∗GσA −σ∥22 =

∫
RK

|FS (ω)− FSA (ω)F {GσA −σ} (ω)|2 dω

=

∫
RK

|FS (ω)|2
∣∣∣∣1− FSA (ω)

FS (ω)
F {GσA −σ} (ω)

∣∣∣∣2 dω
≤ O

(
ε2
)
. (95)

The above chain of inequalities imply that∣∣∣∣FSA (ω)

FS (ω)
F {GσA −σ} (ω)

∣∣∣∣ = ∣∣∣∣FSA (ω)

FS (ω)

∣∣∣∣ |F {GσA −σ} (ω)| = 1 +Θ(ε) , ∀ω ∈ RK . (96)

According to the analysis derived in Section C, we already know that∣∣∣∣FSA (ω)

FS (ω)

∣∣∣∣ = polyK (ω)

polyK (ω)
, |F {GσA −σ} (ω)| = e−ω2(σA −σ)/2,
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where the former equality is the direct result of calculating the Fourier transform of the general simplices which we have
already carried out in the previous parts. Since (96) holds for all ω ∈ RK , and due to the fact that a polynomial and an
exponential function cannot cancel each other (in a multiplicative way) everywhere, one can deduce that∣∣∣∣FSA (ω)

FS (ω)

∣∣∣∣ = 1 +Θ(ε) ,

|F {GσA −σ} (ω)| = 1 +Θ(ε) ,

which means both ∥fS − fSA ∥2 and || are both at most εeO(
K

SNR2 ). This proves our claim.

28


