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Abstract

Large Language Models (LLMs) might hal-001
lucinate facts, while curated Knowledge002
Graph (KGs) are typically factually reliable003
especially with domain-specific knowledge.004
Measuring the alignment between KGs and005
LLMs can effectively probe the factualness006
and identify the knowledge blind spots of007
LLMs. However, verifying the LLMs over ex-008
tensive KGs can be expensive. In this paper,009
we present KGLENS, a Thompson-sampling-010
inspired framework aimed at effectively and ef-011
ficiently measuring the alignment between KGs012
and LLMs. KGLENS features a graph-guided013
question generator for converting KGs into nat-014
ural language, along with a carefully designed015
importance sampling strategy based on param-016
eterized KG structure to expedite KG traversal.017
Our simulation experiment compares the brute018
force method with KGLENS under six differ-019
ent sampling methods, demonstrating that our020
approach achieves superior probing efficiency.021
Leveraging KGLENS, we conducted in-depth022
analyses of the factual accuracy of ten LLMs023
across three large domain-specific KGs from024
Wikidata, composing over 19K edges, 700 re-025
lations, and 21K entities. Human evaluation026
results indicate that KGLENS can assess LLMs027
with a level of accuracy nearly equivalent to028
that of human annotators, achieving 95.7% of029
the accuracy rate.030

1 Introduction031

The factualness of Large Language Models (LLMs)032

is crucial for their reliability and utility in various033

applications. Nonetheless, studies have shown that034

LLMs can produce information that is nonfactual,035

hallucinated, or outdated (Perez et al., 2022; Ji036

et al., 2023; Lee et al., 2022; Wang et al., 2021).037

To evaluate the factualness of LLMs, fact-038

checking (Thorne et al., 2018; Augenstein et al.,039

2023) and fact-QA (Petroni et al., 2020; Press et al.,040

2022; Dhingra et al., 2022) approaches are com-041

monly used, but several challenges persist. For042

fact-checking, distinguishing faithful and unfaith- 043

ful statements is different from evaluating factu- 044

alness of the generation. For fact-QA, scaling up 045

the evaluation data is challenging due to the ex- 046

pensive nature of the annotation process. For both 047

approaches, it is hard to exclude their data from the 048

web-crawled pretraining corpus (Deng et al., 2023) 049

to ensure the fairness of the evaluation. Last but not 050

least, LLMs may respond differently to the same 051

fact when the quert is phrased in different forms, a 052

challenge that existing fact-checking and fact-QA 053

datasets are not equipped to handle. 054

In contrast, probing LLMs knowledge by trans- 055

forming knowledge graph (KG) data into natu- 056

ral language questions addresses these limitations. 057

First, KGs are inherently scalable, factually reli- 058

able, and tailored to specific domains. This scala- 059

bility allows for extensive and efficient evaluation 060

of LLMs across various domains. Second, ques- 061

tion generation (QG) from KGs can be automated, 062

enabling the rapid and large-scale creation of eval- 063

uation datasets. Moreover, generating various ques- 064

tions from the same set of facts allows us to assess 065

the robustness of LLMs to different phrasings. 066

However, there are several challenges for QG- 067

based KG evaluation. The first is the efficiency 068

issue. Existing knowledge probing methods (Dong 069

et al., 2023; Wang et al., 2023), mainly using the 070

brute-force method which exhaustively evaluates 071

all KG edges, are computationally expensive, time- 072

consuming, and non-scalable. The second chal- 073

lenge comes to transformation of ambiguous KG 074

triplets into natural language queries. Given a sub- 075

ject and predicate, the correct object may not be 076

unique, thus the answer to the question is ambigu- 077

ous. Furthermore, some subjects may lack speci- 078

ficity, resulting in confusing questions. Examples 079

illustrating these issues are shown in Table. 1. In 080

this case, both text-cloze based methods (Petroni 081

et al., 2019; Jiang et al., 2020; Dong et al., 2023) 082

and prompt-based QG methods (Wang et al., 2023) 083
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Multi-objects
Barack Obama, educated at, Columbia University
Barack Obama, educated at, Harvard Law School
Ambiguous subject
Waterloo (also known as Waterloo, Ontario)
Waterloo (also known as Waterloo, Iowa)

Table 1: Examples of ambiguous KG triplets.

fail to evaluate the factualness properly.084

In this study, we present a novel knowledge085

probing framework named KGLENS (Fig. 1), to086

measure the knowledge alignment between KGs087

and LLMs, and to identify LLM’s knowledge blind088

spots. To efficiently probe the LLM, KGLENS fea-089

tures a Thompson sampling inspired method to090

rapidly identify knowledge blind spots. More091

specifically, we first introduce a parameterized092

knowledge graph (PKG), where each KG edge is093

augmented with a beta distribution, serving as an094

indicator of the LLM’s deficiency on that specific095

edge. We apply Thompson sampling to select the096

edges based on edge deficiency and then evaluate097

LLMs with the sampled edges, update the PKG098

with the evaluation results, and iterate this process099

until the running metrics converge. Our simulation100

experiments show that our sampling method with101

PKG is more efficient than random sampling and102

brute-force methods.103

To accurately probe the LLM, KGLENS features104

a graph-guided question generator for converting105

KGs into natural language with GPT-4 (OpenAI,106

2023). We design two types of questions (fact-107

checking and fact-QA) to reduce the ambiguity of108

the expected answer, where the question type is109

controlled by the graph structure. We also include110

the entity aliases during the question generation to111

provide additional context and reduce the subject112

ambiguity. Human evaluation results show that113

97.7% of our generated questions are sensible to114

human annotators.115

To assess the whole framework of KGLENS,116

we probed 10 popular LLMs with three domain-117

specific KGs collected from Wikidata, encompass-118

ing over 700 relations and 21K entities. We in-119

troduce three evaluation metrics to measure the120

knwoledge alignment between an LLM and a KG:121

zero-sense rate (percentage of facts that an LLM122

never answered correctly in all rounds), all-sense123

rate (percentage of facts that an LLM always an-124

swered correctly in all rounds), and win rate (per-125

centage of facts that an LLM answered correctly126

more than half of the rounds). Human evaluation127

shows that KGLENS can assess LLMs with a level 128

of accuracy nearly equivalent to that of human an- 129

notators with 95.7% accuracy rate. Our key contri- 130

butions are as follows: 131

1. We introduce a novel, efficient knowledge 132

probing framework to efficiently identify 133

LLMs’ knowledge blind spots across diverse 134

topics and relationships. 135

2. Our QG strategy leverages KG structure to 136

reduce ambiguity thus providing accurate and 137

effective LLM evaluation, surpassing existing 138

methods that focus solely on atomic triplets. 139

3. Human evaluation verifies our framework’s ef- 140

ficacy with a human-level accuracy (95.7%) in 141

assessing LLMs’ knowledge, nearly matching 142

human annotator performance. 143

4. We propose three metrics to quantify knowl- 144

edge alignment between LLMs and KGs, suc- 145

cessfully identifying knowledge gaps and reli- 146

able facts. 147

5. Our contributions advance the development of 148

more reliable and factual AI systems, promot- 149

ing trustworthy user experiences and efficient 150

model improvement. We will open-source our 151

framework and datasets. 152

2 Method 153

In probing the knowledge of LLMs, we face a 154

unique challenge: while we have access to a vast 155

corpus of KG edges, we lack insight into how well 156

the LLM understands each of them. This scenario 157

bears a striking resemblance to the multi-armed 158

bandit problem in reinforcement learning, where 159

we must balance exploration and exploitation to 160

maximize our understanding of the LLM’s knowl- 161

edge gaps. 162

Our approach, which we call KGLENS, aims 163

to efficiently identify the edges where the LLM’s 164

knowledge is weakest or most limited. This al- 165

lows us to focus our efforts on the areas where the 166

LLM needs the most improvement. The framework 167

of KGLENS is illustrated in Fig. 1, with its work- 168

flow summarized in the caption. Key aspects of 169

our method include Thompson Sampling Inspired 170

Parameterized KG, Graph-Guided Question Gener- 171

ator, and Answer Verification. 172

In the following subsections, we will delve into 173

each of these components in detail, explaining how 174
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Figure 1: KGLENS Framework. KGLENS starts from the PKG initialization, where each edge is augmented with
a beta distribution. Then a batch of edges is sampled based on the edge probability θ. After that, questions are
generated from these edges and an LLM will be examined with question answering task. Then we update the beta
distribution of PKG edges based on the QA results. We iterate this process until the running metrics are converged.

they work together to create an effective knowledge175

probing system for LLMs.176

2.1 Parameterized Knowledge Graph177

A knowledge graph G, is a set of triplets178

{(sj , pj , oj)}j=1···i where each tuple describes a179

relationship (predicate) pj between a subject sj180

and an object oj .181

Intuitively, if an LLM failed in answering a182

question, there is a higher chance that the LLM183

also lacks knowledge of the related topics. To re-184

flect this intuition, we propose a parameterized185

KG (PKG), by augmenting each edge (sj , pj , oj)186

with an additional error probability θj reflecting187

the probability that an LLM may fail on this edge.188

We use a Beta distribution to model θ:189

θj ∼ Beta(αj , βj), (1)190

where α and β can be interpreted as the number191

of times the targeted LLM failed or succeeded in192

answering the question. The prior of each θj is set193

to Beta(1, 1).194

The estimation of the posterior {αj , βj}∀j is195

done in an iterative manner based on the outcome196

from the LLM. Each iteration consists two stages:197

edge sampling and parameter updating.198

Edge sampling199

The edge sampling process favors the edges with200

larger θ values. In each iteration, we sample top-n201

edges ranked by θ sampled from the Beta distribu-202

tions of PKG, and then send these edges to LLM203

for examination and verification. The signal regard-204

ing the correctness of LLM’s response is collected205

for each edge.206

Parameter estimation and updating 207

For each edge, the α and β is updated based on 208

the new observation of whether the response from 209

LLM is correct, following the standard Beta dis- 210

tribution posterior updates. In addition, we also 211

propagate the signal to the neighboring edges to 212

account for the high correlation in error probability 213

among the connected edges. To optimize the com- 214

putational process, signal propagation is restricted 215

to one degree. Specifically, 216

αj = αj + I(response is incorrect) +Mj , (2) 217

βj = βj + I(response is correct) +Nj , (3) 218

where Mj = |incorrect neighborhood edges| and 219

Nj = |correct neighborhood edges|. An updated 220

PKG (Fig. 2) is then obtained by repeating the 221

edge sampling and parameter updating process it- 222

eratively until the running metrics (3.2) converge. 223

2.2 Graph-guided Question Generation 224

We use GPT-4 to transform the sampled edge Ki 225

into the natural questions with few-shot in-context 226

learning. The prompts and demonstrations are 227

shown in Appendix A.6. We design two types of 228

questions for KGLENS: Yes/No Questions (judge- 229

ment) and Wh-Questions (generative), where the 230

question type is controlled by the graph struc- 231

ture (out degree). In addition, to reduce the am- 232

biguity of entities, we provide the entity alias for 233

question generation. 234

2.2.1 Yes/No Questions 235

Each KG edge can be transformed into a question 236

by asking if the subject’s relation is the object. But 237

in this way, the answer would always be Yes for all 238

the edges. To formulate hard negative examples, 239
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Figure 2: Parameterized KG. The edge color is an esti-
mation in LLM’s deficiency to the associated fact.

we build a ground truth answer set Tj for each240

(sj , pj), and the candidate answer set Cj for each241

pj . Both Tj and Cj are derived from the full Wiki-242

data knowledge graph to ensure the completeness.243

Then, for a tuple {(sj , pj , oj)}, we use oj to consti-244

tute the Yes question, and sample a random ox from245

Cj−Tj to formulate the No question. Considering246

our QG process is on-the-fly during the evaluation,247

KGLENS can formulate different QA pairs for the248

same fact. The sampling rate between yes and no249

question is evenly split, with a 50-50 distribution.250

2.2.2 Wh-Questions251

Another type of question queries the LLMs to252

generate the object(s) given the subject and the253

predicate, where the questions usually begin with254

when/where/who/what. While this question type255

presents greater difficulty, it is not universally appli-256

cable. Wh-questions may yield hundreds of correct257

objects, rendering exhaustive enumeration imprac-258

tical and uninformative.259

In KGLENS, we opt to generate Wh-Questions260

only when the out degree of an entity is less than261

10. Otherwise, the Yes/No Questions prompt is262

adopted.263

2.3 QAV: Question Answering Verification264

Our QA testing involved two difficulty levels:265

EASY, comprising solely Yes/No questions; and266

HARD, with each question type generated at a267

50% chance. Few-shot in-context learning was268

employed to test the LLMs.269

To verify the response, we guide the LLMs to270

generate either “Yes” or “No” at the beginning 271

of the response for Yes/No Questions and subse- 272

quently generate accompanying explanations. This 273

approach facilitates a straightforward verification 274

process by examining the correspondence of the 275

initial word. For Wh-Questions, we instruct the 276

LLM to list all the correct answers. In this case, the 277

assessment of the answer cannot be done by string 278

matching. Therefore, we employ a GPT-4 model 279

to check the correctness of a response given the 280

question, the ground truth objects and their aliases. 281

The prompts are listed in Appendix A.6. 282

2.4 Evaluation Efficiency Study 283

In this section, we conduct a simulation experi- 284

ment to evaluate the efficiency of different methods 285

in identifying the most challenging edges in a do- 286

main specific KG (NBA KG in Table 2), including: 287

Thompson sampling, Epsilon Greedy, Monte Carlo, 288

and the straightforward iteration method (Brute 289

Force), which involves iterating over all edges mul- 290

tiple times. We first estimate the ground truth θ by 291

iterating over all edges 20 times using the Brute- 292

Force method. Then, top-k difficult edges can be 293

identified by ranking the estimated θ. Since we 294

are interested in the most challenging edges, Mean 295

Square Error (MSE) for these top-k edges will be 296

computed between the estimated θ and the ground 297

truth θ for each method. 298

In Fig. 3, we plot different methods’ MSE score 299

of top-200 and top-600 challenging edges over the 300

number of API requests. The vertical epoch lines 301

represent the cumulative number of API requests 302

necessary to complete a full iterations over the PKG 303

edges using the Brute-Force method. From this 304

figure, we observe Thompson sampling method 305

demonstrates superiority in pinpointing the most 306

challenging edges. Notably, both Thompson sam- 307

pling and Epsilon-Greedy exhibit advantages over 308

Monte Carlo and Brute-Force methods by strik- 309

ing an effective balance between exploration and 310

exploitation. For exmaple, from Fig. 3(b), we 311

can see that Thompson sampling with propogation 312

achieves the accuracy of a 4.5-epoch Brute-Force 313

method while utilizing only 65% of the compute 314

resources. This finding underscores the potential 315

of our approach to swiftly identify critical edges 316

and optimize resource allocation in large-scale KG 317

applications. In addition, we find the signal propa- 318

gation mechanism further enhances the capabilities, 319

enabling them to achieve better accuracy rapidly. 320

4



(a) (b)

Figure 3: We measure the MSE distance between the ground truth θ and the estimated θ′ across different sampling
method. The vertical line epoch-N shows the number of API requests required for the Brute Force method to
complete N full iterations over each edges. The graph consists of 2789 edges in total.

KG Active Edges Dead Edges Nodes Predicates
Country 7844 9441 12760 338

NBA 2689 1158 805 57
Movies 8704 3053 7965 340

Table 2: Statistics of the testing knowledge graphs.

3 Experiments321

In this paper, we develop three domain-specific322

KGs using Wikidata to evaluate the knowledge ac-323

curacy and reliability of two widely used LLM324

APIs (GPT-3.5-turbo and GPT-4), two legacy325

LLMs (Babbage-002 and Davinci-002), together326

with three variations of GPT-4 (GPT-4-1106-327

preview, GPT-4-turbo, GPT-4o). We also evalu-328

ated three open source LLMs including Vicuna-329

33b-v1.3 (Chiang et al., 2023), Xwin-LM-13B-330

V0.2 (Team, 2023), and Yi-34B-Chat 1. Web331

browsing ability is unavailable to OpenAI API calls332

at the time when experiments are conducted.333

3.1 Dataset334

We prepare three test datasets (KG) with Wikidata335

Query Web Service 2 in three topics: country, NBA,336

and movie. The country KG includes knowledge337

about 16 countries. The NBA KG contains the338

knowledge related to 30 NBA teams. And the339

movies are sampled from films after 2015.340

The statistics of our KGs are shown in Tab. 2.341

The term “dead edges” refers to edges that are less342

intriguing to inquire about but are still crucial for343

displaying entity relations. For example, certain344

predicates such as “member of” and “domestic re-345

1https://www.01.ai
2https://query.wikidata.org

lation”, exemplify links between entities, but they 346

are less captivating to inquire about and are too 347

prevalent. Conversely, significant and meaningful 348

edges are referred to as “active edges”, and we use 349

them to generate questions. More details of KG 350

construction are provided in the Appendix A.2. 351

3.2 Metrics 352

To measure the alignment between KGs and LLMs, 353

here we introduce three edge-level metrics, where 354

each edge is evaluated multiple times with m suc- 355

cesses and n failures. 356

Win rate. For each edge, LLM wins if the num- 357

ber of successes surpasses the number of failures, 358

namely m > n. The win rate signifies the portion 359

of winning edges out of all the examined edges. 360

Zero-sense rate. An LLM would has zero-sense 361

about an edge (fact) if the model has never an- 362

swered the edge correctly, namely m = 0. The 363

zero-sense rate signifies the portion of edges with 364

zero-sense. 365

All-sense rate. An LLM would has all-sense 366

about an edge (fact) if the model has never failed 367

to answer the edge, namely n = 0. The all-sense 368

rate signifies the portion of edges with all-sense. 369

Based on the definition above, win rate is the 370

portion of edges that an LLM has higher chance to 371

answer them correctly, indicating the reliability of 372

LLM. Zero-sense rate is the portion of edges that 373

an LLM always fails to answer. All-sense rate is 374

the portion of edges that an LLM always succeed 375

to answer. 376
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LLMs Country NBA Movie Average
EASY HARD EASY HARD EASY HARD

Babbage-002 57.46 34.39 58.32 27.65 57.48 31.00 44.38
Davinci-002 58.85 38.36 58.21 30.57 55.66 34.72 46.06
Vicuna-33b-v1.3 66.51 55.87 36.60 41.66 50.56 46.22 49.57
Xwin-LM-13B-V0.2 54.77 49.13 53.52 50.51 53.59 47.84 51.56
Yi-34B-Chat 66.72 56.16 65.66 62.06 59.86 55.78 61.04
GPT-3.5-turbo 74.43 63.42 57.98 56.95 62.80 57.70 62.21
GPT-4-1106-preview 82.27 72.42 79.09 70.57 83.15 66.95 75.74
GPT-4-turbo 83.69 73.19 82.38 76.11 85.62 73.58 79.09
GPT-4o 86.25 73.71 78.45 78.46 86.36 74.34 79.59
GPT-4 84.79 74.06 84.23 78.93 85.14 70.80 79.66

Table 3: Win rate results for different LLMs evaluated under EASY and HARD modes.

Figure 4: Percentage of facts that LLMs always
answered correctly and incorrectly. Full results in
Tab. 6, 7.

3.3 Main Results377

To evaluate the KGs, we run KGLENS across378

LLMs with 60 iterations and 64 batch size for each379

graph. Tab. 3 show results of win rate. We put380

results of zero-sense rate and all-sense rate in Ap-381

pendix Tab. 6, 7, but we visualize 5 models’ results382

in Fig. 4.383

Across varying difficulty levels, knowledge384

graphs, and the tested models, GPT-4 family con-385

sistently outperforms the others in both metrics.386

The performance across GPT-4 variations are close,387

where GPT-4, GPT-4o and GPT-4-turbo exhibits388

the most comparable performance, followed by389

GPT-4-1106-preview. We find GPT-4o exhibits a390

more cautious disposition in disclosing personal391

information. It frequently refrains from providing392

specific details about individuals, which may be393

correlated with its performance disparity in NBA394

KG, where GPT-4 underperforms GPT-4. Further395

investigation is warranted. We also find the gap396

between GPT-3.5-turbo and GPT-4 relatively larger397

across all domains and all difficulty levels, and398

GPT-3.5-turbo is even worse than the legacy LLMs399

under NBA KG EASY mode. Upon investigat-400

ing the evaluation logs, GPT-3.5 exhibits a con-401

servative approach, abstaining from generating an-402

swers when lacking confidence rather than provid-403

Figure 5: Zero-sense rate across years. Full results in
Fig. 10.

ing speculative responses. Responses following 404

this protocol consistently begin with the phrases, 405

“I am sorry, but I couldn’t find any information 406

on/about...”, “I’m sorry, but as an AI assistant, I 407

do not have the capability to provide real-time in- 408

formation ...”. In such cases, the edge would be 409

marked as failed when the model declines to an- 410

swer a question. We also observed such behavior 411

in Yi-34B-Chat and Vicunna-33b-v1.3. 412

Lastly, we find the two legacy models exhibit 413

comparable performance across evaluations. The 414

random guessing baseline of the win rate is 50% 415

for EASY evaluation, and 25% for HARD evalua- 416

tion. We find Babbage-002 and Davinci-002 results 417

are only slightly better than the random guessing, 418

clearly showing the gap between the legacy LLMs 419

and the recent LLMs. We also provide examples of 420

different error types in Tab. 5. 421

3.4 Results Analysis by Edge Attributes 422

Another advantage of evaluating LLM with KG is 423

that the results can be aggregated by different edge 424

attributes. In this section, we show KGLENS can 425

be used for two different focuses of evaluation in- 426

cluding the temporal groups and entity groups. 427

3.4.1 Temporal Analysis of Results 428

We conduct temporal analysis with movie KG. We 429

group the results by the movie release years in 430

Fig. 5 and full results are in Fig. 10 in Appendix. 431

From this Fig. 5, we observe that both the GPT-3.5 432

and GPT-4-1106 perform worse for questions after 433
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2020, which is reasonable as they were mainly pre-434

trained with data before September 2021. On the435

other hand, we found that GPT-4-o significantly436

outperforms the other models in terms of zero-437

sense rate and win rate. In Fig. 10, we find all438

models get worse when evaluated in HARD mode,439

but GPT-3.5 is more robust. This is because a big440

portion of GPT-3.5’s failures are caused by refusing441

to answer the questions, instead of providing the442

wrong answers, which explains its results in EASY443

and HARD testing. Finally, it should be noted that444

it is reasonable that the rankings in Fig. 10 are445

not strictly aligned with the years, as the tempo-446

ral difference is not the only factor that affect the447

evaluation results.448

3.4.2 Entity Groups Analaysis449

We also show results where we group the Country450

KG edges by the entity type in Fig. 8 in appendix.451

The proficiency levels across countries can be vi-452

sualized using a color coded table, where a darker453

color signifies higher zero-sense rate and thus a454

lower level of proficiency. Taking GPT-4 evaluated455

against country KG under HARD level difficulty456

for example, GPT-4 exhibits a recognition accuracy457

where the Austria, Mexico, and Italy are identified458

and ranked as 1, 2, and 3 respectively. In con-459

trast, countries such as Canada, Philippines, and460

the United Kingdom are positioned at the lower461

end of the ranking scale.462

The rationale behind the ranking can be eluci-463

dated by examining the dotted heatmap in the ap-464

pendix(Fig. 6). In this figure, the size of each dot465

corresponds to the number of edges within the pred-466

icate sub-group, normalized by the total size of467

edges in the entire group. Additionally, the color468

of each dot serves as an indicator of the knowledge469

proficiency associated with the predicate sub-group470

pertaining to the respective country. Contrary to471

the table color theme, the darker color here indi-472

cates lower zero-sense rate and thus higher level of473

proficiency.474

We find KGLENS can identify where the errors475

came from for each country group. Concentrating476

on the Austria and the Canada, which represent the477

highest and lowest ranked countries, respectively,478

it becomes evident that GPT-4 exhibits enhanced479

proficiency pertaining to specific predicate sub-480

groups. Notably, these sub-groups include “located481

in time zone”, “located in the administrative terri-482

torial entity”, “electrical plug type,” “emergency483

phone number,” and “head of state”.484

Country NBA Movie Average

QG 96% 98% 99% 97.7%
- Wh-question 100% 100% 98% 99.3%
- Yes/No-question 92% 96% 100% 96%

QAV 96% 96% 96% 96%

QG+QAV 94% 96% 97% 95.7%

Table 4: Human assessment of question generation (QG)
module and question answering verification (QAV) mod-
ule. Majority voting among five annotators was em-
ployed as the method for rendering a final judgment.

3.5 Human Evaluation 485

We conduct human evaluation to verify the ques- 486

tion generation module and the question answering 487

module of KGLENS. A random sample of 300 488

instances was obtained (100 per domain, 50 per 489

question type), and human annotations were ac- 490

quired through five rounds of rating. The assess- 491

ment process is conducted instance by instance, 492

where the annotators were tasked with evaluating 493

two aspects (QG and QA): firstly, the clarity of 494

the generated question’s intent, and secondly, the 495

correctness of the LLM’s response in relation to 496

the ground truth answer and its synonymous ex- 497

pressions. These second objective is to verify if 498

the annotator’s judgement agrees with KGLENS’s 499

judgement, and is only conducted for Wh ques- 500

tions, as there is no need to verify Yes/No by hu- 501

man. After collected the ratings, a majority vot- 502

ing mechanism was employed for each instance, 503

wherein a label was assigned as "True" if at least 504

three annotators concurred on the evaluation crite- 505

rion. The evaluation results are presented in Tab. 4, 506

and KGLENS demonstrates robust performance in 507

human evaluation across domains. 96% accuracy 508

in QAV and an impressive 98% accuracy in QG. 509

We also report the overall accuracy of KGLENS . 510

For the purpose of this evaluation, we define an in- 511

stance as correct when two conditions are met: the 512

generated question is marked as correct by human; 513

and the QA correctness judged by KGLENS aligns 514

with human judgment. Our findings show a 95.7% 515

accuracy rate for KGLENS , indicating its ability 516

to approximate human-level performance. 517

4 Related Work 518

It’s an established fact that pre-trained models have 519

the ability to learn and retain knowledge. For exam- 520

ple, Petroni et al. (2019) discovered that BERT (De- 521

vlin et al., 2018), even without finetuning, har- 522

bors relational knowledge comparable to traditional 523
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NLP methods. With LLMs showcasing superior524

in-context learning and knowledge retention, eval-525

uating their knowledge becomes pivotal to bolster526

performance and mitigate hallucination.527

The knowledge assessment often tests the model528

with specific knowledge-related datasets (Lewis529

et al., 2021; Petroni et al., 2020; Roberts et al.,530

2020; Peng et al., 2023; Press et al., 2022; Mallen531

et al., 2023). However, given the fact that LLMs532

are trained on web-crawled corpora and the data533

is constantly evolving, it is hard to exclude the534

test examples from the pretraining corpus. For ex-535

ample, Deng et al. (2023) use fill-in probing and536

multi-choice probing to check the data leakage of537

pretrained LLMs. Their results show that GPT-538

3.5-turbo exhibited a noteworthy ability to guess539

the missing option. Another concern is that the540

knowledge is dynamic, and the evaluation datasets541

remain fixed, which makes it challenging to eval-542

uate the LLMs’ knowledge accurately. Dhingra543

et al. (2022) propose a diagnostic dataset that pairs544

the text and timestamp together and jointly mod-545

els text and time. However, their dataset is static546

and designed for 2010 to 2020, which is not suit-547

able for evaluating the LLMs’ knowledge in the548

future. Finally, the predominant metric employed549

by these datasets revolves around the test set accu-550

racy, making it challenging to identify solutions for551

enhancing the LLM and reducing the hallucination.552

On the other hand, knowledge graphs have the553

advantages of customization to specific domains,554

evolving knowledge, and reduced potential for test555

set leakage, which has been employed as a struc-556

tured knowledge source for LLMs (Lin et al., 2019;557

Agarwal et al., 2020; Rosset et al., 2020) and also558

been employed as a tool to probe knowledge in559

LLMs. LAMA (Petroni et al., 2019) is the first560

work to probe a pretrained model with KGs, where561

they use the KG to generate the cloze statement and562

evaluate the LM’s knowledge with accuracy. How-563

ever the cloze statement is not a natural question,564

and the correct answer is not unique in many cases,565

making the evaluation inaccurate. LPAQA (Jiang566

et al., 2020) propose to mine the relation words567

from the web for each subject-object pair, which is568

impractical for large knowledge graph. In addition,569

these methods mainly focus on the accuracy but570

neglect that LLMs may respond differently to the571

same fact, where reliability should also be consid-572

ered. KaRR (Dong et al., 2023) proposes to solve573

this issue by using multiple prompts for each KG574

edge and using the output logits of LLMs to mea- 575

sure the knowledge reliability. However, KaRR is 576

inefficient for large graphs, and it is not generaliz- 577

able due to the unavailable of LLM’s output logits. 578

Moreover, transforming KG triplets into questions 579

is more natural than the text cloze task, but pre- 580

vious works mainly adopt the text cloze task for 581

simplicity. Finally, to our best knowledge, there is 582

no existing work that visualizes the LLM’s knowl- 583

edge with KG (Fig. 2). 584

5 Conclusion 585

In this work, we introduced KGLENS, a novel 586

and efficient method tailored for visualizing and 587

evaluating the factual knowledge embedded in 588

LLMs. Our proposed Thompson sampling in- 589

spired framework with parameterized KG offers a 590

more efficient way to revil LLM’s knowledge blind 591

spots than existing brute force iterating methods. 592

By evaluating various LLMs with our developed 593

domain-specific KGs, we show KGLENS provides 594

adaptable and customizable views of an LLM’s 595

knowledge. Human evaluation results indicate that 596

KGLENS can access LLMs with a level of accu- 597

racy nearly qeuivalent to that of human annotators, 598

achieving 95.7% of the accuracy rate. Furthermore, 599

our tool KGLENS, together with our assessment 600

KGs, sourced from Wikidata, will be available to 601

the research community, fostering collaboration 602

and serving as a valuable resource for future in- 603

vestigations into language models. For businesses 604

employing LLMs, our contributions facilitate the 605

development of more reliable and factual AI sys- 606

tems, fostering trustworthy user experiences and ef- 607

ficient processes for improving model knowledge. 608

6 Limitation 609

KG plays a pivotal role in our approach, and its 610

quality significantly impacts the effectiveness of 611

this method. A high-quality KG is essential not 612

only for the Question Generation step to generate 613

meaningful questions but also for signal propaga- 614

tion. If the KG is fragmented and scattered, signal 615

propagation then becomes less beneficial. 616

While our current method incorporates counting 617

updates for alpha and beta, we acknowledge the 618

potential for improvement. Exploring alternative 619

methods for updating these parameters is an area 620

of active research for us. 621

The signal propagation method is another direc- 622

tion that we can dive into, instead of only propagate 623

8



to neighbour edges, should we also propagate to624

further edges? Instead of equally update the neigh-625

bour edges, should we decay the signal? etc.626

Question generation currently is limited to just627

one hop, being able to generate complicated ques-628

tions that evolves multiple edge hops would enable629

our method to evaluation the model not only on630

factual knowledge retrieval, but also complex rea-631

soning capability.632

7 Ethical Considerations633

We foresee no ethical issues originating from this634

work.635
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Appendix 754

A Appendix 755

A.1 Cost Analysis 756

Here we highlight that the cost of GPT-4 is not counted by the number of queries, but the number of tokens. 757

After doing a cost analysis, we conclude GPT-4 only cost about $20 per graph, which is acceptable. 758

GPT-4 in KGLENS is only used to construct the question and verify LLM answers, and all the generation 759

is based on knowledge graph triplets. And for yes/no questions, we simply use string matching to verify 760

the answer. Our QG prompt using GPT-4 is around 60-100 input tokens + 10-30 output tokens, and 60 761

input token plus 8 output tokens for answer verification. Currently based on OpenAI website, gpt-4-0125- 762

preview and gpt-4-1106-preview costs $10 per 1M input tokens and $30 per 1M output tokens. If we take 763

an upper bound cost of our request 100 input tokens and 30 output tokens, each request costs <$0.002. 764

The final cost of course also depends on the size of the knowledge graph, but in our case for example, 765

NBA knowledge graph has 2689 active edges, 22.5K API requests is sufficient to iterate over the entire 766

edge set 8 times, and this translates to $45 (in reality if using KGLENS, using less than half the number of 767

API requests can get to a decent theta estimation $20 per evaluation) 768

The major cost is actually the hosting cost of the target LLM. For reference 1 A100 GPU cost is around 769

$5 per hour, and this cost scale up easily when evaluating larger LLMs. 770

In addition, we believe for answer verification step, it is not a requirement to use GPT-4 (we choose it 771

for simplicity), maybe a lower cost model could be used to replace GPT-4. 772

A.2 Knowledge Graph Building and Cleaning 773

Given Wikidata’s vastness and inherent noise, we implement multiple strategies to maintain focus, 774

relevance, and precision. Following techniques empower us to delve into specialized domains and ensure 775

us a targeted and reliable exploration of the data. 776

A.2.1 Sampling Strategies and Preserving Data Distribution 777

Maintaining the original data distribution is important when cleaning a knowledge graph. To achieve this, 778

random walk with both forward A.7.1 and backward A.7.2 dimension are employed. Sorting by random 779

value of each queried edges, the sub-knowledge graph contains the representative samples that mirror 780

the diversity of the original knowledge graph, we can preserve the inherent distribution of entities and 781

relationships. This approach guarantees that our cleaned knowledge graph remains a faithful representation 782

of the underlying data, enabling us to draw accurate conclusions from our research. 783

The extent of the random walk distance is flexible and tailored to specific requirements. Within our sub 784

knowledge graphs, we conduct random walks spanning three steps, encompassing both nodes and edges 785

within this range for analysis. 786

A.2.2 Focus and Curated Relevance 787

In the realm of knowledge graphs, Wikidata stands out as a repository of extensive information. However, 788

our research necessitates a more nuanced approach. While Wikidata offers comprehensive knowledge, our 789

focus lies in curated topics and entities tailored for specific purposes. This distinction is vital as it allows 790

us to delve deeper into specialized domains, ensuring the precision and relevance of the data we analyze. 791

To address this issue, the parameterized knowledge graph begins by establishing a set of human selected 792

central entities, from which it initiates random walks to explore neighboring entities. Additionally, we 793

perform predicate analysis to discern and exclude predicates of lesser importance or those that are overly 794

common. This approach ensures the focus on pertinent data while filtering out less relevant information. 795

A.2.3 Filtering Less Relevant Entities 796

The other challenges we encounter in Wikidata pertains to the noise within its knowledge graph. This 797

noise manifests in the form of entities that are rarely mentioned or of lesser importance in the context of 798

our research objectives. To maintain the integrity of our analysis, it is important to identify and filter out 799

these less relevant entities. 800
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• Filtering by language count: entities mentioned in multiple languages are often more significant and801

relevant to a broader audience. By focusing on such multilingual entities, we ensure the inclusion of802

globally relevant information in our analysis.803

• Filtering by word frequency: entities that are frequently mentioned in various contexts are likely to804

hold greater importance. By considering word frequency, we prioritize entities that are central to805

discussions, thereby enhancing the relevance and significance of the data included in our analysis.806

• Filtering out entities with no alias: entities without aliases are less likely to be widely recognized807

or referenced. By excluding these entities, we focus our analysis on well-known and frequently808

mentioned entities, aligning our research with more meaningful and impactful data points.809

A.3 Uncovered Error Types810

Error Type Question Response Answer

Factual Error On which side does the railway
traffic run in Israel?

Railway traffic in Israel runs on
the right-hand side. Left side

Obsolete Knowledge Who is the current head of state
in England?

The current head of state in Eng-
land is Queen Elizabeth II.

Charles III of the
United Kingdom

Self-contradiction
Is the Australian dollar the cur-
rency of Nauru (also known as
NR)?

No, the Australian dollar (AUD)
is the official currency of Nauru,
a small island nation in the Pa-
cific Ocean.

Yes

Inconsistent Response
In Tonga (also known as TO), do
people drive on the right side of
the road?

No, in Tonga, people drive on
the left side of the road. No

Is the left the driving side in
Tonga (also known as TO)?

No, the right is the driving side
in Tonga. Yes

Table 5: Error types uncovered from the country KG.

A.4 Zero-sense rate and all-sense rate811

LLMs Country NBA Movie Average
EASY HARD EASY HARD EASY HARD

Babbage-002 24.51 51.56 15.34 38.61 26.70 56.77 35.58
Davinci-002 24.44 47.27 17.69 37.89 28.54 52.71 34.76
Vicuna-33b-v1.3 17.19 26.09 41.75 37.30 36.01 42.47 33.47
Xwin-LM-13B-V0.2 28.96 35.12 19.06 26.92 34.59 38.48 30.52
Yi-34B-Chat 16.15 25.17 14.16 18.79 26.58 30.90 21.96
GPT-3.5-turbo 14.98 20.32 17.17 21.09 22.70 29.36 20.94
GPT-4-1106-preview 7.59 14.16 8.19 12.42 9.21 21.43 12.17
GPT-4-turbo 7.26 12.73 6.77 9.44 8.51 17.52 10.37
GPT-4 7.42 12.99 6.07 8.13 8.35 17.67 10.11
GPT-4o 5.84 11.86 7.43 8.24 7.63 16.33 9.56

Table 6: Zero-sense rate results for different LLMs evaluated under EASY and HARD modes.

A.5 Human Evaluation812

We conduct human evaluation with an internal paid crowdsouring service, where 5 annotators participated813

the annotation process with their consent of using the data. All the annotators are from English speaking814

countries. The annotation instruction is shown below.815
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LLMs Country NBA Movie Average
EASY HARD EASY HARD EASY HARD

Babbage-002 54.09 33.63 43.54 23.98 53.96 29.91 39.85
Davinci-002 55.70 37.16 43.87 25.93 52.73 33.93 41.55
Vicuna-33b-v1.3 64.27 54.95 35.05 39.41 48.99 45.64 48.05
Xwin-LM-13B-V0.2 53.93 48.81 46.60 45.68 52.26 47.10 49.06
Yi-34B-Chat 64.22 55.45 56.55 55.60 57.97 54.34 57.36
GPT-3.5-turbo 68.43 60.65 50.10 51.33 59.89 56.07 57.75
GPT-4-1106-preview 79.32 69.64 71.78 65.29 80.39 64.47 71.81
GPT-4 82.24 71.19 77.44 73.63 82.44 68.58 75.92
GPT-4-turbo 80.60 71.21 75.93 72.84 83.42 71.91 75.99
GPT-4o 82.95 71.86 71.98 73.34 83.91 72.81 76.14

Table 7: All-sense rate results for different LLMs evaluated under EASY and HARD modes.

Instruction

In this survey, you are provided with a question, the answer (and answer aliases separated by
comma), and an AI’s response to this question.
Background
This survey is to check if the question is understandable, and if the AI’s response is matched with
the given answer.
Annotation Guideline
As an annotator, you are asked to judge whether the intent of the question is clear enough to be
understood (if you can understand the question, please select the option ‘Yes’, whether you know
the answer or not).
For some questions, you won’t see the answer and AI’s response.
For some questions, you will see the answer and AI’s response. Then you need to check if the
AI’s response is correct or not. Please select the option "correct" when the answer, or any of the
answer alias appears in AI’s response. Otherwise, select “Incorrect".
Note: You don’t need to do any research to find the answer. Just use the provided answer.

816

A.6 Prompt 817

Answer Verification

Given a question and its correct answers, please judge whether a response is correct or not, only
reply with yes or no.
User:
QUESTION: What writing system does the Ixcatec language use?
ANSWERS: latin script, latn, roman script
Assistant:
RESPONSE: the ixcatec language uses the latin alphabet for writing.
User:
QUESTION: On which side does railway traffic run in the philippines?
ANSWERS: left, left side, left-hand side
Assistant: RESPONSE: Railway traffic in the philippines runs on the right-hand side.
User:
QUESTION: <question>
ANSWERS: <answers>

818
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Yes/No Question Generation

Given a semantic triple (SUBJECT, PREDICATE, OBJECT), generate a QUESTION that asks if
the SUBJECT’s PREDICATE is the OBJECT, or includes the OBJECT. The alias of the SUBJECT
can be used in the question.
User: SUBJECT is Joroud, PREDICT is place of birth, OBJECT is Gamla Uppsala, SUB-
JECT_ALIAS is Jörundr
Assistant: Is Gamla Uppsala the birth place of Jorund (also known as Jörundr)?
User: SUBJECT is Asia, PREDICT is located in time zone, OBJECT is Nepal Standard Time,
SUBJECT_ALIAS is Asian continent
Assistant: Is Nepal Standard Time included in the time zones of Asia (also known as the Asian
continent)? User: <s, p, o, [subject alias]>

819

Wh-Question Generation

Given a semantic triple SUBJECT, PREDICATE, OBJECT, generate a QUESTION that can be
answered by the OBJECT. The OBJECT must not occur in the question.
User: SUBJECT is Jorund, PREDICT is place of birth, OBJECT is Gamla Uppsala
Assistant: What is the birth place of the legendary Swedish king Jorund?
User: SUBJECT is Yellow Emperor, PREDICT is father, OBJECT is Shaodian, SUBJECT_ALIAS
Assistant: Who is the father of Yellow Emperor?
User: <s, p, o>

820

Yes No Question Answer

You are a helpful assistant, please answer Yes or No to the user’s questions.
User:Is Belgium located in the continent of Europe?
Assistant: Yes.
User: Is Andrzej Duda the head of state of Belgium?
Assistant: No.
User: <yes no question>

821

Generative Question Answer

You are a helpful assistant, please give short and accurate answers to the user’s question. If there
are multiple answers, please list as much as possible.
User:What is the birth place of Jorund?
Assistant: Gamla Uppsala.
User: Who is the father of Yellow Emperor?
Assistant: Shaodian
User: <generative question>

822

A.7 Wikidata Web Query823

A.7.1 Forward Walk824

1 SELECT DISTINCT ?subject ?subjectLabel ?subjectDesc ?predicate ?predicateLabel ?825
predicateDesc ?object ?objectLabel ?objectDesc826

2 WHERE {{827
3 VALUES ?subject {{828
4 {values}829
5 }}830
6 ?subject ?predicate ?object .831
7 ?subject rdfs:label ?subjectLabel .832
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8 ?subject schema:description ?subjectDesc . 833
9 ?property wikibase:directClaim ?predicate . 834

10 ?property rdfs:label ?predicateLabel . 835
11 ?property schema:description ?predicateDesc . 836
12 ?object rdfs:label ?objectLabel . 837
13 ?object schema:description ?objectDesc . 838
14 FILTER (lang(?subjectLabel) = "en") 839
15 FILTER (lang(?subjectDesc) = "en") 840
16 FILTER (lang(?predicateLabel) = "en") 841
17 FILTER (lang(?predicateDesc) = "en") 842
18 FILTER (lang(?objectLabel) = "en") 843
19 FILTER (lang(?objectDesc) = "en") 844
20 }} 845
21 ORDER BY UUID() 846
22 LIMIT {limit} 847

A.7.2 Backward Walk 848

1 SELECT DISTINCT ?subject ?subjectLabel ?subjectDesc ?predicate ?predicateLabel ? 849
predicateDesc ?object ?objectLabel ?objectDesc 850

2 WHERE {{ 851
3 VALUES ?object {{ 852
4 {values} 853
5 }} 854
6 ?subject ?predicate ?object . 855
7 ?subject rdfs:label ?subjectLabel . 856
8 ?subject schema:description ?subjectDesc . 857
9 ?property wikibase:directClaim ?predicate . 858

10 ?property rdfs:label ?predicateLabel . 859
11 ?property schema:description ?predicateDesc . 860
12 ?object rdfs:label ?objectLabel . 861
13 ?object schema:description ?objectDesc . 862
14 FILTER (lang(?subjectLabel) = "en") 863
15 FILTER (lang(?subjectDesc) = "en") 864
16 FILTER (lang(?predicateLabel) = "en") 865
17 FILTER (lang(?predicateDesc) = "en") 866
18 FILTER (lang(?objectLabel) = "en") 867
19 FILTER (lang(?objectDesc) = "en") 868
20 }} 869
21 ORDER BY UUID() 870
22 LIMIT {limit} 871
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A.8 Additional Figures872

Figure 6: Predicate level knowledge proficiency of GPT-4 evaluated under HARD difficulty. The darker color
indicates a lower zero-sense rate. The dot size shows the proportional size of the number of edges in the predicate
sub-group.
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Figure 7: Country KG EASY-level zero-sense rate grouped by countries.

Figure 8: Country KG HARD-level zero-sense rate grouped by countries.

Figure 9: Movie KG EASY-level zero-sense rate grouped by years.
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Figure 10: Zero-sense rate grouped by years for moive KG in HARD mode.

Figure 11: NBA EASY-level zero-sense rate grouped by teams
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Figure 12: NBA HARD-level zero-sense rate grouped by teams
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