© CHINATRAVEL: AN OPEN-ENDED TRAVEL PLANNING BENCHMARK WITH COMPOSITIONAL CONSTRAINT VALIDATION FOR LANGUAGE AGENTS

Anonymous authorsPaper under double-blind review

ABSTRACT

Travel planning stands out among real-world applications of *Language Agents* because it couples significant practical demand with a rigorous constraint-satisfaction challenge. However, existing benchmarks typically rely on synthetic queries with limited constraints and explicit intent, which diverge from real-world scenarios, where user requirements are open-ended, diverse, and often implicitly expressed. To address this gap, we introduce *ChinaTravel*, with four key contributions: 1) a practical sandbox aligned with the multi-day, multi-POI travel planning, 2) a compositionally generalizable domain-specific language (DSL) for scalable evaluation, covering feasibility, constraint satisfaction, and preference comparison 3) an open-ended dataset that integrates diverse travel requirements and implicit intent from 1154 human participants, and 4) fine-grained analysis reveal the potential of neuro-symbolic agents in travel planning, achieving a 37.0% constraint satisfaction rate on human queries, a $10 \times$ improvement over purely neural models. Overall, ChinaTravel provides a foundation for advancing language agents through compositional constraint validation in complex, real-world planning scenarios.

1 Introduction

A long-standing goal in AI is to build reliable, general planning agents that assist humans in real-world tasks. Recent advances in LLMs have sparked the rapid development of *Language Agents*, which employ LLMs to perceive the surroundings, reason solutions, and take appropriate actions, ultimately building autonomous planning agents (Shinn et al., 2024; Yao et al., 2023b; Xi et al., 2023; Jimenez et al., 2024). Among numerous real-world tasks, travel planning stands out as a significant domain, presenting both academic challenges and practical value due to its inherent complexity and real-world relevance. Specifically, given a query, agents require information integration from various tools (e.g., searching for flights, restaurants, and hotels) to generate a feasible itinerary. This involves making interdependent decisions across multiple aspects such as spatial, temporal, and financial dimensions, all while meeting the user's requirements and preferences (e.g., budget, dining habits, etc).

To assess whether language agents meet users requirements in travel planning, (Zheng et al., 2024) present the Trip Planning benchmark for intercity itinerary conditioned on flights information. Xie et al. (2024) provide a pivotal benchmark, TravelPlanner (Xie et al., 2024), with a real-world travel sandbox and various tools to intergrate multi-dimensional information. However, there are four critical limitations: i) **Task Bias:** favors intercity itineraries, omitting scheduling of intracity events, which is ubiquitous in practice yet quite challenging. ii) **Limited Constraint Verification:** relies on fixed rule lists, not supporting diverse requirements spanning compositional concepts. iii) **Synthetic Query Construction:** includes only templated LLM-synthesized queries, underrepresenting openended, semantics-rich human requests. iv) **Overlook of NeSy Methods:** emphasizes LLM-only shortcomings in constraint adherence, yet largely ignores neuro-symbolic methods that couple neural language understanding with verifiable symbolic reasoning to meet travel needs. Within months of TravelPlanner's release, Hao et al. (2025) proposed a neuro-symbolic pipeline: an LLM extracts constraints from templated queries and a formal verification tool yields plans, achieving 97% success rate vs. 4% for LLM-only baseline. This suggests templated, fixed-constraint setups are near saturation, underscoring the need for an open-world benchmark grounded in authentic requirements.

056

060

061

062

063

064 065 066

067

068

069

071

073

074

075

076

077

079

081

083

084

085

087

090

091

092

094

096

098 099

100

101

102

103 104

105

107

Figure 1: **Overview of ChinaTravel**. Given a query, language agents employ various tools to gather information and plan a multi-day multi-POI itinerary. The agents are expected to provide **a feasible plan** while satisfying the **logical constraints** and **preference requirements**. To provide convenience for global researchers, we provide an English translation of the original Chinese information here.

To address the gap, we introduce ChinaTravel, an open-ended travel planning benchmark. It concentrates on multi-point-of-interest (multi-POI) itineraries (as illustrated in Fig. 1) and supports the compositional constraints evaluation with authentic Chinese travel queries. It is more realistic and challenging, providing a desirable testbed for real-world travel planning. The main contributions are:

ChinaTravel Sandbox: We introduce a real-world sandbox with a suite of tools aligned with the ubiquitous multi-day multi-POI itinerary planning. It provides the detailed travel information and supports the integration and planning of spatiotemporal schedules.

Compositional Constraints Evaluation: We present a domain specific language that programmatically composes atomic concepts of travel attributes across spatial, temporal, cost, and type dimensions to express compositional constraints. It supports scalable requirement specification and automated constraint verification, with metrics for feasibility, constraint satisfaction, and preference ranking.

Open-Ended Travel Dataset: Beyond the data synthesis pipeline as previous benchmarks, China-Travel integrates human-authored queries to create realistic travel planning scenarios. The validation set contains 154 human queries with combinatorial constraint requirements absent from synthetic data, while the test subset provides 1000 open-scenario queries. This structure specifically assesses agents' generalization capabilities for unseen constraint composition.

Empirical Analysis of Neuro-Symbolic Agents: Extensive experiments are conducted and the results reveal that neuro-symbolic agents significantly outperform pure LLM-based solutions on constraints satisfaction, achieving a success rate of 37.0% compared to 2.60% by purely neural methods, thus highlighting their promise for travel planning tasks. We also identify the key challenges of open-world requirements: open contextual grounding, and unseen concept composition, providing a foundation for advancing reliable agents toward real-world applicability.

Overall, ChinaTravel provides a challenging benchmark that rigorously assesses constraint satisfaction for travel planning, serving as a bridge between academic research and practical applications.

2 CHINATRAVEL BENCHMARK

Motivated by China's substantial travel demand, ChinaTravel provides a sandbox environment for generating multi-day itineraries with multiple POIs within specified cities. It is meticulously designed to provide a comprehensive and scalable evaluation framework in travel planning, encompassing three critical dimensions: environmental feasibility, constraint satisfaction, and preference comparison.

2.1 Environment Information

ChinaTravel provides a sandbox with real-world travel information. We collect information from 10 of the most popular cities in China. It includes 720 airplanes and 5,770 trains connecting these cities, with records detailing departure and arrival times, origins, destinations, and ticket prices. Additionally,

Table 1: ChinaTravel's Domain-Specific Language (DSL) for logical constraints.

Name	Syntax	Description
variables	x, y, z, \cdots	Variables that refer to activities in the travel planning domain.
not	$not\ expr$	The negation of an Boolean-valued expression.
and,or	$expr_1$ and $expr_2$	The conjunction/disjunction of an Boolean-valued expression.
<,>,==	$expr_1 < expr_2$	Return an expression with built-in number comparison functions.
+, -, *, /	$expr_1 + expr_2$	Return an expression with built-in number calculation functions.
attributes	cost(var)	A function that takes activities as inputs and returns the attributes,
		such as cost, type or time.
relation	$dist(expr_1, expr_2)$	A function that takes locations as inputs and returns the distance.
effect	var = expr	An assignment affects a variable var with the expression $expr$.
union, inter,	$uni(\{var\}_1, \{var\}_2)$	Return a set with the built-in union/intersection/difference operations
diff	(of given two sets.
enumerate	for var in $\{var\}$	Enumerate all variables in the collection $\{var\}$.
when	if expr: effect	The conditional effect takes a Boolean-valued condition of the expression <i>expr</i> , and the effect <i>effect</i> .

```
# Arriving in Shanghai should be before
                                                                                                # The number of attractions visited
# Dining expenses <= 1000 CNY.
                                               6 PM on the second day.
                                                                                                for act_i in all_activities(plan):
for act i in allactivities(plan):
                                                for act_i in day_activities(plan, 2):
  typ = activity_type(act_i)
typ = activity_type(act_i)
if typ="breakfast" or typ=="lunch"
or typ=="dinner": dining_cost =
                                                                                                activity_type(act_i)=="attraction":
                                                  dest = transport_destination(act_i)
                                                                                                count = count + 1
                                                                                                 return count
dining_cost + activity_cost(act_i)
                                                and des=="Shanghai": return_time ==
                                                                                                # Compare the return during evaluation
                                                activity_endtime(act_i
                                                                                                of preference ranking
return dining_cost <= 1000
                                                return return time < "18:00
```

(a) Dining expenses.

(b) Arrived Time.

(c) Count of attraction visited.

Figure 2: Examples of DSL expressions for logical constraints and preference ranking.

the dataset contains 3,413 attractions, 4,655 restaurants, and 4,124 hotels, each annotated with name, location, opening hours, and per-person prices. Type annotations for these POIs are included to meet user needs. For a realistic interaction, we simulate the API interface of real market applications to query real-time information. We present 25 environmental constraints grouped into six categories: dietary, accommodation, transportation, temporal, spatial, and attraction-related. It acts as a feasibility metric, ensuring that the generated plans are both valid and effective. For example, POIs in the plan must exist in the designated city, transportation options must be viable, and time information must remain accurate. See App. D.1 for design details of sandbox and environmental constraints.

2.2 LOGICAL CONSTRAINT

A crucial ability for travel planning is to effectively satisfy personalized user needs. Prior benchmark (Xie et al., 2024) evaluates logic with five fixed concepts (total budget, room rules, room types, cuisines, transportation types), where each concept is mapped to a specific requirement. This fixed list validates only a narrow slice of open-world needs. For example, it cannot express that "dining budget is 1000 CNY" or that "arriving in Shanghai should be before 6 PM on day 2", despite the generated itinerary already including the expenses and time information of each activity. Each new logical requirement necessitates human intervention for incremental definition and validation. We address this gap with a DSL-based solution that enables compositional specification and validation of logical constraints. The proposed DSL provides a small set of basic concept functions and a Python-like syntax, so diverse requirements can be written as compositions of primitives and automatically perform validation of plans using a Python compiler. Fig. 2a and 2b illustrate how the DSL express the user requirements (see Tab. 10 for basic concepts and App. D.3 for a hand-on tutorial with more examples). This approach removes the need for per-requirement rule engineering and yields scalable evaluation of compositional logical constraints from open-world travel planning.

2.3 Preference Requirement

Travel requirements encompass not only hard logical constraints but also soft preferences. The term "soft" implies that these preferences cannot be addressed as binary constraint satisfaction problems,

Figure 3: (a) ChinaTravel's fine-grained spatiotemporal planning demands extremely larger input/out-put text volumes than existing benchmarks, posing fundamental challenges to text-wise planning. (b) ChinaTravel's authentic requirements, with combinatorial scalable constraints formulation, systematically surpasses conventional closed-form benchmarks in diversity and openness.

instead, they involve quantitative comparisons based on continuous values. This distinction highlights the unique nature of preference-based requirements compared to logical constraints. Common preferences from our surveys include maximizing the number of attractions visited, minimizing transport time between POIs, and visiting positions near the specific POI. In ChinaTravel, we formalize such preferences as minimization or maximization objectives via our DSL, thereby providing an automated evaluation. Fig. 2c illustrates maximizing attractions visited, more examples appear in App. D.6.

2.4 BENCHMARK CONSTRUCTION

Stage I: Manual design of database and APIs. We collect travel information for multi-day, multi-POI itineraries across attractions, accommodations, and transportation. We define essential POI attributes (e.g., cuisine types, hotel amenities) and build a structured database from public information. APIs are designed to support agent queries via regular expressions and modeled after commercial APIs to ensure realism. See App. D.1 for the details of databse.

Stage II: Automatic data generation with LLMs. We model travel tasks with core parameters (origin, duration, etc.) and logical constraints. For scalable generation, we randomly construct query skeletons converted to natural language via DeepSeek-V2.5. Queries are stratified by complexity: *Easy* (1 extra constraint), vs. *Medium* (3-5 constraints), with LLM-generated varying expressions (encouraging "Taste Beijing cuisine" — "Try local food"). See App. D.4 for synthesis details.

Stage III: Quality control and auto-validation. To ensure data quality, we manually check if the generated query conform to symbolic skeletons, and re-calibrate natural language description that contain ambiguities. Based on the symbolic skeletons, we verify if the plan can pass the required logical constraints by executing the DSL code via Python compiler. Building on this, we ensure that each query has at least one solution that satisfies the logical constraints via heuristic search.

Stage IV: Open requirements from humans. After the first round of closed-loop development, including LLM-based data generation and annotation, baseline development, and evaluation, we gathered over 250 human requirements via questionnaires. Rigorous quality control yielded 154 queries with novel constraints (e.g., departure time/dining cost), constructing the *Human-154* validation set with DSL-annotated automated evaluation. Subsequent scaling through WJX (survey platform) yielded the *Human-1000* test set after analogous quality control and DSL annotation.

3 BENCHMARK CHARACTERISTICS

This section analyzes the challenges instantiated by ChinaTravel, rooted in authentic human requests and central to real-world applications yet overlooked by prior travel planning benchmarks.

Context-Rich Long-Horizon Planning. ChinaTravel poses unprecedented contextual complexity compared to existing benchmarks, TripPlanning (Zheng et al., 2024) and TravelPlanner (Xie et al., 2024). As quantified in Fig. 3a, (1) Processing over 1,200 candidate POIs per query (4× TravelPlanner's 244 max, 120× Trip Planning's 10) with detailed square-order transportation. (2) Generating 540M contextual tokens from dense POI networks, surpassing both DeepSeek-V3 (64K) and GPT-40 (128K) capacities, even aggressive 6-POI downsampling retains 40K tokens (Fig. 3a). (3) Producing 4.8K output tokens for 5-day plans, versus 0.9K (TravelPlanner's 7-day) and 0.5K (Trip Planning's

219220

222

224 225

226

227228229

230

231

232

233234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Figure 4: Co-occurrence distribution of differnt constraints on TravelPlaner (a) and ChinaTravel's Human1000 (b). (c) The unsatisfactory performance of advanced LLMs on the auxiliary task, intent grounding, reveals the challenges of open contextual grounding in ChinaTravel's dataset.

30-day). These findings necessitate a paradigm shift: the traditional single-pass text generation approach proves inadequate for such ultra-long-horizon planning tasks (Ye et al., 2025). Effective solutions may require agents to adopt human-like hierarchical decomposition or symbolic planning techniques, executing subtasks to achieve final objectives through sequential decisioning.

Diversity and Openness of Travel Requirements. ChinaTravel surpasses TravelPlanner and Trip-Planning in diverse requirement modeling. As Fig. 3b shown: (1) Constraint volume: ChinaTravel exhibits approximately Gaussian distribution (6-12 constraints per query) versus TravelPlanner's simplicity bias (≤5 constraints) and TripPlanning's limited diversity (allowing up to 16 constraints but spanning only two types). (2) Combinatorial capacity: TravelPlanner's atomic constraints yield only 10 combinations, while ChinaTravel scales exponentially from 15 (synthetic) to 100 types (human 1000 test), including 85 novel constraints formulated through Tab. 1's compositional system. We further investigate co-occurrence of constraint types within individual queries, we categorize basic concepts in our DSL into seven clusters as visualized in Fig. 4b. In ChinaTravel, the co-occurrence distribution follows Zipf's law (Adamic & Huberman, 2002) with a characteristic long-tail pattern, contrasting sharply with TravelPlanner (Fig. 4a), whose synthetic data demonstrates relatively uniform frequencies. We could also find a strong correlation between cost-related constraints and transportation/accommodation requirements, which aligns with common sense given that transport and accommodation are primary cost components. These characteristics stem from systematic user studies that integrate the evolving, open-ended nature of travel requirements into our benchmark. Users continually introduce novel composite constraints, making it impossible to exhaustively enumerate all possibilities during development. By preserving scalable verifiability through our compositional DSL design, ChinaTravel can embrace an evolving requirement space, thereby systematically revealing and rigorously evaluating open-world challenges of travel planning.

Contextual Grounding for Implicit Intent. From human queries, we observe that travel intent is often expressed implicitly, leading to contextual ambiguity that is not directly aligned with predefined database attributes. For example, when users express intent for "local cuisine", which contextually maps to *<Benbang cuisine>* in Shanghai versus *<Beijing cuisine>* in Beijing. Another representative case involves users specifying "traveling with children who cannot eat spicy food", requiring agents to logically exclude Sichuan and Chongqing cuisines from restaurant selections, beacuse both of them are well-known as their spaicy style. These observations arise the necessity for travel agents to conduct contextual grounding that bridges arbitrary user expressions with verifiable symbolic semantics in databases, a critical challenge inadequately supported by existing benchmarks (Zheng et al., 2024; Xie et al., 2024). To systematically investigate this challenge, we designed a auxiliary task, Intent Grounding. It involves replacing all explicit POIs in DSL-defined constraints with a *<placeholder>* tag, requiring LLMs to complete masked-DSL sentences through contextual grounding. This simplified formulation isolates POI inference from full DSL generation. We further categorize POIs as Literal (explicitly mentioned in user queries) or Semantic (requiring cultural/contextual inference). Quantitative analysis shows 78.4% of DSL statements from Human 1000 contain Semantic POIs needing contextual grounding, contrasting sharply with TravelPlanner's 5.4% rate that predominantly requires literal mapping. Experimental results from DeepSeek-V3 and GPT-40 are shown in Fig. 4c. Both models achieve the accuracy over 90% on TravelPlanner, where semantic POIs follow simplistic synthetic patterns. However, on ChinaTravel's authentic Semantic POIs,

performance significantly declines (DS: $94\% \rightarrow 76\%$, GPT: $79\% \rightarrow 53\%$). This performance gap underscores the ChinaTravel's contextual grounding challenges for real-world travel planning.

4 EMPIRICAL STUDY

LLMs. We evaluate the state-of-the-art LLMs, DeepSeek-V3, OpenAI GPT-40, recognized for their world-leading performance. We also examine the open-source LLMs, Qwen3-8B, Llama3.1-8B, and Mistral-7B, selected based on their computationally efficient 7B/8B scales, which enables practical deployment in resource-constrained academic computing environments.

Metrics. We examine the Delivery Rate (DR), Environmental Pass Rate (EPR), Logical Pass Rate (LPR), and Final Pass Rate (FPR) from TravelPlanner (Xie et al., 2024). To address potential evaluation biases caused by unrealistic constraint prioritization, e.g., misreporting costs to satisfy budget requirement, we design a novel metric, Conditional Logical Pass Rate (C-LPR). It assesses the success rate of travel plans that *first satisfy environmental constraints* before meeting logical requirements, thereby ensuring logical validity within realistic contextual boundaries. The introduction of C-LPR provides a more rigorous viewpoint for quantifying meaningful constraint satisfaction.

$$C\text{-LPR} = \frac{\sum_{p \in P} \mathbf{1}_{passed(Env,p)} \cdot \sum_{c \in C_p} \mathbf{1}_{passed(c,p)}}{\sum_{p \in P} |C_p|}$$

P is the plan set, C_p is the constraints set for plan p, and passed (c, p) indicates whether p satisfies c.

Methods. In this work, we mainly focus on the training-free methods with both pure-LLM-based and neuro-symbolic solutions. For the former category, we implement ReAct (Yao et al., 2023b), a widely-adopted reasoning-and-acting framework, along with its Act-only ablation variant. We exclude Reflexion (Shinn et al., 2024) due to its performance being similar to ReAct on the TravelPlanner (Xie et al., 2024) and the high economic overhead associated with the larger input token size. For neuro-symbolic methods, we assess three frameworks: (1) TTG (Ju et al., 2024), which converts natural language requirements into mixed-integer linear programming formulations for solver-based optimization. We adapt their formulation into ChinaTravel. The rapied growth of transformed constraints in TTG becomes computationally prohibitive. To address this, we employ LLMs to extract the most relevant POIs for constraint reduction, with detailed linear constraint formulations and experimental configurations provided in App. K. (2) LLM-modulo (Kambhampati et al., 2024; Gundawar et al., 2024), employing ground-truth symbolic verification to guide iterative LLM selfrefinement, which could be regrad as an enhanced variant of Reflexction. To ensure compatibility with mainstream LLMs, we perform POI subsampling within a 64K context window. (3) NeSy Planning, extending prior NeSy pipelines (Hao et al., 2025; Pan et al., 2023; Yao et al., 2023a; Xiong et al., 2024) through our DSL enhancements to address complex multi-day, multi-POI itineraries.

4.1 NEURO-SYMBOLIC PLANNING

This subsection presents a NeSy solution as a preliminary baseline for ChinaTravel. This solution consists of two stages. (I) NL2DSL translation transforms natural language queries into logic and preference DSL requirements. We use Reflexion (Shinn et al., 2024) and a DSL syntax checker to iteratively assist the LLMs (5 rounds in experiments). (II) Interactive search uses a neuro-symbolic solver to sequentially arrange activities, guided by a symbolic sketch and LLM-driven POI recommendations, generating a multi-day itinerary with DSL validation. If constraints are violated, the process backtracks until a feasible solution is

Figure 5: NeSy Planning with search-based solver.

found. To ensure fairness, the symbolic sketch search is limited to 5 minutes per query, excluding LLM inference time. To observe the performance across the two stages, we also evaluated the planning results based on the Oracle DSL. In App. F, we provide the search algorithm's pseudo-code and LLM prompts to enhance reproducibility and support future research.

Table 3: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.

-		DR EPR LPR		C-LPR	LPR FPR		El	PR	Ll	PR	C-LPR	FPR			
			Mic.	Mac.	Mic.	Mac.				Mic.	Mac.	ac. Mic. Mac.			
			Easy (#300)						Human-Val (#1					54)	
Aat	(3)	70.4	49.9	0	64.6	30.6	0	0				_			
Act	\$	97.5	70.8	0	86.8	68.6	0	0				-			
D-A-4 (1 2	(3)	43.3	40.8	0	41.9	19.6	0	0	36.4	29.5	0.65	35.2	16.2	0.38	0
ReAct (zero-shot)	G	95.4	48.2	0	71.3	33.0	0	0	96.1	50.5	0	72.4	32.5	0	0
ReAct (one-shot)	*			6.00	74.1		5.77					64.6		1.71	2.59
refret (one-snot)	\$	94.2	68.1	0	89.4	70.6	0	0	69.5	46.3	0	63.6	46.8	0	0
NeSy Planning	(3)	75.3	75.3	75.3	70.4	52.6	70.4	52.6	51.9	53.2	52.5	47.0	37.6	46.5	37.0
Nesy Flaming	(S)	75.0	73.6	64.0	73.5	63.3	61.7	60.6	45.4	50.1	45.4	40.9	29.8	38.5	27.9
	\$	72.3	67.0	34.0	70.4	49.6	32.6	28.3	42.8	47.4	42.2	36.2	27.2	34.4	25.3
	b				29.1		28.3	21.0	25.9	25.8	24.0	22.3	12.3	20.5	11.0
		30.3	30.3	30.3	27.6	19.6	27.6	19.6	37.6	38.2	37.6	32.7	18.8	32.2	18.8
TTG (oracle)	(3)	18.3	21.5	8.66	17.2	15.0	8.23	8.66	9.09	12.8	2.59	7.65	5.19	2.39	1.29
LLM-Modulo*	O	48.3	94.5	4.33	58.4	43.6	4.11	4.33	61.6	90.2	2.59	75.9	51.2	2.75	2.59
LLM-Modulo* (Oracle Verifier)	G	91.6	88.2	7.66	95.5	84.6	7.66	7.00	91.5	87.2	3.24	92.9	66.2	2.87	3.24
(Oracle Verifier)	\$	30.0	80.5	0.0	62.7	25.0	0.0	0.0	35.0	75.3	0.0	61.6	19.4	0.0	0.0
	ħ	28.6	69.4	0.0	55.2	8.33	0.0	0.0	19.4	74.1	0.0	43.4	5.19	0.0	0.0
		10.3	90.5	0.0	39.1	9.0	0.0	0.0	3.24	92.2	0.0	31.4	4.54	0.0	0.0
NeSy Planning*	(3)	82.6	81.7	75.0	82.2	75.3	75.0	74.0	58.4	59.6	57.7	53.8	46.1	52.0	45.4
(Oracle Translation)	G	66.6	66.7	66.0	64.6	63.6	64.6	62.6	52.6	46.9	42.9	47.6	40.9	43.9	40.9
(Oracle Translation)	\$	69.3	69.3	59.3	70.2	59.6	59.3	57.9	53.2	55.1	54.5	48.0	42.8	47.6	40.9
		52.6	52.6	52.6	50.4	45.3	50.4	45.6	40.9	42.8	42.8	37.7	28.5	37.7	27.9
	6	33.3	33.2	32.6	32.1	32.0	31.4	32.3	29.2	29.1	26.6	25.4	20.1	23.4	19.4
			I	luma	n-Tes	t (#1	000)	NeSy Planning* (Oracle Translation						on)	
	(3)	44.6	44.5	42.6	38.7	23.3	37.6	23.3	60.6	60.3	59.0	53.6	32.0	52.5	31.6
NeSy Planning	_	37.3	37.2	35.0	30.7	11.3	29.2	11.3	27.8	27.8	27.1	24.8	12.8	24.4	12.8
	1	36.6	36.5	34.6	29.6	6.43	28.5	6.43	41.1	41.1	40.6	34.6	13.8	34.2	13.8

4.2 Main Results

Based on the results presented in Tab. 3 and 2, we have the following finding and analyses:

Pure LLMs struggle in ChinaTravel. The DR evaluates the capability to generate valid JSON travel plans (see Fig. 1). While high DR values indicate that advanced LLMs can produce structurally correct outputs, the near-zero EPR

Table 2: Cost per query across different methods.

Method	#Input #	#Outpu	t ♥ (\$) ⑤ (\$)
	88K	2K	007 .219
ReAct (0-shot)	206K	3K	.021 .638
ReAct (1-shot)	1058K	4K	.081 2.43
LLM-modulo	362K	11K	.025 1.12
NeSy Planning	467K	3K	.003 .306

reveals their fundamental limitations in acquiring and strictly adhering to required constraints. The sole exception is the DeepSeek, which achieves the 6% EPR and 5% FPR at easy level. A plausible explanation is broader training-data coverage for Chinese queries. ReAct (one-shot, GPT-40) excels in Macro LPR but achieves no FPR, suggesting it circumvents constraints via shortcuts. Our C-LPR metric offers a more reliable measure of logical constraints, serving as a supplement to FPR. As shown in Tab. 2, purely neural baselines require large input/output tokens and correspondingly high cost. With GPT-40, the average cost is \$2.43 per query, yet they produce on constraint-satisfying

380

381

382 383

384

385

386 387

388

389 390

391

392

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408 409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

(a) Solve Time of TTG.

(b) Refinement of LLM-modulo.

Figure 6: (a) The high computational complexity of TTG renders it infeasible for real-world multi-day itineraries. (b) LLM-modulo's error correction declines during iteration, causing emergent errors.

plans. Given the substantial cost and their persistently low FPR, further pure-neural variants offer diminishing returns under our budget. We therefore concentrate on NeSy solutions.

The Inadequacies of Existing NeSy Approaches. TTG's complexity grows rapidly with the size of the POI candidates and the temporal discretization: the number of constraints scales on the order of $O(N^3T)$ with N POIs and T time slots. Even after subsampling to (N=22) and using 1-hour slots (T=24), a 2-day instance contains on the order of 600,000 constraints. We run TTG with SCIP solver, allocated a relaxed 15-minute search limitation per query. This configuration yielded only 18% valid solutions on easy-subet instances, with the FPR further reduced to 8% due to the solver's pruning heuristics. Fig. 6a illustrates the solve time of TTG on 1-3 day itinerary. Within the time limit, solutions were found for only 23% for 2-day and 6% for 3-day itineraries. LLM-modulo introduces an oracle symbolic verifier to detect constraint violations and feeds back error messages to the LLM for iterative plan revision. Fig. 6b depicts the error dynamics over 10 refinement rounds. GPT-40 attains the lowest cumulative error ($\mu = 3.2 \pm 0.8$), followed by DeepSeek ($\mu = 5.1 \pm 1.2$). However, their rectification capacity, quantified by successfully rectified errors per iteration, rapidly decays to ≤ 1 after 3-5 rounds, indicating diminishing returns from further refinements. Smaller models (Qwen3-8B and Llama3-8B) show higher per-step rectification, but also introduce more emergent errors, yielding no significant refinement across iterations. Taken together, the verifier-feedback loop, effective on earlier travel benchmarks, does not scale well to complex multi-day itineraries: after a few rounds, refinement stalls while additional iterations incur extra cost and latency.

Nesy Planning provides a promising solution. Our NeSy Planning method orchestrates tool use and planning via symbolic programs while utilizing LLMs to parse natural-language requirements and prioritize POIs. By decoupling understanding (flexible natural language handling), planning (DSL-guided backtracking/verification) and actioning (precise tool execution), it improves adaptability and adherence to constraints in context-rich long-horizon settings. Across the evaluated subsets, it outperforms TTG and LLM-modulo, even without the help of oracle translation. With the DeepSeek as backend, it achieves FPRs of 52.6%, 37.0% and 23.3% on three subsets, highlighting the effectiveness of NeSy solutions for travel planning with complex constraints. On the *human-val* and *human-test* subsets, these gains persist, suggesting robustness to unseen constraint compositions.

Challenges Persist for Nesy Planning. The performance gap between standard and oracle modes underscores the importance of DSL translation in NeSy planning. Inadequate translations may result in plan searches failing to meet user requirements, while incorrect translations can misguide the search, making feasible solutions unattainable. We conclude with three challenges and provide the corresponding cases in the Fig. 9. (1) DSL Syntax Compliance: As evidenced in Fig. 7a, while the reflexion process with syntactic checking effectively reduces parser-level errors, it inadvertently triggers constraint dropping across multiple LLMs. For Qwen3-8B, Llama3-8B, and Mistral-7B, the number of DSL constraint clauses decreases across iterations. Notably, GPT-40 generates approximately two fewer constraints than DeepSeek-V3 on average under the same loop. Although this conservative strategy enables rapid error convergence (achieving zero detected errors within limited iterations), it risks oversimplifying constraint specifications, critical dependencies may be prematurely discarded, ultimately yielding solutions that fail to satisfy complex requirements. This conservative pattern often drives fast convergence to zero parser errors within a few rounds, but may prune required constraints and under-specify the plan, leaving the outcome cannot satisfy complex queries. This observed conservatism on constraint extraction likely contributes to GPT-4o's underperformance on Human-154 and Human-1000 compared with DeepSeek-V3. (2) Contextual

- (a) Syntax error of DSL translation.
- (b) Syntax generalization of DSL translation.

Figure 7: Challenges in NL2DSL translation.

Grounding: In the Sec. 3 we have provided a quantitative analysis for this challenge. Overcoming this might require domain-adaptive training, enabling LLMs to better interpret implicit user intent. (3) **Unseen Concept Composition**: Real-world requirements are diverse and open-ended, so it is unrealistic to expect models to encounter all possible needs during development. A more realistic way is to emulate human reasoning by generalizing existing knowledge to novel problems. Fig. 7b compares three LLMs on seen vs unseen DSL structures under POI-anonymized evaluation with syntax-level pattern matching. Unseen compositions constitute 84% of cases but achieve only 12% structure alignment (9% overall when weighted by frequency), whereas seen patterns (16% of cases) reach 93% accuracy. This gap holds across the evaluated LLMs, which perform well on seen patterns but drop sharply on unseen concept compositions, suggesting limited compositional generalization.

In summary, NeSy methods outperform LLM-only baselines on constraint satisfaction, yet open-world challenges remain. With authentic queries and DSL-based compositional validation, ChinaTravel surfaces these limitations and delineates actionable directions for further research.

4.3 ABLATION STUDY WITH PREFERENCE

Preference comparisons are meaningful only when both environmental and logical constraints are satisfied. Given the limited FPR achieved by existing methods, we perform a separate analysis of preference optimization here. Specifically, we sampl 50 queries from the easy subset that NeSy-DeepSeek-Oracle successfully passed as

Figure 8: Ablation on preference ranking.

seed samples. Based on these, six subsets were created by introducing common preferences identified from user surveys. Three comparative scenarios were designed to explore the roles of LLMs and symbolic search in optimizing preferences during NeSy Planning: (1) BQ: Baseline solutions without preference consideration. (2) PEQ: LLM-enhanced recommendations with natural language preferences. (3) PDS: Hybrid symbolic search optimizing preference objectives under 5-min constraints. From the results in Fig. 8 (where \uparrow / \downarrow indicate maximization/minimization), we cound find that: (1) PEQ outperforms BQ in 5/6 preference scenarios, confirming LLMs' capacity to interpret natural language preferences during POI ranking. (2) PEQ underperforms on P2 (minimizing transport time to restaurants), likely from LLMs' misinterpretation of complex spatiotemporal constraints. These results support the DSL's scalability for preference optimization and highlight the need for more efficient algorithms for preference-aware planning.

5 CONCLUSION

We present ChinaTravel, an open-ended benchmark for multi-day multi-POI travel planning focused on authentic Chinese needs. It addresses gaps in prior benchmarks by pairing open-ended human queries with a DSL-based framework for compositional constraint validation, enabling evaluation of feasibility, constraint satisfaction, and preference comparison. The empirical analysis reveals the potential of neuro-symbolic methods on constraint adherence. The open-world challenges identified, contextual grounding and compositional concept generalization, suggest actionable directions for future work. We hope ChinaTravel will facilitate progress in LLM-powered travel planning by providing a standardized evaluation framework and highlighting key challenges for improvement.

6 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and conducted a proactive review of data collection, curation, evaluation, and release.

Potential Positive impacts. ChinaTravel is a research benchmark for complex, real-world trip planning, by stressing compositional constraints and verifiable outcomes, it aims to catalyze more reliable, constraint-aware assistants and to facilitate cross-disciplinary research. Its positive societal impacts include: (1) Improved Travel Planning Effectiveness: By rigorously testing agents' ability to handle multi-day itineraries and combinatorial constraints, this benchmark encourages the creation of more robust AI assistants, potentially reducing the time and effort users spend on organizing trips. (2) Validation for Real-World Applications: The benchmark establishes a critical foundation for deploying language agents in practical travel planning settings, where multi-objective planning and constraint satisfaction are essential. The release of this benchmark bridges cutting-edge LLMs with classical neuro-symbolic AI paradigms, fostering cross-disciplinary collaboration between academia and industry. It promotes the reliable, constraint-aware AI systems, while accelerating innovation in both foundational planning capabilities and real-world deployment scenarios.

Potential negative impacts. It largely depend on how future systems built upon this benchmark are deployed. For instance: (1) Bias and Fairness: If agents inherit biases from training data or misalign with diverse user preferences, they might disproportionately recommend certain POIs or services. Mitigation requires ongoing fairness audits and inclusive data practices. (2) Misuse Risks: Malicious actors could exploit highly capable planning agents to generate deceptive itineraries or manipulate travel services. Such risks underscore the need for ethical guidelines and safeguards in downstream applications. ChinaTravel is released for research purposes only. Any real-world deployment should include additional safety engineering, for example, explicitly warning users that agent-generated plans are suggestions, and implementing verification mechanisms (e.g., feasibility and constraint checks) before adoption.

Language and Regional Scope (Bias Considerations). Our benchmark focuses on Chinese cities and collects requirements from native Chinese speakers because, for POI-rich, locale-specific travel planning, interacting in the target user's language yields more faithful intent capture and more coherent system behavior. This mirrors common practice in domain-specific systems (e.g., TravelPlanner (Xie et al., 2024) uses English for U.S. scenarios). While our initial release centers on Chinese due to realistic usage and practical constraints (API costs and compute/latency budgets), the core components are language- and region-agnostic: the tool-grounded sandbox, the DSL-based verification framework, and the identified open-world challenge are independent of any particular language. Future iterations will extend ChinaTravel's language coverage to address global tourism demands. Our goal is not to privilege one language or culture, but to start from a high-fidelity setting where users naturally articulate open-ended, diverse travel requirements, enabling transparent, generalizable evaluation of reliable planning agents that better align with real-world deployment.

7 REPRODUCIBILITY STATEMENT

An anonymous, downloadable codebase and the dataset splits are provided in the supplementary attachments (with a README that lists dependencies, exact run commands, and config files). The main paper and appendix together specify all components needed for reruns: benchmark design details and data details (App. D), tutorials for the DSL and preferences (App. D.3 and D.6), the search sketch, pseudo-code, and prompts for our NeSy Planning baseline (App. F), evaluation protocol and metrics (App. G). We also document scientific artifacts (availability & licensing) in App. I.

REFERENCES

Lada A Adamic and Bernardo A Huberman. Zipf's law and the internet. Glottometrics, 3(1):143–150, 2002.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. *Artificial intelligence*, 134 (1-2):57–83, 2002.

- Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. TravelAgent: An AI assistant for personalized travel planning. *arXiv preprint arXiv:2409.08069*, 2024.
 - Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical reasoning by abductive learning. In *Advances in Neural Information Processing Systems*, pp. 2811–2822, 2019.
 - Shujie Deng, Honghua Dong, and Xujie Si. Enhancing and evaluating logical reasoning abilities of large language models. In *Proceedings of the ICLR 2024 Workshop on Secure and Trustworthy Large Language Models*, 2024.
 - Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-driven compilation of the 6th mixed-integer programming library. *Mathematical Programming Computation*, 13(3):443–490, 2021.
 - Atharva Gundawar, Mudit Verma, Lin Guan, Karthik Valmeekam, Siddhant Bhambri, and Subbarao Kambhampati. Robust planning with llm-modulo framework: Case study in travel planning. *arXiv* preprint arXiv:2405.20625, 2024.
 - Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning without training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14953–14962, 2023.
 - Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and Xiuzhen Zhang. A survey on personalized itinerary recommendation: From optimisation to deep learning. *Applied Soft Computing*, 152:111200, 2024.
 - Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can solve real-world planning rigorously with formal verification tools. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics*, Albuquerque, New Mexico, 2025.
 - Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R. Narasimhan. Swe-bench: Can language models resolve real-world github issues? In *Proceedings of the 12th International Conference on Learning Representations*, 2024.
 - Da Ju, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov, Brandon Amos, Xian Li, Justine Kao, Maryam Fazel-Zarandi, et al. To the globe (ttg): Towards language-driven guaranteed travel planning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 240–249, 2024.
 - Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bhambri, Lucas Saldyt, and Anil Murthy. Position: Llms can't plan, but can help planning in llm-modulo frameworks. In *Forty-first International Conference on Machine Learning*, Vienna, Austria, 2024.
 - Weiyu Liu, Geng Chen, Joy Hsu, Jiayuan Mao, and Jiajun Wu. Learning planning abstractions from language. In *Proceedings of the 12th International Conference on Learning Representations*, 2024.
 - Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deepproblog: Neural probabilistic logic programming. In *Advances in Neural Information Processing Systems*, pp. 3753–3763, 2018.
 - Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing Atari with deep reinforcement learning. *CoRR*, abs/1312.5602, 2013.
 - Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: Empowering large language models with symbolic solvers for faithful logical reasoning. In *Findings of the Association for Computational Linguistics: EMNLP*, pp. 3806–3824, 2023.
 - Vibhor Sharma, Monika Goyal, and Drishti Malik. An intelligent behaviour shown by chatbot system. *International Journal of New Technology and Research*, 3(4):263312, 2017.

- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: language agents with verbal reinforcement learning. In *Advances in Neural Information Processing Systems*, 2024.
 - David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of Go without human knowledge. *Nature*, 550(7676):354–359, 2017.
 - Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, Kebing Hou, Dingyi Zhuang, Xiaotong Guo, Jinhua Zhao, Zhan Zhao, and Wei Ma. Synergizing spatial optimization with large language models for open-domain urban itinerary planning. *CoRR*, abs/2402.07204, 2024.
 - Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver. In *Proceedings of the 36th International Conference on Machine Learning*, pp. 6545–6554, 2019.
 - Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey. *CoRR*, abs/2309.07864, 2023.
 - Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In *Proceedings of the 41st International Conference on Machine Learning*, 2024.
 - Siheng Xiong, Ali Payani, Yuan Yang, and Faramarz Fekri. Deliberate reasoning for Ilms as structure-aware planning with accurate world model. *CoRR*, abs/2410.03136, 2024.
 - Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023a.
 - Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *Proceedings of the 11th International Conference on Learning Representations*, 2023b.
 - Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi Chen. Longproc: Benchmarking long-context language models on long procedural generation. *arXiv* preprint arXiv:2501.05414, 2025.
 - Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Guiming Chen, Jianquan Li, Xiangbo Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou Wang, and Haizhou Li. Huatuogpt, towards taming language model to be a doctor. In *Findings of the Association for Computational Linguistics: EMNLP*, pp. 10859–10885, 2023.
 - Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on natural language planning. *arXiv preprint arXiv:2406.04520*, 2024.

TABLE OF CONTENTS Introduction ChinaTravel Benchmark 2.2 2.3 2.4 **Benchmark Characteristics Empirical Study** 4.3 Conclusion **Ethics statement Reproducibility Statement** The Use of Large Language Models **Discussion of Limitations** C Discussion with Related Work D Detailed Design of ChinaTravel D.4 **Discussion with TravelPlanner NeSy Planning G** Evaluation Metric in Competition

H	Add	itional Experimental Results	30
	H.1	Results with Large Reasoning Model	30
	H.2	Results on Medium Set	31
	H.3	Multi-Preference Comparison	32
	H.4	Analysis of Pure-LLM Methods	32
Ι	State	ements about Scientific Artifacts	33
J	State	ements about Human Participants	33
	J.1	Instructions Given To Participants	34
	J.2	Recruitment And Payment	34
	J.3	Data Consent	34
	J.4	Institute Ethics Approval and Risk Mitigation	34
	J.5	Risk Statement for Participants	35
	J.6	Characteristics of Annotators	35
	J.7	DSL Annotation for Human Data	35
K	The	Implementation of TTG Baseline	36
	K.1	Constraints Formulation	36
	K.2	Experimental Setting	36

A THE USE OF LARGE LANGUAGE MODELS

Polish Writing: We used off-the-shelf LLMs as general-purpose assist tools for sentence polishing during manuscript revision. All LLM-assisted edits were reviewed and revised by the authors. LLMs are not eligible for authorship; the authors take full responsibility for all content.

Data synthesis: We use LLM to generate two datasets *easy* and *medium* as the components of the ChinaTravel beenhamrk. The complete procedure for synthetic data generation, including prompts, sampling settings, filtering, and human verification criteria, is provided in the App. D.4.

LLMs did not contribute to research ideation, experimental design, or core method development.

B DISCUSSION OF LIMITATIONS

Our research represents a significant step forward in evaluating the travel planning capabilities of language agents, but it is not without challenges. One limitation lies in its focus on Chinese travel planning. Due to the inherent differences in natural language, the translated versions of queries may fail to fully capture the challenges of understanding requirements in Chinese queries, potentially limiting its applicability in a global context. However, given the substantial demand within China's travel market, we believe a benchmark tailored to Chinese travel planning is both necessary and socially valuable. Although our benchmark is comprehensive, it may not encompass the full range of requirements encountered in real-world scenarios. The high cost of collecting authentic data has limited the number of human queries in our study. To address this, future work will focus on combining LLMs with real user queries to automate the generation of a wider variety of human-like queries. Continuous refinement and expansion of our benchmark are crucial for more accurately reflecting the realistic travel planning needs.

ChinaTravel provides a verifiable, tool-equipped sandbox, but we currently focus on evaluation of prompt-based methods and do not train tool-using agents with RL post-training. We defer these

due to resource constraints (compute for large-scale interaction), and open challenges in trajectory synthesis (coverage and off-policy bias). Thus, we plan to explore tool-use trajectory synthesis and corresponding agent training in future work.

C DISCUSSION WITH RELATED WORK

LLM-based Agents have demonstrated significant capability in understanding complex instructions and employing domain-specific tools to complete tasks, showcasing their potential in fields such as visual reasoning (Gupta & Kembhavi, 2023), healthcare (Zhang et al., 2023) and robotics (Liu et al., 2024). This reduces the reliance of previous agents on domain-specific efforts, that is, either mainly following domain-specific rules to plan (rule-based agents, such as DeepBlue (Campbell et al., 2002) and Eliza (Sharma et al., 2017)) or mainly learning from domain-specific data to plan (reinforcement-learning-based agents, such as AlphaGo (Silver et al., 2017) and Atari DQN (Mnih et al., 2013)). While the language agents have shown promising results in some domains, most of their planning scenarios are limited to simple tasks with single objective function and fail in the travel planning benchmark with complex logical constraints.

Neuro-Symbolic Learning explores to combine traditional symbolic reasoning with learning to enhance the reliability (Manhaeve et al., 2018; Wang et al., 2019; Dai et al., 2019). In the era of large language models, Pan et al. (2023) presents the LogicLM integrates LLMs with separate symbolic solvers for various logical reasoning tasks. They first utilize LLMs to translate a natural language problem into a symbolic formulation. Afterward, a deterministic symbolic solver performs inference on the formulated problem to ensure the correctness of the results. Deng et al. (2024) supplement LogicLM with a Self-Refinement Module to enhance the reliability of LLM translation. In the travel planning domain, Hao et al. (2025) presents a framework with a similar pipeline. It first extracts the logical constraints from natural language queries and then formalizes them into SMT code. Thanks to SMT solvers being sound and complete, this neuro-symbolic solution guarantees the generated plans are correct and has basically solved the TravelPlanner benchmark with a 97% pass rate.

Travel Planning is a time-consuming task even for humans, encompassing travel-related information gathering, POI selection, route mapping, and customization to meet diverse user needs (Halder et al., 2024). Natural languages are one of the most common ways for users to express their travel requirements. However, the ambiguity and complexity of travel requirements make it still challenging for LLMs to generate accurate and reliable travel plans. Xie et al. (2024) presents the TravelPlanner benchmark for cross-city travel planning and reveals the inadequacies of pure-LLM-driven agents. TravelPlanner generates user queries through LLMs and provides a rigorous evaluation mechanism to verify whether the provided plans can meet the logical constraints in the queries. It has become a pivotal benchmark for language agents in real-world travel planning. Tang et al. (2024) study the open-domain urban itinerary planning where a single-day multi-POI plan is required. They integrates spatial optimization with large language models and present a system ITTNERA, to provide customized urban itineraries based on user needs. A concurrent work, TravelAgent (Chen et al., 2024), also considers a multi-day multi-POI travel planning problem for the specified city. It constructs an LLM-powered system to provide personalized plans. However, due to the high cost of collecting and annotating real travel needs, they evaluate the proposed TravelAgent in only 20 queries. This also demonstrates the necessity of introducing a new benchmark for travel planning.

D DETAILED DESIGN OF CHINATRAVEL

D.1 SANDBOX INFORMATION

We started collecting travel information with the motivation of planning a multi-day, multi-POI itinerary in four aspects: attractions, accommodation, activities, and transportation. Developers first determine the POI description information that needs to be obtained from the user's perspective, such as cuisine and hotel features. Based on this feature set, we collect public information to construct the database. For the design of APIs, we directly support queries based on the regular expressions from LLM agents. At the same time, we expect the design of APIs to have similar features and characteristics to existing commercial APIs, enabling our dataset to be applicable to more realistic

scenarios. The information our database contains is shown in Table 4 and the APIs we offer is in Table 6. In Table 7, we provide the detailed information of environment constraints in ChinaTravel.

Tool	Information
Attractions	Name, Type, Latitude, Longitude, Opentime, Endtime, Price, Recommendmintime, Recommendmaxtime
Accommodations	Name, Name_en, Featurehoteltype, Latitude, Longitude, Price, Numbed
Restaurants	Name, Latitude, Longitude, Price, Cuisinetype, Opentime, Endtime, Recommendedfood
Transportation	Transportation in specific city including walk, metro and taxi
IntercityTransport	Flight: FlightID, From, To, BeginTime, EndTime, Duration, Cost Train: TrainID, TrainType, From, To, BeginTime, EndTime, Duration, Cost
Poi	Names of POIs(including intercity transportation hub) and their coordinates

Table 4: Sandbox Information

CITY-WISE DISTRIBUTION STATISTICS

Our POI collection was conducted on a per-city basis, ensuring comparable distribution scales across urban datasets. Human queries exhibit a long-tailed distribution across cities, reflecting real-world travel patterns and highlighting practical deployment challenges for travel planning system. The detailed sandbox and dataset statistics are provided in Table 5

Table 5: City-wise Statistics of Sandbox and Dataset

City	Attractions	Hotels	Restaurants	Queries (Total)	Queries (Easy)	Queries (Human-Val)	Queries (Human-Test)
Beijing	334	400	469	210	30	28	152
Chengdu	332	378	466	229	36	15	178
Chongqing	346	372	436	191	36	16	139
Guangzhou	338	399	466	90	24	14	52
Hangzhou	376	377	457	195	33	10	152
Nanjing	322	372	467	123	30	18	75
Shanghai	359	402	483	180	37	25	118
Shenzhen	305	497	477	81	35	7	39
Suzhou	358	292	468	69	9	12	48
Wuhan	333	367	456	86	30	9	47

D.3 TUTORIAL OF DSL EXPRESSION

Here is a tutorial, that provides a step-by-step guide to utilizing ChinaTravel's Domain-Specific Language (DSL) with predefined concept functions for expressing logical constraints and preferences.

DSL Overview In the main body of this paper, we have detailed the basics of our DSL in the Table 1. The DSL is a Python-like language designed to formalize travel planning requirements into executable code. It enables automated validation of itineraries against user constraints and preferences. Key components include: 1) Concept Functions: Predefined functions (e.g., activity_cost, poi_distance) that extract attributes from travel plans. 2) Operators: Logical (and, or, not), arithmetic (+, -, *, /), and comparison operators (<,>,==). 3) Control Structures: Loops (for), conditionals (if), and set operations (union, intersection). More examples are provided in Figure 10.

Core Concept Functions We have defined 35 concept functions. Their definition and implementation is in Table 10, 11, 12 and 13. Below are common use cases:

Tool	API	Docs
Attractions	attractions_keys(city) attractions_select(city, key, func)	Return a list of (key, type) pairs of the attractions data. Return a DataFrame with data filtered
	attending id in an office id	by the specified key with the specified function.
	attractions_id_is_open(city, id, time)	Return whether the attraction with the specified ID is open at the specified time.
	attractions_nearby(city, point, topk, dist) attractions_types	Return the top K attractions within the specified distance of the location. Return a list of unique attraction types.
Accommodations	accommodations_keys(city)	Return a list of (key, type) pairs of the accommodations data.
	accommodations_select(city, key, func)	Return a DataFrame with data filtered by the specified key with the specified function.
	accommodations_nearby(city, point, topk, dist)	Return the top K accommodations within the specified distance of the location.
Restaurants	restaurants_keys(city)	Return a list of (key, type) pairs of the restaurants data.
	restaurants_select(city, key, func)	Return a DataFrame with data filtered by the specified key with the specified function.
	restaurants_id_is_open(city, id, time)	Return whether the restaurant with the specified ID is open at the specified time.
		Return the top K restaurants within the specified distance of the location. Return all restaurants with the specified
	(city, food) restaurants_cuisine(city)	food in their recommended dishes. Return a list of unique restaurant cuisines.
Transportation	goto(city, start, end, start_time, transport_type)	Return a list of transportation options between two locations with the specified departure time and transportation mode.
IntercityTransport	<pre>intercity_transport_select(start_city, end_city, intercity_type, earli- est_leave_time)</pre>	Return the intercity transportation information between two cities.
Others	notedown(description, content)	Write the specified content to the notebook
	plan(query)	Generates a plan based on the notebook content and query and report the plan is done.
	next_page()	Get the next page of the latest Result history if it exists. Because of the length limited, all returned DataFrame information is split into 10 rows per page.

Table 6: APIs

Category	Environment Constraints	Semantics
Cross-city Transportation	Intercity transportation events must occur. Available Trains or Airplanes across cities.	The first event and last event must be cross-city transports. The provided TrainID/FlightID, origin and destination should be valid in the
	Correct information of price, duration.	travel sandbox. The price and duration information should match the travel sandbox.
	Detailed cost on inter-city transportation	Provide number of tickets and cost o each inter-city activity. $cost = price \times tickets$
Inner-city Transportation	Available Metro, Taxi or Walking between different positions. Correct information of price, distance, and duration. Detailed cost on inner-city transportation	The provided routes should be valid in the travel sandbox. These details should match the trave sandbox. Provide number of tickets/cars and cost Taxi: 4 people per car. $cost = price \times tickets$, $cost = price \times cars$
Attractions	Available attractions in the target city Visiting during opening hours.	The provided attractions should be valid in the travel sandbox. Activities must respect the attraction's
	Correct price information. Detailed cost of attraction activity. No repeated attractions.	opening time. Must match the sandbox. Provide ticket number and total $\cos cost = price \times tickets$ Attractions should not repeat across the trip.
Restaurants	Available restaurants in the target city Visiting during opening hours. Correct price information. Detailed cost of restaurant activity. No repeated restaurants. Meals served in proper time slots.	Must be valid in the travel sandbox. Same as above. Must match the sandbox. cost = price × tickets Same restaurant should not be visited more than once. Breakfast: 06:00–09:00; Lunch 11:00–14:00; Dinner: 17:00–20:00.
Accommodation	Available accommodations in target city. Correct price and room type. Detailed accommodation cost. Required for trips over one day.	Must be valid in the travel sandbox. Must match the sandbox. $cost = price \times rooms$ A hotel is necessary for multi-day trips
Time	Activity duration details. Activities in chronological order.	Must include start and end time; end time must be after start. Events listed in order, respecting preceding transport arrivals.
Space	Transport info for changing positions.	If positions differ, the transport rout must be included.

Table 7: Environment Constraints and Semantics in ChinaTravel Environment

Logical Constraint						
Transportation	The required type of transportation.					
Attraction	The required type or specified attractions.					
Restaurant The required type or specified restruants.						
Accommodation	The number of rooms and the room type must meet the requirem					
	The required features or specified hotels.					
Budget	The total cost is within required budget.					
Unseen Logical Constraints in Human data						
POIs	The negation/conjunction/disjunction of given POIs					
Time	The duration of specific activities is within the limitation					
Budget	The cost of specific activities is within the required budget					

Table 8: Descriptions of **Logical Constraints** for two benchmarks. Constraints in black are common in both TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

Preference Requirements					
Daily attractions ↑	Visit as many attractions as possible				
Transport time ↓	Minimize the travel time between POIs				
Transport time to the restaurants ↓	Minimize the travel time to restaurants				
Food cost ratio ↑	Maximize the proportion of dining expenses				
Hotel cost ↓	Minimize accommodation costs				
Distance to POI ↓	Visit places as close to {POI} as possible				

Table 9: Descriptions of **Preference Requirements** in ChinaTravel benchmark.

Example: Budget Constraint User Query: "Total expenses must not exceed 5000 CNY."

```
total_cost = 0
for act in all_activities(plan):
    total_cost += activity_cost(act)
    total_cost += innercity_transport_cost(activity_transports(act))
return total_cost <= 5000</pre>
```

The function all_activities(plan) iterates through all activities in the itinerary. The function activity_cost retrieves the cost of each activity. The function innercity_transport_cost sums transportation expenses. Based on Python syntax, combining these concept functions can calculate the cost of the entire plan, thereby determining whether the budget constraints are met.

Figure 9: Challenges in the Neuro-Symbolic Planning.

Debugging Tips (1) Syntax Validation: Use the python compiler to check for syntax errors (e.g., missing colons, undefined variables). (2) Unit Testing: Test individual concept functions (e.g., poi_distance) with mock itineraries. (3) Iterative Refinement: For ambiguous requirements (e.g., "local cuisine"), map natural language to precise DSL concepts from sandbox information (e.g., restaurant_type(act, city) == "Beijing Cuisine").

Integration with Neuro-Symbolic Agents. (1) NL2DSL Translation: Convert user queries into DSL using LLMs (e.g., "Try local food" → restaurant_type(POI, city) == "Beijing Cuisine" when the destination city is Beijing). (2) Symbolic Validation: Execute DSL code to verify plans against logical constraints. (3) Search Optimization: Use DSL-defined preferences (e.g., minimize(transport_time)) to rank candidate itineraries.

D.4 QUERY SYNTHESIS

We designed common travel information (origin, destination, days, number of people) and logical constraints based on the nature of travel tasks. To facilitate scalable queries for ChinaTravel, we randomly constructed query skeletons from the aforementioned information and used advanced LLMs to generate natural language queries from these skeletons. In practice, we provide the LLMs with more intuitive hard logic constraints to ensure the LLMs do not make mistakes and use a Python script to convert it after generating the query. The automatically generated data is categorized into two difficulty levels: In the Easy level, user inputs encompass a single logical requirement, sourced from categories such as transportation, restaurants, attractions, and accommodations. In the *Medium* level, user inputs involve 2 to 5 logical requirements, introducing more complex constraints. During the generation, we encourage the LLMs to provide varied and human-like expressions, necessitating a deeper understanding and processing to accurately interpret and fulfill the user's needs. For instance, the logical requirement "taste Beijing cuisine" could correspond to the natural language query: "Try local food in Beijing." We utilize prompt engineering to guide LLMs in refining natural language expressions to facilitate automated generation. One of the prompts is shown in Figure 11. Several examples of generated data is in Figure 12. As a result, we obtain the synthetic queries across diverse travel requirements, including 28 restaurant types, 23 attraction types, 29 hotel features, and more than 130 specific POIs.

D.5 DIVERSITY OF SYNTHETIC DATA AND BIAS MITIGATION

This subsection provides a detailed analysis of ChinaTravel's hybrid query design, addressing concerns about synthetic data limitations and real-world representativeness. When synthesizing data, we randomly constructed constraints based on the types and specific visit requirements of POIs such as restaurants, accommodations, transports, and attractions, thereby ensuring the diversity of the dataset. The synthetic queries are generated through LLM-based paraphrasing techniques and systematically categorized into two tiers: Easy-tier queries contain single logical constraints (e.g., specific cuisine requirements), while Medium-tier queries combine 3−5 interdependent constraints (e.g., compound conditions like "budget ≤ 3000 CNY + train transport + hotpot dining").

To mitigate synthetic data bias and enhance diversity, two strategies were implemented. First, constraint combinations were deliberately diversified across temporal, spatial, and cost dimensions, as detailed in Table 8. Second, a human validation layer filters out unrealistic LLM-generated queries, such as physically implausible itineraries like "visiting 10 attractions within one day."

D.6 DSL Expression for Preference

We introduce six common preferences from user surveys to construct the preference sub-datasets. Table 9 provides a summary of these preferences.

The corresponding DSL could be formulated as follows.

```
# The number of attractions visited
count = 0
for act_i in all_activities(plan):
   if activity_type(act_i) == "attraction": count = count + 1
return count
```

Function Name	Meaning	Implementation
day_count	total days in the	<pre>def day_count(plan): return len(plan["itinerary"])</pre>
people_count	number of people in the trip	<pre>def people_count(plan): return plan["people_number"]</pre>
start_city	start city of the	<pre>def start_city(plan): return plan["start_city"]</pre>
target_city	target city of the	<pre>def target_city(plan): return plan["target_city"]</pre>
allactivities	all the activities in the plan	<pre>def allactivities(plan): activity_list = [] for day_activity in plan["itinerary"] for act in day_activity["activitic</pre>
allactivities count	the number of activities in the plan	<pre>def allactivities_count(plan): count = 0 for day_activity in plan["itinerary"] count += \ len(day_activity["activities" return count</pre>
dayactivities	all the activities in the specific day [1, 2, 3,]	<pre>def dayactivities(plan, day): activity_list = [] for act in plan["itinerary"]\ [day - 1]["activities"]: activity_list.append(act) return activity_list</pre>
activity_cost	the cost of specific activity without trans- port cost	<pre>def activity_cost(activity): return activity.get("cost", 0)</pre>
activity_posi- tion	the position name of spe- cific activity	<pre>def activity_position(activity): return activity.get("position", "")</pre>
activity_price	the price of spe- cific activity	<pre>def activity_price(activity): return activity.get("price", 0)</pre>
activity_type	the type of spe- cific activity	<pre>def activity_type(activity): return activity.get("type", "")</pre>
activity_tickets	the number of tickets needed for specific ac- tivity	<pre>def activity_tickets(activity): return activity.get("tickets", 0)</pre>
activity_trans- ports	the transport information of specific activity	<pre>def activity_transports(activity): return activity.get("transports", [])</pre>
activity start_time	the start time of specific activity	<pre>def activity_start_time(activity): return activity.get("start_time")</pre>
activity end_time	the end time of specific activity	<pre>def activity_end_time(activity): return activity.get("end_time")</pre>

Table 10: Concept Function

```
Function Name
                       Meaning
                                     Implementation
1134
                                     def activity_time(activity):
1135
                                          start_time = activity.get("start_time")
1136
                                          end_time = activity.get("end_time")
                                          if start_time and end_time:
1137
                                               st_h, st_m = 
1138
        activity_time
                       the duration of
                                                   map(int, start_time.split(":"))
1139
                       specific activity
                                               ed_h, ed_m = \
1140
                                                   map(int, end_time.split(":"))
1141
                                               return \
                                                    (ed_m - st_m) + (ed_h - st_h) * 60
1142
                                          return -1
1143
1144
                                     def poi_recommend_time(city, poi):
1145
                                          select = Attractions().select
                                          attrction_info = \
1146
                                               select(city, key="name",
1147
                       the recommend
                                                       func=lambda x: x == poi).iloc[0]
        poi_recom-
1148
        mend_time
                       time of specific
                                          recommend_time = \
1149
                       poi(attraction)
                                               (attrction_info["recommendmintime"]) \
                       in the city
                                               * 60
1150
                                          return recommend_time
1151
1152
                                     def poi_distance(city, poi1, poi2):
1153
                                          start_time="00:00'
1154
                                          transport_type="walk"
                       the distance be-
        poi_distance
                                          goto = Transportation().goto
1155
                       tween two POIs
                                          return goto(city, poil, poi2, start_time,
1156
                       in the city
                                                        transport_type) [0] ["distance"]
1157
1158
                                     def innercity_transport_cost(transports, mode):
                                          cost = 0
1159
                                          for transport in transports:
1160
        innercity_-
                       the total cost
                                               if node is None or \
1161
        transport_cost
                       of
                             specific
                                                   transport.get("type") == node:
1162
                       innercity trans-
                                                   cost += transport.get("cost", 0)
                       port
1163
                                          return cost
1164
                                     def innercity_transport_price(transports):
1165
                                          price = 0
1166
        innercity_-
                       the price of
                                          for transport in transports:
        transport_price
                       innercity trans-
1167
                                               price += transport["price"]
                       port
                                          return price
1168
1169
                                     def innercity_transport_distance\
1170
                                          (transports, mode=None):
1171
                                          distance = 0
                                          for transport in transports:
1172
        innercity_-
                       the distance of
                                               if mode is None or \
1173
                                                   transport.get("type") == mode:
        transport_-
                       innercity trans-
1174
        distance
                       port
                                                   distance += \
1175
                                                        transport.get("distance", 0)
1176
                                          return distance
1177
                                     def innercity_transport_time(transports):
1178
                                          def calc_time_delta(end_time, start_time):
1179
                                               hour1, minu1 = \
                                                   int(end_time.split(":")[0]), \
1180
                                                        int(end_time.split(":")[1])
1181
        innercity_-
                       the duration of
                                               hour2, minu2 = \
1182
        transport_-time
                       innercity trans-
                                                   int(start_time.split(":")[0]), \
1183
                       port
                                                        int(start_time.split(":")[1])
1184
                                               return (hour1 - hour2) * 60\
                                                      + (minu1 - minu2)
1185
1186
```

Table 11: Concept Function

```
1188
1189
        Function Name
                       Meaning
                                      Implementation
1190
                                      def metro_tickets(transports):
1191
        metro_tickets
                       the number of
                                          return transports[1]["tickets"]
                       metro tickets
1192
                       if the type of
1193
                       transport
1194
                       metro
1195
1196
                                      def taxi_cars(transports):
        taxi_cars
                       the number of
                                          return transports[0]["cars"]
1197
                       taxi cars if the
                       type of trans-
1198
                       port is taxi
1199
1200
                                      def room_count(activity):
                       the number of
        room_count
1201
                                          return activity.get("rooms", 0)
                       rooms of ac-
1202
                       commodation
1203
                                      def room_count(activity):
1204
                       the number of
        room_count
                                          return activity.get("rooms", 0)
1205
                       rooms of ac-
                       commodation
1206
1207
                                      def room_type(activity):
                       the type of
        room_type
1208
                                          return activity.get("room_type", 0)
                       room of accom-
1209
                       modation
1210
1211
                                      def restaurant_type(activity, target_city):
                                          restaurants = Restaurants()
1212
                                          select_food_type = \
1213
                                               restaurants.select(
1214
                                               target_city, key="name",
        restaurant_-
                       the type
1215
                                               func=lambda x: x == activity["position"]
                       restaurant's
        type
1216
                                          )["cuisine"]
                       cuisine in the
                                          if not select_food_type.empty:
1217
                       target city
                                               return select_food_type.iloc[0]
1218
                                          return ""
1219
                                      def attraction_type(activity, target_city):
1220
                                          attractions = Attractions()
1221
                                          select_attr_type = \
1222
                                               attractions.select(
1223
                                               target_city, key="name",
        attraction_-type
                       the type of at-
1224
                                               func=lambda x: x == activity["position"]
                       traction in the
                                          ) ["type"]
1225
                       target city
                                          if not select_attr_type.empty:
1226
                                               return select_attr_type.iloc[0]
1227
                                          return ""
1228
                                      def accommodation_type(activity, target_city):
1229
                                          accommodations = Accommodations()
1230
                                          select_hotel_type = \
1231
                                               accommodations.select(
1232
                                               target_city, key="name",
        accommo-
                       the
                              feature
1233
                                               func=lambda x: x == activity["position"]
        dation_type
                       of
                           accommo-
                                          ) ["featurehoteltype"]
1234
                       dation in the
                                          if not select_hotel_type.empty:
1235
                       target city
                                               return select_hotel_type.iloc[0]
1236
                                          return ""
1237
```

Table 12: Concept Function

```
1242
            Query in Chinese (from easy subset):当前位置成都。我和朋友两个人想去南京玩 2 天,住一间双床房,<mark>酒店要</mark>
             <mark>可以打牌</mark>,请给我一个旅行规划。
1243
            Current location: Chengdu. My friend and I want to go to Nanjing for 2 days. We need a twin room in a hotel where
1244
            we can play cards. Please provide a travel plan for us.
1245
1246
            accommodation type set=set()
1247
            for activity in allactivities(plan):
1248
              if activity type(activity) = 'accommodation': accommodation type set.add(accommodation type(activity,
1249
            target city(plan)))
             result=({'棋牌室'}<=accommodation_type_set)
1250
            Query in Chinese (from medium subset): 当前位置成都。我一个人想去重庆玩 2 天,<mark>预算 3000 人民币</mark>,<mark>坐火车</mark>
1251
              <mark>主返</mark>,想吃火锅,<mark>想去洪崖洞</mark>
1252
            Current location: Chengdu. I want to travel alone to Chongqing for 2 days with a budget of 3000 RMB. I plan to take
1253
            the train, want to eat hotpot, and visit Hongya Cave.
1254
             total cost=0
1255
            for activity in allactivities(plan):
1256
                 total_cost+=activity_cost(activity)
                 total_cost += innercity_transport_cost(activity_transports(activity))
1257
            result=(total cost<=3000)
             intercity transport set=set()
1259
            for activity in allactivities(plan):
1260
               if activity_type(activity) in ['train', 'airplane']: intercity_transport_set.add(intercity_transport_type(activity))
1261
             result=({'train'}==intercity transport set)"
1262
            restaurant_type_set=set()
1263
            for activity in allactivities(plan):
             if activity type(activity) in ['breakfast', 'lunch', 'dinner']: restaurant type set.add(restaurant type(activity,
1264
            target city(plan)))
1265
            result=({'火锅'}<=restaurant_type_set)
1266
            attraction_name_set=set()\nfor activity in allactivities(plan):
1267
              if activity_type(activity)=='attraction': attraction_name_set.add(activity_position(activity))
1268
            result=({'洪崖洞'}<=attraction name set)
1269
            Query in Chinese (from human subset): [当前位置南京,目标位置武汉,旅行人数 2,旅行天数 3] 我们 2 人想去武汉
1270
            玩 3 天,主要想<mark>体验武汉的一些有些历史的区域</mark>,同时还想<mark>尝一尝本地人常去吃的特色美食</mark>,怎么规划行
            程。
1271
            English translation: [Current location: Nanjing, Destination: Wuhan, Number of travelers: 2, Travel days: 3] The two
1272
            of us want to visit Wuhan for 3 days. We mainly want to experience some of the historical areas in Wuhan and also try
1273
            the local specialty foods that residents often eat. How should we plan our itinerary?
1274
            attraction_type_set=set()
1275
                 for activity in allactivities(plan):
1276
                    if activity type(activity)="attraction": attraction type set.add(attraction type(activity, target city(plan)))
            result=({'历史古迹'}<=attraction_type_set)"
1277
            restaurant_type_set=set()\nfor activity in allactivities(plan):
1278
                 if activity_type(activity) in ['breakfast', 'lunch', 'dinner']: restaurant_type_set.add(restaurant_type(activity,
1279
             target city(plan)))
1280
             result=({'湖北菜'}<=restaurant type set)'
1281
            Query in Chinese (from human subset): [当前位置南京,目标位置杭州,旅行人数 2,旅行天数 3] 我们打算去杭州<mark>看</mark>
1282
             <mark>西湖,预算 2000</mark>,给我一个旅游安排。
1283
             [Current location: Nanjing, Destination: Hangzhou, Number of travelers: 2, Number of travel days: 3] We plan to visit
            West Lake in Hangzhou with a budget of 2000. Please provide me with a travel itinerary.
1284
            attraction name set=set()
1285
            for activity in allactivities(plan):
1286
              if activity_type(activity)=='attraction': attraction_name_set.add(activity_position(activity))
1287
             result=({'西湖风景名胜区'}<=attraction_name_set)
             total cost=0
             for activity in allactivities(plan):
1290
                      total_cost += innercity_transport_cost(activity_transports(activity))
1291
             result=(total cost<=2000)"
```

Figure 10: Examples of travel requirements and their DSL expressions.

1326 1327 1328

1329

1330

1331

1332

1333

1334

1335

1336

```
1296
         Function Name
                        Meaning
                                        Implementation
1297
1298
                                        def innercity_transport_type(transports):
1299
                                             if len(transports) == 3:
                                                 return transports[1]["mode"]
1300
         innercity_-
                            type of
                        the
                                            elif len(transports) == 1:
1301
        transport_-type
                        innercity trans-
                                                 return transports[0]["mode"]
                        port
1302
                                             return ""
1303
1304
                                        def intercity_transport_type(activity):
                        the type of inter-
         intercity_-
                                             return activity.get("type", "")
1305
         transport_-type
                        city transport
1306
                                        def innercity_transport_start_time(transports):
                        the start time of
         innercity_-
1307
                                             return transports[0]["start_time"]
        transport_-
                        innercity trans-
1308
         start_time
                        port
1309
1310
                                        def intercity_transport_end_time(transports):
         innercity_-
                        the end time of
                                             return transports[-1]["end_time"]
1311
        transport_-
                        innercity trans-
1312
        end_time
                        port
1313
                                        def intercity_transport_origin(activity):
1314
                                            if "start" in activity:
1315
                                                 for city in city_list:
         intercity_-
                        the origin city
1316
                                                      if city in activity["start"]:
         transport_origin
                        of
                              intercity
1317
                                                           return city
                        transport
                                             return ""
1318
1319
                                        def intercity_transport_destination(activity):
1320
                                             if "end" in activity:
                                                 for city in city_list:
1321
         intercity_-
                        tthe destination
                                                      if city in activity["end"]:
1322
         transport_-
                        city of intercity
                                                           return city
         destination
                        transport
1323
                                             return ""
1324
```

Table 13: Concept Function

```
1338
       # The average travel time to restaurants
1339
       restaurant\_count = 0
1340
       time_cost = 0
1341
       for activity in allactivities (plan):
           if activity_type(activity) in ['breakfast', 'lunch', 'dinner']:
1342
               restaurant_count += 1
1343
               time_cost += innercity_transport_time(activity_transports(
1344
                   activity))
1345
       if restaurant_count == 0:
1346
           average\_time\_cost = -1
1347
           average_time_cost = time_cost / restaurant_count
1348
       return average_time_cost
1349
```

1376

1377

137813791380

1381

1382

1383

1384

1385

1386

1387

1388

1389 1390

1391

1392

1393

1394

```
1350
         An Example of Prompts for Data Generation
1351
1352
         # You are a user who wants to ask an AI agent to help you
1353
            plan a trip. Please construct some natural language
1354
            inquiries based on the following example and provide the
1355
            corresponding logical constraint expressions. Note that "
1356
            tickets" and "people_number" are the same.
1357
         # Example:
1358
         # JSON:
1359
          { }
         #
1360
         # Use the following restaurants.
1361
         # Restaurant name: {}
1362
         # This means that "restaurant_names" should include this
1363
            restaurant.
         # The dining options may not always be exactly as described
1364
            by the provided features; synonyms can be used. For
1365
            example, if the hotel's feature is a pool, you could ask
1366
            naturally in language like "I want to swim in the hotel
1367
            pool."
1368
         # Now, your departure location is {}, and your destination is
1369
              {}. The number of people is {}, and the number of days
1370
            is {}.
1371
         # Now please provide a JSON inquiry.
1372
         # JSON:
1373
1374
```

Figure 11: An example of prompts for data generation. This example is about restaurant_name. By replacing this with other constraints or combining multiple constraints, we can generate data with different levels of difficulty based on different constraints.

```
# The ratio of food cost
food_cost = 0
total_cost = 0
for activity in allactivities(plan):
    total_cost += activity_cost(activity)
    total_cost +=innercity_transport_cost(activity_transports(activity))
    if activity_type(activity) in ['breakfast', 'lunch', 'dinner']:
        food_cost += activity_cost(activity)
food_cost_ratio = food_cost / total_cost if total_cost > 0 else -1
return food_cost_ratio
```

```
# The cost of accommodations
accommodation_cost = 0
for activity in allactivities(plan):
    if activity_type(activity) == 'accommodation':
        accommodation_cost += activity_cost(activity)"
return accommodation_cost
```

```
1396
1397
       # The average distance to poi (e.g. xxx)
      target_poi = 'xxx'
1398
      poi_list = list()
1399
      total\_distance = 0
1400
      poi_count=0
1401
       city = target_city(plan)
1402
       for activity in allactivities (plan):
           if activity_type(activity) in ['breakfast', 'lunch', 'dinner', '
1403
               accommodation', 'attraction']:
```

```
poi_list.append(activity_position(activity))

for poi in poi_list:

total_distance += poi_distance(city, target_poi, poi)

poi_count += 1

average_dist_cost = total_distance / poi_count if poi_count > 0 else -1

return average_dist_cost
```

D.7 BENCHMARK DIFFICULTY AND APPLICABILITY

While the Human subset presents significant challenges, the baseline NeSy solution has achieved 60.6% and 46.7% FPR on Easy and Medium subsets, respectively, providing developers with actionable validation points for initial testing and refinement. Additionally, the Human subset's extreme difficulty arises from open language reasoning and unseen concept composition, key challenges absent in prior benchmarks but unavoidable in practice. By explicitly formalizing these challenges, ChinaTravel has provided a roadmap for advancing agents toward real-world robustness. Despite current LLMs' limitations in handling unseen combinations, their success in code generation suggests that post-training with DSL may enhance their understanding of diverse travel needs, moving toward real-world applications.

E DISCUSSION WITH TRAVELPLANNER

TravelPlanner's logical constraints contain the total cost, 15 cuisines, 5 house rules, 3 room types, and 3 intercity transports. ChinaTravel's logical constraints contain the total cost, 42 cuisines, 15 attraction types, 78 hotel features, 2 room types, 2 intercity-transports types, 3 inner-city-transports types, and specific POI names (attractions, restaurants, hotels). Crucially, our benchmark introduces compositional constraints derived from human queries (e.g., "return before 7 PM", "cost of intercity transports"), reflecting real-world complexity. The key advancement lies in addressing open-language reasoning and unseen concept composition, which represent significant challenges beyond TravelPlanner's scope. Our Domain-Specific Language (DSL) enables automated validation of these combinatorial requirements, bridging the gap between synthetic and real-world needs.

We also provide some example queries and corresponding examples from the TravelPlanner at each level in Figure 13, 14, and 15.

As shown in Figure 13, in the "easy level", TravelPlanner only includes constraints on cost. In contrast, ChinaTravel demonstrates significant advantages over TravelPlanner, particularly in terms of personalized support for specific Points of Interest (POIs) and more realistic transportation and time management. These advantages are crucial for developing and evaluating language agents that can handle real-world travel planning scenarios effectively. ChinaTravel allows users to directly specify POI names, such as "Nanjing DaPaXiang" or "HuQiu Mountain Scenic Area," requiring the agent to precisely match the entity information from the travel sandbox.

As shown in Figure 14, in the medium set, TravelPlanner includes queries with 2 types of constraints: cost and cuisine, or cost and accommodation. In contrast, ChinaTravel includes queries with 2-5 constraints, reflecting more complex and diverse multi-constraint requirements. This difference highlights the ability of ChinaTravel to handle more realistic and varied travel planning scenarios.

As shown in Figure 15, TravelPlanner includes queries with multiple constraints, such as cost, accommodation type, and cuisine preferences. However, ChinaTravel goes a step further by including queries with unseen logical constraints and more colloquial expressions. These unseen logical constraints and colloquial expressions are essential for travel planning agents to handle real-world users effectively. They reflect the complexity and diversity of real-world travel planning scenarios, where users may have diverse requirements that need to be understood and addressed. By incorporating these elements, ChinaTravel bridges the gap between current academic research benchmarks and real-world application demands, making it a more comprehensive and realistic benchmark for evaluating the capabilities of travel planning agents.

1507 1508

```
1459
1460
1461
          Examples of Generated Data
1462
1463
          Example 1
1464
              "start_city": "杭州",
"target_city": "上海",
1465
1466
              "hard_logic": [
1467
                  "days==2",
1468
                  "people_number==1",
1469
                  "tickets==1",
1470
                  "{'本帮菜'} ≤ food_type"
1471
1472
              "nature_language": "当前位置杭州。我一个人想去上海玩2天,想尝试当地的特
1473
          色菜,请给我一个旅行规划。"
1474
1475
1476
          Example 2
1477
              "start_city": "深圳",
1478
              "target_city": "北京",
1479
              "hard_logic": [
1480
                  "days==2",
1481
                  "people_number==3",
1482
                  "intercity_transport=={'airplane'}",
1483
                  "tickets==3",
1484
                  "rooms==3",
1485
                  "room_type==1"
1486
              "nature_language": "当前位置深圳。我们三个人计划去北京玩两天,选择飞机出
1487
          行,开三间大床房。请给我一个旅行规划。"
1488
1489
1490
          Example 3
1491
1492
              "start_city": "重庆",
1493
              "target_city": "苏州",
1494
              "hard_logic": [
1495
                  "days==3",
1496
                  "people_number==3",
1497
                  "cost≤7300".
1498
                  "{'日本料理'} ≤ food_type".
                  "intercity_transport=={'train'}",
1499
1500
                  "tickets==3",
                  "rooms==2",
1501
                  "room_type==2"
1502
1503
              "nature_language": "当前位置重庆。我们三个人计划去苏州玩三天,选择火车出
1504
          行,想吃日本料理,预算7300元,开两间双床房。请给我一个旅行规划。
1505
1506
```

Figure 12: Examples of Generated Data

```
1512
        Algorithm 1 Depth-First Greedy Search
1513
         Require: Constraints C, current plan p,
1514
           if the least activity is an intercity-transport from destination to origin then
1515
              return Constraint Validation(p, C), p
                                                           \triangleright The plan p is finished, return the validation result.
1516
           end if
1517
           type = GetNextActivityType(p)
                                                     ▷ Select the next type of activities, e.g. lunch, attraction.
1518
           candidates = ToolUse(type)
                                                 ▷ Collect the corresponding information for the activity type
1519
           scores = LLMScore(candidates, p, C)
                                                                     ▶ Score candidates through constraints C.
1520
           for activity in candidates do
              p.push(activity)
1521
                                                             ▶ Perform a greedy search with priority ranking.
              flag, p = Depth-FirstGreedySearch(C, p)
1522
              if flag then
1523
                return True, p
                                                             \triangleright Return the solution p if the validation is passed.
              end if
1525
              p.pop(activity)
           end for
1527
                                                             ▶ Fail to find a solution with the given conditions.
           return False, p
```

F NESY PLANNING

1529 1530

1531 1532 1533

1534 1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559 1560 1561

1562 1563

1564

1565

Since the Z3 solver from (Hao et al., 2025) would restructure the tool API to return travel information expressed in specific Z3 variables, which may not be feasible given that APIs in the real world are typically black boxes that agents can only call. Following their two-stage solution, we first extract logical constraints from natural language. Based on these constraints, we implement a step-by-step plan generation process using depth-first search, mimicking how humans plan to travel by arranging activities one by one. As shown in Fig. 5, we first translate the natural languages to logical constraints through prompting. generate the next activity type based on the current plan, and then recursively generate the next activity until the goal is reached. The generated plan is then used to solve the problem. In the second step, we define the rule-based activity selection and score function. For example, if the current time is in the [10:30, 12:30] and there is no scheduled lunch in the current plan, then the agent should find a restaurant to have lunch at this time. If the current time is after 22:00 and there are no open-time attractions nearby, the agent should choose to return to the hotel. For the score function, we select the restaurants that satisfy the required cuisine and sort the candidates by the price if there a budget constraints in the constraints C. These ranking functions will help us to find a feasible solution as soon as possible. In ChinaTravel, the duration arrangement of activities is continuous and difficult to enumerate and search. We pre-define a meal or a visit to an attraction as 90 minutes, and when there are less than 90 minutes until closing time, the event continues until the closing time. Given these designs, we adapt the neural-symbolic solution into a multi-POI planning problem and evaluate it in the ChinaTravel benchmark.

Given that some queries are particularly challenging due to the limited number of feasible plans, we set the maximum runtime for the symbolic sketch from interactive search to 5 minutes per query, excluding the LLM inference time, to ensure a fair comparison across different models. If a plan satisfying the generated DSL validation is found within the time limit, it is returned directly. Otherwise, the program halts when the time limit is reached, and the plan that satisfies environmental constraints while achieving the highest number of validation code successes among all intermediate results is returned. In cases where no environment-compliant plan is identified, the partially completed plan generated up to that point is returned.

In the Figure 19, 20 and 21, we provide the prompts of the LLM POI-ranking phases.

G EVALUATION METRIC IN COMPETITION

The Delivery Rate (DR), Environmental Pass Rate (EPR), Logical Pass Rate (LPR), and Final Pass Rate (FPR) have been detailed in TravelPlanner (Xie et al., 2024). To make the paper more self-contained, we also provide the corresponding definition here.

Delivery Rate: This metric assesses whether agents can successfully deliver a formatted plan. For the Nesy planning, if a solution that satisfies the logical constraints has not been found by the time out, the search is terminated, and the current solution that satisfies the environmental constraints is returned. If no solution that satisfies the environmental constraints is obtained, an empty plan is returned. Therefore, unlike the pure LLM method, which primarily assesses the Delivery Rate based on whether the output meets the formatting requirements, the nesy planning method, which uses depth-first-search to arrange POIs one by one, shows differences in the Delivery Rate. These differences mainly reflect the proportion of effective solutions obtained within a limited time based on the LLM's POI recommendation. This proportion demonstrates the degree to which the LLM prioritizes POI arrangements from a natural language perspective and meets formalized logical requirements. The more accurately the LLM can arrange POIs that are beneficial for long-horizon planning, the more likely it is to obtain effective solutions and improve the Delivery Rate.

Environmental Pass Rate Comprising the environmental dimensions (as detailed in Tab. 7), this metric evaluates whether a language agent can accurately incorporate sandbox information into their generated plans.

$$EPR-micro = \frac{\sum_{p \in P} \sum_{c \in Env} \mathbf{1}_{passed(c,p)}}{|P| * |Env|}$$

$$EPR-macro = \frac{\sum_{p \in P} \prod_{c \in Env} \mathbf{1}_{passed(c,p)}}{|P|}$$

Logical Pass Rate Comprising the logical dimensions (as detailed in Tab. 8), this metric evaluates whether a language agent can accurately meet the personalized requirements of the queries.

$$LPR-micro = rac{\sum_{p \in P} \sum_{c \in C_p} \mathbf{1}_{passed(C_p,p)}}{\sum_{p \in P} |C_p|}$$

$$LPR-macro = rac{\sum_{p \in P} \prod_{c \in C_p} \mathbf{1}_{passed(C_p,p)}}{|P|}$$

Final Pass Rate This metric represents the proportion of feasible plans that meet all aforementioned constraints among all tested plans. It serves as an indicator of agents' proficiency in producing plans that meet a practical standard.

$$FPR = \frac{\sum_{p \in P} \mathbf{1}_{passed(Env,p)} \cdot \mathbf{1}_{passed(C_p,p)}}{|P|}$$

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 RESULTS WITH LARGE REASONING MODEL

The current experimental results have covered Qwen3-8B, the largest CoT-enabled reasoning models we could feasibly run within our local computational resources. We have further conducted the additional experiments with DeepSeek-R1 and DeepSeek-R1-Distill-Qwen-7B.

Note that R1-Act is inherently a reason-then-act paradigm. The results show that pure-neural methods still struggle on ChinaTravel. Interestingly, DeepSeek-R1 does not consistently outperform R1-Distill-Qwen-7B. From the observation over experiments, one plausible reason is that R1 tends to over-think, which weakens final instruction-following in long contexts and yields unsatisfactory performance. Encouragingly, even 7-8B LLMs already exhibit some DSL-translating ability, so the community can conduct cost-effective post-training research on ChinaTravel with modest resources.

Table 14: Multi-Preference Comparison of BQ and PEQ.

Preference Combination	Vau	le-1	Vau	le-2 Rar	ık-1	Rar	ık-2 Agg	. Rank.
	BQ	PEQ	BQ	PEQ BQ	PEQ	BQ	PEQ BQ	PEQ
P0 ↑, P1 ↓	0.79	0.83	28.0	29.7 1.44	1.55	1.44	1.55 1.44	1.55
P0 ↑, P2 ↓	0.82	1.26	29.0	31.9 1.56	1.43	1.43	1.56 1.5	1.5
P0 ↑, P3 ↑	0.81	0.94	0.18	0.20 1.42	1.57	1.59	1.40 1.51	1.48
P0 ↑, P4 ↓	0.79	0.97	1221	441 1.46	1.53	1.73	1.26 1.59	1.40
P0 ↑, P5 ↓	0.78	0.91	33.6	34.0 1.37	1.62	1.70	1.29 1.54	1.45
P1 ↓, P2 ↓	28.2	27.8	26.6	30.1 1.62	1.37	1.48	1.51 1.55	1.44
P1 ↓, P3 ↑	28.2	36.2	0.20	0.27 1.31	1.68	1.6	1.4 1.45	1.54
P1 ↓, P4 ↓	30.3	44.8	1440	585 1.14	1.85	1.77	1.22 1.45	1.54
P1 ↓, P5 ↓	30.1	38.3	30.7	30.2 1.27	1.72	1.69	1.30 1.48	1.51
P2 ↓, P3 ↑	24.7	23.3	0.27	0.27 1.43	1.56	1.60	1.39 1.52	1.47
P2 ↓, P4 ↓	24.1	21.1	1687	719 1.51	1.48	1.89	1.10 1.70	1.29
P2 ↓, P5 ↓	28.0	30.8	29.4	26.0 1.51	1.48	1.89	1.10 1.70	1.29
P3 ↑, P4 ↓	0.18	0.26	1229	531 1.64	1.35	1.69	1.30 1.66	1.33
P3 ↑, P5 ↓	0.22	0.22	33.3	29.0 1.51	1.48	1.84	1.15 1.68	1.31
P4 ↓, P5 ↓	1366	767	33.1	31.6 1.67	1.32	1.45	1.54 1.56	1.43
Aggregated Ranking							1.56	1.43

Table 15: Results on the Easy and Human-154 subsets.

			Easy					Human-154							
Method	Model	DR	EI Mic.				C-LPR		DR Mic.	EF Mac.			PR	C-LPR	FPR
Act	R1	43.3	31.6	2.9	39.2	24.9	2.7	2.9	38.0	21.1	0.0	33.3	15.5	0.0	0.0
NeSy	R1-DQwen-7B	53.3	53.3	53.3	49.7	38.7	49.7	49.5	59.1	58.8	52.0	51.3	29.9	45.2	28.6
NeSy	R1	58.3	58.3	58.3	53.7	32.6	53.7	32.6	46.8	46.6	45.5	39.2	23.4	38.0	23.4
-	R1-DQwen-7B R1		63.7 50.0						40.9 43.5						

RESULTS ON MEDIUM SET

For organizational coherence in the manuscript, we elected not to include medium-complexity experimental results in the main text. The medium set features user inputs containing 3-5 logical requirements, representing the mid-range complexity tier that bridges simple queries and the highly complex open-ended scenarios.

Table 16: Results of different LLMs and planning strategies on the ChinaTravel medium subset.

		$ _{\mathrm{DR}}$	El	PR	Ll	PR	C-LPR	FPR			$ _{ m DR}$	E	PR	LPR	1	C-LPR	R FPR
			Mic.	Mac.	Mic.	Mac.						Mic.	Mac.	Mic.	Mac.		
Act	(3)	72.7	52.3	0	63.5	15.3	0	0		(3)	71.3	71.9	69.3	69.4	50.0	69.3	46.7
Act	\$	97.4	70.5	0	89.3	55.3	0	0	NSP	\$	68.0	68.0	68.0	64.1 46.6	64.1	46.7	
ReAct	A	41.3	35.2	0	37.6	4.0	0	0		雰	53.3	45.9	16.0	49.2	33.3	14.8	8.50
(zero-shot)	(S)	92.0	54.8	0	78.6	22.7	0	0	NCD	4	68.6	65.4	54.0	66.2	61.3	52.5	54.0
ReAct	(3)	82.7	77.1	3.33	82.6	48.7	2.95	1.33	oracle	tron.	60.8	59.4	54.9	60.3	58.2	60.3	56.9
(one-shot)	\$	94.7	69.2	0.67	91.8	64.0	0.53	0			53.3	51.3	36.6	51.9	43.3	34.8	34.6

H.3 MULTI-PREFERENCE COMPARISON

For multi-preference scenarios (e.g., balancing "attraction visits \uparrow " and "transport time \downarrow "), we adopt an averaged aggregation approach, where rankings reflect the combined performance across all preferences. This framework ensures scalability and objectivity.

To rigorously evaluate the ability of language agents to balance multiple soft constraints, we constructed 15 test subsets by pairing six user preferences (P0–P5) into all possible combinations (e.g., "P0 + P1"). Each subset contains queries with two preference requirements. We compared two methods, Baseline Query (BQ) and Preference-Enhanced Query (PEQ), by quantifying their performance through our DSL-based Preference Ranking metric. For each subset, we extracted numerical scores for both preferences (Value-1 and Value-2), computed individual rankings (Rank-1, Rank-2), and derived an aggregated ranking (Agg. Rank.) to reflect overall performance. The results are provided in the Table 14.

From these results, we could find that: (1) PEQ Outperforms BQ in Most Scenarios: In 10/15 combinations, PEQ achieves superior aggregated rankings (Aggregated Ranking = 1.43 vs. BQ's 1.56). Notably, PEQ demonstrates stable improvements on preferences P3 (e.g., maximizing dining quality \uparrow) and P4 (e.g., minimizing accommodation costs \downarrow). For instance: In "P0 \uparrow + P4 \downarrow ", PEQ reduces accommodation costs by 64% (Value-2: 441 vs. BQ's 1221) while maintaining high attraction counts (Value-1: 0.97 vs. 0.79). For "P3↑ + P4↓", PEQ simultaneously improves dining quality (Value-1: 0.26 vs. BQ's 0.18) and lowers costs (Value-2: 531 vs. 1229). This stability likely stems from the direct impact of POI selection on these preferences. LLMs in PEQ effectively prioritize low-cost hotels or high-quality restaurants through natural language hints (e.g., "reduce the cost on accommodations"), enabling explicit alignment with P3 and P4 requirements. (2) Challenges in Balancing Multiple Preferences: The results also reveal inherent difficulties in harmonizing conflicting preferences, particularly when optimizing one requirement necessitates sacrificing another. Notably, in the P0 \uparrow + P1 \downarrow scenario, PEQ underperforms BQ on both preferences, highlighting the inherent difficulty in resolving conflicting objectives. While PEQ marginally improves attraction counts (Value-1: 0.83 vs. BQ's 0.79), it incurs a 5.7% increase in transport time (Value-2: 29.7 vs. BQ's 28.0). This trade-off results in a worse aggregated ranking for PEQ (1.55 vs. BQ's 1.44), indicating that the combined effect of conflicting preferences negates the benefits of natural language guidance. In 9/15 combinations, PEQ improves one preference at the expense of the other. For example: $P1\downarrow + P4\downarrow$: PEQ reduces accommodation costs by 59% (Value-2: 585 vs. BQ's 1440) but increases transport time by 48% (Value-1: 44.8 vs. 30.3). The inability to concurrently satisfy both preferences underscores the limitations of current LLM-driven prioritization in handling trade-offs.

Our experiments demonstrate that the neuro-symbolic agent (PEQ), enhanced by LLM-driven POI recommendation, outperforms baseline methods in multi-preference travel planning. By integrating natural language hints to guide POI selection, PEQ effectively translates user requirements into actionable itineraries, demonstrating its capability to handle synergistic preferences. However, balancing inherently conflicting objectives remains challenging. This highlights the need for future advancements, such as domain-specific fine-tuned LLMs to better resolve preference conflicts or multi-objective optimization techniques to systematically navigate trade-offs.

H.4 ANALYSIS OF PURE-LLM METHODS

Pure LLM-based methods have demonstrated significant shortcomings in constraint satisfaction, as evidenced by their near-zero success rates in benchmarks like TravelPlanner. We also attempt the multi-round refinement methods like Reflexion. While theoretically promising, it is still impractical in our context. In preliminary evaluations, Reflexion not only failed to achieve improvements in constraint satisfaction (consistent 0% FPR) but also incurred prohibitive computational costs due to its reliance on iterative token-heavy interactions. This rendered large-scale evaluation infeasible given our resource constraints. In light of their current limitations in constraint satisfaction, NeSy frameworks remain the effective pathway for real-world travel planning. Therefore, in the main body of this work, we mainly analyze the Nesy method.

In this section, we further summarize the key failure modes of pure-LLM-based methods observed in our experiments:

- (1) **Incorrect API Calls:** LLMs frequently generate invalid or hallucinated API calls, leading to cascading errors in downstream planning. For instance, models may query non-existent APIs (e.g., city_transport_select instead of inter_city_transport_select) or misuse parameters (e.g., filtering attractions by an unsupported feature like "bus"). Such errors exhaust API call limits and prevent agents from retrieving essential information.
- (2) **Repetitive Output Loops** In iterative planning frameworks like ReAct, LLMs often enter infinite loops when resolving constraints. For example, an agent might repeatedly query transportation details for all candidate attractions, even after selecting one, due to a failure to update its internal state. This behavior mimics the "hallucination loops" reported in TravelPlanner paper.
- (3) **Reasoning-Action Inconsistency.** In ReAct framework, the model first reasons and then takes an action. However, the reasoning and the action are not always consistent. For example, the model may reason that the user wants to book a flight, but then take an action to check the information of trains. Another example is that the model may detect that the expenses exceed the budget but does not respond to this and ultimately generates a plan that exceeds the budget.
- (4) **Critical Information Missing.** Even when intermediate steps (e.g., API responses) are logged in a "notebook," LLMs frequently omit essential details when synthesizing final plans. A recurring failure is neglecting return transportation (e.g., omitting the train from Shanghai back to Beijing), which violates feasibility constraints.
- Figure 16 provides the fail examples of ReAct (one-shot) with DeepSeek, which outperforms other pure-LLM-based methods in the main experiments.
- These limitations underscore the inadequacy of pure-LLM-based approaches for deployment in long-horizon and constraint-rich domains like travel planning.

I STATEMENTS ABOUT SCIENTIFIC ARTIFACTS

The ChinaTravel benchmark is designed to facilitate research in natural language processing and artificial intelligence, specifically for travel planning tasks. ChinaTravel includes a travel sandbox, user queries, and an evaluation framework intended for non-commercial, academic research purposes.

Availability. We will publicly release the ChinaTravel benchmark upon publication to facilitate community research. We look forward to broader adoption and extension of this benchmark.

Licenses. The ChinaTravel benchmark and its associated datasets are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0) license. This license allows for the free use, distribution, and reproduction of the benchmark in any medium, provided that appropriate credit is given to the original authors and the source of the data is acknowledged, and that the use is for non-commercial purposes only.

Data anonymization and offensive content. We anonymized the human queries during collection and instructed participants to avoid including sensitive information. We removed queries containing offensive content during the data cleaning process.

J STATEMENTS ABOUT HUMAN PARTICIPANTS

For the collection of Human-154, we recruited over 250 volunteers through a structured questionnaire to collect authentic Chinese travel requirements. Participants were informed about the public use of their data and instructed to avoid including sensitive personal information. During data cleaning, offensive content and identifiable details were removed. While no explicit ethics board approval is mentioned, we ensured compliance with anonymization practices and obtained participant consent for data inclusion. The final dataset contains 154 human-derived queries reflecting diverse real-world travel needs.

J.1 INSTRUCTIONS GIVEN TO PARTICIPANTS

To gather the authentic travel requirements, we collected data through a carefully designed questionnaire. We provided the following instruction information to the participants:

- 1. The specific constraints the agent can handle and the corresponding details, including the types and specific names of attractions, restaurants, and hotels; requirements for intercity transportation (airplane or train) and urban transportation (walk, taxi or subway); as well as budget limitations for overall expenses or specific activities (such as accommodation and intercity transportation).
- 2. The necessary information should be provided in the query, including the departure and destination cities of the trip, the number of travel days and constraint information.
- 3. A detailed example with the query and travel planning response.

Fig. 17 and Fig. 18 respectively show the questionnaire and its translated version.

J.2 RECRUITMENT AND PAYMENT

For the collection of Human-154, we recruited a total of 250 student volunteers to provide authentic Chinese travel requirements. The participants included 121 undergraduate students, 86 master's students, and 43 doctoral students. The task of understanding the query background and providing travel requirements was estimated to take 1-2 minutes per participant. Given the simplicity of the task and the fact that it did not require extensive professional background or expertise, we compensated each participant with 1 CNY. This compensation was deemed adequate considering the nature of the task and the time required to complete it. The payment was determined based on the estimated time and the straightforward nature of the natural language requirements, ensuring a fair and reasonable reward for the participants.

For Human-1000, we partnered with WJX (a professional survey platform) to scale data collection. Each valid query was incentivized with 6 CNY. After WJX's initial screening, our team rigorously annotated responses, filtering invalid entries (e.g., nonsensical inputs). It finally yielded 1,000 high-quality queries meeting DSL annotation standards, ensuring both diversity and alignment with real-world planning scenarios.

J.3 DATA CONSENT

When collecting the data, we clearly informed the participants about the usage of the data and the potential irreversible risks of it becoming part of a public dataset. We did not track the ID information of the questionnaire respondents. Additionally, we reminded participants not to include any sensitive personal information in the questionnaire responses. During the data cleaning process, we directly removed queries containing offensive content and filtered out sensitive identity information.

J.4 INSTITUTE ETHICS APPROVAL AND RISK MITIGATION

Our questionnaire posed no more than minimal risk: it collected only non-sensitive travel preferences, caused no physical or psychological harm, and preserved participant anonymity. The foreseeable risks were limited to minor time cost. All participants were clearly informed about data usage and gave voluntary consent. In our institute, minimal-risk studies like ours are exempt from convening a dedicated ethics committee. Moreover, our institute explicitly confirms that our questionnaire minimized any potential risk to participants and formally authorized the creation and release of the benchmark.

The risk mitigation strategies we employed are as follows.

Risk Assessment and Disclosure: We conducted a thorough assessment concluding the study posed minimal risk. All identified potential risks were fully disclosed to participants. **Informed Consent:** Written informed consent was obtained from every participant prior to involvement. Consent documents clearly explained the study purpose, procedures, potential risks, data handling (anonymization and usage), voluntary nature, and right to withdraw. **Privacy Protection:** Strict data

anonymization protocols were applied. No personally identifiable information (PII) is present in the collected or released dataset. Data security measures were enforced. **Voluntary Participation and Fairness:** Participation was voluntary, and fair compensation was provided. Thank you for your suggestions. We will add them in the final revision.

J.5 RISK STATEMENT FOR PARTICIPANTS

Here's the English translation of our risk statement for participants:

This questionnaire aims to create an open-environment travel planning dataset to support academic research. Important Notes:

Data Irrevocability: As a public dataset, submitted data may not be revoked once published.

Indefinite Retention: As a public dataset, submitted data may be retained indefinitely.

Anonymization: All submitted data will be anonymized.

Sensitive Information: Please DO NOT include any sensitive personal information in your responses. (Note: We will collect limited personal information solely to analyze data source diversity. This information will be strictly protected and used only for this specific purpose).

Dataset License: The dataset will be released under the CC BY-NC-SA 4.0 license. Summary: This license allows free use, modification, and sharing for non-commercial purposes only, provided users:

Give appropriate credit (attribution), Share any adaptations under the same license (share alike), And do not use the material commercially.

Full License: We strongly recommend reviewing the complete CC BY-NC-SA 4.0 license terms: Consent Declaration: By submitting this questionnaire, you explicitly consent to our use of the data you provide for non-commercial purposes, including but not limited to:

Algorithm/model development and optimization. Publication of academic research. Any other uses permitted under the CC BY-NC-SA 4.0 license.

J.6 CHARACTERISTICS OF ANNOTATORS

Our data collection process solely involved travel requirements and did not include any protected information, such as sexual orientation or political views as defined under the General Data Protection Regulation (GDPR). All data were collected from native Chinese speakers to ensure that the travel requirements fully align with the context and nuances of the Chinese language. This approach was taken to accurately capture the needs and preferences of the target population, which is primarily composed of Chinese-speaking individuals. The annotators were recruited from a diverse range of academic backgrounds, including undergraduate, master's, and doctoral students, to provide a broad and representative set of travel requirements.

J.7 DSL Annotation for Human Data

The annotation process for the human data involved four stages to ensure the accuracy and validity of the Domain-Specific Language (DSL) annotations: (1) Initial DSL Version Generation: GPT-40 was utilized to provide the initial version of the DSL annotations for the human data. This step aimed to leverage the language model's capabilities to generate a baseline for further refinement. (2) Data Annotation Team Revision: A team of five data annotators was responsible for reviewing and revising the DSL annotations. The team members divided the workload and made necessary corrections to the DSL annotations to ensure their accuracy and relevance to the travel requirements. (3) Primary Developer Verification and Correction: Three of the main developers of the benchmark conducted a thorough review of all the DSL annotations. They verified the correctness of the annotations and made revisions as needed. This stage also involved the exclusion of any invalid queries that could not be verified within the sandbox environment. (4) Final Verification by Primary Developers: The same three main developers performed a final check on all the DSL annotations. This step ensured that the annotations were accurate, consistent, and met the required standards for the benchmark.

Throughout the annotation process, the focus was on ensuring that the DSL annotations accurately captured the travel requirements and were valid within the context of the ChinaTravel benchmark's sandbox environment. The annotation process for human data required a deep understanding of the ChinaTravel DSL and involved joint debugging and verification with the sandbox information. This significantly limited the size of the annotation team, as only a limited number of annotators had the necessary expertise and familiarity with both the DSL and the sandbox environment. Additionally, the process was time-consuming and required meticulous attention to detail, further constraining the rate at which the human dataset could grow. Despite these challenges, the rigorous annotation process ensured the quality and reliability of the human data, which is crucial for the evaluation and development of language agents in real-world travel planning.

K THE IMPLEMENTATION OF TTG BASELINE

K.1 CONSTRAINTS FORMULATION

 TTG (Ju et al., 2024) models the travel planning problem as a MILP (Mixed-Integer Linear Programming) problem. We adapt their formulation into ChinaTravel for solver-based optimization and the specific parameters, variable and constraint settings can be found in Tab. 171819.

K.2 EXPERIMENTAL SETTING

Although TTG performs very well on Travelplanner, the solver takes slightly more than 1 second on average to complete the computation. On the ChinaTravel benchmark, the rapid growth of constraints in TTG becomes computationally prohibitive. If we use the full sandbox, the average number of constraints will exceed 10B (For detailed calculations of variable sizes and the number of constraints, please refer to Tab. 2021). Therefore, we only include 22 POIs (2 hotels, 10 attractions, 5 restaurants, 5 stations, 100 intercity transports each for arrivals and departures) and use one hour as a time step. We use LLMs to select them from sandbox to ensure sufficient flexibility in handling different queries. Nonetheless, its constraint scale still reaches $320k \times \text{days}$ and the number of variables also reaches $36k \times \text{days}$. In comparison, the commonly used benchmark for evaluating MILP solvers, MIPLIB 2017 Gleixner et al. (2021), contains only 10 instances with more than 320k constraints and about 60 instances with over 36k variables (out of a total of 1065 instances).

In our main experiments, using the SCIP solver from the PuLP package, TTG was allocated a relaxed 15-minute search limitation. However, this configuration yielded only 18% valid solutions on easy-subset instances, with the final pass rate (FPR) further reduced to 8% due to the solver's pruning heuristics. Fig. 6(a) illustrates the solution time of TTG on 1- to 3-day itineraries. Within the time limit, solutions were found for merely 23% of two-day and 6% of three-day itineraries.

Parameter	Meaning					
hotelNum	Number of hotels					
attrNum	Number of attractions					
restNum	Number of restaurants					
transNum	Number of transport modes					
stationNum	Number of stations					
goNum	Number of arriving trains/buses					
backNum	Number of departing trains/buses					
timeStep	Number of time steps					
locNum = hotelNum + attrNum + restNum	Total number of POI locations except stations					
totalNum = locNum + stationNum	Total number of all locations including stations					

Table 17: Definition of parameters used in TTG

Variable	Meaning
u[idx][t]	The traveler is at location idx at time t
event[t]	The traveler's location changes at time t
hotel[idx][d]	Number of times the traveler visits hotel idx on day $(d+1)$
attr[idx]	Number of times the traveler visits attraction idx
rest[idx][meal]	Number of times the traveler visits restaurant idx at meal meal
$z_{ m hotel}, z_{ m attr}, z_{ m rest}, \delta$	Auxiliary variables
needEat[m]	Whether the traveler needs to eat meal m (during intercity travel)
check[idx][t]	Whether the attraction idx is open at time t
y[(i, j, tr,t)]	The solution, a matrix of shape $totalNum \times totalNum \times transNum \times timeStep$

Table 18: Variables used in TTG

1333		
2000		
2001	ChinaTravel	TravelPlanner
2002	当前位置武汉。我一个人想去苏州玩一天,预	Please help me plan a trip from St. Petersburg to
2003	算 1400 人民币,请给我一个旅行规划。	Rockford spanning 3 days from March 16th to
2004	Current location: Wuhan. I want to visit Suzhou for	March 18th, 2022. The travel should be planned for
2005	a day by myself with a budget of 1,400 RMB.	a single person with a budget of \$1,700.
2006	Please provide me with a travel plan.	
2007	当前位置南京。我一个人想去重庆玩 3 天,喜	Please design a travel plan departing from Las
2008	欢吃甜食面包啥的,请给我一个旅行规划。	Vegas and heading to Stockton for 3 days, from
	Current location: Nanjing. I want to travel to	March 3rd to March 5th, 2022, for one person, with
2009	Chongqing alone for 3 days. I like sweet foods and	a budget of \$1,400.
2010	bread. Please provide me with a travel plan.	
2011	当前位置重庆。我和朋友两个人想去武汉玩 3	Craft a travel plan for me to depart from New
2012	天,想尝试当地菜,请给我们一个旅行规划。	Orleans and head to Louisville for 3 days, from
2013	Current location: Chongqing. My friend and I want to visit Wuhan for 3 days and try the local cuisine.	March 12th to March 14th, 2022. I will be travelling alone with a budget of \$1,900.
2014	Could you please provide us with a travel plan?	travening alone with a budget of \$1,900.
2015	当前位置成都。我们三个人想去深圳玩 2 天,	Could you aid in curating a 5-day travel plan for
2016	想去历史感比较重的景点,请给我们一个旅行	one person beginning in Denver and planning to
2017	规划。	visit 2 cities in Washington from March 23rd to
2018	Current location: Chengdu. The three of us want to	March 27th, 2022? The budget for this trip is now
2019	visit Shenzhen for 2 days and are interested in	set at \$4,200.
2020	historical sites. Could you please provide us with a	
2021	travel itinerary?	
	当前位置深圳。我和朋友两个人想去上海玩3	Could you assist in crafting a travel itinerary for a
2022	天,想去海洋水族馆,请给我们一个旅行规	5-day, single-person trip departing from Orlando
2023	划。	and touring 2 cities in Texas? The travel dates
2024	Current location: Shenzhen. My friend and I want	should range from March 10th to March 14th, 2022,
2025	to visit Shanghai for 3 days and we would like to go	and the entire travel budget is \$3,100.
2026	to the Ocean Aquarium. Could you please provide us with a travel plan?	
2027	当前位置成都。我和朋友两个人想去上海玩 3	Could you help me arrange a 7-day solo travel
2028	天,住一间双床房,期间可能要开会,酒店最	itinerary from Kona to California with a budget of
2029	好能提供个开会的地方,请给我一个旅行规	\$5,800, intending to visit 3 distinct cities in
2030	划。	California from March 7th to March 13th, 2022?
2031	Current location: Chengdu. My friend and I want to	,
2032	visit Shanghai for 3 days. We need a twin room,	
2033	and we might need a meeting space during our stay.	
2034	Please provide me with a travel plan.	
2035	我目前在南京,计划和两个朋友一起去上海玩	Please help me craft a 7-day travel plan. I'm
	两天,选择原舍•在水一方度假酒店,请帮我	planning on leaving from Punta Gorda and
2036	们规划一个旅行方案。	exploring 3 different cities in Wisconsin from
2037	I am currently in Nanjing and plan to travel to	March 16th to March 22nd, 2022. The budget for
2038	Shanghai with two friends for two days. We have	this trip is set at \$5,700.
2039	chosen the YuanShe · Zai Shui Yi Fang Resort Hotel. Please help us plan a travel itinerary.	
2040	当前位置北京。我和三个朋友计划去成都玩两	Could you help me create a 7-day travel plan
2041	天,选择火车出行,市内交通方式为地铁。请	starting on March 18th, 2022, and ending on March
2042	会我一个旅行规划。	24th, 2022? The trip will start in Washington and I
2043	Current location: Beijing. My three friends and I	would like to visit 3 cities in Minnesota. This trip is
2044	are planning to visit Chengdu for two days. We	for one person with a budget of \$7,200.
2045	have chosen to travel by train and use subway for	1 0
2046	city transportation. Please provide me with a travel	
2047	itinerary.	
2041		

Figure 13: Examples of easy-level queries from ChinaTravel and TravelPlanner.

_000		
2054		
2055	ChinaTravel	TravelPlanner
2056	当前位置武汉。我两个人想去苏州玩 2 天,预算	Could you please arrange a 3-day trip for two,
2057	4000人民币,坐火车去,住一间大床房,想去虎	starting in Sacramento and heading to Atlanta,
2058	丘山风景名胜区这样的自然风光,请给我一个旅	from March 14th to March 16th, 2022. The
2059	行规划。	budget for this trip is \$4,700, and we require
2060	Current location: Wuhan. Two of us want to visit	accommodations where parties are allowed.
2061	Suzhou for 2 days with a budget of 4000 RMB. We	
	plan to take the train and stay in a room with a king-	
2062	size bed. We would like to visit natural attractions	
2063	like Tiger Hill Scenic Area. Please provide a travel	
2064	itinerary.	
2065	当前位置广州。我两个人想去成都玩3天,预算	Could you please design a 3-day travel plan for a
2066	9000 人民币,坐火车往返,住一间大床房,麻烦	group of 5, departing from Manchester and
2067	给我一个旅行规划。	heading to Charlotte, from March 29th to March
2068	Current location: Guangzhou. Two of us want to visit	31st, 2022? Our budget is set at \$4,800 and we
2069	Chengdu for 3 days with a budget of 9,000 RMB. We	would prefer to have entire rooms for our
2070	plan to travel round-trip by train and stay in a room with a double bed. Could you please provide a travel	accommodations.
	itinerary for us?	
2071	当前位置广州。我和我的两个朋友想去深圳玩两	Could you tailor a 5-day travel plan for two people,
2072	天, 预算 2100 人民币, 住两间双床房, 坐地铁游	departing from Knoxville and visiting 2 cities in
2073	玩,想吃海鲜,想去深圳欢乐谷玩。Current	Florida from March 20 to March 24, 2022? Our budget
2074	location: Guangzhou. My two friends and I want to	is set at \$3,900. We'd love to explore local Chinese and
2075	go to Shenzhen for two days. Our budget is 2,100	Mediterranean cuisines during our stay.
2076	RMB. We plan to stay in two twin-bed rooms, travel	meaneranean earsines during our stay.
2077	around by metro, eat seafood, and visit Shenzhen	
2078	Happy Valley.	
2079	当前位置武汉。我两个人想去杭州玩3天,预算	Could you help create a 7-day travel plan for a
2080	7000 人民币,坐飞机往返,住一间大床房,麻烦	group of 3, departing from Greensboro and
2081	给我一个旅行规划。	touring 3 different cities in Georgia from March
	Current location: Wuhan. Two of us want to visit	10th to March 16th, 2022? We have a new budget
2082	Hangzhou for 3 days with a budget of 7,000 RMB.	of \$4,000 for this trip. We'd also appreciate if our
2083	We plan to travel by plane round-trip and stay in a	accommodations have smoking areas.
2084	room with a large bed. Could you please provide a	
2085	travel plan for us?	
2086	当前位置杭州。我两个人想去苏州玩2天,预算	Could you help create a 5-day travel itinerary for
2087	3500 人民币,住一间大床房,想去看看拙政园这	a group of 4, starting from New York and visiting
2088	样的园林景观,请给我一个旅行规划。	2 cities in Louisiana from March 15th to March
2089	Current location: Hangzhou. Two of us want to visit	19th, 2022? We have a budget of \$12,300. Please
2090	Suzhou for 2 days with a budget of 3,500 RMB. We would like to stay in a room with a large bed and	note that we require accommodations where smoking is permissible.
	visit garden attractions like the Humble	smoking is permissione.
2091	Administrator's Garden. Please provide a travel plan.	
2092	当前位置北京。我两个人想去深圳玩 3 天,预算	Can you provide me with a 5-day travel plan for 2
2093	7000 人民币, 住一间大床房, 坐飞机去, 酒店最	people, starting from Asheville and exploring 2
2094	好有泳池,想去深圳欢乐谷看一下,请给我一个	cities in New York from March 13th to March
2095	旅行规划。	17th, 2022? Our budget is set at \$4,700 and we
2096	Current location: Beijing. Two of us want to visit	would love to try local Mexican and Chinese
2097	Shenzhen for 3 days with a budget of 7,000 RMB.	cuisines during our trip.
2098	We would like to stay in a hotel with a king-size bed	5 1
2099	and preferably a swimming pool. We plan to fly there	
2100	and would like to visit Shenzhen Happy Valley.	
	Please provide a travel itinerary.	
2101	· ·	

Figure 14: Examples of medium-level queries from ChinaTravel and TravelPlanner.

2106		
2107	ChinaTravel	TravelPlanner
2108	[当前位置武汉,目标位置南京,旅行人数 2,旅行天数	Can you create a 5-day itinerary for a group of
2109	4] 我和同学 2 人打算去南京玩 4 天, 预算 1500 (不	7 people traveling from Richmond to two cities
2110	包括车票住宿),只是玩和吃饭,请你帮忙规划。	in Florida between March 9th and 13th, 2022?
2111	[Current location: Wuhan, Destination: Nanjing,	Our budget is \$8,500. We require
2112	Number of travelers: 2, Duration of travel: 4 days] My	accommodations that allow visitors and should
	classmate and I are planning to visit Nanjing for 4 days.	ideally be entire rooms. In regards to dining
2113	Our budget is 1500 (excluding transportation and	options, we prefer French, American,
2114	accommodation), just for activities and meals. Please	Mediterranean, and Italian cuisines.
2115	help us plan.	
2116	[当前位置南京,目标位置成都,旅行人数 3,旅行天数	Could you help design a travel plan for two
2117	5] 我们一家三口想去成都旅游一周,主要想逛一些	people leaving from Houston to Pensacola for
2118	适合带小朋友的景点,预算8000元,然后品尝一些	3 days, from March 6th to March 8th, 2022?
2119	当地的美食。	Our budget is set at \$1,400 for this trip and we
2120	[Current location: Nanjing, Destination: Chengdu, Number of travelers: 3, Travel days: 5] Our family of	require our accommodations to be visitor-
2121	three wants to travel to Chengdu for a week. We mainly	friendly. We would like to have options to dine at Indian, American, Chinese, and Italian
2122	want to visit attractions suitable for children, with a	restaurants. We also prefer not to self-drive
2123	budget of 8,000 yuan, and also taste some local	during the trip.
2124	delicacies.	during the trip.
2125	[当前位置广州,目标位置深圳,旅行人数 3,旅行天数	Could you help create a 3-day travel plan for
2126	2] 我们一行三人要从广州去到深圳玩两天,想去繁	two people? We're traveling from West Palm
2127	华的街区逛逛, 尽可能减少麻烦的交通, 总消费尽	Beach to White Plains, visiting only one city
	可能少。	from March 5th to March 7th, 2022. We have a
2128	[Current location: Guangzhou, Destination: Shenzhen,	budget of \$2,600. For our accommodations,
2129	Number of travelers: 3, Number of travel days: 2] Our	we'd like rooms that are not shared. We are not
2130	group of three plans to travel from Guangzhou to	planning on self-driving and will be reliant on
2131	Shenzhen for two days. We want to explore bustling	public transportation. Cuisines we are
2132	neighborhoods, minimize inconvenient transportation, and keep the total expenses as low as possible.	interested in trying include Mexican, Chinese, Mediterranean, and American.
2133	[当前位置苏州,目标位置杭州,旅行人数 4,旅行天数	Could you generate a 3-day travel plan for a
2134	2] 我想 4 个人去杭州 2 天进行历史文化遗址的考察	group of 3 people, departing from Bangor and
2135	顺带玩一下。	visiting Washington from March 21st to March
2136	[Current location: Suzhou, Destination: Hangzhou,	23rd, 2022? Our budget is set at \$3,100. We
2137	Number of travelers: 4, Duration of travel: 2 days] I	require accommodations that are pet-friendly
2138	would like 4 people to go to Hangzhou for 2 days to	and we would prefer to have entire rooms to
2139	explore historical and cultural sites and have some fun	ourselves. We do not plan on self-driving for
2140	along the way.	this trip
2141	[当前位置上海,目标位置北京,旅行人数 1,旅行天数	Could you help with creating a 5-day travel
2142	3] 我要从上海出发,到北京玩三天,希望看一些名	plan for 2 people, originating from Evansville
2143	胜古迹,吃一些当地特色,预算充分。	and covering 2 cities in Texas from March 17th
	Current location: Shanghai, Destination: Beijing, Number of travelers: 1, Number of travel days: 3] I want	to March 21st, 2022? Our preferred accommodations are private rooms, and they
2144	to depart from Shanghai and spend three days in	must permit children under 10 since we will
2145	Beijing. I hope to see some famous landmarks and try	have them with us. Transportation should not
2146	some local specialties, with a sufficient budget.	involve any flights. The budget for this trip is
2147	1 / 5	set at \$2,800.
2148	[当前位置北京,目标位置上海,旅行人数 2,旅行天数	Can you assist in creating a travel itinerary for
2149	3] 我和朋友计划用三天的时间从北京到上海玩,计	a group of 4, starting in Seattle and visiting 3
2150	划坐飞机来回,偏红色旅游线路。	unique cities across Texas? This trip will span
2151	[Current location: Beijing, Destination: Shanghai,	over 7 days from March 10th through March
2152	Number of travelers: 2, Number of travel days: 3] My	16th, 2022. We have a budget of \$11,000.
2153	friend and I are planning to spend three days traveling	Regarding our accommodations, we would like
2154	from Beijing to Shanghai. We plan to fly round trip and	to rent entire rooms, and it's important that our
2155	prefer a red-themed travel route.	lodgings allow parties. As for transportation, we do not plan to drive ourselves around.
2156	Figure 15: Examples of human/hard level queri	1

Figure 15: Examples of human/hard level queries from ChinaTravel and TravelPlanner.

2156

2161		
2162		
2163		
2164		
2165		
2166		
2167		
2168		
2169		
2170		
2171	Incorrect API Calls	Repetitive Output Loops
2172	Action[20]: goto(city="深圳", start="深圳北站", end="大鹏所城",	Thought[12]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景
2173	start_time="19:00", method="bus") Observation[20]: Invalid method. Only support ['metro', 'walk', 'taxi']	点。接下来我们需要查找这两个景点的详细信息。 Action[12]: attractions_select(city="武汉", key="name",
2174		func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)
2175	Action[25]: goto(city="深圳", start="深圳北站", end="大鹏所城", start time="19:00", method="bus")	Thought[13]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景点。
2176	Observation[25]: Invalid method. Only support ['metro', 'walk', 'taxi']	接下来我们需要查找这两个景点的详细信息。
2177	 Action[30]: goto(city="深圳", start="深圳北站", end="大鹏所城",	Action[13]: attractions_select(city="武汉", key="name", func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)
2178	start_time="19:00", method="bus") Observation[30]: Invalid method. Only support ['metro', 'walk', 'taxi']	 Thought[14]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景点。
2179	Observation[50]. Invalid method. Only support [metho, walk, taxi]	接下来我们需要查找这两个景点的详细信息。
2180		Action[14]: attractions_select(city="武汉", key="name", func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)
2181	Action[3]: city_transport_select(start_city="成都", end_city="武汉",	Thought[15]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景点。
2182	intercity_type="train", earliest_leave_time="19:00") Observation[3]: 调用失败,错误信息: name 'city_transport_select'	接下来我们需要查找这两个景点的详细信息。
2183	is not defined请思考错误原因以及如何修改.	Action[15]: attractions_select(city="武汉", key="name", func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)
2184	Thought[4]": <mark>函数名错误,应该是intercity_transport_select</mark> 。重新 调用正确的函数。	···
2185		
2186		
2187	Reasoning-Action Inconsistency	Critical Information Missing
2188	Thought[2]: "根据我们的经验判断, <mark>高铁可能比较快且舒适,可</mark>	Action[15]: planner(query="当前位置广州。我一个人想去武汉玩
2189	<mark>以查看一下高铁的航班。</mark> Action[2]": "intercity_transport_select(start_city="深圳", end_city="	一天,预算3000人民币,请给我一个旅行规划。") Observation[15]: Task finished. The answer is: {"people_number": 1,
2190	南京", intercity_type="airplane") Observation[2]: ['FlightID' 'From' 'To' 'BeginTime' 'EndTime'	"start_city": "广州", "target_city": "武汉", "itinerary": [{"day": 1, "activities {"start_time": "18:00", "end_time": "22:39", "start": "
2191	'Duration' 'Cost']\n['FL240' '深圳宝安国际机场' '南京禄口国际	武汉站", "end": "广州南站", "cost": 543.6, "TrainID": "G877",
2192	机场'	"type": "train", "tickets": 1, "transports": []}]]}"

Thought[14]: 预算超支,我们需要重新规划。我们可以考虑减少 一些开销,比如选择更便宜的餐馆或者减少一些景点的游览时

Action[14]: planner(query="当前位置广州。我和我朋友想去上海 Action[14]: planner(query="当前位置广州。我和我朋友想去上海玩一天,预算3100人民币。请给我一个旅行规划。") Observation[14]: Task finished. The answer is: { "people_number": 2, "start_city": "广州", "target_city": "上海", "itinerary": {{ "day": 1, "activities": {{ "start_time": "08:00", "end_time": "14:48", "start": "/ mjart, "end": "上海虹桥站", "cost": 787.73, "FlightID": "G818", "type": "train", "tickets": 2, "transports": {{ }}, { "position": "外滩", "type": "attraction", "transports": {{ }} ("start": "上海虹桥站", "end": "虹桥火车站-地铁站", "mode": "walk"...

Action[23]: planner(query="当前位置深圳。我一个人想去苏州玩 一天, 预算1600人民币, 请给我一个旅行规划。")" 一天,預算1600人民币,请给我一个旅行规划。")"
Observation[23]: Task finished. The answer is: {"people_number": 1, "start_city": "深圳", "target_city": "苏州", "itinerary": {"day": 1, "activities": [{"taye": "train", "start_time": "06:33", "end_time": "15:46", "cost": 759.35, "tickets": 1, "start": "深圳站", "end": "苏州站", "TrainID": "G2787", "transports": []}, ..., "start": "虎丘山风景名胜区", "end": "苏州站", "transports": [], ("type": "train", "start_time": "22:33", "end_time": "07:00", "cost": 759.35, "tickets": 1, "start": "苏州站", "end": "深圳站", "TrainID": "G2788", "transports": []]]]]]

Figure 16: Fail case studies of React-one-shot DeepSeek Method.

```
2214
2215
2216
2217
2218
2219
2220
                                  开放旅行规划问题搜集
2221
       本问卷旨在构建一个开放环境下的旅行规划数据集,以便于相关研究的开展。由于填写的问题将作为公开数据集的一部分,存
2222
       在无法撤销的风险;请勿在填写内容中包含任何敏感的个人信息,感谢大家的参与!
      1. 出发城市:
                 __ (从北京、南京、上海、杭州、深圳、武汉、广州、成都、重庆、苏州中选择)
2223
                   (从北京、南京、上海、杭州、深圳、武汉、广州、成都、重庆、苏州中选择)
      2. 目标旅游城市:
2224
      3. 旅行人数: ____(1-5)
2225
      4. 旅行天数: ____(1-5)
2226
      您作为用户可以向智能代理发起查询请求。查询内容可以包括对景点、餐饮、住宿、跨城交通(如火车、飞机)以及城内交通
2227
       (如地铁、步行、出租车)的具体要求。同时,您也可以提供个人偏好。请确保查询中包含以下三个信息:目标城市、人数和天
2228
       数,并确保这些信息相互匹配。智能代理将根据您的请求提供一个旅行规划结果,包括这几天的交通安排、住宿地点、推荐的
       景点及餐饮建议。
2229
      用户问题的例子:
2230
       当前位置苏州。我一个人想去南京玩2天,预算3000人民币,往返都坐高铁,请给我一个旅行规划。
2231
       智能代理回复的例子:
2232
       起点:苏州
2233
       目的地:南京
2234
       交通:苏州北站 -> 南京南站
       列车:G4, 07:24->08:15
2235
       费用:122.9元
2236
       车票:1 张
2237
      游览:玄武湖景区
2238
       交通:地铁(南京南站 ->南京林业大学 • 新庄),步行3分钟+地铁23分钟+步行8分钟
2239
       费用:4元
2240
       游览时间:08:50->10:00
2241
      门票:0元
2242
       午餐:南京金鹰国际酒店•满园春中餐厅
2243
       费用:188 元
2244
      时间:12:10 ->13:10
2245
       住宿:桔子水晶南京玄武湖酒店
2246
       房型:大床房,1间
2247
       费用:370元
2248
       返回:南京南站 > 苏州站
       列车:G7220, 20:09->21:23
2249
       费用:122.9元
2250
       车票:1张
2251
      我们将用户问题分为不同难度级别进行分类,以下是每个级别的描述
2252
      低级:涉及一般性问题,不包含个性化需求。
2253
       中级:包含一定程度的个性化需求,通常涉及到食宿交通等方面。
       高级:涉及更复杂、更具体的需求,如时间要求、特定地点或活动的安排等。
2254
       以下是不同难度级别下的用户问题示例:
2255
      低级:我想知道去上海玩2天的行程规划,从杭州出发。
2256
       中级:我想独自一人前往南京穷游,计划在那里待3天左右。我对历史文化很感兴趣,希望能深度游览一些古迹。
2257
      高级:我们三人后天需要前往北京玩2天。第二天晚上十点前需要从北京站返回。想在第一天去故宫,第二天去天坛,请给一
2258
      个旅行规划
2259
      5. 请给出用户问题:
```

Figure 17: Questionnaire

226022612262

```
2268
2270
2271
2272
                                                      Open Travel Planning Data Collection Questionnaire
2274
              This questionnaire aims to construct a dataset for travel planning in an open environment to facilitate relevant research. Since the
              responses will be part of a public dataset and cannot be revoked, please do not include any sensitive personal information in your
              responses. Thank you for your participation!
2276
2277
                                     ___ (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu, Chongqing,
2278
                                           (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu,
                  Destination City:
2279
                  Chongqing, Suzhou)
                  Number of Travelers:
2280
                                                  (1-5)
                  Number of Travel Days:_
2281
              As a user, you can submit queries to the intelligent agent. Your query may include specific requirements for attractions, dining,
              accommodation, intercity transportation (e.g., train, plane), and intra-city transportation (e.g., subway, walking, taxi). You may also
2282
              provide personal preferences. Please ensure that your query includes the following three pieces of information: the destination city, the
2283
              number of travelers, and the number of travel days, and make sure they are consistent. The intelligent agent will generate a travel plan
              based on your request, covering transportation arrangements, accommodation, recommended attractions, and dining suggestions.
2284
2285
              Example User Query:
              "My current location is Suzhou. I want to travel alone to Nanjing for 2 days with a budget of 3,000 RMB, taking the high-speed train for
              both departure and return. Please provide a travel plan.'
2287
              Example Response from the Intelligent Agent:
2289
              Departure: Suzhou
              Destination: Nanjing
              Transportation: Suzhou North Station → Nanjing South Station
2291
              Train: G4, 07:24 \rightarrow 08:15
              Cost: 122.9 RMB
              Tickets: 1
2293
              Attraction: Xuanwu Lake Scenic Area
              Transportation: Subway (Nanjing South Station \rightarrow Nanjing Forestry University-Xinzhuang) Route: Walk 3 minutes \rightarrow Subway 23 minutes \rightarrow Walk 8 minutes
2294
2295
              Cost: 4 RMB
              Visit Time: 08:50 → 10:00
2296
              Admission: 0 RMB
2297
              Lunch: Nanjing Jinling Hotel · Man Yuan Chun Chinese Restaurant
2298
              Cost: 188 RMB
2299
              Time: 12:10 → 13:10
              Accommodation: Crystal Orange Hotel Nanjing Xuanwu Lake
2300
              Room Type: Queen Room, 1 room
2301
              Cost: 370 RMB
              Return: Nanjing South Station → Suzhou Station
2302
              Train: G7220, 20:09 → 21:23
              Cost: 122.9 RMB
              Tickets: 1
              Classification of User Queries by Difficulty Level
2305
              We categorize user queries into different difficulty levels as follows:
2306
              Easy Level: General inquiries without personalized requirements.
              Medium Level: Includes some degree of personalization, usually involving food, lodging, or transportation.
              Hard Level: Involves more complex and specific needs, such as time constraints, particular locations, or planned activities.
2308
              Examples of User Queries at Different Difficulty Levels:
2309
              Basic Level: "I want to know the itinerary for a 2-day trip to Shanghai from Hangzhou."
              Intermediate Level: "I plan to travel alone to Nanjing on a budget and stay for about three days. I'm interested in history and culture and
2310
              would like to explore historical sites in depth."
2311
              Advanced Level: "Three of us need to travel to Beijing the day after tomorrow for a 2-day trip. We need to return from Beijing Railway
              Station before 10 PM on the second day. We want to visit the Forbidden City on the first day and the Temple of Heaven on the second
2312
              day. Please provide a travel plan.'
2313
```

Figure 18: The translated version of the questionnaire

Please provide a user query

2314 2315 2316

```
2339
2340
         Prompts for POI recommendation
2341
2342
2343
         NEXT_POI_TYPE_INSTRUCTION = """
2344
            You are a travel planning assistant.
2345
            The user's requirements are: {}.
2346
            Current travel plans are: {}.
2347
            Today is {}, current time is {}, current location is {},
2348
                and POI_type_list is {}.
2349
            Select the next POI type based on the user's needs and the
2350
                 current itinerary.
2351
            Please answer in the following format.
2352
            Thought: [Your reason]
2353
            Type: [type in POI_type_list]
2354
2355
2356
```

Figure 19: Prompts for next-POI-type recommendation

24212422

```
2377
2378
2379
2380
2382
         Prompts for restaurants recommendation
2384
2385
2386
2387
         RESTAURANT RANKING INSTRUCTION = """
2388
             You are a travel planning assistant.
2389
             The user's requirements are: {user_requirements}.
2390
             The restaurant info is:
             {restaurant_info}
2391
             The past cost for intercity transportation and hotel
2392
                accommodations is: {past_cost}.
2393
2394
             Your task is to select and rank restaurants based on the
2395
                user's needs and the provided restaurant information.
2396
                  Consider the following factors:
2397
             1. Restaurant name
2398
             2. Cuisine type
2399
             3. Price range
2400
             4. Recommended food
2401
             Additionally, keep in mind that the user's budget is
2402
                 allocated across multiple expenses, including
2403
                 intercity transportation and hotel accommodations.
2404
                Ensure that the restaurant recommendations fit within
2405
                  the remaining budget constraints after accounting
2406
                 for the past cost.
2407
             Note that the price range provided for each restaurant is
2408
                  the average cost per person per meal, the remaining
2409
                budget must cover the cost of three meals per day for
2410
                  {days} days.
2411
2412
             For each day, recommend at least 6 restaurants, combining
2413
                  restaurants for all days together.
2414
             Your response should follow this format:
2415
2416
             Thought: [Your reasoning for ranking the restaurants]
2417
             RestaurantNameList: [List of restaurant names ranked by
2418
                preference, formatted as a Python list]
2419
2420
```

Figure 20: Prompts for restaurant recommendation

2478 2479

```
2431
2432
2433
2434
         Prompts for attractions recommendation
2435
2436
2437
2438
         ATTRACTION_RANKING_INSTRUCTION = """
2439
             You are a travel planning assistant.
2440
             The user's requirements are: {user_requirements}.
2441
             The attraction info is:
2442
             {attraction_info}
2443
             The past cost for intercity transportation and hotel
2444
                 accommodations is: {past_cost}.
2445
2446
             Your task is to select and rank attractions based on the
2447
                 user's needs and the provided attraction information.
2448
                  Consider the following factors:
2449
             1. Attraction name
2450
             2. Attraction type
             3. Location
2451
             4. Recommended duration
2452
2453
             Additionally, keep in mind that the user's budget is
2454
                 allocated across multiple expenses, including
2455
                 intercity transportation and hotel accommodations.
2456
                Ensure that the attraction recommendations fit within
2457
                  the remaining budget constraints after accounting
2458
                 for the past cost.
2459
2460
             For each day, recommend at least 8 attractions, combining
2461
                  attractions for all days together. To ensure a
                 comprehensive list, consider a larger pool of
2462
                 candidates and prioritize diversity in attraction
2463
                 type and location.
2464
2465
             Your response should follow this format:
2466
2467
             Thought: [Your reasoning for ranking the attractions]
2468
             AttractionNameList: [List of attraction names ranked by
2469
                preference, formatted as a Python list]
2470
2471
             Example:
2472
             Thought: Based on the user's preference for historical
                sites and natural attractions, the attractions are
2473
                ranked as follows:
2474
             AttractionNameList: ["Attraction1", "Attraction2", ...]
2475
2476
2477
```

Figure 21: Prompts for attraction recommendation

Constraint Type	Mathematical Formulation
Spatio-temporal	$\delta[idx][t] \geq u[idx][t+1] - u[idx][t]$
Constraints	$\delta[idx][t] \geq u[idx][t] - u[idx][t+1]$
	$\mathrm{event}[t] = 0 \Rightarrow u[\mathrm{idx}][t] = u[\mathrm{idx}][t+1]$
	$\operatorname{event}[t] = 1 \Rightarrow \sum_{\operatorname{idx}} \delta[\operatorname{idx}][t] = 2$
	$\sum_{i} u[i][t] = 1$
Hotel Constraints	$z_{\mathrm{hotel}}[\mathrm{idx}][t] = u[\mathrm{idx}][t] \wedge \mathrm{event}[t]$
	$ ext{hotel}[ext{idx}][d] = \sum_{t=d ext{-stepPerDay}}^{(d+1) ext{-stepPerDay}} z_{ ext{hotel}}[ext{idx}][t]$
	$\sum_{idx} hotel[idx][d] = 1$
Attraction Constraints	$z_{\operatorname{attr}}[\operatorname{idx}][t] = u[\operatorname{idx}][t] \wedge \operatorname{event}[t]$
	$\operatorname{attr}[\operatorname{idx}] = \sum_t z_{\operatorname{attr}}[\operatorname{idx}][t]$
	$\sum_{idx} attr[idx] \ge min_attr$
	$\mathrm{check}[\mathrm{idx}][t] = \mathrm{False} \Rightarrow u[\mathrm{idx}][t] = 0$
Meal Necessity	$needEat[m] = 1 \Rightarrow a[m] < T_{dep}$
	$needEat[m] = 1 \Rightarrow b[m] > T_{arr}$
Innercity Transport	$y[(i,j, \operatorname{tran}, t)] \le u[i][t]$
Constraints	$y[(i,j,tran,t)] \leq event[t]$
	$y[(i,j,tran,t)] \leq u[tran][t+1]$
	$y[(i,j,\mathrm{tran},t)] \leq u[\mathrm{tran}][t+\delta]$
	$y[(i,j,tran,t)] \leq event[t+\delta]$
	$y[(i,j,\mathrm{tran},t)] \leq u[j][t+\delta+1]$
Restaurant Constraints	$z_{\mathrm{rest}}[\mathrm{idx}][t] = u[\mathrm{idx}][t] \wedge \mathrm{event}[t]$
	$\operatorname{rest}[\operatorname{idx}][m] = \sum_{t=a[m]}^{b[m]} z_{\operatorname{rest}}[\operatorname{idx}][t]$
	$\sum_{\text{idx}} \text{rest}[\text{idx}][m] \le \text{needEat}[m]$
	$\mathrm{check}[\mathrm{idx}][t] = \mathrm{False} \Rightarrow u[\mathrm{idx}][t] = 0$
Intercity Travel	$\sum_{i} interGo[i] = 1$
Constraints	$\sum_i { m interBack}[i] = 1$
	$interGo[i] = 1 \Rightarrow u[goStation[i]][t] = 1$
	$interBack[i] = 1 \Rightarrow u[backStation[i]][t] = 1$

Table 19: Constraints used in TTG

Variable	Dimension
u[idx][t]	$(totalNum + transNum) \times timeStep$
$\delta[\mathrm{idx}][t]$	$(\textit{totalNum} + \textit{transNum}) \times (\textit{timeStep} - 1)$
event[t]	timeStep
hotel[idx][d]	hotelNum imes days
$z_{ m hotel}[{ m idx}][t]$	hotelNum imes timeStep
attr[idx]	attrNum
$z_{ m attr}[{ m idx}][t]$	$attrNum \times timeStep$
rest[idx][meal]	restNum imes 3 imes days
$z_{\rm rest}[{ m idx}][t]$	$restNum \times timeStep$
$y[(i,j,{ m tr},t)]$	$totalNum \times totalNum \times transNum \times timeStep$
total	$days \times stepPerHour \times 36k$

Category	Estimated Size
Spatio-temporal constraints	$(totalNum + transNum) \times (4 \times timeStep + 3)$
Hotel constraints	$hotelNum \times (3 \times timeStep + days)$
Attraction constraints	$4 \times attrNum \times timeStep$
Restaurant constraints	$\textit{restNum} \times (4 \times \textit{timeStep} + \textit{days})$
Urban transport constraints	$7 \times \textit{totalNum}^2 \times \textit{transNum} \times \textit{timeStep} + 4 \times \textit{totalNum} \times \textit{timeStep}$
Intercity transport constraints	$(goNum + backNum) \times timeStep$

Table 21: Number of constraints sizes in TTG