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Abstract

Multi-modal Sentiment Analysis (MSA) enables machines to
perceive human sentiments by integrating multiple modali-
ties such as text, video, and audio. Despite recent progress,
most existing methods assume distribution consistency be-
tween training and test data—a condition rarely met in real-
world scenarios. To address domain shifts without relying on
source data or target labels, Test-Time Adaptation (TTA) has
emerged as a promising paradigm. However, applying TTA
methods to MSA faces two challenges: a representation bot-
tleneck inherent to the regression formulation and the incon-
sistency in modality fusion caused by modality-specific data
augmentation techniques. To overcome these issues, we pro-
pose Group-aware Multiscale Ensemble Learning (GMEL),
which leverages a von Mises-Fisher (vMF) mixture distribu-
tion to model latent sentiment groups and integrates a multi-
scale re-dropout strategy for modality-agnostic feature aug-
mentation, preserving fusion consistency. Extensive experi-
ments on three benchmark datasets using two backbone archi-
tectures show that GMEL significantly outperforms existing
baselines, demonstrating strong robustness to test-time distri-
bution shifts in multi-modal sentiment analysis.

1 Introduction
With the rapid development of multi-modal learning (Liang,
Zadeh, and Morency 2024; Ngiam et al. 2011) and dia-
logue system (Saha, Saha, and Bhattacharyya 2022; Firdaus
et al. 2020), Multi-modal Sentiment Analysis (MSA)(Poria
et al. 2016) has become the key for machines to perceive,
recognize, and understand human sentiments and emotions
through multiple modalities like text, video and audio. Al-
though there has been significant progress in recent years
(Das and Singh 2023; Tsai and Bai 2019), the effectiveness
of these models greatly depends on the assumption of distri-
bution consistency. However, it is hard to meet such a mild
assumption in real-world scenarios.

To maintain robustness against domain shifts, Test-Time
Adaptation (TTA) has been proposed (Niu et al. 2022;
Liang, He, and Tan 2025; Chen et al. 2021; Nejjar, Wang,
and Fink 2023) that overcomes the distribution gaps between
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Figure 1: Comparison of feature distribution on MOSI→MOSEI.
The representation distribution learned by GMEL is smoother and
more discriminative.

(a) Baseline (b) GMEL

source and target domains during test time without access to
the source data and the labels of the target data. However,
most existing Test-Time Adaptation (TTA) frameworks are
hard to apply to multi-modal regression problems for two
reasons. First, a great number of works (Wang, Shelhamer,
and Liu 2021; Wang et al. 2022; Chen et al. 2022) focus
on the classification task relying on probabilistic models to
generate and filter the pseudo label, which is not applica-
ble to regression tasks like MSA. Second, majority of works
(Zhang, Levine, and Finn 2022; Feng et al. 2023) are based
on the assumption of uni-modality and take use of modality-
specific data augmentation techniques, which fail to address
the modality-fusion problem. Currently, only CASP (Guo
et al. 2025a) proposed a TTA method designed for multi-
modal regression by enforcing consistency and minimizing
empirical risk, but it suffers from error propagation due to
the two-stage framework.

Building on the above observation, the TTA for multi-
modal sentiment analysis faces two critical challenges. (i)-
Representation bottleneck caused by the regression formu-
lation. In this setup, the dataset only indicates sentiment
positivity or negativity through numerical values, while
psychology-related research (Mehrabian 1996; Roy and Das
2023; Pang, Lee, and Vaithyanathan 2002) highlights that
sentiment involves fine-grained cognitive distinctions mea-
sured in the Valence-Arousal-Dominance (VAD) space. This
mismatch limits the source model’s ability to capture latent
sentiment semantics. As shown in Figure 1, when distribu-



tion shifts occur, the model may misinterpret subtle senti-
ment cues and produce intertwined feature distribution. (ii)-
Conflict between modality fusion consistency and data aug-
mentation. In a multi-modal TTA task, the fusion layer is
pretrained on complete multi-modal data in the source do-
main, and its parameters can not be altered in the adaptation
process. However, most existing methods rely on the ran-
dom modality elimination (e.g., CASP (Guo et al. 2025b))
to improve robustness, which destroys the completeness of
the modality. Critically, this discrepancy disrupts the modal-
ity alignment learned from the source domain data, leading
to performance degradation during adaptation. Thus, how to
improve model robustness while maintaining modality in-
tegrity is an important issue. Both these challenges hinder
the robustness and generalization of multi-modal fused rep-
resentations under domain shifts.

To address these issues, we propose Group-aware
Multiscale Ensemble Learning (dubbed GMEL), which
ensembles multiscale features to encapsulate the intrinsic
group semantics and learn discriminative representations.
Specifically, it has two main components: First, inspired by
psychological studies (Mehrabian 1996; Roy and Das 2023),
we hypothesize that human sentiments naturally contain la-
tent group semantics (e.g., surprise and joy tend to be posi-
tive, while disgust and sadness tend to be negative), and the
relational structure among these latent concepts remains sta-
ble across domain shifts. To capture this, we model the la-
tent sentiment groups as a von Mises-Fisher (vMF) mixture
distribution, where each component relates to some one fine-
grained sentiment concept. By enforcing angular concentra-
tion on the hypersphere, the vMF formulation naturally en-
courages semantic coherence within each group, providing
a geometrically meaningful representation space. Building
upon this structure, we derive self-supervised signals from
grouping patterns, which serve as supervisory cues to refine
feature representations during test-time adaptation. As a re-
sult, distribution-shifted samples are progressively aligned
with their underlying sentiment concepts, reducing seman-
tic ambiguity and enhancing prediction robustness under do-
main shifts. Second, we introduce a multi-scale re-dropout
strategy that resamples dropout masks at multiple network
depths to preserve modality integrity while effectively cap-
turing collaborative latent group semantics across modali-
ties. Finally, the synergy between the two modules yields
features that capture both complete-modality interactions
and latent sentiment semantics, thereby exhibiting strong ro-
bustness to test-time distribution shifts.

We comprehensively evaluate GMEL across three major
MSA benchmark datasets under five cross-dataset shift sce-
narios using both late and early fusion backbones. Specifi-
cally, our visualized analysis in Figure1 shows that GMEL
learns smoother feature distributions while maintaining con-
nectivity between different sentiment clusters to preserve the
characteristics of regression tasks 1. Quantitatively, across

1Note that latent sentiment groups do not represent strict bound-
aries, as regression task is inherently difficult to achieve rigid clus-
tering. Instead, the learned features show smooth transitions be-
tween sentiment degrees.

10 different experimental settings, GMEL achieves consis-
tent improvements over the strongest baseline: average ab-
solute gains of 2.53% in ACC, 3.70% in F1, and 0.05 reduc-
tion in MAE. These results collectively validate the broad ef-
fectiveness of GMEL for multi-modal sentiment regression
under distribution shifts.

2 Related Work
Multi-modal Sentiment Analysis (MSA). MSA inte-
grates information from diverse modalities, such as lan-
guage, video, and audio to predict sentiment intensity (Ali
and Hughes 2023; Ezzameli and Mahersia 2023; Gandhi
et al. 2023). The challenges of MSA tasks lie in two as-
pects: representation learning and feature integration. Rep-
resentation learning methods (Guo et al. 2022; Sun et al.
2023) enhance cross-modal interactions to learn modality-
aligned representations. Feature-integrating strategies can
be categorized into two types: feature-level fusion (early fu-
sion) and decision-level fusion (late fusion). Feature-level
fusion methods (Liang et al. 2018; Wang et al. 2019; Na-
grani et al. 2021) combine different modality features to
form a unified representation through direct concatena-
tion or attention-based transformation and then feed into
the projector. Decision-level fusion methods (Tsai et al.
2019; Bagher Zadeh et al. 2018) independently model
modality-specific representations and subsequently integrate
them into a joint decision space. Recent advances such as
MMIM (Han, Chen, and Poria 2021) (hierarchical align-
ment), UniMSE (Hu et al. 2022) (cross-task knowledge shar-
ing), and WisdoM (Wang et al. 2024) (contextual knowledge
integration) have effectively improved performance. How-
ever, all frameworks operate under the critical assumption
of domain-invariant data distributions, which become inef-
fective under TTA scenarios.

Test Time Adaptation (TTA). TTA aims to adapt pre-
trained models to domain-shifted test data without access
to source samples or target labels. Significant progress has
been made in uni-modal TTA: TENT (Wang, Shelhamer,
and Liu 2021) adapts models by updating normalization
layers via entropy minimization; SHOT (Liang, Hu, and
Feng 2020) combines entropy minimization with pseudo-
labeling for representation alignment; IST (Ma 2024) lever-
ages graph learning to generate high-quality pseudo la-
bels. Recent efforts have extended TTA to multi-modal set-
tings: MM-TTA (Shin et al. 2022) introduces intra- and
inter-modal modules for reliable pseudo labeling, while
READ (Yang et al. 2024) designs robust loss objectives
and attention-based fusion. However, TTA for regression re-
mains underexplored compared to classification, which typ-
ically relies on probabilistic modeling. Existing works (Roy
et al. 2023; Adachi et al. 2025) explore regression from spa-
tial alignment but are limited to visual tasks and do not
consider multi-modal settings. CASP (Guo et al. 2025b) is
the first to address multi-modal regression, adopting an off-
line framework that processes all target samples simulta-
neously. However, its two-stage framework fundamentally
limits adaptation quality: Stage-one feature errors propagate
to pseudo-labels, and decoupled optimization misses criti-



cal synergy between feature refinement and label generation.
Our work operates within the same TTA setting but learns
robust feature representations in an end-to-end manner by
exploiting latent sentiment semantic structures.

3 Method
3.1 Problem Statement
Taking three common modalities text, video and audio as a
showcase for clarity of presentation, we formalize the MSA
problem under TTA setting as follows: The datasets are di-
vided into the source domain dataset S = {(xi,yi)}Ns

i=1 and
the target domain dataset T = {xi}Nt

i=1 where Ns, Nt indi-
cate the number of data in source domain and target domain
respectively and xi = (xt

i,x
v
i ,x

a
i ) represents multi-modal

input of text, video, and audio modality. Following the off-
line TTA setting (Guo et al. 2025b), we assume access to the
complete target dataset T during adaptation.

The model F comprises the encoder M and projector
P , the output of model is ŷ = Pθp(Mθm(x)), where θp
and θm are the parameters of P and M. In the TTA set-
ting, we first pre-train the model in source domain data S,
the optimization process can be formulated as θ*

m, θ*
p =

argminθm,θp L(ŷ, y). Then we use the target domain dataset
T for domain adaptation in test-time without access to
the source domain S. In this stage θm is frozen to min-
imize the self-supervised learning objection below: θ*

p =
argθp minLtta(x),x ∈ T .

3.2 Group-Aware Learning for Latent Sentiment
Semantics

In Multi-modal Sentiment Analysis (MSA), although sen-
timent labels are typically represented as coarse numerical
values, the input data itself inherently contains fine-grained
affective semantics. This suggests that pretrained models,
even without explicit fine-grained annotations, may already
encode latent group structures reflecting nuanced sentiment
concepts through their learned representations2. Building on
this assumption, we believe that the pretrained model’s fea-
ture space roughly approximates a latent grouping of senti-
ments, where each group corresponds to a sentiment con-
cept. To formalize this intuition, we adopt a hyperspher-
ical representation framework inspired by the success of
contrastive learning in multi-modal tasks (Liu et al. 2021;
Yuan et al. 2021), assuming that features follow a mixture
of von Mises-Fisher (vMF) distributions that can be seen as
the hyperspherical counterpart of normal distributions (Du
et al. 2024). Note that we do not aim to relearn new latent
groups during test-time adaptation (TTA). Instead, our goal
is to strengthen the partial fine-grained information implic-
itly carried by the coarse-grained sentiment labels. This en-
ables test-time samples to better align with latent sentiment
groups, thereby improving robustness in sentiment predic-
tion under distribution shifts.

Latent Distribution Assumption. Inspired by the success
of contrastive loss in representation learning (Chen et al.

2We verified this view in the experiment with Table 5.

2020a,b) that constrains representations to the unit hyper-
sphere, we instead adopt von Mises–Fisher (vMF) mixtures,
the hyperspherical counterpart of normal distributions (Du
et al. 2024). Formally, assuming that there are C clusters in
total, the probability destiny function for embedding z ∈ Rd

to latent cluster c is:

f(z|µc, kc) = Nd(kc) exp(kcµ
⊺
c),

Nd(kc) =
k
d/2−1
c

2πd/2Id/2−1(kc)
,

(1)

where µc is the mean direction of cluster c, kc is the con-
centration parameter indicating tightness around µc, and
Nd(kc) is the normalization factor. About the calculation of
Nd(kc), Id/2−1(kc) is the modified Bessel function of the
first kind at order d/2−1, which is defined as Id/2−1(kc) =∑∞

i=0
1

i!Γ(d/2+i) (
kc

2 )2i+d/2−1. The numerical evaluation of
high-order Bessel functions is computationally intensive and
unstable for small kc. To address this problem, we employ
the Miller recurrence algorithm (Olver 1964) to simplify cal-
culations (Sra 2012) and details of this process are described
in the Appendix. Based on the above assumption, we can get
the kernel density estimation of log(z|c):

ρ(z|c) = log(Ezc∼vMF(µc,kc)[exp(z
⊺zc/τ)]) = log(

Nd(kc)

Nd(k′
c)
)

(2)
where k′c = ∥kcµc + z/τ∥ and zc is the set of features
belong to cluster c. ρ(z|c) reflects the confidence that fea-
ture z belongs to cluster c from the distribution perspec-
tive. Therefore, we can generate pseudo labels for latent
groups based on ρ(z|c). Specifically, we filter pseudo-labels
by high-confidence selection. For each cluster c ∈ [1, C], we
select samples Dc:

Dc = {(zi, ŷi)| argj max ρ(zi|j) = c, ρ(zi|c) > ξc}, (3)

where ξc is the confidence threshold for selecting the top
R% of samples in the subset predicted as cluster c. In prac-
tice, R is gradually increased during adaptation.

Estimation of C. Determining the number of latent
groups C is a prerequisite for latent distribution estimation.
To this end, we propose a simple yet effective method to es-
timate C using well-initialized features. Specifically, we ini-
tialize a large number of clusters C ′ (defaulting to 50), and
perform k-means clustering on the aggregated features. We
assume that a sufficiently large C ′ covers all meaningful la-
tent groups, though some may be over-split3. Under this set-
ting, suitable clusters tend to be denser, while too-segmented
ones contain fewer samples. We thus estimate C by filtering
out clusters with smaller size: C =

∑C′

i=1 1(Ni ≥ t), where
Ni is the size of ith cluster, and 1(·) is an indicator function.
We assign the threshold t as the mean value of Ni.

Distribution Parameter Updating. As observed in Eq. 1,
the vMF distribution is governed by hyperparameters µ and

3We validate the robustness to C of our method in the experi-
ment with Table??.



Figure 2: Overall framework of GMEL. We capture latent group semantics of sentiment to improve robustness of representations
under domain shifts. To address the conflict between modality fusion consistency and data augmentation, we do multi-scale
feature augmentation through r-drop and feature ensemble.

k. Leveraging the properties of the vMF distribution, we es-
timate the distribution parameters using only the first sam-
ple moment. This enables efficient batch-level parameter up-
dates without requiring storage or processing of the com-
plete feature set. Specifically, for the filtered sample set Dc

from cluster c, we can update the sample mean z̄c through
moving average manner:

z̄t
c =

nt−1
c z̄t−1

c + nt
cz̄

′t
c

nt−1
c + nt

c

, (4)

where nt−1
c and nt

c respectively represent number of sam-
ples belong to class c in previous batches and current batch.
z̄′t
c is the sample mean of class c in the current batch. Based

on the update of z̄c, we can estimate parameters µc and kc
in closed form following (Sra 2012):

µc =
z̄c

∥z̄c∥2
, kc =

∥z̄c∥2(d− ∥z̄c∥22)
1− ∥z̄c∥22

, (5)

where d is the feature dimension. Having completed the es-
timation of the distribution parameter, we use the contrastive
loss to mine latent group semantics.

Discriminative Representation Learning. Through the
distribution parameter estimation described above, we
can compute per-sample probability assignments to latent
classes. This mitigates the scarcity of self-supervision sig-
nals in regression tasks caused by the absence of probabilis-
tic outputs. Specifically, we integrate the probabilistic infor-
mation p̂ from the vMF mixture distribution with contrastive
learning to learn discriminative feature representations.

LvMF
con (zi,yi) = − log

γi exp(ρ(zi|yi))∑c=K−1
c=0 γc exp(ρ(zi|yc)

= − log
γi(Nd(ki)/(Nd(k

′
i))∑c=K−1

c=0 γc(Nd(kc)/(Nd(k′
c))

,

(6)

where γc =
∑

i p̂i
c

Nt
is the prior of class c and Eq.6 is derived

with Eq.2. Furthermore, we enhance contrastive learning at
the feature level through kNN (Avdiukhin et al. 2024), mit-
igating the issue of low-quality probabilistic signals during
early training stages.

LkNN
con (zi) = −

1

|kNN(zi)|
log

( ∑
z+∈kNN(zi)

exp(z⊺
i z

+/τ)∑
z−∈T \kNN(zi)

exp(z⊺
i z

−/τ)

)
(7)

where τ is the temperature. Based on the above, the overall
contrastive learning loss is given by,

Lcon(zi,yi) = LvMF
con (zi,yi) + LkNN

con (zi). (8)

3.3 Multi-Scale Feature Augmentation
Many works (Tomar et al. 2023; Fleuret et al. 2021) employ
data augmentation for robust adaptation. However, in multi-
modal TTA tasks, traditional modality-level strategies con-
flict with fixed fusion layers pretrained on complete modal-
ity data, disrupting the learned modality alignment patterns.
Moreover, studies (Nejjar, Wang, and Fink 2023; Chen et al.
2021) show that regression transfer is particularly sensitive
to feature scale variations. To this end, we introduce a novel
multi-scale re-dropout augmentation strategy.

Augment Paradigm. To address the conflict between data
augmentation and modality fusion consistency, we exploit
the inherent stochasticity of dropout layers in neural archi-
tectures to perturb hierarchical features across different net-
work depths through r-drop manner (Wu et al. 2021), gen-
erating multi-scale augmented representations without re-
lying on input-level manipulations. Specifically, given in-
put features hi = Mθm(xi) and projection head Pθp , we



Algorithm 1: Pseudo-code of GMEL.

Input: Target domain dataset T , model F = [M,P], hyperpa-
rameters d, τ

1: Estimate C through T
2: Freeze the parameter ofM
3: for epoch = 1, 2, . . . do
4: Divide T into batches
5: for each bach do
6: Get Z and Z′ through Multi-Scale Augmentation
7: Calculate latent category probability distribution ρ(z|c)

through Eq.2
8: for c = 1, . . . , C do
9: Get selected samples DC by high confidence filtering

10: Calculate z̄c through Eq.4
11: #Distribution Parameters Updating
12: µc ← z̄c/∥z̄c∥2
13: kc ← ∥z̄c∥2(d− ∥z̄c∥22)/(1− ∥z̄c∥22)
14: end for
15: Calculate loss Lall

con and Lreg
16: end for
17: Update the parameter ofP by minimizingLtta = Lall

con+Lreg
18: end for

forward hi through P twice to extract multi-scale features
from different layers of the model, resulting in two sets of
multi-scale feature collections Z and Z′: Zi = {zj

i |z
j
i =

Pj(hi), j = 1, ..., L}, where Pj(·) denotes the feature ex-
traction at layer j of P , and L is the total number of layers.
The two passes differ in stochasticity of dropout layer, gen-
erating diverse multi-scale representations.

Feature Ensemble. Building on this strategy, we have
obtained two sets of multi-scale embeddings. To im-
prove robustness to feature-scale variations, we concate-
nate multi-scale features as zi = [z1

i , z
2
i , ...,z

L
i ], z

′
i =

[z1′

i , z2′

i , ...,zL′

i ] for computing contrastive loss:

Lall
con = Lcon(zi, ŷi) + Lcon(z

′
i, ŷ

′
i). (9)

On the other hand, we apply self-consistency regularization
by minimizing the KL-divergence (Yu et al. 2013) between
the latent class probability distributions derived from the two
embeddings: Lreg =

∑K
k=1 ρ(zi|k) log

ρ(zi|k)
ρ(z′

i|k)
. The pseudo-

code of GMEL is summarized in Algorithm 1.

4 Experiments
4.1 Datasets and Evaluation Metrics
MOSI (Zadeh et al. 2016) is a multimodal sentiment dataset
involving audio, text, and video modalities. It consists of
93 English YouTube videos featuring 89 distinct speakers
(41 female, 48 male), where utterances are labeled on a
scale of [-3 to +3]. MOSEI (Zadeh et al. 2018), an ex-
tension of MOSI, significantly expands both scale and di-
versity: it contains over 65 hours of annotated videos from
1,000+ speakers discussing 250+ topics, with 3,228 videos
and 23,453 labeled segments. SIMS (Yu et al. 2020) pro-
vides Chinese-language multi-modal sentiment annotations
across audio, text, and video modalities. It includes 60 cu-
rated videos containing 2,281 naturalistic segments labeled

on a normalized [-1, +1] sentiment scale. For all three
datasets, we adopt three standard metrics: (1) Binary accu-
racy (ACC), measuring exact prediction matches using 0 as
threshold, (2) F1 score (F1), balancing precision and recall
for class-imbalanced scenarios, and (3) Mean absolute error
(MAE), quantifying regression performance on continuous
sentiment scores.

4.2 Baselines

Regarding the baseline setting, we follow the current main-
stream work (Guo et al. 2025b) and compare our methods
with six baselines: 1) Source: The source-pretrained model
evaluated directly on target domain data. 2) Self-Training
(ST) : Pseudo-labels are generated by the source model and
used to retrain the entire network. 3) Norm: A parameter-
efficient self-training variant (Wang, Shelhamer, and Liu
2021; Roy et al. 2023) that restricts updates to normaliza-
tion layers while freezing other parameters. 4) Group Con-
trastive (GC): We adopt the GC component from TTA-IQA
(Roy et al. 2023), which uses contrastive learning based on
score group. The ranking loss is excluded due to its image-
specific augmentation, incompatible with multi-modal in-
puts. 5) Reliable Fusion (RF): Reliable Fusion (Yang et al.
2024), which adaptively modulates cross-modal attention
via confidence weights. 6) CASP: CASP (Guo et al. 2025b)
pioneers test-time adaptation for multi-modal regression, us-
ing a two-stage framework: contrastive feature alignment
followed by pseudo-label refinement via consistency regu-
larization. LLM is also a simple and effective tool in TTA
scenarios. We discuss its TTA performance in specific MSA
tasks in the appendix as a supplement.

4.3 Implementation Details

Raw Feature Extraction. For fair comparison, we use the
same feature extraction method as the baselines. For text
modality processing, we extract 768-dimensional word em-
beddings using pretrained BERT models: BERT-base (De-
vlin et al. 2019) for MOSI/MOSEI and Chinese BERT-base
for SIMS. Acoustic features are extracted via LibROSA
(McFee et al. 2015), while visual embeddings are obtained
using OpenFace 2.0 (Baltrusaitis et al. 2018). Backbones.
We use the encoder of transformer(Vaswani et al. 2017)
as backbone and verify the effectiveness of the method
with two different manners: feature-level fusion (early fu-
sion) and decision-level fusion (late fusion). This setting
is also the same as other baselines. Training Details. For
source domain pre-training, we use the AdamW optimizer
(Loshchilov, Hutter et al. 2017) with a learning rate of
1e−3. During adaptation, we employ AdamW with warm-
up schedule and 0.01 weight decay. The learning rate is set
to 5e−3 for experiments with late fusion and 1e−3 for ex-
periments with early fusion. The batch size of all the ex-
periments is 64, and the number of epochs is 15. Through
estimation of C, we respectively assign C = {18, 19, 19} to
SIMS, MOSI, and MOSEI. To avoid randomness, we train
the model five times using different random seeds and report
the average results.



Backbone Method MOSEI→SIMS MOSI→SIMS MOSI→MOSEI SIMS→MOSI SIMS→MOSEI

ACC F1 MAE ACC F1 MAE ACC F1 MAE ACC F1 MAE ACC F1 MAE

Early
Fusion

Source 45.95 45.28 2.15 36.76 37.83 2.42 66.75 67.35 1.24 40.17 40.60 1.75 46.39 50.61 1.34
ST 48.80 47.20 2.11 34.79 36.52 2.50 66.63 67.35 1.34 41.74 42.39 1.55 47.14 53.68 1.32
Norm 43.76 44.06 2.25 36.23 37.94 2.47 66.98 67.54 1.30 43.95 43.40 1.56 45.80 48.13 1.29
GC 47.64 47.60 2.10 37.22 37.70 2.29 67.12 67.40 1.22 42.67 43.08 1.54 46.77 49.12 1.30
RF 46.12 46.25 2.18 35.18 35.97 2.46 66.84 67.39 1.27 42.58 43.02 1.59 46.61 50.39 1.31
CASP 63.89 66.43 1.80 40.12 41.65 2.06 68.32 68.90 1.08 46.57 47.10 1.44 47.90 47.13 1.26
GMEL 66.49 74.59 1.74 44.47 44.61 2.09 68.45 68.81 0.96 47.08 48.64 1.33 48.52 48.86 1.26

Late
Fusion

Source 60.96 63.09 2.01 39.17 39.12 2.10 66.57 67.42 1.25 40.12 45.46 2.18 47.14 57.47 1.77
ST 62.01 65.19 1.95 40.48 39.55 2.05 67.41 67.90 1.23 40.41 46.35 2.00 47.34 58.35 1.87
Norm 61.40 64.38 2.04 38.51 38.84 2.12 66.62 67.53 1.30 40.27 47.22 2.30 47.70 58.74 1.84
GC 62.62 65.38 1.98 42.23 42.89 1.97 67.03 67.83 1.25 40.94 46.87 2.21 47.45 59.07 1.76
RF 61.12 64.07 1.97 40.19 40.01 2.06 67.11 67.70 1.28 40.18 45.98 2.28 47.61 58.44 1.86
CASP 64.23 67.75 1.81 51.27 53.15 1.73 69.12 69.17 0.96 48.03 50.43 2.04 49.09 59.11 1.60
GMEL 65.97 69.73 1.77 56.84 59.03 1.80 68.91 68.94 0.81 55.45 62.37 1.81 51.55 62.85 1.66

Table 1: Comparison across five distribution shift scenarios using two backbones. Best results are boldfaced, second-best
performances are underlined. Values represent mean results over five random seeds.

4.4 Main Results
We evaluate methods across five domain shift set-
tings: MOSEI→SIMS, MOSI→SIMS, MOSI→MOSEI,
SIMS→MOSI, and SIMS→MOSEI. We do not use
MOSEI→MOSI because MOSEI is an extension of MOSI.
As shown in Table 1, GMEL achieves SOTA performance
on 24 out of 30 metrics, with the remaining 6 metrics show-
ing marginal deviations from the best results. Specifically,
in terms of metric, GMEL demonstrates 2.53% average im-
provement on ACC, 3.70% improvement on F1, and 0.05
unit reduction on MAE (lower is better). We further ob-
serve that the late-fusion backbone consistently outperforms
early-fusion variants across all settings, demonstrating supe-
rior suitability for MSA TTA tasks.

4.5 Ablation Study
To further analyze the contributions of different components
in our method, we conduct a series of ablation studies here.

Effect of Latent Group Semantics. To investigate the ef-
fectiveness of latent group semantics, we conduct two abla-
tion studies: 1) Removing latent group discovery (LGD): We
replace the group-aware mechanism with standard NT-Xent
contrastive loss (Chen et al. 2020a). 2) Alternative distribu-
tion modeling: We substitute vMF mixtures with Gaussian
mixtures to assess distributional assumptions. Results in Ta-
ble 2 show the effectiveness of Latent Group Semantics.

Effect of Feature Ensembling and Self-Consistency.
About the effect of feature ensembling, we remove the fea-
ture ensemble mechanism and directly use final-layer em-
beddings z for loss computation. We also evaluate model
performance without self-consistency regularization. From
the results shown in Table 2, we find that 1) w/o feature
ensemble shows significantly greater impact on MAE than
on ACC/F1 metrics, due to MAE’s sensitivity to feature-
scale instability. 2)w/o Lreg exhibits more pronounced per-
formance degradation in MOSI→SIMS experiments, likely

Ablation MOSI→MOSEI MOSEI→SIMS

ACC F1 MAE ACC F1 MAE

GMEL 68.91 68.94 0.81 65.97 69.73 1.77

Complete Module Ablation

w/o LGD 65.27 65.60 0.98 62.23 63.57 1.92
w/o Feature Ensembling 67.29 67.35 1.02 65.27 66.82 1.98

w/o Lreg 65.19 66.02 0.92 64.87 68.12 1.83
w/o Data Augment 67.15 67.34 1.08 61.72 64.09 1.90

w/o LkNN
con 68.55 68.79 0.80 65.02 69.66 1.83

Alternative Method Comparison

Gaussian Mixtures 67.95 67.72 0.84 64.59 67.92 1.82
Random Modality Masking 68.02 68.41 0.84 64.35 68.90 1.82

Table 2: Ablation results on MOSI→MOSEI and
MOSEI→SIMS.

because MOSEI’s larger scale and richer semantics inher-
ently provide stronger regularization.

Effect of Augment Methods. We study the impact of aug-
mentation strategies: (1) Data augmentation—removing it
during training and also evaluating random modality mask-
ing as an alternative; (2) Contrastive learning augmenta-
tion—excluding LkNN

con to assess its contribution. The abla-
tion study shown in Table 2 validates the effectiveness of
both data augmentation and LkNN

con , while demonstrating that
preserving modality integrity through our re-dropout strat-
egy—rather than random masking—significantly enhances
robustness to distribution shifts in MSA. This confirms that
maintaining complete modality interactions and multi-scale
feature perception is critical for effective TTA.

4.6 Further Analysis
Sensitivity Analysis. The number of latent categories is
an important hyperparameter in GMEL. We extensively
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Figure 3: Comparison between different modality fusion methods.

tested the performance changes of GMEL in different do-
main shifting under different C value settings, taking the
MAE indicator as an example, demonstrating that GMEL
is robust to the number of latent categories. As shown in
the results in the table 3, when C is set in the range of 5-
30, GMEL maintains SOTA or slightly lower than SOTA
performance on five datasets. Additionally, we can discover
that with C = 20, which is most similar to our estima-
tion {18, 19, 19}, GMEL achieves relatively the best results,
demonstrating the effectiveness of our estimation of C.

C D1toD2 D1toD3 D2toD1 D2toD3 D3toD2

5 1.92 0.83 1.90 1.72 1.82
10 1.83 0.84 1.84 1.70 1.85
15 1.75 0.82 1.79 1.66 1.82
20 1.78 0.77 1.79 1.63 1.76
25 1.81 0.81 1.80 1.72 1.81
30 1.89 0.79 1.82 1.75 1.79

Table 3: Sensitivity analysis on latent category number C
about MAE. For brevity, we denote the MOSI, SIMS, and
MOSEI datasets as D1, D2, and D3, respectively.

Extended to pre-train. As an extension, we investigate
the impact of applying Latent Group Learning to source-
domain model training by evaluating: (1) source-domain
performance, (2) zero-shot target-domain performance, and
(3) adapted target-domain performance. As shown in Ta-
ble 5, mining latent sentiment semantics yields marginal
improvements in supervised source-domain training, but
demonstrates stronger generalization performance on un-
seen target domains. This suggests that the model has
already captured fine-grained sentiment concepts through
source-domain training, and enhancing its sensitivity to
the partial fine-grained information embedded in sentiment
scores facilitates learning domain-shift-robust features.

Method GMEL RF ST Norm

MOSI→SIMS 8.42s 9.42s 8.25s 8.32s
SIMS→MOSI 5.92s 6.27s 5.81s 5.90s

Table 4: Comparison of epoch time in different settings.

Training Complexity. We report the computational time
consumption of GMEL across training epochs and compare
it with other methods. Notably, we exclude CASP from this
comparison due to its two-stage framework’s inherent com-
putational overhead. All timing results are benchmarked on
a single RTX A5000 (24GB) with batchsize 64 to ensure fair
evaluation. As the results shown in Table 4, GMEL achieves
lower time complexity than attention-based methods and
maintain comparable computational efficiency against con-
ventional fine-tuning techniques.

Test Normal Pretrain Group-Aware Pretrain

ACC F1 MAE ACC F1 MAE

Source Domain 79.91 79.88 1.00 80.02 79.75 1.00
Target Domain 42.27 42.05 2.21 49.89 48.12 2.04

Domain Adaptation 56.67 59.26 1.82 56.84 59.03 1.80

Table 5: Performance comparison of normal and group-
aware pretrain method conducted under MOSI→SIMS.

Analysis of Modality Fusion. While our main results
use standard early/late fusion backbones (feature concate-
nation), we further validate our method’s generality us-
ing attention-based fusion (Yang et al. 2024). As shown in
Fig. 3, attention improves overall performance in both ACC
and F1 metrics, meaning greater performance improvement
prospects. Crucially, our approach maintains superior per-
formance across all architectures, confirming its architec-
tural robustness. For fair comparison with baselines, we re-
port main results without attention layers, aligning with stan-
dard fusion practices.

Supplementary experiments in Appendix. To further
validate the robustness and parameter sensitivity of GMEL,
we conduct comprehensive ablation studies in the appendix.
These analyses systematically evaluate the impact of critical
hyperparameters—including dropout rate, filter ratio R, and
batch size. Additionally, we explore the potential of LLMs
for MSA TTA through in-context learning experiments, re-
vealing both strengths and limitations of this emerging ap-
proach compared to our method.

5 Conclusion
In this paper, we propose GMEL, a novel framework for
robust multi-modal sentiment analysis under test-time do-
main adaptation. Inspired by related psychological studies,
we capture fine-grained information carried by sentiment
through vMF mixture distribution. Additionally, to address
the conflict between data augmentation and modality fusion
consistency, we design a new augment paradigm leverag-
ing the inherent randomness of dropout layers in the model
and ensembling multi-scale features. Extensive experiments
on three MSA benchmarks with two backbone architectures
demonstrate that GMEL outperforms baselines by signifi-
cant margins across multiple metrics. We hope our work can
inspire future research to further improve the test-time adap-
tation methods for multi-modal regression tasks.
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