MMCOMPOSITION: REVISITING THE COMPOSITION-ALITY OF PRE-TRAINED VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal understanding, enabling more sophisticated and accurate integration of visual and textual information across various tasks, including image and video captioning, visual question answering, and cross-modal retrieval. Despite VLMs' superior capabilities, researchers lack a comprehensive understanding of their compositionality – the ability to understand and produce novel combinations of known visual and textual components. Prior benchmarks provide only a relatively rough compositionality evaluation from the perspectives of objects, relations, and attributes while neglecting deeper reasoning about object interactions, counting, and complex compositions. However, compositionality is a critical ability that facilitates coherent reasoning and understanding across modalities for VLMs. To address this limitation, we propose **MMCOMPOSITION**, a novel human-annotated benchmark for comprehensively and accurately evaluating VLMs' compositionality. Our proposed benchmark serves as a complement to these earlier works. With MMCOMPOSITION, we can quantify and explore the compositionality of the mainstream VLMs. Surprisingly, we find GPT-4o's compositionality inferior to the best open-source model, and we analyze the underlying reasons. Our experimental analysis reveals the limitations of VLMs in fine-grained compositional perception and reasoning, and points to areas for improvement in VLM design and training.

028 029

031

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

032 Pre-trained vision-language models, such as GPT-40 (Achiam et al., 2023), LLaVA (Liu et al., 033 2024b), InternVL (Chen et al., 2024b), and VILA (Lin et al., 2024), have demonstrated impressive capabilities in complex reasoning, and have achieved remarkable results in various vision-language (VL) tasks. Despite these advancements, contemporary state-of-the-art VLMs still struggle with understanding fine-grained multimodal compositional information (Yuksekgonul et al., 2022; Thrush 037 et al., 2022). For instance, VLMs often fail at counting objects in images, especially when the objects are mixed with other items or occluded, while humans can handle this task easily. This reveals 038 a compositionality gap between humans and models. However, *compositionality* is recognized as a core capability for VLMs (Yuksekgonul et al., 2022), referring to the ability to understand and 040 produce a potentially infinite number of novel combinations of known visual and textual components, 041 i.e., to make "infinite use of finite means" (Chomsky, 2014). Compositionality is essential for 042 tackling challenging questions in image captioning, visual question answering (VQA), and scene 043 understanding, where complex interactions between objects and attributes need to be communicated 044 in natural language. 045

In recent years, there has been a growing focus on evaluating the comprehensive capabilities of
large VL models, such as MMBench (Liu et al., 2023b), MMMU (Yue et al., 2023), MMVet (Yu
et al., 2024a;b), MME (Fu et al., 2023), Seed-bench (Li et al., 2023a), MMStar (Chen et al., 2024a),
MathVista (Lu et al., 2023), and LLaVA-Bench (Liu et al., 2024b). These benchmarks evaluate
VLMs' capabilities in recognition, OCR, knowledge, language generation, spatial awareness, and
mathematical reasoning. While some of these benchmarks include visual compositional questionanswering (QA) pairs (Fu et al., 2024; Li et al., 2023a; Tong et al., 2024b), none are specifically
designed to comprehensively evaluate the models' fine-grained VL compositional perception and

¹All data and code will be released upon publication of this paper.

071 072 073

068

069

Figure 1: MMCOMPOSITION comprises 13 categories of high-quality VL composition QA pairs, covering a wide range of complex compositions. In the example, GPT-4o failed to understand the compositional aspects of the visual and textual components, misidentifying a three-story building as a double-decker structure. This misinterpretation highlights the limitations of current VLMs.

reasoning abilities. Additionally, some existing benchmarks (Yuksekgonul et al., 2022; Hsieh et al., 2024; Zhao et al., 2022; Thrush et al., 2022; Ray et al., 2023; Ma et al., 2023) evaluate models' compositionality roughly from the perspective of attribute, relation, and object perception. These benchmarks have limitations in evaluating fine-grained visual composition and reasoning. They mainly focus on image-to-text retrieval tasks, assessing basic object, relation, and attribute recognition but neglecting deeper reasoning about object interactions, counting, and complex compositions. As a result, researchers currently have an incomplete understanding of VLMs' compositionality.

- To address these issues, we propose MMCOMPOSITION, a novel, human-annotated, high-quality benchmark for the comprehensive evaluation of VLMs' compositionality. MMCOMPOSITION 087 evaluates the compositionality of VLMs in three main dimensions: VL compositional perception, reasoning, and probing, which are further divided into 13 distinct categories of questions, as illustrated in Figure 1. While previous evaluation benchmarks have primarily focused on text-to-image retrieval, single-choice questions, and open-ended text generation, MMCOMPOSITION introduces a more 090 diverse and challenging set of tasks. The benchmark encompasses 4,342 questions, covering both 091 single-image and multi-image scenarios, as well as single-choice and indefinite-choice formats. This 092 expanded range of tasks is designed to evaluate the complex interplay between vision and language in VLMs more effectively. By incorporating a wider variety of complex composition questions, 094 MMCOMPOSITION provides a more comprehensive and in-depth assessment of models' capabilities 095 in cross-modal compositionality, surpassing the evaluations offered by earlier benchmarks like ARO 096 (Yuksekgonul et al., 2022) and Winoground (Thrush et al., 2022). Table 8 highlights the differences between MMCOMPOSITION and other existing datasets that focus on VL compositionality.
- 098 In addition to the new benchmark, we also provide a comprehensive analysis of the models' capabili-099 ties in fine-grained VL compositional perception and reasoning. Our experiments show that most 100 SOTA VLMs exhibit deficiencies in compositional understanding. Even GPT-40, despite its advanced 101 capabilities, struggles with tasks requiring nuanced compositional reasoning. These findings highlight 102 the need for further research and development to enhance the compositional abilities of VLMs. Our 103 benchmark serves as a tool for identifying these gaps and inspiring future improvements in VLM 104 design and training. Moreover, we analyze the critical factors in VLM architecture and training that may influence the compositionality of VLMs. According to the empirical results, we reach three 105 findings: (1) Visual Encoder Design: While a mixture-of-encoder architecture can enhance compositionality, adding more encoders does not necessarily improve performance. Moreover, models that 107 encode images with minimal degradation of image quality - preserving the original high resolution

Table 1: Comparison with related VL compositional benchmarks: "Yes/No Ratio" refers to the proportion of yes/no questions, "Fine-grained" indicates whether the data provide detailed breakdowns of VL compositional information, and "IT Mismatch Detec." means "Image Text Mismatch Detection".

111								
110	Dataset	Yes/No Ratio	Size	Human Annotation	Multi-Image	Indefinite-Choice	Task	Fine-grained
112	Winoground (Thrush et al., 2022)	-	400	1	1	-	Compositional Reasoning	×
113	ARO (Yuksekgonul et al., 2022)	-	50k	×	×	-	T2I Retrieval	×
	Sugarcrepe (Hsieh et al., 2024)	-	7,512	×	×	-	T2I Retrieval	×
114	VL-Checklist (Zhao et al., 2022)	-	410k	×	×	-	T2I Retrieval	×
	Cola (Ray et al., 2023)	-	1,200	×	×	-	T2I Retrieval	×
115	FineMatch (Hua et al., 2024a)	-	49.9k	✓	×	-	IT Mismatch Detec.	1
116	GQA (Hudson & Manning, 2019)	0.774	22M	×	×	×	Compositional QA	1
110	MMCOMPOSITION (ours)	0.038	4,342	✓	1	1	Compositional QA	1
117								

and aspect ratio – exhibit superior compositionality compared to those that utilize downsampling 118 during the encoding process. (2) Language Decoder Size: Larger language decoders are associated 119 with improved compositionality. (3) The Volume of Training Data: Fine-tuning models on more 120 diverse datasets helps mitigate some compositionality limitations, driving more robust compositional 121 understanding. In addition, although GPT-40 includes a powerful language model, we find that 122 for relatively simple QA tasks, only a small portion of its language capabilities are utilized 123 (compared to the models outperform GPT-40, whose language model size is only 70B). Once the 124 language decoder size reaches a certain threshold (e.g., 34B, 70B), the visual encoder has a 125 more significant impact on the model's compositionality. We demonstrate in Figure 13 that the 126 downsampling image processing in GPT-40 contributes to its inferior performance. Our experimental 127 analysis highlights the limitations of large-scale VLMs in fine-grained compositional perception and 128 reasoning. Our empirical analysis provides a systematic framework for evaluating and enhancing models' capability, pinpointing areas where large models still struggle. 129

- Our main contributions are three-fold:
 - We introduce **MMCOMPOSITION**, a novel, human-annotated, high-quality benchmark designed to evaluate the compositionality of pre-trained VLMs. MMCOMPOSITION assesses compositionality across three dimensions: compositional perception, reasoning, and probing, which are further divided into 13 distinct categories of questions. The benchmark includes a diverse set of 4,342 questions, encompassing both single-image and multi-image scenarios, as well as single-choice and indefinite-choice questions, providing a comprehensive and robust evaluating framework for VLM compositionality.
 - We comprehensively evaluate 54 well-known VLMs with MMCOMPOSITION. The empirical results highlight the challenging nature of MMCOMPOSITION, as the highest model accuracy reached only 67.95%, compared to 90.31% for human performance. This evaluation reveals a **substantial gap** between state-of-the-art VLMs and human capabilities and provides insights into the limitations of current VLMs.
 - We systematically analyze critical factors in VLM architecture that may influence the compositionality of VLMs, including the size of language decoders, the volume of training data, and the visual encoder design. Furthermore, we provide an interpretable analysis of models' limitations in complex compositional understanding. This analysis identifies critical areas for model improvement and suggests directions for future advancements.
 - 2 RELATED WORK
- 150 151

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148 149

2 RELATED WORK

152 2.1 VLM EVALUATION BENCHMARKS

153 The advent of large-scale VLMs has led to the development of numerous benchmarks designed to 154 evaluate various model capabilities. Among the most commonly evaluated are image captioning (Lin 155 et al.; Onoe et al., 2024; Masry et al., 2022), which tests a VLM's ability to generate natural 156 language descriptions of images; VQA (Antol et al., 2015; Marino et al., 2019; Mathew et al., 157 2020), which assesses the model's capacity to answer image-based questions by integrating visual 158 perception with language understanding or external knowledge; and Visual Reasoning (Johnson et al., 2017; Suhr et al., 2017), which evaluates a model's understanding of spatial relationships and 159 logical reasoning based on visual input. In recent years, researchers have built benchmarks that 160 aim to evaluate the comprehensive capabilities of VLMs (Li et al., 2023a; Liu et al., 2023b; Yue 161 et al., 2023; Fu et al., 2023; Yu et al., 2024a; Lu et al., 2023; Guan et al., 2024). Although some

benchmarks include QA pairs related to compositional reasoning, such as BLINK (Fu et al., 2024),
 MMVP (Tong et al., 2024b), and Seed-bench (Li et al., 2023a), these are often mixed with other
 types of QA pairs, making it challenging to assess a model's compositionality precisely. In contrast,
 MMCOMPOSITION consolidates and refines existing categories of VL compositionality, offering a
 diverse set of compositional QA pairs that provide a more precise evaluation of model performance.

168 2.2 COMPOSITIONALITY FOR VISION-LANGUAGE MODELS

170 Compositional understanding of images and text is a critical capability for VLMs. Research indicates that VLMs struggle to distinguish hard negative examples, i.e., image-text pairs that mismatch in 171 at least one aspect (e.g., attribute, relation, object), as there is little incentive for them to learn 172 compositionality during contrastive pre-training (Yuksekgonul et al., 2022). Hsieh et al. (2024) 173 illustrate that contrastive pre-training with generated hard negative examples can improve models' 174 performance on downstream tasks. Various benchmarks have been proposed to assess the capabilities 175 of VLMs in compositional vision-language perception, including VL-Checklist (Zhao et al., 2022), 176 ARO (Yuksekgonul et al., 2022), FineMatch (Hua et al., 2024a), Sugarcrepe (Hsieh et al., 2024), 177 Crepe (Ma et al., 2023), Cola (Ray et al., 2023), CheckList (Zhao et al., 2022), etc. However, these 178 benchmarks often evaluate models' capabilities from limited perspectives, such as object, attribute, 179 and relation perception, and primarily focus on simple tasks like binary image-to-text retrieval, where 180 models need to select the correct caption from pairs containing a correct and a hard negative caption. 181 Moreover, the aforementioned benchmarks often contain a limited range of relations or attributes (e.g., ARO includes 48 relations and 117 attributes). GQA (Hudson & Manning, 2019) includes a diverse 182 set of QA pairs focused on compositional reasoning, but the majority of the questions (77.74%) are 183 simple Yes/No format. In contrast, MMCOMPOSITION offers a more comprehensive assessment with 184 various compositional scenarios, including multi-image and indefinite choice questions, providing 185 a more comprehensive assessment. Furthermore, MMCOMPOSITION evaluates the robustness in detecting complex relationships, including subtle scene composition, object interactions, and higher-187 order concepts beyond basic perception.

188 189

167

2.3 PRE-TRAINED VISION-LANGUAGE MODELS

191 Vision-language models (Radford et al., 2021; Liu et al., 2024a; Hua et al., 2024b; Ye et al., 2023; 192 Tang et al., 2024; Chen et al., 2024b; Bi et al., 2024; Li et al., 2022; Tong et al., 2024a) aim to achieve 193 multimodal intelligence by jointly understanding and generating visual and language information. 194 Inspired by the remarkable success of recent large language models (LLMs) (Touvron et al., 2023; 195 Chiang et al., 2023; Hua et al., 2021), researchers are now exploring large VLMs that combine pre-196 trained visual encoders and language decoders to tackle complex multimodal tasks. Flamingo (Alavrac et al., 2022) and BLIP-2 (Li et al.) are two of the early works that explore the integration of LLMs into 197 vision-language pre-training. These models are trained as VL foundation models. Beginning with 198 LLaVA (Liu et al., 2024a), researchers have used LLM-synthesized instruction-following chat data 199 in VQA format for instruction tuning, achieving significantly improved results (Hua et al., 2024a). 200 Subsequent studies have expanded to explore the broader capabilities of multimodal LLMs (Hu et al., 201 2023; Guan et al., 2024; Lin et al., 2023; Yu et al., 2024c; Tang et al., 2023). However, these efforts 202 place less emphasis on improving the models' ability to fine-grained compositional perception and 203 reasoning.

204 205 206

207

3 MMCOMPOSITION

208 3.1 DATA CURATION

To ensure a comprehensive and high-quality benchmark, we develop an efficient pipeline for curating
 VQA data that accurately reflects compositional information.

Data Collection. We use various datasets with the potential to construct VL compositional QA
pairs as our seed data. This collection includes datasets that contain the description of objects,
attributes, relations, and counting, such as VL-CheckList (Zhao et al., 2022), Sugar-Crepe (Hsieh
et al., 2024), ARO (Yuksekgonul et al., 2022), Crepe (Ma et al., 2023), and DOCCI (Onoe et al.,
2024). Additionally, we incorporate sources that are well-suited for constructing VL compositional

233 234 235

Figure 2: The statistics of 13 distinct categories of QA pairs in MMCOMPOSITION and some models' performance on each category.

reasoning QA pairs, including SVO-Probes (Hendricks & Nematzadeh, 2021), VSR (Liu et al., 2023a), BLINK (Fu et al., 2024), GQA (Hudson & Manning, 2019), Visual Genome (Krishna et al., 2016), and CLVER (Johnson et al., 2017). It also contains datasets with multiple images in each sample, such as Winoground (Thrush et al., 2022), MuriBench (Wang et al., 2024) and NLVR2 (Suhr et al., 2017).

Question and Answer Construction. We obtain QA pairs from the seed data in through several methodologies:

For the seed data that only contain positive and negative captions (e.g., ARC (Yuksekgonul et al., 2022)), we first generate sentence embeddings for each caption using Sentence-BERT (Reimers & Gurevych, 2019). We then utilize these embeddings to retrieve the most similar captions from the Visual Genome (Krishna et al., 2016) dataset. This process results in four captions per image in each sample, forming four answer options per question.

For data samples containing multiple images – such as those in the image difference spotting task, which includes two images per question – we concatenate the two images side by side and label them *Left* and *Right* beneath each sub-image. This setup allows for two types of question-answer options: *Left* and *Right* for questions asking which sub-image is described by a caption, and *True* and *False* for questions determining the accuracy of a caption describing the image difference. For tasks that include more than two images per question (e.g., visual similarity assessments), we concatenate all images into a single composite image and label each sub-image as Image₁, ..., Image_i.

For the probing task, we select several captions from the dense captions in Visual Genome (Krishna et al., 2016) as the correct options and write the misaligned captions manually for the image. Then, we randomly select $x \in \{1, 2, 3, 4\}$ captions from the set of accurate captions for a given image and complement these with 4 - x incorrect options drawn from a set of conflict captions. With this approach, we can obtain the indefinite-choice QA pairs.

260 Data Filtering and Difficulty Classification. We divide the data into different difficulty levels: easy, 261 medium, hard, and super hard. To achieve this, we use a voting system with six models, ranging 262 from weaker to stronger, including LLaVA-1.5-13B (Liu et al., 2024b), LLaVA-1.6-Mistral-7B (Liu 263 et al., 2024a), LLaVA-1.6-Vicuna-13B (Liu et al., 2024a), Phi-3-Vision-128K-Instruct (Abdin et al., 264 2024), InternVL-Chat-V1.5 (Chen et al., 2024b), and Qwen-VL-Chat (Bai et al., 2023). Based on the 265 accuracy of model predictions for each question, questions are categorized into different difficulty 266 levels. Questions with zero correct predictions are classified as super hard, those with one or two 267 correct predictions are labeled as hard, questions with three or four correct predictions are considered medium, and those with more than five correct predictions are categorized as easy. The overall 268 difficulty of the dataset is then controlled by adjusting the ratio of questions at each difficulty level. 269

270 Human Annotation. All QA pairs in the benchmark are human-annotated. Annotators first assess 271 image quality to ensure it meets the required standards. For human-created data, annotators are first 272 trained with detailed instructions to develop a thorough understanding of the compositional aspects 273 in our dataset. During annotation, they generate QA pairs based on the provided aspect prompts. 274 For GPT-synthesized data sourced from DOCCI, annotators verify whether the question accurately reflects the compositional information in the image and whether the answer appropriately corresponds 275 to the question. 276

278 3.2 EVALUATION METRIC

277

284 285

287

291

293

295

279 Let $\mathcal{D} = \{\mathcal{D}_m = \{\mathcal{T}_t\}_{t=1}^{T_d}\}_{m=1}^{|D|}$ denotes our dataset, where each catagory \mathcal{D}_m consists of \mathcal{T}_d subtasks. 280 For each subtask, we calculate the accuracy across all annotations. For each question $q \in \mathcal{D}$, let \mathcal{A}_q 281 be the set of correct options, \mathcal{P}_q be the set of predicted (selected) options. The score for question q, 282 denoted as s_q , is calculated as: 283

	1,	$\text{if }\mathcal{P}_q=\mathcal{A}_q$
$s_q = \langle$	$\frac{ \mathcal{P}_q }{ \mathcal{A}_q },$	$\text{if} \ \mathcal{P}_q \subset \mathcal{A}_q$
	0,	otherwise

Here, | · | denotes the number of options selected by the participant and the number of correct 288 options, $\mathcal{P}_q \subset \mathcal{A}_q$ means all selected options are correct, but some correct options are missing (under-289 selection). The "otherwise" case covers instances where incorrect options are selected (wrong or overselection). This equation applies to both the single-choice and indefinite-choice questions. The final 290 weighted average accuracy across all categories is calculated as ACC = $\sum_{m=1}^{|D|} \sum_{t=1}^{T_d} s_q \times |\mathcal{T}_t| / |\mathcal{D}_d|$, where $|\cdot|$ is the question number in one set. 292

3.3 QUANTITATIVE ANALYSIS

MMCOMPOSITION contains 13 different VL composition tasks, including Attribute Perception 296 (Attr-P), Object Perception (Obj-P), Counting Perception (Count-P), Relation Perception (Rel-297 **P**), Difference Spotting (**Diff-S**), Text Rendering (**TR**), Visual Similarity (**Visual-Sim**), Attribute 298 Reasoning (Attr-R), Object Reasoning (Obj-R), Counting Reasoning (Count-R), Relation Reasoning 299 (Rel-R), Object Interaction (Obj-Interact), and Compositional Probing (Prob). We use GPT-40 to 300 label each question category via in-context learning, followed by manual verification for accuracy. 301 Figure 4 illustrates the difficulty distribution of MMCOMPOSITION, highlighting the challenging 302 nature of our dataset. Figure 5 depicts the distribution of option counts per question, with over half 303 of the data containing more than four options. To analyze the impact of input resolution on model 304 performance, we further display the resolution distribution of images in Figure 6, which reflects the image quality of our data. For textual analysis, we visualize the phrase distribution of questions using 305 a word cloud diagram in Figure 7, clearly depicting the word frequency and distribution across the 306 questions. We also provide a detailed explanation for these 13 categories in Section A.3. 307

4 **REVISITING THE COMPOSITIONALITY OF PRE-TRAINED** VISION-LANGUAGE MODELS

310 311

308 309

312 In this section, we quantify and explore the compositionality of state-of-the-art VLMs and provide a 313 comprehensive evaluation of VLMs. For all experiments, we use a consistent prompt template and 314 the official default hyperparameters for each model.

315 **Overall performance.** The overall performance indicates that models struggle with perceiving 316 and reasoning about fine-grained VL compositional information. The best human expert achieves 317 an accuracy of 90.31%, significantly outperforming all the models reported in the table. This 318 demonstrates the still existing gap between human expertise and the performance of current models 319 on the MMCOMPOSITION benchmark. This reflects the benchmark's rigorous standards. The open-320 source InternVL2 (Chen et al., 2024c) series models secured first and second place on the leaderboard. 321 InternVL2-40B performs better than InternVL2-76B. Among the API-based models, Qwen2-VL and GPT-40 achieved the best and second best performance. The superior performance of open-source 322 models with relatively smaller language models compared to GPT-40, which has a larger language 323 model, is due to their more effective visual encoders. The mean accuracy of 7B and 13B open-source

Table 2: The comprehensive performance of 54 VLMs on Acc, including open source models and
 API-based models . The **best** and <u>second best</u> results are in bold and underlined, respectively.

326													· •	•	
207				I	Perceptio	n↑					Reasonia	ng↑		Probing [↑]	1
521	Method	Attr-P	Obj-P	Count-P	Rel-P	Diff-S	TR	Visual-Sim	Attr-R	Obj-R	Count-R	Rel-R	Obj-Interact	Prob	Overall ↑
328	Human	97.94	98.04	93.06	92.00	79.02	85.71	86.54	91.20	78.83	100.00	77.35	88.00	91.84	90.31
320	InternVL2-40B (Chen et al., 2024b)	72.22	77.69	45.21	72.53	31.12	73.21	48.65	83.78	82.57	84.51	69.20	65.85	59.59	67.95
525	InternVL2-76B (Chen et al., 2024b)	70.65	76.75	48.28	70.00	19.09	78.57	48.65	85.14	83.49	85.40	70.93	67.07	58.46	67.28
220	Qwen2-VL-/2B (team, 2024)	59.57	51.80	52.49	62.52	45.23	82.14	6/.5/	8/.84	84.40	84.51	(7.12	<u>70.12</u>	69.57	65.24
330	InternVL2-26B (Chan et al. 2024b)	68.46	60.73	45.08	66.06	22.82	78.57 80.36	28.38	70.28	70.82	81.86	64 59	63.41	52.43	63.08
0.04	VII A 40B (Lip et al. 2024)	65 70	66.16	40.23	63.65	22.62	75.00	44.59	70.72	77.06	67.26	60.32	50.15	62.16	62.38
331	GPT-40 (Achiam et al. 2023)	63.97	58.98	37.93	66.76	32 37	82.14	60.81	62.61	79.82	61.95	61.13	75.00	54.65	59.71
	InternVL-Chat-VL2 (Chen et al., 2024b)	64.58	64.08	41.38	62.98	25.73	76.79	29.73	63.06	71.56	61.06	63.44	65.24	60.71	59.61
332	InternVL-Chat-V1.5 (Chen et al., 2024b)	59.44	62.38	38.31	60.47	21.58	76.79	51.35	77.93	83.49	78.32	62.05	63.41	57.01	59.58
	InternVL2-8B (Chen et al., 2024b)	62.68	61.44	31.80	59.54	25.31	73.21	33.78	78.83	75.23	73.89	62.05	62.20	54.10	58,47
333	LLaVA-V1.6-34B (Liu et al., 2024a)	67.24	69.00	44.06	61.31	25.73	76.79	21.62	53.15	67.89	53.10	61.59	54.27	58.17	58.25
000	MiniCPM-V2.6 (Yao et al., 2024)	65.19	61.06	41.00	61.80	21.99	73.21	37.84	63.96	73.39	68.14	55.25	60.98	54.43	57.01
224	InternLM-XComposer2-4KHD-7B (Dong et al., 2024b)	62.24	58.03	39.08	58.36	23.65	67.86	27.03	70.72	74.31	60.18	58.71	59.15	60.02	56.69
334	Qwen-VL-Max (Bai et al., 2023)	53.76	54.82	36.40	58.67	22.82	80.36	41.89	53.60	65.14	53.98	61.36	62.80	63.87	55.18
	InternLM-XComposer2.5-7B (Zhang et al., 2024a)	56.68	57.84	37.93	56.82	21.58	71.43	28.38	71.17	75.23	61.06	60.55	60.98	49.64	55.10
335	Hunyuan-Vision	61.95	65.03	37.16	58.58	26.97	76.79	36.49	61.26	72.48	56.19	54.09	59.15	45.03	54.64
	InternLM-XComposer2-VL-7B (Dong et al., 2024a)	59.18	55.39	40.23	56.91	25.31	66.07	31.08	67.57	73.39	61.06	55.02	53.66	57.15	54.62
336	Gemini-1.5-Pro (Reid et al., 2024)	55.30	53.50	39.46	57.11	24.48	67.86	55.41	59.91	74.31	50.44	56.29	65.24	49.60	53.27
	Mini-Gemini-34B (Li et al., 2023b)	58.35	59.17	37.93	53.70	25.31	73.21	39.19	54.50	73.39	58.41	57.90	61.59	41.79	53.06
337	Intern VL2-4B (Chen et al., 2024b)	53.82	59.00	31.42	52.17	18.26	/3.21	25.68	77.03	/1.56	12.57	52.20	55.49	41.18	52.03
557	LLawiA-3.2-11B-vision-instruct	51.02	51.00	36.02	33.80	30.29	09.04	29.75	50.90	07.89	51.55	59.12	60.98	49.17	52.01
000	Mini Comini 24P HD (Li at al. 2022b)	54.05	52.26	30.40	49.88	19.92	72.21	20.27	50.01	77.00	50 05	58.15	66.46	41.79	51.34
338	Bunny, I lama-3-8B-V (He at al. 2024)	58.16	53.50	34.87	40.55	21.60	50.00	12.16	45.05	66.06	53.10	51.67	57.32	59.44	50.81
	Mini-Monkey (Huang et al. 2024)	52.25	50.36	26.82	52.53	26.56	73 21	18.02	68.02	65.14	50.20	52 71	50.00	42.37	50.01
339	Phi3 5-Vision-Instruct (Abdin et al. 2024)	55.01	48 39	30.27	52.55	21.16	66.07	31.08	45.05	63.30	53.10	56.40	53.66	54.65	50.02
	ColeVI M2-Llama3-Chat-19B (Hong et al., 2024)	57.67	54.44	34.48	51.69	38.17	57.14	48.65	50.90	65.14	47.35	44.75	59.15	50.69	49.84
340	Phi3-Vision-128K-Instruct (Abdin et al., 2024)	55.30	43.86	30.27	51.61	25.31	69.64	40.54	45.05	65.14	47.79	48.79	60.37	56.75	48.52
0-10	Yi-VL-34B (AI et al., 2024)	53.02	39.89	30.27	50.33	26.14	64.29	17.57	50.45	56.88	55.31	52.94	52.44	53.88	47.86
3/11	Step-1V-32K	46.11	42.16	26.44	46.25	25.31	67.86	43.24	66.67	66.97	62.83	52.13	59.76	45.46	47.64
041	ConvLLaVA-1024-7B (Ge et al., 2024)	51.73	47.26	32.57	44.96	28.22	69.64	21.62	55.41	65.14	53.10	53.06	54.88	40.89	47.32
0.40	Yi-VL-6B (AI et al., 2024)	51.99	45.75	30.27	49.34	25.73	60.71	20.27	45.05	51.38	52.21	51.56	51.83	48.76	46.87
342	Bunny-3B (He et al., 2024)	49.97	50.66	26.82	48.79	25.73	50.00	12.16	46.40	61.47	47.79	46.14	51.22	55.08	46.32
	Bunny-4B-V1.0 (He et al., 2024)	52.50	47.64	39.08	46.00	21.16	51.79	17.57	43.69	62.39	52.21	49.94	52.44	42.66	46.07
343	LLaVA-HR-13B (Luo et al., 2024)	50.32	42.91	35.25	39.81	32.37	66.07	27.03	45.50	60.55	45.58	51.90	57.32	48.80	46.02
	ConvLLaVA-1536-7B (Ge et al., 2024)	50.03	46.50	28.35	41.25	27.39	69.64	29.73	51.35	64.22	52.21	52.13	64.02	34.20	45.52
344	InternVL2-2B (Chen et al., 2024b)	43.32	54.82	26.82	45.79	22.82	67.86	17.57	63.06	58.72	49.56	46.94	53.66	38.16	45.11
011	Monkey-Chat (Li et al., 2024)	49.20	49.53	24.14	4/.15	16.60	69.64	13.51	51.35	58.72	44.25	46.60	51.22	48.91	44.90
245	SliME 7B (Zhang et al. 2024b)	45.71	41.21	27.20	41.03	21.58	62.50	33.78	42.24	50.62	48.22	52.00	52.05	32.28	43.74
345	INE LL oVA ⁺ (Mo et al. 2024)	42.10	45.54	20.74	41.02	24.49	57.14	20.27	50.00	66.06	40.23	49.22	54.27	30.05	43.43
0.40	SliME-SB (Zhang et al. 2024)	45.19	40.09	32.95	41.92	30.20	60.71	25.68	44.50	61.47	47.70	53 20	17.56	20.06	43.32
346	INE-I I aVA (Ma et al. 2024)	45.66	42.16	27.59	47.37	33.20	57.14	32.43	46.40	60.55	42.92	44.98	54.88	35.58	43.04
	LI aVA-HR-7B (Luo et al. 2024)	40.46	43.67	31.42	40.43	28.22	64.29	37.84	46.85	60.55	48.67	49.25	56.71	33.04	42.73
347	SliME-13B (Zhang et al., 2024b)	47.46	40.64	28.74	42.55	22.41	66.07	17.57	45.50	56.88	47.79	49.83	56.10	33.55	42.63
	ConvLLaVA-768-7B (Ge et al., 2024)	46.50	40.45	28.35	34.88	16.60	66.07	22.97	53.15	69.72	54.42	49.02	55.49	37.11	42.40
348	InternVL2-1B (Chen et al., 2024b)	43.13	48.02	22.99	43.29	23.24	64.29	18.92	54.05	58.72	49.12	45.91	57.93	27.89	42.06
0-10	Mini-Gemini-13B-HD (Li et al., 2023b)	42.29	38.37	32.18	40.20	18.67	67.86	24.32	51.35	63.30	45.58	49.83	56.71	34.28	41.99
2/0	Qwen-VL-Chat (Bai et al., 2023)	41.97	36.67	25.67	39.13	24.48	67.86	16.22	41.89	61.47	53.54	47.52	58.54	41.54	41.64
343	DeepStack-L-HD-Vicuna-7B (Meng et al., 2024)	43.29	37.05	28.74	35.74	18.67	60.71	17.57	46.85	60.55	45.13	46.94	59.15	35.88	40.26
050	DeepStack-L-Vicuna-7B (Meng et al., 2024)	45.47	41.21	27.20	36.00	21.99	60.71	18.92	42.34	56.88	42.04	46.83	50.61	30.21	39.75
300	LLaVA-V1.6-Vicuna-13B (Liu et al., 2024a)	37.09	29.30	23.75	32.43	24.90	66.07	12.16	40.99	54.13	42.04	50.29	48.78	38.16	38.03
	LLaVA-V1.6-Mistral-7B (Liu et al., 2024a)	36.55	29.68	24.14	39.24	31.12	64.29	13.51	36.94	47.71	42.04	41.18	49.39	38.24	37.18
351	LLaVA-V1.5-13B (Liu et al., 2024a)	30.92	28.36	28.35	29.89	29.46	64.29	14.86	45.50	46.79	37.17	43.60	46.34	41.39	36.07
	Random Choice	23.12	23.63	21.84	25.85	29.46	35.71	25.68	36.94	46.79	38.50	35.64	47.65	28.61	30.15

354

VLMs hovers around 36–38%. For reference, we provide the random guess accuracy (30.15%) as a lower bound for the benchmark.

355 The tasks where VLMs exhibit relative strengths and weaknesses. From Table 2, we observe 356 that VLMs perform relatively better on tasks such as Attribute, Object, and Relation Perception, 357 as well as Attribute, Object, and Count Reasoning, where they perform much better than other 358 categories. However, they struggle with tasks such as Count Perception, Difference Spotting, Visual 359 Similarity, and Probing (see illustrations in Fig. 1). These tasks often involve multiple images, 360 some with extreme aspect ratios, and the probing tasks include indefinite-choice questions, which 361 pose additional challenges for the models. GPT-40 performs relatively weaker on Obj-P, Count-P, 362 Attr-R, Count-R, and Rel-R tasks compared to smaller models that outperform it, aligning with the limitations outlined in the official GPT-40 documentation. Overall, the models perform relatively 363 well on mid-level perception and reasoning tasks. 364

365 366

367

368 369

370

5 DIAGNOSTIC ANALYSIS OF FACTORS INFLUENCING MODEL COMPOSITIONALITY

In this section, we analyze the factors that may influence the compositionality of VLMs. We focus on three dominant factors: visual encoder design, language decoder size, and training data volume.

371 372 373

5.1 VISUAL ENCODER DESIGN

High-resolution visual encoders. A common approach to enhance a model's capability to perceive
 fine-grained visual content is to introduce higher-resolution encoders. In this study, we employ the
 control variable method, where the input resolution of the encoders is the only variable, while the
 training data and text decoders remain fixed. From Table 3, we observe that models with higher
 resolution encoders demonstrate superior capability for multimodal compositional perception and

378 reasoning. However, for the Mini-Gemini series models, the introduction of a high-resolution encoder 379 with a patch info mining mechanism unexpectedly resulted in a performance decline. 380

Table 3: Performance comparison of models with and without high-resolution encoders (Avg. refers 381 to average resolution). 382

384	Method	Resolution	Visual Tokens	Perception Avg. 1055*813	Reasoning Avg. 935*535	Probing Avg. 849*530	Overall
385	ConvLLaVA-768-7B	768	144	36.51	52.46	37.11	42.40
386	ConvLLaVA-1024-7B (Ge et al., 2024) ConvLLaVA-1536-7B	1024 1536	256 576	$\substack{43.70_{+7.19}\\41.84_{+5.33}}$	$54.41_{+1.95}$ $54.09_{+1.63}$	$40.89_{+3.78}$ $34.20_{-6.69}$	$47.32_{+4.92}$ $45.52_{+3.12}$
387	LLaVA-1.5-13B (Liu et al., 2024a)	336	576	29.91	43.45	41.39	36.07
388	LLaVA-HR-13B (Luo et al., 2024)	1024	1024	$41.83_{+11.92}$	$51.26_{+7.81}$	$48.80_{+7.41}$	$46.02_{+9.95}$
000	DeepStack-L-Vicuna-7B (Meng et al., 2024)	672	2880	36.92	46.60	30.21	39.75
389	DeepStack-L-HD-Vicuna-7B (Meng et al., 2024)	1344	14400	$35.19_{-1.73}$	$48.87_{+2.27}$	$35.88_{\pm 5.67}$	$40.26_{\pm 0.51}$
390	Mini-Gemini-13B (Li et al., 2023b)	768	576	38.51	54.60	32.28	43.74
301	Mini-Gemini-13B-HD (Li et al., 2023b)	1536	576	$37.24_{-1.27}$	$51.07_{-3.53}$	$34.28_{+2.00}$	$41.99_{-1.75}$
001	Mini-Gemini-34B (Li et al., 2023b)	768	576	51.25	58.94	41.79	53.06
392	Mini-Gemini-34B-HD (Li et al., 2023b)	1536	576	$47.73_{-3.52}$	$61.40_{+2.46}$	35.91 _{-5.88}	51.48 _{-0.58}

393 Mixture-of-encoder. Another approach to enhancing visual encoders is the use of a mixture-of-394 encoder architecture. In this setup, image features are extracted by a combination of high-resolution 395 and low-resolution encoders, providing rich visual information to the language decoders. We analyze 396 the relationship between the mixture-of-encoder architecture and model performance by aggregating 397 different encoders while keeping the training data and decoders fixed. We use the LLaVA-1.5 pretraining data for stage-1 pretraining and the EAGLE 1.8M dataset (Bi et al., 2024) for stage-2 398 fine-tuning. The initial encoder is a CLIP model with 448 resolution (Radford et al., 2021), and the 399 decoder is LLaMA-3-8B (Dubey et al., 2024). We scale up the encoders using: (A) ConvNeXt (Liu 400 et al., 2022), (B) SAM (Kirillov et al., 2023), (C) DINOv2 (Oquab et al., 2023), and (D) Pix2Struct 401 (Lee et al., 2023). The empirical results in Table 4 indicate that combining CLIP with encoder A 402 improves the models' performance; however, as the number of visual encoders increases, the models' 403 performance declines. 404

Table 4: A comparative analysis of various mixture-of-encoder architectures in relation to model 405 compositionality. 406

407							
408	Method	Visual Encoders	Relolution	Perception	Reasoning	Probing	Overall
400	LLaVA-1.5 (Liu et al., 2024a)	CLIP	448	44.93	54.16	53.34	49.19
405	LLaVA-1.5+A	CLIP+A	1024	$45.90_{\pm 0.97}$	$53.34_{-0.82}$	$56.93_{\pm 3.59}$	$49.82_{\pm 0.63}$
410	LLaVA-1.5+A+B	CLIP+A+B	1024	$45.96_{\pm 1.03}$	$52.46_{-1.7}$	$49.02_{-4.32}$	48.66_0.53
411	LLaVA-1.5+A+B+C	CLIP+A+B+C	1024	$43.41_{-1.52}$	$52.14_{-2.02}$	$54.21_{\pm 0.87}$	$47.74_{-1.45}$
412	LLaVA-1.5+A+C+D	CLIP+A+C+D	1024	44.90 _{-0.03}	$51.57_{-2.59}$	$54.86_{\pm 1.55}$	48.39 _{-0.90}

413 Visual encoder has a more significant impact on the model's compositionality, while GPT-40 414 struggles with processing higher-resolution images. By summarizing the empirical results of this 415 study, we find that for relatively simple QA tasks, only a small portion of its language capabilities are utilized (compared to the models outperforming GPT-40, whose language model size is only 70B). 416 Once the language decoder size reaches a certain threshold (e.g., 34B, 70B), the visual encoder plays 417 a more critical role in the models' performance. As discussed in Section A.2, Qwen2VL processes 418 images by largely preserving their original resolution and aspect ratio. The Internvl-2 series models 419 employ a dynamic 'any-resolution' encoding strategy: images are first mapped to an optimal aspect 420 ratio from predefined ratios, then divided into 448×448 pixel tiles, with each tile converted into 421 256 image tokens. These approaches enable the encoders to handle images of any resolution and 422 aspect ratio with minimal degradation of image quality. In contrast, GPT-40 processes images with 423 downsampling when the image's longest side > 2048px or shortest side > 768px (our data contains 424 889 such examples), contributing to its inferior performance compared to other open-source models.

425

427

426 5.2 THE VOLUME OF TRAINING DATA

428 The volume of training data is a crucial factor influencing models' performance. In this study, we 429 conduct a comparison analysis of this factor. In Table 5, we observe a significant performance increase when the training data is scaled up substantially. For instance, InternVL-Chat-V1.2 and 430 InternVL-Chat-V1.2-Plus, which use 10 times more training data than the former, show significant 431 performance improvements.

Figure 3: Interpretable analysis of different VLMs. Green letters indicate correct answers, while red letters represent wrong (predicted) answers.

487						
488	Method	Dataset Size	Perception	Reasoning	Probing	Overall
100	INF-LLaVA (Ma et al., 2024)	1.25M	41.80	46.98	35.58	43.04
489	INF-LLaVA* (Ma et al., 2024)	2.56M	$40.13_{-1.67}$	$51.39_{\pm 4.41}$	$31.41_{-4.17}$	$43.32_{\pm 0.28}$
490	InternVL-Chat-V1.2 (Chen et al., 2024c)	1.2M	56.49	63.79	60.71	59.61
401	InternVL-Chat-V1.2-Plus (Chen et al., 2024c)	12M	$60.73_{\pm 4.24}$	$70.78_{\pm 6.99}$	$65.80_{\pm 5.09}$	$64.94_{\pm 5.33}$
491	InternVL-Chat-V1.5 (Chen et al., 2024b)	-	54.14	68.20	57.01	59.58
492	InternVL2-26B (Chen et al., 2024b)	-	$60.40_{\pm 6.26}$	$70.03_{\pm 0.83}$	52.43 _{-4.58}	$63.08_{+3.5}$

Table 5: The comparison of models with and without training data scale up.

5.3 LANGUAGE DECODER SIZE

From Table 2, we observe that models with larger decoders demonstrate stronger performance. To analyze this relationship more accurately, we compare models with different decoder sizes while keeping the encoder and training data constant. The results are shown in Table 6, from which we can conclude that larger language decoders result in better performance.

Table 6: The comparison analysis of text decoder size and models' compositionality.

Method	Decoder	Perception	Reasoning	Probing	Overa
InternVL2-1B (Chen et al., 2024b) InternVL2-2B (Chen et al., 2024b) InternVL2-4B (Chen et al., 2024b) InternVL2-8B (Chen et al., 2024b)	Qwen2-0.5B-Instruct InternLM2-Chat-1.8B Phi3-Mini-128K-Instruct InternLM2.5-Chat-7B	$\begin{array}{r} 39.65 \\ 42.37_{+2.72} \\ 46.94_{+7.31} \\ 53.44_{+13.79} \end{array}$	$\begin{array}{c} 49.62 \\ 51.07_{+1.45} \\ 62.53_{+12.91} \\ 67.00_{+17.38} \end{array}$	$\begin{array}{c} 27.89\\ 38.10_{+10.21}\\ 41.18_{+13.29}\\ 54.10_{+26.21}\end{array}$	42.06 45.11 52.03 58.47
InternVL2-26B (Chen et al., 2024b) InternVL2-40B (Chen et al., 2024b) InternVL2-76B (Chen et al., 2024b)	InternLM2-Chat-20B Nous-Hermes-2-Yi-34B Hermes-2-Theta-Llama-3-70B	$\begin{array}{c} 60.40 \\ 65.44_{+5.04} \\ 63.41_{+3.01} \end{array}$	$70.03 \\ 73.99_{+3.96} \\ 75.44_{+5.41}$	$52.43 \\ 59.59_{+7.16} \\ 58.46_{+6.03}$	63.08 67.95 67.28
LLaVA-V1.6-Mistral-7B (Liu et al., 2024a)	Mistral-7B-Instruct	33.64	$\begin{array}{r} 42.00 \\ 47.92_{+5.92} \\ 58.88_{+16.88} \end{array}$	38.24	37.18
LLaVA-V1.6-Vicuna-13B (Liu et al., 2024a)	Vicuna-13B-V1.5	31.15 _{-2.49}		38.16 _{-0.08}	38.03
LLaVA-V1.6-34B (Liu et al., 2024a)	Nous-Hermes-2-Yi-34B	57.82 _{+24.18}		58.17 _{+19.93}	58.25
Mini-Gemini-13B (Li et al., 2023b)	Vicuna-13B-V1.5	38.51	54.60	32.28	43.74
Mini-Gemini-34B (Li et al., 2023b)	Nous-Hermes-2-Yi-34B	51.25 _{+12.74}	58.94 _{+4.34}	41.79 _{+9.51}	53.06
SliME-7B (Zhang et al., 2024b)	Vicuna-7B-V1.5	40.56	51.51	30.03	43.45
SliME-8B (Zhang et al., 2024b)	Llama-3-8B-Instruct	40.44 _{-0.12}	51.26 _{-0.25}	29.96 <u>-3.07</u>	43.29
SliME-13B (Zhang et al., 2024b)	Vicuna-13B-V1.5	39.30 _{-1.26}	50.06 _{-1.45}	33.55 _{+3.52}	42.63
LLaVA-HR-7B (Luo et al., 2024)	Vicuna-7B-V1.5	39.38	50.38	$33.04 \\ 48.80_{+15.25}$	42.73
LLaVA-HR-13B (Luo et al., 2024)	Vicuna-13B-V1.5	41.83 _{+2.53}	51.26 _{+1.20}		46.02
Yi-VL-6B (AI et al., 2024)	Yi-6B-Chat	43.80	50.76	48.76	46.87
Yi-VL-34B (AI et al., 2024)	Yi-34B-Chat	42.99 _{-0.81}	53.15 _{+2.39}	53.88+5.12	47.86

5.4 INTERPRETABLE ANALYSIS OF MODEL DEFICIENCIES

We conduct a comprehensive error analysis to better understand the models' deficiencies in fine-grained compositional understanding. In this analysis, the models are required to answer questions and provide explanations in a multi-turn dialogue format. Figures 3, 14, and 15 illustrate the reasons why the models fail to predict the correct answers for each task. For example, in the Obj-P task (example 3), while the 'yellow colored outline' is easily detected by humans, the models struggle to accurately identify the target objects due to the outline being mixed with numerous other characters. Additionally, the models face difficulties with fine-grained object counting, especially when several similar objects are present. In the Count-R (example 6) task, for instance, humans can precisely count the number of triangles on a wheel, but the models confuse the six irregular polygons for triangles.

CONCLUSION

This paper introduces MMCOMPOSITION, a novel high-quality benchmark for evaluating VLM compositionality. With MMCOMPOSITION, we comprehensively evaluate the compositionality of notable VLMs. Our evaluation reveals a significant gap between these models and human performance, providing insights into the limitations of existing VLMs. Additionally, we systematically analyze factors that may influence compositionality, including visual encoder design, training data volume, and language decoder size. We find that for relatively simple QA tasks, only a small portion of the language model's capacity is utilized (as seen in models outperforming GPT-40, whose language model has 70B parameters). Once the language decoder reaches a certain size threshold (e.g., 34B, 70B), the visual encoder has a more pronounced impact on compositionality. In summary, our work provides a comprehensive and precise framework for evaluating the compositionality of VLMs, identifies key areas for improvement, and suggests potential directions for future advancements.

540 REFERENCES

565

566

567

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- 548
 549 01. AI, :, Alex Young, Bei Chen, Chao Li, Chengen Huang, et al. Yi: Open foundation models by 01.ai, 2024.
- Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
 model for few-shot learning. *Advances in neural information processing systems*, 2022.
- Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision*, pp. 2425–2433, 2015.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
 text reading, and beyond. 2023.
- Jing Bi, Yunlong Tang, Luchuan Song, Ali Vosoughi, Nguyen Nguyen, and Chenliang Xu. EAGLE:
 Egocentric AGgregated language-video engine. In ACM Multimedia 2024, 2024. URL https: //openreview.net/forum?id=mk8p2JKdu0.
 - Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *arXiv preprint arXiv:2403.20330*, 2024a.
- Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
 Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
 multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024b.
- 571
 572
 573
 574
 Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024c.
- Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
 impressing gpt-4 with 90%* chatgpt quality. *See https://vicuna. lmsys. org (accessed 14 April 2023)*, 2(3):6, 2023.
- 579 Noam Chomsky. *Aspects of the Theory of Syntax*. Number 11. MIT press, 2014.580
- Wenliang Dai, Junnan Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning. arXiv 2023. arXiv preprint arXiv:2305.06500, 2, 2023.
- Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang
 Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-form text-image
 composition and comprehension in vision-language large model. *arXiv preprint arXiv:2401.16420*,
 2024a.
- Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Songyang Zhang, Haodong Duan, Wenwei Zhang, Yining Li, et al. Internlm-xcomposer2-4khd: A pioneering large vision-language model handling resolutions from 336 pixels to 4k hd. *arXiv preprint arXiv:2404.06512*, 2024b.
- 593 Abhimanyu Dubey, Abhinav Jauhri, Pandey, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

605

612

618

625

626

627

630

631

634

635

636

- 594 Chaoyou Fu, Peixian Chen, et al. Mme: A comprehensive evaluation benchmark for multimodal 595 large language models. ArXiv, abs/2306.13394, 2023. URL https://api.semanticscholar. 596 org/CorpusID: 259243928.
- Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A Smith, 598 Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not perceive. arXiv preprint arXiv:2404.12390, 2024. 600
- 601 Chunjiang Ge, Sijie Cheng, Ziming Wang, Jiale Yuan, Yuan Gao, Jun Song, Shiji Song, Gao 602 Huang, and Bo Zheng. Convllava: Hierarchical backbones as visual encoder for large multimodal 603 models. ArXiv, abs/2405.15738, 2024. URL https://api.semanticscholar.org/CorpusID: 604 270045537.
- Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang 606 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entan-607 gled language hallucination and visual illusion in large vision-language models. In Proceedings of 608 the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14375–14385, 2024. 609
- 610 Muyang He, Yexin Liu, Boya Wu, Jianhao Yuan, Yueze Wang, Tiejun Huang, and Bo Zhao. Efficient 611 multimodal learning from data-centric perspective. arXiv preprint arXiv:2402.11530, 2024.
- Lisa Anne Hendricks and Aida Nematzadeh. Probing image-language transformers for verb under-613 standing. arXiv preprint arXiv:2106.09141, 2021. 614
- 615 Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng, 616 Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video 617 understanding. arXiv preprint arXiv:2408.16500, 2024.
- Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrepe: 619 Fixing hackable benchmarks for vision-language compositionality. Advances in Neural Information 620 Processing Systems, 36, 2024. 621
- 622 Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A Smith, and Jiebo Luo. Promptcap: 623 Prompt-guided image captioning for vqa with gpt-3. In Proceedings of the IEEE/CVF International 624 Conference on Computer Vision, pp. 2963–2975, 2023.
 - Hang Hua, Xingjian Li, Dejing Dou, Cheng-Zhong Xu, and Jiebo Luo. Noise stability regularization for improving bert fine-tuning. arXiv preprint arXiv:2107.04835, 2021.
- 628 Hang Hua, Jing Shi, Kushal Kafle, Simon Jenni, Daoan Zhang, John Collomosse, Scott Cohen, 629 and Jiebo Luo. Finematch: Aspect-based fine-grained image and text mismatch detection and correction. arXiv preprint arXiv:2404.14715, 2024a.
- Hang Hua, Yunlong Tang, Chenliang Xu, and Jiebo Luo. V2xum-llm: Cross-modal video summa-632 rization with temporal prompt instruction tuning. arXiv preprint arXiv:2404.12353, 2024b. 633
 - Mingxin Huang, Yuliang Liu, Dingkang Liang, Lianwen Jin, and Xiang Bai. Mini-monkey: Multiscale adaptive cropping for multimodal large language models. arXiv preprint arXiv:2408.02034, 2024.
- 638 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In Proceedings of the IEEE/CVF conference on computer 639 vision and pattern recognition, pp. 6700-6709, 2019. 640
- 641 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and 642 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual 643 reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, 644 2017. 645
- Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete 646 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. 647 Segment anything. arXiv:2304.02643, 2023.

648 649	Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei. Visual
000	genome: Connecting language and vision using crowdsourced dense image annotations. Interna-
001	tional Journal of Computer Vision, 123:32 – 73, 2016. URL https://api.semanticscholar.
002	org/corpusid:4492210.
000	Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
655	Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot
000	parsing as pretraining for visual language understanding. In International Conference on Machine
657	Learning, pp. 18893–18912. PMLR, 2023.
658	
659	Bonao Li, Kui wang, Guangzhi wang, Yuying Ge, Yixiao Ge, and Ying Snan. Seed-bench: Bench-
660	2023a
661	2025 u .
662	Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
663	pre-training with frozen image encoders and large language models. In International conference
664	on machine learning. PMLR.
665	Junnan Li Dangua Li Coiming Vieng, and Stayon Hei. Dlin, Destatooning language image me
666	training for unified vision-language understanding and generation. In <i>International conference on</i>
667	machine learning, pp. 12888–12900 PMLR 2022
668	machane learning, pp. 12000 12900. 1 Milit, 2022.
669	Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
670	Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
671	<i>arXiv:2403.18814</i> , 2023b.
672	Zhang Li, Biao Yang Ojang Liu, Zhiyin Ma, Shuo Zhang, Jingyu Yang, Yaho Sun, Vuliang Liu, and
673	Xiang Bai Monkey Image resolution and text label are important things for large multi-modal
674	models. In proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
675	2024.
676	
677	Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
678 679	Vision and Pattern Recognition, pp. 26689–26699, 2024.
680	Jingvang Lin, Hang Hua, Ming Chen, Yikang Li, Jenhao Hsiao, Chiuman Ho, and Jiebo Luo.
681	Videoxum: Cross-modal visual and textural summarization of videos. IEEE Transactions on
682	Multimedia, 2023.
683	T VII' MILIN' C DI I I DI DI C DI C
684	Dollár and C Lawrence Zitnick Microsoft cocc: Common objects in context. In ECCV 2014
CO0	Springer.
687	~F9
688	Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the Association
689	for Computational Linguistics, 11:635–651, 2023a.
690	Hasting Lin, Changers Li, Vahang Li, Da Li, Manshan Zhang, Chang Chan, and Vang La, La
691	Lava-next: Improved reasoning ocr and world knowledge January 2024a UPI https://
692	llava-vl.github.io/blog/2024-01-30-llava-next/
693	
694	Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
695	neural information processing systems, 36, 2024b.
696	Vuon Liu Hoodong Duon Vuonhon Zhang Bo Li Congueng Zhang Wangho Zhao Vila Vuon Liosi
697	Wang Conghui He Ziwei Liu et al Mmhench: Is your multi-modal model an all-around player?
698	arXiv preprint arXiv:2307.06281, 2023b.
699	······································
700	Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
701	A convnet for the 2020s. <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> , 2022.

702 703 704	Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. <i>arXiv preprint arXiv:2310.02255</i> , 2023.
705 706 707 708	Gen Luo, Yiyi Zhou, Yuxin Zhang, Xiawu Zheng, Xiaoshuai Sun, and Rongrong Ji. Feast your eyes: Mixture-of-resolution adaptation for multimodal large language models. <i>arXiv preprint arXiv:2403.03003</i> , 2024.
709 710	Yiwei Ma, Zhibin Wang, Xiaoshuai Sun, Weihuang Lin, Qiang Zhou, Jiayi Ji, and Rongrong Ji. Inf-llava: Dual-perspective perception for high-resolution multimodal large language model, 2024.
711 712 713 714	Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe: Can vision-language foundation models reason compositionally? In <i>Proceedings of the IEEE/CVF</i> <i>Conference on Computer Vision and Pattern Recognition</i> , pp. 10910–10921, 2023.
715 716 717	Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual question answering benchmark requiring external knowledge. In <i>Proceedings of the IEEE/cvf conference on computer vision and pattern recognition</i> , pp. 3195–3204, 2019.
718 719 720	Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq R. Joty, and Enamul Hoque. Chartqa: A bench- mark for question answering about charts with visual and logical reasoning. <i>ArXiv</i> , abs/2203.10244, 2022. URL https://api.semanticscholar.org/CorpusID:247593713.
721 722 723 724	Minesh Mathew, Dimosthenis Karatzas, R. Manmatha, and C. V. Jawahar. Docvqa: A dataset for vqa on document images. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2199–2208, 2020. URL https://api.semanticscholar.org/CorpusID:220280200.
725 726	Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, and Yu-Gang Jiang. Deepstack: Deeply stacking visual tokens is surprisingly simple and effective for lmms, 2024.
727 728 729 730	Yasumasa Onoe, Sunayana Rane, Zachary Berger, Yonatan Bitton, Jaemin Cho, Roopal Garg, Alexander Ku, Zarana Parekh, Jordi Pont-Tuset, Garrett Tanzer, Su Wang, and Jason Baldridge. DOCCI: Descriptions of Connected and Contrasting Images. In <i>arXiv:2404.19753</i> , 2024.
731 732	Maxime Oquab, Timothée Darcet, Moutakanni, et al. Dinov2: Learning robust visual features without supervision, 2023.
733 734 735 736 727	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In <i>International conference on machine learning</i> , pp. 8748–8763. PMLR, 2021.
738 739 740	Arijit Ray, Filip Radenovic, Abhimanyu Dubey, Bryan A Plummer, Ranjay Krishna, and Kate Saenko. Cola: How to adapt vision-language models to compose objects localized with attributes? <i>arXiv preprint arXiv:2305.03689</i> , 2023.
741 742 743	Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Alayrac, et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. <i>arXiv</i> preprint arXiv:2403.05530, 2024.
744 745 746 747	Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In <i>Conference on Empirical Methods in Natural Language Processing</i> , 2019. URL https: //api.semanticscholar.org/CorpusID:201646309.
748 749 750	Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual reasoning. In <i>Annual Meeting of the Association for Computational Linguistics</i> , 2017. URL https://api.semanticscholar.org/CorpusID:19435386.
751 752 753	Yunlong Tang, Jing Bi, Siting Xu, et al. Video understanding with large language models: A survey. <i>arXiv preprint arXiv:2312.17432</i> , 2023.
754 755	Yunlong Tang, Daiki Shimada, Jing Bi, and Chenliang Xu. Avicuna: Audio-visual llm with interleaver and context-boundary alignment for temporal referential dialogue. <i>arXiv preprint arXiv:2403.16276</i> , 2024.

756	Qwen team. Qwen2-vl. 2024.
758	Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Can-
759	dace Ross. Winoground: Probing vision and language models for visio-linguistic compositionality.
760	In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
761	5238–5248, 2022.
762	Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
763	Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open,
764	vision-centric exploration of multimodal llms. arXiv preprint arXiv:2406.16860, 2024a.
765	Shenghang Tong Zhuang Liu Yuexiang Zhai Yi Ma Yann LeCun and Saining Xie Eves wide
766	shut? exploring the visual shortcomings of multimodal llms. In <i>Proceedings of the IEEE/CVF</i>
767	Conference on Computer Vision and Pattern Recognition, pp. 9568–9578, 2024b.
768	Hugo Touvron Thibaut Lavril Gautier Izacard Xavier Martinet Marie-Anne Lachaux Timothée
769	Lacroix Bantiste Rozière Naman Goval Eric Hambro Faisal Azhar et al Llama: Open and
770	efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.
771	E-i Ware Virger E. James Village 7-land i Oin Lin Virger Divid Man Ner Virger
772	Wanyuan Zhou, Kai Zhang, et al. Muirbanch: A comprehensive benchmark for robust multi image
773	understanding arXiv preprint arXiv:2406.09411.2024
774	
775	Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
776	arXiv:2408.01800.2024
770	<i>urxiv.2400.01000, 2024</i> .
770	Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen Hu,
790	Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models with
781	multimodality. arxiv preprint arXiv:2304.14178, 2023.
782	Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and
783	Fei Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality
784	collaboration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
785	<i>Recognition</i> , pp. 13040–13051, 2024.
786	Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
787	and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In
788	International conference on machine learning. PMLR, 2024a.
789	Weihao Yu, Zhengyuan Yang, Linfeng Ren, Linjie Li, Jianfeng Wang, Kevin Lin, Chung-Ching Lin,
790	Zicheng Liu, Lijuan Wang, and Xinchao Wang. Mm-vet v2: A challenging benchmark to evaluate
791	large multimodal models for integrated capabilities. arXiv preprint arXiv:2408.00765, 2024b.
792	Yongsheng Yu, Ziyun Zeng, Hang Hua, Jianlong Fu, and Jiebo Luo. Promptfix: You prompt and we
793	fix the photo. arXiv preprint arXiv:2405.16785, 2024c.
794	Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, et al. Mmmu: A massive multi-discipline mul-
795	timodal understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502.
796	2023.
797	Mert Yuksekgonul Federico Rianchi Pratvusha Kalluri Dan Jurafsky and James Zou. When and
798	why vision-language models behave like hass-of-words and what to do about it? In <i>The Flowenth</i>
799	International Conference on Learning Representations, 2022.
801	Den Zhang Visawi Dang Visang Zang Visang Cap Dai Olan L'a Chan Olang Cap Hall
802	ran Zhang, Alaoyi Dong, Tunang Zang, Tunang Cao, Kui Qian, Lin Chen, Qipeng Guo, Haodong Duan Bin Wang Linke Ouyang et al. Internhy composer 2.5: A versatile large vision language
803	model supporting long-contextual input and output arXiv preprint arXiv:2407.03320.2024a
804	
805	Y1-Fan Zhang, Qingsong Wen, Chaoyou Fu, Xue Wang, Zhang Zhang, Liang Wang, and Rong Jin Bayand Ilaya hdi. Diving into high recelution large multimodel models.
806	arXiv:2406.08487.2024b
807	
808	Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and
809	Jianwei 11n. VI-cnecklist: Evaluating pre-trained vision-language models with objects, attributes

810 A APPENDIX

812

813 814

829

830

831 832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848 849 850

851

852

A.1 QUANTITIVE RESULTS OF MMCOMPOSITION

In this section, we show statistical results for MMCOMPOSITION in Figure 4 through Figure 7.

Figure 4: Distribution of difficulty levels across the question set, illustrating the challenging nature of tasks.

Figure 6: Resolution distribution of images in our benchmark, reflecting the portion of highquality images in MMCOMPOSITION.

Figure 5: Distribution of option counts per question, showing the variety in answer choices provided to evaluate VLMs.

Figure 7: Word cloud of key terms from the questions, illustrating the diversity of compositional content evaluated in the benchmark.

A.2 COMPARISON ANALYSIS OF IMAGE ENCODING IN GPT-40, QWEN2-VL, AND INTERNVL-2

In GPT-40, when the image detail parameters are set to "high", images are first scaled to fit within
a 2048 × 2048 square while maintaining their aspect ratio. Then, the images are further scaled so
that the shortest side is 768px long. Finally, GPT-40 calculates how many 512px squares the image
contains, with each square costing 170 tokens. An additional 85 tokens for low resolution are always
added to the final total. As a result, GPT-40 does not achieve true "any resolution" image processing.

In Qwen2-VL and InternVL-2, the image encoders adopt a dynamic "any resolution" encoding strategy. The images are first mapped to an optimal aspect ratio from predefined ratios, then divided into 448 × 448 or 28 × 28 pixel tiles, with each tile converted into 256 or 1 image tokens. A thumbnail is then generated to capture the global context. This allows the encoders to handle images of any resolution and aspect ratio. Furthermore, the image encoder in Qwen2-VL is a 675M ViT with a twodimensional positional encoding mechanism, while InternVL-2 utilizes the more powerful InternViT with 6B parameters. This distinction contributes to the superior performance of the compositionality

866 867

868

of Qwen2-VL and InternVL-2 in our benchmark. In Table 7, we provide a comparison of the 865 properties of visual encoders for the aforementioned models.

Table 7: Visual encoder comparison of GPT-40, InternVL2 and Qwen2-VL.

Meth	od Visual Encoder In		Image Tile Size	Maximum Number of Tiles	Maximum Aspect Ratio	# of Tokens for One Tile	
GPT	40	- -	512 x 512	8	any	170	
Ower	nvL2 n2-VL	ViT-675M	448 x 448 28 x 28	12 dynamic	1:6 any	256	
		I					
	D				a		
A.3	DEF	FINITION OF	3 DISTINCT	CATEGORIES IN MM	COMPOSITION		
	• 4	ttribute Perc	ention [.] The s	pecific attributes or pro	perties of the object	perception task that	
	ca	an be solved b	y humans "w	ithin a blink".	perfies of the object	perception task that	
	• 0	hiect Percen	• tion: Identific	pation or recognition of	f objects in the ima	ne	
	- 0 - 0		antian. Caur		i objects in the init.	4h a ina a a	
	• (ounting Perc	eption: Cour	lung the number of ob	jects or elements in	the image.	
	• R	elation Perce	eption: Under	standing the relations	nips between object	s in the image.	
	• D si	ifference Spo milar images.	otting: Identi	fying differences or ch	anges between obje	ects or scenes in two	
	• T	ext Renderin	g: Reading of	r interpreting text press	ent in the image.		
	• V	isual Similar	- Compar	ing similarities betwe	en objects or elem	ents across multiple	
	in	nages.	ny. compa	ing similarities betwe	en objects of clenk	ents deross multiple	
	• •	ttributo Doo	soning: Ident	if ying and reasoning s	bout specific attrib	utes or properties of	
	• A oł	biects in the i	nage	inying and reasoning a	ibout specific attrib	utes of properties of	
			······	·	4 . 1. ¹ 4. ¹		
	• 0	bject Reason	ing: identify	ing and reasoning abou	it objects in the ima	ige.	
	• C th	ounting Reas te image.	oning: Identi	fying and reasoning ab	out the number of o	bjects or elements in	
	• R of	elation Reasons of the second	oning: Identif e image.	ying and reasoning abo	ut the spatial arrang	ement or positioning	
	• 0	bject Interac	ction: Unders	tanding interactions ar	nong multiple objec	cts in the image.	
	• V	L Composit	ion Probing:	Examining the com	position or combin	ation of visual and	
	te co	xtual element ompositional (ts in images, descriptions a	where models are requestion bout the image.	uired to accurately	find all the complex	
			I.	C			
A 4	Cur						
A.4	CHA	ARACTERISTI	CS OF QUES	TIONS WHERE MODE	LS UNDERPERFOR	М	
We de	efine 1	the comprehei	nsive perform	ance value (CPV) for e	ach question as the	average score across	
54 V	LMs.	By comparing	g each questio	on's CPV with the score	e of a random choic	e within its class, we	
find t	hat 1,	159 questions	s have a CPV	lower than that of rand	dom chance. We sh	ow statistical results	
quest	ions v	with low CPV	in Figure 8 t	hrough Figure 11.			
A.5	ANA	ALYSIS OF GI	PT-40's Uni	DERPERFORMANCE IN	SPECIFIC TASKS		
C:		[lo manfamme		andram on Oh: D.C.	t D Atta D Car at	D and Del D to 1	
Since	GP1	-40 performs	s relatively w	eaker on Obj-P, Cour	II-F, ATT-K, Count-	-K, and Kel-K tasks	
behir	nd its	poor perform	nance on the	se tasks. Figure 12 n	resents interpretab	le examples for the	
afore	menti	oned categori	es.		protuo	r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-r-	
		C					
A.6	Mo	re Interpre	ETABLE EXAN	MPLES			
To pr	ovide	a clearer and	more compre	ehensive interpretation	of the models' can	abilities, we present	

917 apa s, ŀ additional interpretable examples in Figure 14 and Figure 15.

Figure 8: Distribution of difficulty levels of questions with low CPV, illustrating the authenticity of the difficulty distribution in MMCOMPOSITION. Figure 9: Distribution of option counts for questions with low CPV.

Alter and the second se

Figure 11: Word cloud of key terms from the questions with low CPV, illustrating the keywords appearing in the questions that VLMs are hard to answer currently.

Figure 10: Resolution distribution of images with low CPV.

Figure 12: GPT-40 Weak Category Analysis. The logos of the models or human displayed to the right of the option(s) indicate that the model or human has selected the option(s) as the correct answer(s).

Figure 13: Performance gap between images whose shortest side > 768px and those \leq 768px, defined as gap = $Acc_{>768px} - Acc_{\leq 768px}$. The histogram shows the distribution of performance gaps across 13 tasks. The average performance gap for GPT-40 is 14.26, while for Qwen2-VL, it is 9.05. The smaller gap for Qwen2-VL indicates its greater effectiveness in processing high-resolution images. Additionally, Qwen2-VL's performance gaps are more consistently positive across different tasks, further highlighting its robustness in handling high-resolution images.

Figure 14: More interpretable analysis of different VLMs. Green indicates correct answers, while red represents the predicted wrong answers.

Figure 15: More interpretable analysis of different VLMs. Green indicates correct answers, while red represents the predicted wrong answers.

Table 8: Comparison with related VL benchmarks: "Multi-Hop" refers to whether the dataset contains
questions that need multi-hop reasoning, "Comprehensive" in the Capabilities column indicates the
benchmark evaluates multiple capabilities for VLMs (e.g., recognition, OCR, knowledge, math, and
spatial reasoning).

I	Dataset	Size	Human Annotation	Multi-Hop	Capabilities	Best Performance (Model/Human)
1	MMBench Liu et al. (2023b)	3,217	×	×	Comprehensive	86.1 / -
1	MME Fu et al. (2023)	2,800	1	×	Comprehensive	1790.04/-
1	MMStar Chen et al. (2024a)	1,500	1	×	Comprehensive	66.0/-
5	SeedBench Liu et al. (2023b)	19k	1	×	Comprehensive	72.4 / -
1	MMMU Yue et al. (2023)	11.5k	1	×	College-Level Subject Knowledge	69.1 / 88.6
I	HalBench Guan et al. (2024)	1,129	\checkmark	×	Hallucination	67.58 / -
I	MMCOMPOSITION (ours)	4,342	 Image: A second s	1	Compositionality	67.95 / 90.31

1145 A.7 ADDITIONAL EXPERIMENTS

1144

To further verify the challenging nature of MMCOMPOSITION and demonstrate the indispensable role of images, we conducted additional experiments under image-blind settings. The results are presented in Table 10. We also conducted experiments to compare different visual-to-language (V2L) adapters and their impact on model performance, as summarized in Table 9. Additionally, we examined the models' abilities to handle multi-hop reasoning questions, the effect of providing in-context examples, and the performance when multiple images are used. These experiments aim to provide a comprehensive understanding of the factors influencing model performance on MMCOMPOSITION.

Image-blind Setting. As shown in Table 10, all models experienced significant performance drops across all evaluation dimensions when visual inputs were removed. For instance, the overall score of Qwen2-VL-72B decreased by 20.50%, underscoring the indispensable role of images in these tasks. This substantial decline confirms that MMCOMPOSITION effectively evaluates the integration of visual and linguistic understanding, as models struggle without visual context.

1158
1159
1150
1150
1160
1160
1160
1161
1161
1161
1162
1162
1162
1164
1165
1164
1165
1166
1167
1168
1169
1169
1160
1160
1161
1161
1162
1161
1162
1161
1162
1162
1161
1162
1161
1162
1161
1162
1162
1161
1162
1161
1162
1161
1162
1162
1162
1161
1162
1161
1162
1162
1161
1162
1161
1162
1161
1162
1162
1161
1162
1162
1161
1162
1161
1162
1162
1162
1162
1161
1162
1162
1162
1162
1162
1162
1162
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1164
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1165
1166
1166
1167
1167
1167
1168
1168
1169
1169
1164
1164
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1166
1166
1167
1167
1168
1168
1168
1169
1169
1169
1164
1164
1164
1164</l

Multi-hop/Non-multi-hop Question Setting. We analyze the performance on multi-hop versus non-multi-hop question settings (Table 11) and observe that some models perform better on multi-hop questions, indicating strength in complex reasoning tasks. For example, Qwen2-VL-72B achieved an overall score of 70.22 on multi-hop questions, compared to 58.55 on non multi-hop ones. This demonstrates the model's enhanced capability to handle questions requiring multiple reasoning steps.

In-context Learning Setting. The results in Table 12 indicate that in-context examples do not consistently improve performance. For Qwen2-VL-72B, adding one example slightly decreased the overall score by 0.92%, while adding more examples led to further declines. Similarly, InternVL2-40B experiences a drop of up to 13.44% with three in-context examples. These results suggest that the models may not effectively utilize in-context learning for visual reasoning tasks, possibly due to limitations in their training data or architectural design.

Multi-image Setting. As shown in Table 13, the performance varies between models. Qwen2-VL 72B shows an improvement in overall score by 4.14% when multiple images are provided, indicating effective utilization of additional visual information. In contrast, InternVL2-40B's performance decreases by 1.62%, suggesting difficulties in integrating information from multiple images.

These additional experiments reinforce the challenging nature of MMCOMPOSITION and highlight
 the importance of visual information, adapter architectures, and the complexities involved in multi hop reasoning and in-context learning within multimodal models. The findings provide valuable
 insights for future research aiming to enhance the capabilities of vision-language models.

1183

1103

1184 1185

1186

1188 1189 1190 1191 1192 TE 1193 1194 1195 (Object Perception) Which of the following 1196 statements is true? A. The first sign has a white arrow pointing up (Relation Reasoning) What size is the shiny (Attribute Perception) What is the color of 1197 thing that is behind the tiny gray thing and in front of the small red cylinder? diagonal and the sign next to it has a white arrow pointing down. the line that horizontally intersects the centered 'X' in the image? 1198 A. large B. small C. Red B. The first sign has a white arrow pointing down A. Black B. White D. Blue and the sign next to it has a white arrow pointing 1199 Answer: B Answer: B up diagonal. Both signs have white arrows pointing down. 1200 _____ D. Both signs have white arrows pointing up 1201 diagonal. Answer: B 1202 ------1203 1204 Left Righ Righ (Object Interaction) Which image (left or 1205 te Reasoning) Which image, left or right) shows a plant that was harmed by right, shows the person with hair to their shoulders who has blue eyes, while the other 1206 another organism, resulting in the plant person has brown eyes? A. Left B. Right being broken into pieces? 1207 A. Left B. Right 1208 Answer: A Answer: A 1209 1210 (Relation Perception) Is the gray street light 1211 directly behind the arm or the utility pole in the bottom right corner of the image? A. The street light is behind the arm 1212 B. The street light is behind the utility pole.C. The utility pole is in front of the arm. 1213 -----11 11 11 11 D. The utility pole is in front of the street light. 1214 Left Right Answer: A 1215 (VL Composition Probing) Which image, the left or the right, depicts a young person playing 1216 (Difference Spotting) Three of the following baseball with a blue bat and a green ball? four slides are from the same presentation, A. Left 1217 but one is from a different one. Please B. Right identify the outlier. Answer: B 1218 A. Image 4 B. Image 3 C. None of the choices provided 1219 Left Right D. Image 2 1220 (Object Re ioning) One image shows a Answer: A ferret standing on all fours on dirt, with its -----1221 body in profile and its head turned. 1222 A. True **B** False 1223 Answer: B ------1224 1225 ting Re ng) There is a matte cylinder Image 1 to the left of the tiny purple shiny object; how 1226 many red metal things are behind it? (Counting Perception) How many different C. 1 D. 4 1227 colored pillows are stacked on top of each A. 2 B. 3 Answer: C other in one of the images? 1228 A. One B. Three 1229 C. Five D. Two 1230 E. None of the choices provided Answer: E 1231 1232 (Text Rendering) Is there a red and black sticker (Visual Similarity) Is it possible for you to unearth 1233 covering any part of the text on the severely weathered white sign that reads "SKATEBOARDS OR BICYCLES ALLOWED ON SIDEWALK"? images containing the identical building as portrayed in Image 1? 1234 A. Yes, covering the word "ALLOWED" B. No, there is no sticker C. Yes, covering the word "SKATEBOARDS" D. Yes, covering the word "NO" A. Image 2 B. Image 4 1235 C. Image 3 1236 D. None of the choices provided ц ц ц Answer: D Answer: C 1237

Figure 16: Examples of multi-hop questions: The ratio of multi-hop to non-multi-hop questions in our dataset is 2,459 to 1,841.

1291 1292

1293

1294

	Aodel		Visual Encoder		V2L Ada	pter	Perception	Reasoning	ng Probi
mPLUG-O	nPLUG-Owl2 Ye et al. (2024)		14	LLaMA2-7	B Q-Forn	ner	36.90	46.16	30.30
LLaVA1.5-	7B Liu et al. (2024b)	ViT-G/14 ViT-L/14		Vicuna-7B Vicuna-7B	Q-Forn MLP	her	35.22 36.51	43.70 47.04	31.4
InstructBLIP-13B Dai et al. (2023)		ViT-G/14		Vicuna-13E	Q-Forn	ner	35.53	42.70	25.2
LLaVA1.5-	13B Liu et al. (2024b)	ViT-L/	/14	Vicuna-13E	B MLP	·	37.23	49.75	39.3
		Table 1	10: Re	sults for	Image-B	lind S	etting.		
	Model	Percep		tion H	Reasoning	P	robing	Overall	
	Owen2-VL-72B		56.53	7	6.39	70).26	65.2	4
	Qwen2-VL-72B-	olind 45.16_		11.37 4	8.17_28.2	2 30	$0.76_{-39.50}$	$44.74_{-20.50}$	
	InternVL2-26B InternVL2-26B-blind		60.40	7	0.03	52	2.43	63.0	8
			nd 34.80_2		2.63_27.4	0 32	$2.17_{-20.26}$	37.39_25.69	
	InternVL2-40B		64.57	7	4.12	67	7.14	67.9	5
	InternVL2-40B-b	lind 37.88_		26.69 4	3.35_30.7	7 34	4.28_32.86	39.54_28.41	
	InternVL2-76B		63.41	7	5.44	58	3.46	67.2	.8
	InternVL2-76B-b	olind (33.93_	29.48 4	$4.08_{-31.30}$	₆ 32	$2.68_{-25.78}$	37.5	$1_{-29.77}$
Table	e 11: Comparison	of mode	els' pe	rforman	ce on mul	ti-hop	p and non	multi-	hop que
								• •	0 11
	Model			Percep	tion Re	asoni	ng Prob	ing	Overall
	InternVL2-40B-non-mu		ılti-hop 74		.11 66.		-	-	72.28
	Intern v L2-40b-m	uiti-nop		51.2	4	//.01	59.:	. 99	64.63
	Qwen2-VL-72B-non-m		ulti-hop 5:		.05 69.3				50 55
	Querra VI 72D		u-nop	59.0		70.37	-	-7	20.22
	Qwen2-VL-72B-	multi-ho	p	58.9	1	69.37 79.22	69.5	57	70.22
	Qwen2-VL-72B- VILA-40B-non-n	multi-hop	p	58.9 66.2	9 9 9	69.37 79.22 61.49	- 69.: -	57	65.14 60.25
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi	multi-hop -hop	p 0	53.0 58.9 66.2 44.5	9 9 9 8 8	69.37 79.22 61.49 71.62	69.3 62.1	57 16	65.14 60.25
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi-	multi-hop hulti-hop hop	p	53.0 58.9 66.2 44.5 63.1 48.5	9 1 1 1 1 1	69.37 79.22 61.49 71.62 57.77	69.4 62.1	57 16	65.14 60.25 61.90 58.03
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho	multi-hop hop ti-hop p	p 	53.0 58.9 66.2 44.5 63.1 48.5	9 1 1 1 1 1 1 1 1	69.37 79.22 61.49 71.62 57.77 66.76	69.5 62.7 54.0	57 16 65	65.14 60.25 61.90 58.03
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi GPT-4o-non-multi GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B-	multi-hop nulti-hop hop ti-hop p non-multi-hop	ti-hop	53.0 58.9 66.2 44.5 63.1 48.5 66.1 44.2	5 11 9 88 9 11 4 0	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91	69.: 62. 54.0	57 16 55 17	38.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B-	multi-hop hop ti-hop p non-mult multi-ho	ti-hop p	33.0 58.9 66.2 44.5 63.1 48.5 66.1 44.2	5 11 199 188 9 11 4 00	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91	69.: 62. 54.0 58.	57 16 55 17	38.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop hulti-hop ti-hop p non-multi multi-hoj toon-multi	ti-hop	53.0 58.9 66.2 44.5 63.1 48.5 66.1 44.2 55.6 42.3	5 11 19 18 9 11 4 00 8 9 11 4 00	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78	69.: 62. 54.: 58.	57 16 55 17 50	38.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop -hop ti-hop p non-mult multi-hop ton-multi nulti-hop	ti-hop p i-hop	53.0 58.9 66.2 44.5 63.1 48.5 66.1 44.2 55.6 42.3	5 1 9 8 9 1 4 0 8 9 1 4 0 8 9 9 1 1 4 0 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78	69.: 62. 54.0 58. 49.0	57 16 55 17 60	38.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop hulti-hop hop ti-hop p non-multi multi-hop non-multi nulti-hop Table	ti-hop p i-hop p 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 63.1\\ 48.5\\ 66.1\\ 44.2\\ 66.1\\ 44.2\\ 155.6\\ 42.3\\ esults fo$	5 11 19 19 19 19 10 4 10 10 18 19 11 10 10 10 10 10 10 10 10 10 10 10 10	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se	69.: 62. 54.0 58. 49.0	57 16 55 17 50	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi GPT-4o-non-multi GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop hulti-hop ti-hop p non-multi multi-hop non-multi nulti-hop Table	ti-hop p i-hop p	$\begin{vmatrix} 33.6\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 63.1\\ 48.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo$	5 11 19 18 9 11 4 10 18 9 9 r In-conte	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se	69.: 62. 54.(558. 49.(57 16 55 17 60	38.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop hulti-hop ti-hop p non-multi multi-hop nulti-hop Table	ti-hop p i-hop b 12: R	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 63.1\\ 48.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo$	5 9 9 8 9 1 4 0 8 9 r In-conte Reasonir	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se		57 16 55 17 50 Ove	38.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop nulti-hop ti-hop p non-multi multi-hop toon-multi nulti-hop	ti-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop p i-hop j i i i i i i i i i i i i i i i i i i	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 63.1\\ 48.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo$	5 9 9 8 9 11 4 0 8 9 r In-conte Reasonir 76.39	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se		57 16 55 17 50 0ve 65.2	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09 erall 24
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop nulti-hop -hop ti-hop p non-multi multi-hop toon-multi nulti-hop Table example	ti-hop p i-hop b 12: R Perc 56.5 62.1	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 66.1\\ 48.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo\\ ception\\ 3\\ 9_{+5.66} \end{vmatrix}$	5 9 8 9 1 4 0 8 9 r In-conte Reasonir 76.39 73.30 _{-3.0}	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se ng l		57 16 55 17 50 0ve 65.2 64.3	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09 erall 24 320.92
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi GPT-4o-non-multi GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Qwen2-VL-72B-1 Qwen2-VL-72B-1 Qwen2-VL-72B-2 Qwen2-VL-72	multi-hop nulti-hop hop ti-hop p non-multi-hop non-multi-hop nulti-hop Table example example	ti-hop p i-hop b 12: R Perc 56.5 62.1 63.0 61.6	$\begin{vmatrix} 53.6\\ 58.9\\ 58.9\\ 66.2\\ 44.5\\ 48.5\\ 66.1\\ 44.2\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo\\ ception\\ 3\\ 9_{+5.66}\\ 6_{+6.53}\\ 1000 \\ 6_{+6.53}\\ 1000 \\ 100$	5 9 8 9 1 4 0 8 9 r In-conte Reasonir 76.39 73.30_3.0 70.84_5.5	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se ng 19 255		57 16 55 17 50 0vc 65.2 64.3 64.1 63.2 64.3 64.1 63.2	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09 64.98 53.09 53.09 64.98 53.09 53.09 64.98 53.09 53.09 64.98 64.98 53.09 53.09 64.98 64.98 53.09 53.09 64.98 64.98 53.09 53.10 64.98 64.98 53.09 64.98 64.98 64.98 53.09 64.98 64.98 64.98 64.98 64.98 64.98 64.98 64.98 64.98 64.98 64.98 64.98 64.98
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi GPT-4o-non-multi GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r	multi-hop nulti-hop hop ti-hop p non-multi-hop non-multi-hop Table example example example example	ti-hop p i-hop b 12: R Perc 62.1 63.0 61.6	$\begin{vmatrix} 53.6\\ 58.9\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 66.1\\ 48.5\\ 66.1\\ 44.2\\ 42.3\\ esults fo\\ ception\\ 3\\ 9_{+5.66}\\ 6_{+6.53}\\ 6_{+6.53}\\ 1_{+5.08}\\ 1_{+5.08}\\ \hline$	5 1 9 8 9 1 4 0 8 9 r In-conte Reasonir 76.39 73.30 _{-3.0} 70.84 _{-5.5} 69.46 _{-6.5}	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se		57 16 55 17 50 0000 65.2 64.3 64.1 63.1	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.50 53.09 erall 24 32_0.92 13_2_11
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi GPT-4o-non-multi GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r G	multi-hop nulti-hop hop ti-hop p non-multi nulti-hop ton-multi nulti-hop Table example example example	ti-hop p i-hop j i i i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i i i i i i-hop j i-hop j i i i i i i i i i i i i i i i i i i	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 63.1\\ 48.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo$ esults fo $ception$ 3 9+5.66 6+6.53 1+5.08 7 1 1 0000	5 9 1 9 8 9 1 4 0 8 9 r In-conte Reasonir 76.39 73.30–3.0 70.84–5.8 69.46–6.9 74.12 66.62	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se Ig 1 29 25 33 60		57 16 55 17 50 0ve 65.2 64.3 64.1 63.1 67.5 67.5	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09 64.98 53.09 53.09 64.98 53.09 53.09 64.98 53.09 53.09 53.09 64.98 53.09 53.09 64.98 53.09 53.09 53.09 53.20 53.20 53.20 64.98 53.09
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r	multi-hop nulti-hop ti-hop p non-multi multi-hop oon-multi nulti-hop Table example example example example	ti-hop p i-hop j i i i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i-hop j i i i i i i-hop j i-hop j i i i i i i i i i i i i i i i i i i	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 66.1\\ 48.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo\\ ception\\ 3\\ 9_{+5.66}\\ 6_{+6.53}\\ 1_{+5.08}\\ 7\\ 1_{-10.56}\\ 7_{-12.20}$	5 9 1 9 8 9 1 4 0 8 9 r In-conte Reasonir 76.39 73.30_3.(70.84_5.) 69.46_6.9 74.12 66.62_7.1 65.24_8 \$	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se ng 1 99 2 60 60 60 60 60 60		57 16 65 17 50 65.2 64.1 63.1 67.5 56.8 55.3	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09 53.20 53.21 53.21 53.22 53.22 53.23 53.23 53.23 53.23 53.23 53.23 53.23 53.23 53.23 53.23
	Qwen2-VL-72B- VILA-40B-non-n VILA-40B-multi- GPT-4o-non-multi- GPT-4o-multi-ho LLaVA-1.6-34B- LLaVA-1.6-34B- Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Gemini-1.5-Pro-r Qwen2-VL-72B- Qwen2-VL-72B- Qwen2-VL-72B-3 InternVL2-40B-16 InternVL2-40B-16 InternVL2-40B-36 InternVL2-40B-36	multi-hop nulti-hop -hop ti-hop p non-multi multi-hop oon-multi nulti-hop Table example example example example example example example example	ti-hop p i-hop p i-hop b i-hop i i-hop b i hop b i-hop b i hop b i hop b i-hop b i hop b i hop b i hop b i hop b i hop b i hop b i hop b i hop b i hop b i hop b b b b	$\begin{vmatrix} 53.6\\ 58.9\\ 66.2\\ 44.5\\ 44.5\\ 66.1\\ 44.2\\ 55.6\\ 42.3\\ esults fo\\ 25.66\\ 6+6.53\\ 1+5.08\\ 7\\ 1-10.56\\ 7-12.20\\ 5-13.52\\ \end{vmatrix}$	5 9 1 9 8 9 1 4 0 8 9 r In-conte Reasonir 76.39 73.30 _{-3.0} 70.84 _{-5.5} 69.46 _{-6.5} 74.12 66.62 _{-7.5} 65.24 _{-8.8} 63.73 ₋₁₀	69.37 79.22 61.49 71.62 57.77 66.76 61.27 57.91 46.61 62.78 ext Se ng 1 65 63 64 65 62.78 93 65 66 62.78 93 65 65 66 65 66 67 62.78 93 65 65 66 66 67 68 69 60 63 64 65 65 66 67 68 69 60 61 62 63 64 65 65		57 16 55 17 50 60 65.2 64.1 63.1 67.9 56.8 55.3 54.5	33.33 70.22 65.14 60.25 61.90 58.03 64.98 53.09 53.50 53.09 53.50 53.09 53.09 64.98 53.09

Table 9: Comparison of	Different Adapters for	Model's Performance.
------------------------	------------------------	----------------------

Model Perception Reasoning Probing Overall 55.36 77.17 89.86 71.75 Qwen2-VL-72B Qwen2-VL-72B-multi $63.01_{\pm 7.65}$ $80.35_{\pm 3.18}$ $89.19_{-0.67}$ $75.89_{\pm 4.14}$ InternVL2-40B 42.35 73.27 88.51 65.26 InternVL2-40B-multi 39.29_{-3.06} $72.54_{-0.73}$ $63.64_{-1.62}$ 86.49_2.02