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ABSTRACT

The advent of large Vision-Language Models (VLMs) has significantly advanced
multimodal understanding, enabling more sophisticated and accurate integration
of visual and textual information across various tasks, including image and video
captioning, visual question answering, and cross-modal retrieval. Despite VLMs’
superior capabilities, researchers lack a comprehensive understanding of their
compositionality – the ability to understand and produce novel combinations of
known visual and textual components. Prior benchmarks provide only a relatively
rough compositionality evaluation from the perspectives of objects, relations, and
attributes while neglecting deeper reasoning about object interactions, counting,
and complex compositions. However, compositionality is a critical ability that
facilitates coherent reasoning and understanding across modalities for VLMs. To
address this limitation, we propose MMCOMPOSITION, a novel human-annotated
benchmark for comprehensively and accurately evaluating VLMs’ compositionality.
Our proposed benchmark serves as a complement to these earlier works. With
MMCOMPOSITION, we can quantify and explore the compositionality of the
mainstream VLMs. Surprisingly, we find GPT-4o’s compositionality inferior to the
best open-source model, and we analyze the underlying reasons. Our experimental
analysis reveals the limitations of VLMs in fine-grained compositional perception
and reasoning, and points to areas for improvement in VLM design and training. 1

1 INTRODUCTION

Pre-trained vision-language models, such as GPT-4o (Achiam et al., 2023), LLaVA (Liu et al.,
2024b), InternVL (Chen et al., 2024b), and VILA (Lin et al., 2024), have demonstrated impressive
capabilities in complex reasoning, and have achieved remarkable results in various vision-language
(VL) tasks. Despite these advancements, contemporary state-of-the-art VLMs still struggle with
understanding fine-grained multimodal compositional information (Yuksekgonul et al., 2022; Thrush
et al., 2022). For instance, VLMs often fail at counting objects in images, especially when the objects
are mixed with other items or occluded, while humans can handle this task easily. This reveals
a compositionality gap between humans and models. However, compositionality is recognized as
a core capability for VLMs (Yuksekgonul et al., 2022), referring to the ability to understand and
produce a potentially infinite number of novel combinations of known visual and textual components,
i.e., to make “infinite use of finite means” (Chomsky, 2014). Compositionality is essential for
tackling challenging questions in image captioning, visual question answering (VQA), and scene
understanding, where complex interactions between objects and attributes need to be communicated
in natural language.

In recent years, there has been a growing focus on evaluating the comprehensive capabilities of
large VL models, such as MMBench (Liu et al., 2023b), MMMU (Yue et al., 2023), MMVet (Yu
et al., 2024a;b), MME (Fu et al., 2023), Seed-bench (Li et al., 2023a), MMStar (Chen et al., 2024a),
MathVista (Lu et al., 2023), and LLaVA-Bench (Liu et al., 2024b). These benchmarks evaluate
VLMs’ capabilities in recognition, OCR, knowledge, language generation, spatial awareness, and
mathematical reasoning. While some of these benchmarks include visual compositional question-
answering (QA) pairs (Fu et al., 2024; Li et al., 2023a; Tong et al., 2024b), none are specifically
designed to comprehensively evaluate the models’ fine-grained VL compositional perception and

1All data and code will be released upon publication of this paper.
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Figure 1: MMCOMPOSITION comprises 13 categories of high-quality VL composition QA pairs,
covering a wide range of complex compositions. In the example, GPT-4o failed to understand the
compositional aspects of the visual and textual components, misidentifying a three-story building as
a double-decker structure. This misinterpretation highlights the limitations of current VLMs.

reasoning abilities. Additionally, some existing benchmarks (Yuksekgonul et al., 2022; Hsieh et al.,
2024; Zhao et al., 2022; Thrush et al., 2022; Ray et al., 2023; Ma et al., 2023) evaluate models’
compositionality roughly from the perspective of attribute, relation, and object perception. These
benchmarks have limitations in evaluating fine-grained visual composition and reasoning. They
mainly focus on image-to-text retrieval tasks, assessing basic object, relation, and attribute recognition
but neglecting deeper reasoning about object interactions, counting, and complex compositions. As a
result, researchers currently have an incomplete understanding of VLMs’ compositionality.

To address these issues, we propose MMCOMPOSITION, a novel, human-annotated, high-quality
benchmark for the comprehensive evaluation of VLMs’ compositionality. MMCOMPOSITION
evaluates the compositionality of VLMs in three main dimensions: VL compositional perception,
reasoning, and probing, which are further divided into 13 distinct categories of questions, as illustrated
in Figure 1. While previous evaluation benchmarks have primarily focused on text-to-image retrieval,
single-choice questions, and open-ended text generation, MMCOMPOSITION introduces a more
diverse and challenging set of tasks. The benchmark encompasses 4,342 questions, covering both
single-image and multi-image scenarios, as well as single-choice and indefinite-choice formats. This
expanded range of tasks is designed to evaluate the complex interplay between vision and language
in VLMs more effectively. By incorporating a wider variety of complex composition questions,
MMCOMPOSITION provides a more comprehensive and in-depth assessment of models’ capabilities
in cross-modal compositionality, surpassing the evaluations offered by earlier benchmarks like ARO
(Yuksekgonul et al., 2022) and Winoground (Thrush et al., 2022). Table 8 highlights the differences
between MMCOMPOSITION and other existing datasets that focus on VL compositionality.

In addition to the new benchmark, we also provide a comprehensive analysis of the models’ capabili-
ties in fine-grained VL compositional perception and reasoning. Our experiments show that most
SOTA VLMs exhibit deficiencies in compositional understanding. Even GPT-4o, despite its advanced
capabilities, struggles with tasks requiring nuanced compositional reasoning. These findings highlight
the need for further research and development to enhance the compositional abilities of VLMs. Our
benchmark serves as a tool for identifying these gaps and inspiring future improvements in VLM
design and training. Moreover, we analyze the critical factors in VLM architecture and training that
may influence the compositionality of VLMs. According to the empirical results, we reach three
findings: (1) Visual Encoder Design: While a mixture-of-encoder architecture can enhance composi-
tionality, adding more encoders does not necessarily improve performance. Moreover, models that
encode images with minimal degradation of image quality – preserving the original high resolution

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison with related VL compositional benchmarks: “Yes/No Ratio” refers to the pro-
portion of yes/no questions, “Fine-grained” indicates whether the data provide detailed breakdowns of
VL compositional information, and “IT Mismatch Detec.” means “Image Text Mismatch Detection”.

Dataset Yes/No Ratio Size Human Annotation Multi-Image Indefinite-Choice Task Fine-grained

Winoground (Thrush et al., 2022) - 400 ✓ ✓ - Compositional Reasoning ✗
ARO (Yuksekgonul et al., 2022) - 50k ✗ ✗ - T2I Retrieval ✗
Sugarcrepe (Hsieh et al., 2024) - 7,512 ✗ ✗ - T2I Retrieval ✗
VL-Checklist (Zhao et al., 2022) - 410k ✗ ✗ - T2I Retrieval ✗
Cola (Ray et al., 2023) - 1,200 ✗ ✗ - T2I Retrieval ✗
FineMatch (Hua et al., 2024a) - 49.9k ✓ ✗ - IT Mismatch Detec. ✓
GQA (Hudson & Manning, 2019) 0.774 22M ✗ ✗ ✗ Compositional QA ✓

MMCOMPOSITION (ours) 0.038 4,342 ✓ ✓ ✓ Compositional QA ✓

and aspect ratio – exhibit superior compositionality compared to those that utilize downsampling
during the encoding process. (2) Language Decoder Size: Larger language decoders are associated
with improved compositionality. (3) The Volume of Training Data: Fine-tuning models on more
diverse datasets helps mitigate some compositionality limitations, driving more robust compositional
understanding. In addition, although GPT-4o includes a powerful language model, we find that
for relatively simple QA tasks, only a small portion of its language capabilities are utilized
(compared to the models outperform GPT-4o, whose language model size is only 70B). Once the
language decoder size reaches a certain threshold (e.g., 34B, 70B), the visual encoder has a
more significant impact on the model’s compositionality. We demonstrate in Figure 13 that the
downsampling image processing in GPT-4o contributes to its inferior performance. Our experimental
analysis highlights the limitations of large-scale VLMs in fine-grained compositional perception and
reasoning. Our empirical analysis provides a systematic framework for evaluating and enhancing
models’ capability, pinpointing areas where large models still struggle.

Our main contributions are three-fold:

• We introduce MMCOMPOSITION, a novel, human-annotated, high-quality benchmark
designed to evaluate the compositionality of pre-trained VLMs. MMCOMPOSITION assesses
compositionality across three dimensions: compositional perception, reasoning, and probing,
which are further divided into 13 distinct categories of questions. The benchmark includes a
diverse set of 4,342 questions, encompassing both single-image and multi-image scenarios,
as well as single-choice and indefinite-choice questions, providing a comprehensive and
robust evaluating framework for VLM compositionality.

• We comprehensively evaluate 54 well-known VLMs with MMCOMPOSITION. The empir-
ical results highlight the challenging nature of MMCOMPOSITION, as the highest model
accuracy reached only 67.95%, compared to 90.31% for human performance. This evalua-
tion reveals a substantial gap between state-of-the-art VLMs and human capabilities and
provides insights into the limitations of current VLMs.

• We systematically analyze critical factors in VLM architecture that may influence the
compositionality of VLMs, including the size of language decoders, the volume of training
data, and the visual encoder design. Furthermore, we provide an interpretable analysis of
models’ limitations in complex compositional understanding. This analysis identifies critical
areas for model improvement and suggests directions for future advancements.

2 RELATED WORK

2.1 VLM EVALUATION BENCHMARKS

The advent of large-scale VLMs has led to the development of numerous benchmarks designed to
evaluate various model capabilities. Among the most commonly evaluated are image captioning (Lin
et al.; Onoe et al., 2024; Masry et al., 2022), which tests a VLM’s ability to generate natural
language descriptions of images; VQA (Antol et al., 2015; Marino et al., 2019; Mathew et al.,
2020), which assesses the model’s capacity to answer image-based questions by integrating visual
perception with language understanding or external knowledge; and Visual Reasoning (Johnson
et al., 2017; Suhr et al., 2017), which evaluates a model’s understanding of spatial relationships and
logical reasoning based on visual input. In recent years, researchers have built benchmarks that
aim to evaluate the comprehensive capabilities of VLMs (Li et al., 2023a; Liu et al., 2023b; Yue
et al., 2023; Fu et al., 2023; Yu et al., 2024a; Lu et al., 2023; Guan et al., 2024). Although some
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benchmarks include QA pairs related to compositional reasoning, such as BLINK (Fu et al., 2024),
MMVP (Tong et al., 2024b), and Seed-bench (Li et al., 2023a), these are often mixed with other
types of QA pairs, making it challenging to assess a model’s compositionality precisely. In contrast,
MMCOMPOSITION consolidates and refines existing categories of VL compositionality, offering a
diverse set of compositional QA pairs that provide a more precise evaluation of model performance.

2.2 COMPOSITIONALITY FOR VISION-LANGUAGE MODELS

Compositional understanding of images and text is a critical capability for VLMs. Research indicates
that VLMs struggle to distinguish hard negative examples, i.e., image-text pairs that mismatch in
at least one aspect (e.g., attribute, relation, object), as there is little incentive for them to learn
compositionality during contrastive pre-training (Yuksekgonul et al., 2022). Hsieh et al. (2024)
illustrate that contrastive pre-training with generated hard negative examples can improve models’
performance on downstream tasks. Various benchmarks have been proposed to assess the capabilities
of VLMs in compositional vision-language perception, including VL-Checklist (Zhao et al., 2022),
ARO (Yuksekgonul et al., 2022), FineMatch (Hua et al., 2024a), Sugarcrepe (Hsieh et al., 2024),
Crepe (Ma et al., 2023), Cola (Ray et al., 2023), CheckList (Zhao et al., 2022), etc. However, these
benchmarks often evaluate models’ capabilities from limited perspectives, such as object, attribute,
and relation perception, and primarily focus on simple tasks like binary image-to-text retrieval, where
models need to select the correct caption from pairs containing a correct and a hard negative caption.
Moreover, the aforementioned benchmarks often contain a limited range of relations or attributes (e.g.,
ARO includes 48 relations and 117 attributes). GQA (Hudson & Manning, 2019) includes a diverse
set of QA pairs focused on compositional reasoning, but the majority of the questions (77.74%) are
simple Yes/No format. In contrast, MMCOMPOSITION offers a more comprehensive assessment with
various compositional scenarios, including multi-image and indefinite choice questions, providing
a more comprehensive assessment. Furthermore, MMCOMPOSITION evaluates the robustness in
detecting complex relationships, including subtle scene composition, object interactions, and higher-
order concepts beyond basic perception.

2.3 PRE-TRAINED VISION-LANGUAGE MODELS

Vision-language models (Radford et al., 2021; Liu et al., 2024a; Hua et al., 2024b; Ye et al., 2023;
Tang et al., 2024; Chen et al., 2024b; Bi et al., 2024; Li et al., 2022; Tong et al., 2024a) aim to achieve
multimodal intelligence by jointly understanding and generating visual and language information.
Inspired by the remarkable success of recent large language models (LLMs) (Touvron et al., 2023;
Chiang et al., 2023; Hua et al., 2021), researchers are now exploring large VLMs that combine pre-
trained visual encoders and language decoders to tackle complex multimodal tasks. Flamingo (Alayrac
et al., 2022) and BLIP-2 (Li et al.) are two of the early works that explore the integration of LLMs into
vision-language pre-training. These models are trained as VL foundation models. Beginning with
LLaVA (Liu et al., 2024a), researchers have used LLM-synthesized instruction-following chat data
in VQA format for instruction tuning, achieving significantly improved results (Hua et al., 2024a).
Subsequent studies have expanded to explore the broader capabilities of multimodal LLMs (Hu et al.,
2023; Guan et al., 2024; Lin et al., 2023; Yu et al., 2024c; Tang et al., 2023). However, these efforts
place less emphasis on improving the models’ ability to fine-grained compositional perception and
reasoning.

3 MMCOMPOSITION

3.1 DATA CURATION

To ensure a comprehensive and high-quality benchmark, we develop an efficient pipeline for curating
VQA data that accurately reflects compositional information.

Data Collection. We use various datasets with the potential to construct VL compositional QA
pairs as our seed data. This collection includes datasets that contain the description of objects,
attributes, relations, and counting, such as VL-CheckList (Zhao et al., 2022), Sugar-Crepe (Hsieh
et al., 2024), ARO (Yuksekgonul et al., 2022), Crepe (Ma et al., 2023), and DOCCI (Onoe et al.,
2024). Additionally, we incorporate sources that are well-suited for constructing VL compositional
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Figure 2: The statistics of 13 distinct categories of QA pairs in MMCOMPOSITION and some models’
performance on each category.

reasoning QA pairs, including SVO-Probes (Hendricks & Nematzadeh, 2021), VSR (Liu et al.,
2023a), BLINK (Fu et al., 2024), GQA (Hudson & Manning, 2019), Visual Genome (Krishna et al.,
2016), and CLVER (Johnson et al., 2017). It also contains datasets with multiple images in each
sample, such as Winoground (Thrush et al., 2022), MuriBench (Wang et al., 2024) and NLVR2 (Suhr
et al., 2017).

Question and Answer Construction. We obtain QA pairs from the seed data in through several
methodologies:

For the seed data that only contain positive and negative captions (e.g., ARC (Yuksekgonul et al.,
2022)), we first generate sentence embeddings for each caption using Sentence-BERT (Reimers &
Gurevych, 2019). We then utilize these embeddings to retrieve the most similar captions from the
Visual Genome (Krishna et al., 2016) dataset. This process results in four captions per image in each
sample, forming four answer options per question.

For data samples containing multiple images – such as those in the image difference spotting task,
which includes two images per question – we concatenate the two images side by side and label them
Left and Right beneath each sub-image. This setup allows for two types of question-answer options:
Left and Right for questions asking which sub-image is described by a caption, and True and False
for questions determining the accuracy of a caption describing the image difference. For tasks that
include more than two images per question (e.g., visual similarity assessments), we concatenate all
images into a single composite image and label each sub-image as Image1, ..., Imagei.

For the probing task, we select several captions from the dense captions in Visual Genome (Krishna
et al., 2016) as the correct options and write the misaligned captions manually for the image. Then,
we randomly select x ∈ {1, 2, 3, 4} captions from the set of accurate captions for a given image
and complement these with 4− x incorrect options drawn from a set of conflict captions. With this
approach, we can obtain the indefinite-choice QA pairs.

Data Filtering and Difficulty Classification. We divide the data into different difficulty levels: easy,
medium, hard, and super hard. To achieve this, we use a voting system with six models, ranging
from weaker to stronger, including LLaVA-1.5-13B (Liu et al., 2024b), LLaVA-1.6-Mistral-7B (Liu
et al., 2024a), LLaVA-1.6-Vicuna-13B (Liu et al., 2024a), Phi-3-Vision-128K-Instruct (Abdin et al.,
2024), InternVL-Chat-V1.5 (Chen et al., 2024b), and Qwen-VL-Chat (Bai et al., 2023). Based on the
accuracy of model predictions for each question, questions are categorized into different difficulty
levels. Questions with zero correct predictions are classified as super hard, those with one or two
correct predictions are labeled as hard, questions with three or four correct predictions are considered
medium, and those with more than five correct predictions are categorized as easy. The overall
difficulty of the dataset is then controlled by adjusting the ratio of questions at each difficulty level.
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Human Annotation. All QA pairs in the benchmark are human-annotated. Annotators first assess
image quality to ensure it meets the required standards. For human-created data, annotators are first
trained with detailed instructions to develop a thorough understanding of the compositional aspects
in our dataset. During annotation, they generate QA pairs based on the provided aspect prompts.
For GPT-synthesized data sourced from DOCCI, annotators verify whether the question accurately
reflects the compositional information in the image and whether the answer appropriately corresponds
to the question.

3.2 EVALUATION METRIC

Let D = {Dm = {Tt}Td
t=1}

|D|
m=1 denotes our dataset , where each catagory Dm consists of Td subtasks.

For each subtask, we calculate the accuracy across all annotations. For each question q ∈ D, let Aq

be the set of correct options, Pq be the set of predicted (selected) options. The score for question q,
denoted as sq , is calculated as:

sq =


1, if Pq = Aq
|Pq|
|Aq| , if Pq ⊂ Aq

0, otherwise

Here, | · | denotes the number of options selected by the participant and the number of correct
options, Pq ⊂ Aq means all selected options are correct, but some correct options are missing (under-
selection). The “otherwise” case covers instances where incorrect options are selected (wrong or over-
selection). This equation applies to both the single-choice and indefinite-choice questions. The final
weighted average accuracy across all categories is calculated as ACC =

∑|D|
m=1

∑Td

t=1 sq ×|Tt|/|Dd|,
where | · | is the question number in one set.

3.3 QUANTITATIVE ANALYSIS

MMCOMPOSITION contains 13 different VL composition tasks, including Attribute Perception
(Attr-P), Object Perception (Obj-P), Counting Perception (Count-P), Relation Perception (Rel-
P), Difference Spotting (Diff-S), Text Rendering (TR), Visual Similarity (Visual-Sim), Attribute
Reasoning (Attr-R), Object Reasoning (Obj-R), Counting Reasoning (Count-R), Relation Reasoning
(Rel-R), Object Interaction (Obj-Interact), and Compositional Probing (Prob). We use GPT-4o to
label each question category via in-context learning, followed by manual verification for accuracy.
Figure 4 illustrates the difficulty distribution of MMCOMPOSITION, highlighting the challenging
nature of our dataset. Figure 5 depicts the distribution of option counts per question, with over half
of the data containing more than four options. To analyze the impact of input resolution on model
performance, we further display the resolution distribution of images in Figure 6, which reflects the
image quality of our data. For textual analysis, we visualize the phrase distribution of questions using
a word cloud diagram in Figure 7, clearly depicting the word frequency and distribution across the
questions. We also provide a detailed explanation for these 13 categories in Section A.3.

4 REVISITING THE COMPOSITIONALITY OF PRE-TRAINED
VISION-LANGUAGE MODELS

In this section, we quantify and explore the compositionality of state-of-the-art VLMs and provide a
comprehensive evaluation of VLMs. For all experiments, we use a consistent prompt template and
the official default hyperparameters for each model.

Overall performance. The overall performance indicates that models struggle with perceiving
and reasoning about fine-grained VL compositional information. The best human expert achieves
an accuracy of 90.31%, significantly outperforming all the models reported in the table. This
demonstrates the still existing gap between human expertise and the performance of current models
on the MMCOMPOSITION benchmark. This reflects the benchmark’s rigorous standards. The open-
source InternVL2 (Chen et al., 2024c) series models secured first and second place on the leaderboard.
InternVL2-40B performs better than InternVL2-76B. Among the API-based models, Qwen2-VL and
GPT-4o achieved the best and second best performance. The superior performance of open-source
models with relatively smaller language models compared to GPT-4o, which has a larger language
model, is due to their more effective visual encoders. The mean accuracy of 7B and 13B open-source
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Table 2: The comprehensive performance of 54 VLMs on Acc, including open source models and
API-based models . The best and second best results are in bold and underlined, respectively.

Perception↑ Reasoning↑ Probing↑
Method Attr-P Obj-P Count-P Rel-P Diff-S TR Visual-Sim Attr-R Obj-R Count-R Rel-R Obj-Interact Prob Overall ↑

Human 97.94 98.04 93.06 92.00 79.02 85.71 86.54 91.20 78.83 100.00 77.35 88.00 91.84 90.31

InternVL2-40B (Chen et al., 2024b) 72.22 77.69 45.21 72.53 31.12 73.21 48.65 83.78 82.57 84.51 69.20 65.85 59.59 67.95
InternVL2-76B (Chen et al., 2024b) 70.65 76.75 48.28 70.00 19.09 78.57 48.65 85.14 83.49 85.40 70.93 67.07 58.46 67.28
Qwen2-VL-72B (team, 2024) 59.57 51.80 52.49 62.52 45.23 82.14 67.57 87.84 84.40 84.51 71.51 70.12 69.57 65.24
InternVL-Chat-V1.2-Plus (Chen et al., 2024b) 69.81 66.73 43.68 69.02 31.12 78.57 28.38 78.83 77.98 80.53 67.13 60.98 65.80 64.94
InternVL2-26B (Chen et al., 2024b) 68.46 69.57 40.23 66.96 22.82 80.36 62.16 79.28 79.82 81.86 64.59 63.41 52.43 63.08
VILA-40B (Lin et al., 2024) 65.70 66.16 45.21 63.65 23.65 75.00 44.59 70.72 77.06 67.26 69.32 59.15 62.16 62.38
GPT-4o (Achiam et al., 2023) 63.97 58.98 37.93 66.76 32.37 82.14 60.81 62.61 79.82 61.95 61.13 75.00 54.65 59.71
InternVL-Chat-V1.2 (Chen et al., 2024b) 64.58 64.08 41.38 62.98 25.73 76.79 29.73 63.06 71.56 61.06 63.44 65.24 60.71 59.61
InternVL-Chat-V1.5 (Chen et al., 2024b) 59.44 62.38 38.31 60.47 21.58 76.79 51.35 77.93 83.49 78.32 62.05 63.41 57.01 59.58
InternVL2-8B (Chen et al., 2024b) 62.68 61.44 31.80 59.54 25.31 73.21 33.78 78.83 75.23 73.89 62.05 62.20 54.10 58.47
LLaVA-V1.6-34B (Liu et al., 2024a) 67.24 69.00 44.06 61.31 25.73 76.79 21.62 53.15 67.89 53.10 61.59 54.27 58.17 58.25
MiniCPM-V2.6 (Yao et al., 2024) 65.19 61.06 41.00 61.80 21.99 73.21 37.84 63.96 73.39 68.14 55.25 60.98 54.43 57.01
InternLM-XComposer2-4KHD-7B (Dong et al., 2024b) 62.24 58.03 39.08 58.36 23.65 67.86 27.03 70.72 74.31 60.18 58.71 59.15 60.02 56.69
Qwen-VL-Max (Bai et al., 2023) 53.76 54.82 36.40 58.67 22.82 80.36 41.89 53.60 65.14 53.98 61.36 62.80 63.87 55.18
InternLM-XComposer2.5-7B (Zhang et al., 2024a) 56.68 57.84 37.93 56.82 21.58 71.43 28.38 71.17 75.23 61.06 60.55 60.98 49.64 55.10
Hunyuan-Vision 61.95 65.03 37.16 58.58 26.97 76.79 36.49 61.26 72.48 56.19 54.09 59.15 45.03 54.64
InternLM-XComposer2-VL-7B (Dong et al., 2024a) 59.18 55.39 40.23 56.91 25.31 66.07 31.08 67.57 73.39 61.06 55.02 53.66 57.15 54.62
Gemini-1.5-Pro (Reid et al., 2024) 55.30 53.50 39.46 57.11 24.48 67.86 55.41 59.91 74.31 50.44 56.29 65.24 49.60 53.27
Mini-Gemini-34B (Li et al., 2023b) 58.35 59.17 37.93 53.70 25.31 73.21 39.19 54.50 73.39 58.41 57.90 61.59 41.79 53.06
InternVL2-4B (Chen et al., 2024b) 53.82 55.01 31.42 52.17 18.26 73.21 25.68 77.03 71.56 72.57 56.40 55.49 41.18 52.03
LLaMA-3.2-11B-Vision-Instruct 54.82 58.98 36.02 55.80 30.29 69.64 29.73 50.90 67.89 51.33 53.29 60.98 49.17 52.01
MiniCPM-Llama3-V2.5 (Yao et al., 2024) 51.93 51.23 36.40 49.88 19.92 76.79 20.27 69.37 77.06 68.14 58.13 62.20 41.79 51.54
Mini-Gemini-34B-HD (Li et al., 2023b) 54.95 52.36 37.55 48.35 27.80 73.21 40.54 59.91 72.48 58.85 60.09 66.46 35.91 51.48
Bunny-Llama-3-8B-V (He et al., 2024) 58.16 53.50 34.87 54.07 21.58 50.00 12.16 45.95 66.06 53.10 51.67 57.32 59.44 50.81
Mini-Monkey (Huang et al., 2024) 52.25 59.36 26.82 52.53 26.56 73.21 18.92 68.92 65.14 59.29 52.71 50.00 42.37 50.41
Phi3.5-Vision-Instruct (Abdin et al., 2024) 55.01 48.39 30.27 52.61 21.16 66.07 31.08 45.05 63.30 53.10 56.40 53.66 54.65 50.02
ColgVLM2-Llama3-Chat-19B (Hong et al., 2024) 57.67 54.44 34.48 51.69 38.17 57.14 48.65 50.90 65.14 47.35 44.75 59.15 50.69 49.84
Phi3-Vision-128K-Instruct (Abdin et al., 2024) 55.30 43.86 30.27 51.61 25.31 69.64 40.54 45.05 65.14 47.79 48.79 60.37 56.75 48.52
Yi-VL-34B (AI et al., 2024) 53.02 39.89 30.27 50.33 26.14 64.29 17.57 50.45 56.88 55.31 52.94 52.44 53.88 47.86
Step-1V-32K 46.11 42.16 26.44 46.25 25.31 67.86 43.24 66.67 66.97 62.83 52.13 59.76 45.46 47.64
ConvLLaVA-1024-7B (Ge et al., 2024) 51.73 47.26 32.57 44.96 28.22 69.64 21.62 55.41 65.14 53.10 53.06 54.88 40.89 47.32
Yi-VL-6B (AI et al., 2024) 51.99 45.75 30.27 49.34 25.73 60.71 20.27 45.05 51.38 52.21 51.56 51.83 48.76 46.87
Bunny-3B (He et al., 2024) 49.97 50.66 26.82 48.79 25.73 50.00 12.16 46.40 61.47 47.79 46.14 51.22 55.08 46.32
Bunny-4B-V1.0 (He et al., 2024) 52.50 47.64 39.08 46.00 21.16 51.79 17.57 43.69 62.39 52.21 49.94 52.44 42.66 46.07
LLaVA-HR-13B (Luo et al., 2024) 50.32 42.91 35.25 39.81 32.37 66.07 27.03 45.50 60.55 45.58 51.90 57.32 48.80 46.02
ConvLLaVA-1536-7B (Ge et al., 2024) 50.03 46.50 28.35 41.25 27.39 69.64 29.73 51.35 64.22 52.21 52.13 64.02 34.20 45.52
InternVL2-2B (Chen et al., 2024b) 43.32 54.82 26.82 45.79 22.82 67.86 17.57 63.06 58.72 49.56 46.94 53.66 38.16 45.11
Monkey-Chat (Li et al., 2024) 49.20 49.53 24.14 47.13 16.60 69.64 13.51 51.35 58.72 44.25 46.60 51.22 48.91 44.90
Mini-Gemini-13B (Li et al., 2023b) 43.71 41.21 27.20 41.63 21.58 62.50 33.78 55.86 68.81 50.44 53.06 57.32 32.28 43.74
SliME-7B (Zhang et al., 2024b) 45.70 45.94 28.74 40.76 31.12 62.50 20.27 43.24 59.63 48.23 53.17 53.05 30.03 43.45
INF-LLaVA∗ (Ma et al., 2024) 43.19 46.69 32.95 41.92 24.48 57.14 20.27 50.00 66.06 55.31 48.33 54.27 31.41 43.32
SliME-8B (Zhang et al., 2024b) 46.50 43.29 32.18 40.27 30.29 60.71 25.68 44.59 61.47 47.79 53.29 47.56 29.96 43.29
INF-LLaVA (Ma et al., 2024) 45.66 42.16 27.59 47.37 33.20 57.14 32.43 46.40 60.55 42.92 44.98 54.88 35.58 43.04
LLaVA-HR-7B (Luo et al., 2024) 40.46 43.67 31.42 40.43 28.22 64.29 37.84 46.85 60.55 48.67 49.25 56.71 33.04 42.73
SliME-13B (Zhang et al., 2024b) 47.46 40.64 28.74 42.55 22.41 66.07 17.57 45.50 56.88 47.79 49.83 56.10 33.55 42.63
ConvLLaVA-768-7B (Ge et al., 2024) 46.50 40.45 28.35 34.88 16.60 66.07 22.97 53.15 69.72 54.42 49.02 55.49 37.11 42.40
InternVL2-1B (Chen et al., 2024b) 43.13 48.02 22.99 43.29 23.24 64.29 18.92 54.05 58.72 49.12 45.91 57.93 27.89 42.06
Mini-Gemini-13B-HD (Li et al., 2023b) 42.29 38.37 32.18 40.20 18.67 67.86 24.32 51.35 63.30 45.58 49.83 56.71 34.28 41.99
Qwen-VL-Chat (Bai et al., 2023) 41.97 36.67 25.67 39.13 24.48 67.86 16.22 41.89 61.47 53.54 47.52 58.54 41.54 41.64
DeepStack-L-HD-Vicuna-7B (Meng et al., 2024) 43.29 37.05 28.74 35.74 18.67 60.71 17.57 46.85 60.55 45.13 46.94 59.15 35.88 40.26
DeepStack-L-Vicuna-7B (Meng et al., 2024) 45.47 41.21 27.20 36.00 21.99 60.71 18.92 42.34 56.88 42.04 46.83 50.61 30.21 39.75
LLaVA-V1.6-Vicuna-13B (Liu et al., 2024a) 37.09 29.30 23.75 32.43 24.90 66.07 12.16 40.99 54.13 42.04 50.29 48.78 38.16 38.03
LLaVA-V1.6-Mistral-7B (Liu et al., 2024a) 36.55 29.68 24.14 39.24 31.12 64.29 13.51 36.94 47.71 42.04 41.18 49.39 38.24 37.18
LLaVA-V1.5-13B (Liu et al., 2024a) 30.92 28.36 28.35 29.89 29.46 64.29 14.86 45.50 46.79 37.17 43.60 46.34 41.39 36.07

Random Choice 23.12 23.63 21.84 25.85 29.46 35.71 25.68 36.94 46.79 38.50 35.64 47.65 28.61 30.15

VLMs hovers around 36–38%. For reference, we provide the random guess accuracy (30.15%) as a
lower bound for the benchmark.

The tasks where VLMs exhibit relative strengths and weaknesses. From Table 2, we observe
that VLMs perform relatively better on tasks such as Attribute, Object, and Relation Perception,
as well as Attribute, Object, and Count Reasoning, where they perform much better than other
categories. However, they struggle with tasks such as Count Perception, Difference Spotting, Visual
Similarity, and Probing (see illustrations in Fig. 1). These tasks often involve multiple images,
some with extreme aspect ratios, and the probing tasks include indefinite-choice questions, which
pose additional challenges for the models. GPT-4o performs relatively weaker on Obj-P, Count-P,
Attr-R, Count-R, and Rel-R tasks compared to smaller models that outperform it, aligning with the
limitations outlined in the official GPT-4o documentation. Overall, the models perform relatively
well on mid-level perception and reasoning tasks.

5 DIAGNOSTIC ANALYSIS OF FACTORS INFLUENCING MODEL
COMPOSITIONALITY

In this section, we analyze the factors that may influence the compositionality of VLMs. We focus on
three dominant factors: visual encoder design, language decoder size, and training data volume.

5.1 VISUAL ENCODER DESIGN

High-resolution visual encoders. A common approach to enhance a model’s capability to perceive
fine-grained visual content is to introduce higher-resolution encoders. In this study, we employ the
control variable method, where the input resolution of the encoders is the only variable, while the
training data and text decoders remain fixed. From Table 3, we observe that models with higher
resolution encoders demonstrate superior capability for multimodal compositional perception and
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reasoning. However, for the Mini-Gemini series models, the introduction of a high-resolution encoder
with a patch info mining mechanism unexpectedly resulted in a performance decline.

Table 3: Performance comparison of models with and without high-resolution encoders (Avg. refers
to average resolution).

Method Resolution Visual Tokens Perception
Avg. 1055*813

Reasoning
Avg. 935*535

Probing
Avg. 849*530 Overall

ConvLLaVA-768-7B 768 144 36.51 52.46 37.11 42.40
ConvLLaVA-1024-7B (Ge et al., 2024) 1024 256 43.70+7.19 54.41+1.95 40.89+3.78 47.32+4.92

ConvLLaVA-1536-7B 1536 576 41.84+5.33 54.09+1.63 34.20−6.69 45.52+3.12

LLaVA-1.5-13B (Liu et al., 2024a) 336 576 29.91 43.45 41.39 36.07
LLaVA-HR-13B (Luo et al., 2024) 1024 1024 41.83+11.92 51.26+7.81 48.80+7.41 46.02+9.95

DeepStack-L-Vicuna-7B (Meng et al., 2024) 672 2880 36.92 46.60 30.21 39.75
DeepStack-L-HD-Vicuna-7B (Meng et al., 2024) 1344 14400 35.19−1.73 48.87+2.27 35.88+5.67 40.26+0.51

Mini-Gemini-13B (Li et al., 2023b) 768 576 38.51 54.60 32.28 43.74
Mini-Gemini-13B-HD (Li et al., 2023b) 1536 576 37.24−1.27 51.07−3.53 34.28+2.00 41.99−1.75

Mini-Gemini-34B (Li et al., 2023b) 768 576 51.25 58.94 41.79 53.06
Mini-Gemini-34B-HD (Li et al., 2023b) 1536 576 47.73−3.52 61.40+2.46 35.91−5.88 51.48−0.58

Mixture-of-encoder. Another approach to enhancing visual encoders is the use of a mixture-of-
encoder architecture. In this setup, image features are extracted by a combination of high-resolution
and low-resolution encoders, providing rich visual information to the language decoders. We analyze
the relationship between the mixture-of-encoder architecture and model performance by aggregating
different encoders while keeping the training data and decoders fixed. We use the LLaVA-1.5
pretraining data for stage-1 pretraining and the EAGLE 1.8M dataset (Bi et al., 2024) for stage-2
fine-tuning. The initial encoder is a CLIP model with 448 resolution (Radford et al., 2021), and the
decoder is LLaMA-3-8B (Dubey et al., 2024). We scale up the encoders using: (A) ConvNeXt (Liu
et al., 2022), (B) SAM (Kirillov et al., 2023), (C) DINOv2 (Oquab et al., 2023), and (D) Pix2Struct
(Lee et al., 2023). The empirical results in Table 4 indicate that combining CLIP with encoder A
improves the models’ performance; however, as the number of visual encoders increases, the models’
performance declines.

Table 4: A comparative analysis of various mixture-of-encoder architectures in relation to model
compositionality.

Method Visual Encoders Relolution Perception Reasoning Probing Overall

LLaVA-1.5 (Liu et al., 2024a) CLIP 448 44.93 54.16 53.34 49.19
LLaVA-1.5+A CLIP+A 1024 45.90+0.97 53.34−0.82 56.93+3.59 49.82+0.63

LLaVA-1.5+A+B CLIP+A+B 1024 45.96+1.03 52.46−1.7 49.02−4.32 48.66−0.53

LLaVA-1.5+A+B+C CLIP+A+B+C 1024 43.41−1.52 52.14−2.02 54.21+0.87 47.74−1.45

LLaVA-1.5+A+C+D CLIP+A+C+D 1024 44.90−0.03 51.57−2.59 54.86+1.55 48.39−0.90

Visual encoder has a more significant impact on the model’s compositionality, while GPT-4o
struggles with processing higher-resolution images. By summarizing the empirical results of this
study, we find that for relatively simple QA tasks, only a small portion of its language capabilities are
utilized (compared to the models outperforming GPT-4o, whose language model size is only 70B).
Once the language decoder size reaches a certain threshold (e.g., 34B, 70B), the visual encoder plays
a more critical role in the models’ performance. As discussed in Section A.2, Qwen2VL processes
images by largely preserving their original resolution and aspect ratio. The Internvl-2 series models
employ a dynamic ’any-resolution’ encoding strategy: images are first mapped to an optimal aspect
ratio from predefined ratios, then divided into 448 × 448 pixel tiles, with each tile converted into
256 image tokens. These approaches enable the encoders to handle images of any resolution and
aspect ratio with minimal degradation of image quality. In contrast, GPT-4o processes images with
downsampling when the image’s longest side > 2048px or shortest side > 768px (our data contains
889 such examples), contributing to its inferior performance compared to other open-source models.

5.2 THE VOLUME OF TRAINING DATA

The volume of training data is a crucial factor influencing models’ performance. In this study, we
conduct a comparison analysis of this factor. In Table 5, we observe a significant performance
increase when the training data is scaled up substantially. For instance, InternVL-Chat-V1.2 and
InternVL-Chat-V1.2-Plus, which use 10 times more training data than the former, show significant
performance improvements.
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Figure 3: Interpretable analysis of different VLMs. Green letters indicate correct answers, while red
letters represent wrong (predicted) answers.
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Table 5: The comparison of models with and without training data scale up.

Method Dataset Size Perception Reasoning Probing Overall

INF-LLaVA (Ma et al., 2024) 1.25M 41.80 46.98 35.58 43.04
INF-LLaVA∗ (Ma et al., 2024) 2.56M 40.13−1.67 51.39+4.41 31.41−4.17 43.32+0.28

InternVL-Chat-V1.2 (Chen et al., 2024c) 1.2M 56.49 63.79 60.71 59.61
InternVL-Chat-V1.2-Plus (Chen et al., 2024c) 12M 60.73+4.24 70.78+6.99 65.80+5.09 64.94+5.33

InternVL-Chat-V1.5 (Chen et al., 2024b) – 54.14 68.20 57.01 59.58
InternVL2-26B (Chen et al., 2024b) – 60.40+6.26 70.03+0.83 52.43−4.58 63.08+3.5

5.3 LANGUAGE DECODER SIZE

From Table 2, we observe that models with larger decoders demonstrate stronger performance. To
analyze this relationship more accurately, we compare models with different decoder sizes while
keeping the encoder and training data constant. The results are shown in Table 6, from which we can
conclude that larger language decoders result in better performance.

Table 6: The comparison analysis of text decoder size and models’ compositionality.

Method Decoder Perception Reasoning Probing Overall

InternVL2-1B (Chen et al., 2024b) Qwen2-0.5B-Instruct 39.65 49.62 27.89 42.06
InternVL2-2B (Chen et al., 2024b) InternLM2-Chat-1.8B 42.37+2.72 51.07+1.45 38.10+10.21 45.11+3.05

InternVL2-4B (Chen et al., 2024b) Phi3-Mini-128K-Instruct 46.94+7.31 62.53+12.91 41.18+13.29 52.03+9.97

InternVL2-8B (Chen et al., 2024b) InternLM2.5-Chat-7B 53.44+13.79 67.00+17.38 54.10+26.21 58.47+16.41

InternVL2-26B (Chen et al., 2024b) InternLM2-Chat-20B 60.40 70.03 52.43 63.08
InternVL2-40B (Chen et al., 2024b) Nous-Hermes-2-Yi-34B 65.44+5.04 73.99+3.96 59.59+7.16 67.95+4.87

InternVL2-76B (Chen et al., 2024b) Hermes-2-Theta-Llama-3-70B 63.41+3.01 75.44+5.41 58.46+6.03 67.28+4.20

LLaVA-V1.6-Mistral-7B (Liu et al., 2024a) Mistral-7B-Instruct 33.64 42.00 38.24 37.18
LLaVA-V1.6-Vicuna-13B (Liu et al., 2024a) Vicuna-13B-V1.5 31.15−2.49 47.92+5.92 38.16−0.08 38.03+0.85

LLaVA-V1.6-34B (Liu et al., 2024a) Nous-Hermes-2-Yi-34B 57.82+24.18 58.88+16.88 58.17+19.93 58.25+21.07

Mini-Gemini-13B (Li et al., 2023b) Vicuna-13B-V1.5 38.51 54.60 32.28 43.74
Mini-Gemini-34B (Li et al., 2023b) Nous-Hermes-2-Yi-34B 51.25+12.74 58.94+4.34 41.79+9.51 53.06+9.32

SliME-7B (Zhang et al., 2024b) Vicuna-7B-V1.5 40.56 51.51 30.03 43.45
SliME-8B (Zhang et al., 2024b) Llama-3-8B-Instruct 40.44−0.12 51.26−0.25 29.96−3.07 43.29−0.16

SliME-13B (Zhang et al., 2024b) Vicuna-13B-V1.5 39.30−1.26 50.06−1.45 33.55+3.52 42.63−0.82

LLaVA-HR-7B (Luo et al., 2024) Vicuna-7B-V1.5 39.38 50.38 33.04 42.73
LLaVA-HR-13B (Luo et al., 2024) Vicuna-13B-V1.5 41.83+2.53 51.26+1.20 48.80+15.25 46.02+3.39

Yi-VL-6B (AI et al., 2024) Yi-6B-Chat 43.80 50.76 48.76 46.87
Yi-VL-34B (AI et al., 2024) Yi-34B-Chat 42.99−0.81 53.15+2.39 53.88+5.12 47.86+0.99

5.4 INTERPRETABLE ANALYSIS OF MODEL DEFICIENCIES

We conduct a comprehensive error analysis to better understand the models’ deficiencies in fine-
grained compositional understanding. In this analysis, the models are required to answer questions
and provide explanations in a multi-turn dialogue format. Figures 3, 14, and 15 illustrate the reasons
why the models fail to predict the correct answers for each task. For example, in the Obj-P task
(example 3), while the ’yellow colored outline’ is easily detected by humans, the models struggle to
accurately identify the target objects due to the outline being mixed with numerous other characters.
Additionally, the models face difficulties with fine-grained object counting, especially when several
similar objects are present. In the Count-R (example 6) task, for instance, humans can precisely count
the number of triangles on a wheel, but the models confuse the six irregular polygons for triangles.

6 CONCLUSION

This paper introduces MMCOMPOSITION, a novel high-quality benchmark for evaluating VLM
compositionality. With MMCOMPOSITION, we comprehensively evaluate the compositionality of
notable VLMs. Our evaluation reveals a significant gap between these models and human performance,
providing insights into the limitations of existing VLMs. Additionally, we systematically analyze
factors that may influence compositionality, including visual encoder design, training data volume,
and language decoder size. We find that for relatively simple QA tasks, only a small portion of the
language model’s capacity is utilized (as seen in models outperforming GPT-4o, whose language
model has 70B parameters). Once the language decoder reaches a certain size threshold (e.g., 34B,
70B), the visual encoder has a more pronounced impact on compositionality. In summary, our work
provides a comprehensive and precise framework for evaluating the compositionality of VLMs,
identifies key areas for improvement, and suggests potential directions for future advancements.
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A APPENDIX

A.1 QUANTITIVE RESULTS OF MMCOMPOSITION

In this section, we show statistical results for MMCOMPOSITION in Figure 4 through Figure 7.

Figure 4: Distribution of difficulty levels across
the question set, illustrating the challenging na-
ture of tasks.

Figure 5: Distribution of option counts per ques-
tion, showing the variety in answer choices pro-
vided to evaluate VLMs.

Figure 6: Resolution distribution of images in
our benchmark, reflecting the portion of high-
quality images in MMCOMPOSITION.

Figure 7: Word cloud of key terms from the ques-
tions, illustrating the diversity of compositional
content evaluated in the benchmark.

A.2 COMPARISON ANALYSIS OF IMAGE ENCODING IN GPT-4O, QWEN2-VL, AND
INTERNVL-2

In GPT-4o, when the image detail parameters are set to “high”, images are first scaled to fit within
a 2048× 2048 square while maintaining their aspect ratio. Then, the images are further scaled so
that the shortest side is 768px long. Finally, GPT-4o calculates how many 512px squares the image
contains, with each square costing 170 tokens. An additional 85 tokens for low resolution are always
added to the final total. As a result, GPT-4o does not achieve true “any resolution” image processing.

In Qwen2-VL and InternVL-2, the image encoders adopt a dynamic “any resolution” encoding
strategy. The images are first mapped to an optimal aspect ratio from predefined ratios, then divided
into 448×448 or 28×28 pixel tiles, with each tile converted into 256 or 1 image tokens. A thumbnail
is then generated to capture the global context. This allows the encoders to handle images of any
resolution and aspect ratio. Furthermore, the image encoder in Qwen2-VL is a 675M ViT with a two-
dimensional positional encoding mechanism, while InternVL-2 utilizes the more powerful InternViT
with 6B parameters. This distinction contributes to the superior performance of the compositionality
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of Qwen2-VL and InternVL-2 in our benchmark. In Table 7, we provide a comparison of the
properties of visual encoders for the aforementioned models.

Table 7: Visual encoder comparison of GPT-4o, InternVL2 and Qwen2-VL.

Method Visual Encoder Image Tile Size Maximum Number of Tiles Maximum Aspect Ratio # of Tokens for One Tile

GPT-4o - 512 x 512 8 any 170
InternVL2 InternViT-6B 448 x 448 12 1:6 256
Qwen2-VL ViT-675M 28 x 28 dynamic any 1

A.3 DEFINITION OF 13 DISTINCT CATEGORIES IN MMCOMPOSITION

• Attribute Perception: The specific attributes or properties of the object perception task that
can be solved by humans “within a blink”.

• Object Perception: Identification or recognition of objects in the image.

• Counting Perception: Counting the number of objects or elements in the image.

• Relation Perception: Understanding the relationships between objects in the image.

• Difference Spotting: Identifying differences or changes between objects or scenes in two
similar images.

• Text Rendering: Reading or interpreting text present in the image.

• Visual Similarity: Comparing similarities between objects or elements across multiple
images.

• Attribute Reasoning: Identifying and reasoning about specific attributes or properties of
objects in the image.

• Object Reasoning: Identifying and reasoning about objects in the image.

• Counting Reasoning: Identifying and reasoning about the number of objects or elements in
the image.

• Relation Reasoning: Identifying and reasoning about the spatial arrangement or positioning
of objects in the image.

• Object Interaction: Understanding interactions among multiple objects in the image.

• VL Composition Probing: Examining the composition or combination of visual and
textual elements in images, where models are required to accurately find all the complex
compositional descriptions about the image.

A.4 CHARACTERISTICS OF QUESTIONS WHERE MODELS UNDERPERFORM

We define the comprehensive performance value (CPV) for each question as the average score across
54 VLMs. By comparing each question’s CPV with the score of a random choice within its class, we
find that 1,159 questions have a CPV lower than that of random chance. We show statistical results
questions with low CPV in Figure 8 through Figure 11.

A.5 ANALYSIS OF GPT-4O’S UNDERPERFORMANCE IN SPECIFIC TASKS

Since GPT-4o performs relatively weaker on Obj-P, Count-P, Attr-R, Count-R, and Rel-R tasks
compared to smaller models that outperform it, we aim to provide an intuitive analysis of the reasons
behind its poor performance on these tasks. Figure 12 presents interpretable examples for the
aforementioned categories.

A.6 MORE INTERPRETABLE EXAMPLES

To provide a clearer and more comprehensive interpretation of the models’ capabilities, we present
additional interpretable examples in Figure 14 and Figure 15.
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Figure 8: Distribution of difficulty levels of ques-
tions with low CPV, illustrating the authenticity of
the difficulty distribution in MMCOMPOSITION.

Figure 9: Distribution of option counts for ques-
tions with low CPV.

Figure 10: Resolution distribution of images with
low CPV.

Figure 11: Word cloud of key terms from the
questions with low CPV, illustrating the keywords
appearing in the questions that VLMs are hard to
answer currently.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 12: GPT-4o Weak Category Analysis. The logos of the models or human displayed to the right
of the option(s) indicate that the model or human has selected the option(s) as the correct answer(s).
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Figure 13: Performance gap between images whose shortest side > 768px and those ≤ 768px, defined
as gap = Acc>768px −Acc≤768px. The histogram shows the distribution of performance gaps across
13 tasks. The average performance gap for GPT-4o is 14.26, while for Qwen2-VL, it is 9.05. The
smaller gap for Qwen2-VL indicates its greater effectiveness in processing high-resolution images.
Additionally, Qwen2-VL’s performance gaps are more consistently positive across different tasks,
further highlighting its robustness in handling high-resolution images.

Figure 14: More interpretable analysis of different VLMs. Green indicates correct answers, while red
represents the predicted wrong answers.
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Figure 15: More interpretable analysis of different VLMs. Green indicates correct answers, while red
represents the predicted wrong answers.
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Table 8: Comparison with related VL benchmarks: “Multi-Hop” refers to whether the dataset contains
questions that need multi-hop reasoning, “Comprehensive” in the Capabilities column indicates the
benchmark evaluates multiple capabilities for VLMs (e.g., recognition, OCR, knowledge, math, and
spatial reasoning).

Dataset Size Human Annotation Multi-Hop Capabilities Best Performance (Model/Human)
MMBench Liu et al. (2023b) 3,217 ✗ ✗ Comprehensive 86.1 / -
MME Fu et al. (2023) 2,800 ✓ ✗ Comprehensive 1790.04/-
MMStar Chen et al. (2024a) 1,500 ✓ ✗ Comprehensive 66.0/-
SeedBench Liu et al. (2023b) 19k ✓ ✗ Comprehensive 72.4 / -
MMMU Yue et al. (2023) 11.5k ✓ ✗ College-Level Subject Knowledge 69.1 / 88.6
HalBench Guan et al. (2024) 1,129 ✓ ✗ Hallucination 67.58 / -

MMCOMPOSITION (ours) 4,342 ✓ ✓ Compositionality 67.95 / 90.31

A.7 ADDITIONAL EXPERIMENTS

To further verify the challenging nature of MMCOMPOSITION and demonstrate the indispensable role
of images, we conducted additional experiments under image-blind settings. The results are presented
in Table 10. We also conducted experiments to compare different visual-to-language (V2L) adapters
and their impact on model performance, as summarized in Table 9. Additionally, we examined
the models’ abilities to handle multi-hop reasoning questions, the effect of providing in-context
examples, and the performance when multiple images are used. These experiments aim to provide a
comprehensive understanding of the factors influencing model performance on MMCOMPOSITION.

Image-blind Setting. As shown in Table 10, all models experienced significant performance drops
across all evaluation dimensions when visual inputs were removed. For instance, the overall score
of Qwen2-VL-72B decreased by 20.50%, underscoring the indispensable role of images in these
tasks. This substantial decline confirms that MMCOMPOSITION effectively evaluates the integration
of visual and linguistic understanding, as models struggle without visual context.

V2L Adapters Comparison. We also compare different V2L adapters. As shown in Table 9, models
that utilize an MLP adapter (e.g., LLaVA1.5-13B) generally outperform those with a Q-Former adapter
in overall performance. Specifically, LLaVA1.5-13B achieves an overall score of 42.03, surpassing
InstructBLIP-13B’s score of 37.06. This suggests that the choice of adapter architecture significantly
influences a model’s ability to effectively integrate visual features.

Multi-hop/Non-multi-hop Question Setting. We analyze the performance on multi-hop versus
non-multi-hop question settings (Table 11) and observe that some models perform better on multi-hop
questions, indicating strength in complex reasoning tasks. For example, Qwen2-VL-72B achieved
an overall score of 70.22 on multi-hop questions, compared to 58.55 on non multi-hop ones. This
demonstrates the model’s enhanced capability to handle questions requiring multiple reasoning steps.

In-context Learning Setting. The results in Table 12 indicate that in-context examples do not
consistently improve performance. For Qwen2-VL-72B, adding one example slightly decreased the
overall score by 0.92%, while adding more examples led to further declines. Similarly, InternVL2-
40B experiences a drop of up to 13.44% with three in-context examples. These results suggest that
the models may not effectively utilize in-context learning for visual reasoning tasks, possibly due to
limitations in their training data or architectural design.

Multi-image Setting. As shown in Table 13, the performance varies between models. Qwen2-VL-
72B shows an improvement in overall score by 4.14% when multiple images are provided, indicating
effective utilization of additional visual information. In contrast, InternVL2-40B’s performance
decreases by 1.62%, suggesting difficulties in integrating information from multiple images.

These additional experiments reinforce the challenging nature of MMCOMPOSITION and highlight
the importance of visual information, adapter architectures, and the complexities involved in multi-
hop reasoning and in-context learning within multimodal models. The findings provide valuable
insights for future research aiming to enhance the capabilities of vision-language models.
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Figure 16: Examples of multi-hop questions: The ratio of multi-hop to non-multi-hop questions in
our dataset is 2,459 to 1,841.
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Table 9: Comparison of Different Adapters for Model’s Performance.

Model Visual Encoder LLM V2L Adapter Perception Reasoning Probing Overall
mPLUG-Owl2 Ye et al. (2024) ViT-L/14 LLaMA2-7B Q-Former 36.90 46.16 30.36 39.59
InstructBLIP-7B Dai et al. (2023) ViT-G/14 Vicuna-7B Q-Former 33.22 43.70 31.41 36.86
LLaVA1.5-7B Liu et al. (2024b) ViT-L/14 Vicuna-7B MLP 36.51 47.04 30.32 39.71

InstructBLIP-13B Dai et al. (2023) ViT-G/14 Vicuna-13B Q-Former 35.53 42.70 25.24 37.06
LLaVA1.5-13B Liu et al. (2024b) ViT-L/14 Vicuna-13B MLP 37.23 49.75 39.32 42.03

Table 10: Results for Image-Blind Setting.

Model Perception Reasoning Probing Overall
Qwen2-VL-72B 56.53 76.39 70.26 65.24
Qwen2-VL-72B-blind 45.16−11.37 48.17−28.22 30.76−39.50 44.74−20.50

InternVL2-26B 60.40 70.03 52.43 63.08
InternVL2-26B-blind 34.80−25.60 42.63−27.40 32.17−20.26 37.39−25.69

InternVL2-40B 64.57 74.12 67.14 67.95
InternVL2-40B-blind 37.88−26.69 43.35−30.77 34.28−32.86 39.54−28.41

InternVL2-76B 63.41 75.44 58.46 67.28
InternVL2-76B-blind 33.93−29.48 44.08−31.36 32.68−25.78 37.51−29.77

Table 11: Comparison of models’ performance on multi-hop and non multi-hop questions.

Model Perception Reasoning Probing Overall
InternVL2-40B-non-multi-hop 74.11 66.52 - 72.28
InternVL2-40b-multi-hop 51.24 77.01 59.59 64.63

Qwen2-VL-72B-non-multi-hop 55.05 69.37 - 58.55
Qwen2-VL-72B-multi-hop 58.91 79.22 69.57 70.22

VILA-40B-non-multi-hop 66.29 61.49 - 65.14
VILA-40B-multi-hop 44.58 71.62 62.16 60.25

GPT-4o-non-multi-hop 63.19 57.77 - 61.90
GPT-4o-multi-hop 48.51 66.76 54.65 58.03

LLaVA-1.6-34B-non-multi-hop 66.14 61.27 - 64.98
LLaVA-1.6-34B-multi-hop 44.20 57.91 58.17 53.09

Gemini-1.5-Pro-non-multi-hop 55.68 46.61 - 53.50
Gemini-1.5-Pro-multi-hop 42.39 62.78 49.60 53.09

Table 12: Results for In-context Setting.

Model Perception Reasoning Probing Overall
Qwen2-VL-72B 56.53 76.39 70.26 65.24
Qwen2-VL-72B-1example 62.19+5.66 73.30−3.09 43.94−26.32 64.32−0.92

Qwen2-VL-72B-2example 63.06+6.53 70.84−5.55 46.37−23.89 64.14−1.10

Qwen2-VL-72B-3example 61.61+5.08 69.46−6.93 48.87−21.39 63.13−2.11

InternVL2-40B 64.57 74.12 67.14 67.95
InternVL2-40B-1example 54.01−10.56 66.62−7.50 36.97−30.17 56.82−11.13

InternVL2-40B-2example 52.37−12.20 65.24−8.88 36.24−30.90 55.37−12.58

InternVL2-40B-3example 51.05−13.52 63.73−10.39 39.94−27.20 54.51−13.44

Table 13: Results for Multi-image Setting.

Model Perception Reasoning Probing Overall
Qwen2-VL-72B 55.36 77.17 89.86 71.75
Qwen2-VL-72B-multi 63.01+7.65 80.35+3.18 89.19−0.67 75.89+4.14

InternVL2-40B 42.35 73.27 88.51 65.26
InternVL2-40B-multi 39.29−3.06 72.54−0.73 86.49−2.02 63.64−1.62
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