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Abstract

Graph Neural Networks (GNNs) have been widely used for tasks involving graph-
structured data. These networks create matrix representations of graphs by ag-
gregating nodes information from neighbor nodes recursively. Integrating with
contrastive learning, graph contrastive learning has shown enhanced performance
on graph-level tasks. However, architectures of graph contrastive learning frame-
works become complicated due to the sophisticated structures of GNN-based
encoder and necessity of both encoder and projection head. In this paper, we
proposed a significantly simplified MLP-based supervised contrastive learning
framework for graph classification tasks, coined as MCGC, which does not incor-
porate any GNN layers. Experimental results on graph benchmark datasets and
ablation studies indicate that, despite not utilizing GNN layers, our framework
achieved comparable or even superior performance on graph classification tasks
against some state-of-the-art models.

1 Introduction

The growing accessibility of graph data has a significant impact on various domains, including
social analysis(1), biology, transportation and financial systems(2). Nevertheless, unlike data with
orderly arranged representations such as images, nature property of lacking euclidean structure in
graph data poses challenges for applying machine learning techniques on graphs. Inspired by neural
networks(3) which efficiently extract patterns from large and high-dimensional datasets, variants of
graph neural networks(4; 5) have been developed such as graph auto-encoder(6), graph recurrent
neural networks(7; 8), graph attention networks(9), graph isomorphism networks(10) and graph
convolutional networks. Graph neural networks are exploited for tasks involving graph-structured
data by combining graph networks and neural networks, thereby extending existing machine learning
techniques to the realm of graph data. Features of a node and structural information of the node’s
neighborhoods are synthesized to create an vector representation of a node by aggregating nodes
information from neighboring nodes recursively, therefore a matrix representation of a graph can be
obtained through readout functions such as a pooling layer or an aggregation function. GNNs have
been widely adopted as standard and state-of-the-art tools for processing diverse categories of graphs
in practice.
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In recent years, interest in integrating contrastive learning with graph learning(11) is aroused, inspired
by the success of contrastive learning in computer vision(12) and natural language processing
domains. Most of graph contrastive learning frameworks utilize GNN layers as encoders to generate
matrix representations of a graph, because of GNNs’ exceptional capabilities in handling graph
data. However, the architectures of graph contrastive learning frameworks become complicated
due to the sophisticated structures of GNN layers and necessity of both encoder (GNN layers)
and projection head (a MLP), leading the total number of model parameters to reach hundreds
of thousands even millions. Additionally, the computational cost of graph operations, such as
aggregations and propagations within GNN layers, can be expensive and unnecessary in certain
scenarios. In this paper, we proposed a significantly simplified MLP-based supervised contrastive
learning framework for graph classification tasks, coined as MCGC, which does not incorporate
any GNN layers. GNN-based encoder in general frameworks is replaced by a feature extraction
layer, generating primitive vector representations of nodes in a graph without relying on GNN related
operations. A sum aggregator after the projection head produces final embedding of a graph. By
eliminating the GNN layer, performance of our framework solely rely on the MLP and contrastive
learning. Furthermore, we applied supervised contrastive learning methodology(13) that fully exploits
label information provided to improve performance of contrastive learning in graph level. To validate
effectiveness of our framework, we conducted experiments on several graph learning benchmark
datasets. Experimental results indicate that, despite not utilizing any GNN layers, our framework
achieved comparable or even superior performance on graph classification tasks against some state-
of-the-art models. Contributions of this paper are presented as follows:

• We develop a feature extraction layer to generate vector representations of nodes in a graph
as inputs for projection head. A sum aggregator is utilized to produce a final embedding of a
graph.

• We investigate approaches of not utilizing GNN layers in graph contrastive learning. As a
result, we propose MCGC, a significantly simplified graph contrastive learning framework
that does not incorporate any GNN layers.

• We employ supervised contrastive learning technique on MCGC framework to fully exploit
label information in contrastive learning.

The remaining sections of this paper are organized as follows. In Section 2, we provide an overview
of the related work on graph neural networks and graph contrastive learning. Details of approaches
utilized in our framework are presented in Section 3. Section 4 presents our experiments, including
performance comparison between our framework and other state-of-the-art models, exploration on
numbers of parameters, exploration on augmentations on MCGC, as well as ablation studies. Finally,
we draw brief conclusions in Section 5.

2 Related Work

2.1 Graph neural networks

Graph neural networks primarily follow the neighborhood information aggregation algorithm to
produce a representation of a graph. They aggregate information of node’s neighborhood to obtain
a new representation of the node iteratively. The representation of a entire graph is then formed by
readout functions such as a pooling function or an aggregator. As a prominent GNN variant, graph
convolutional networks (GCNs) are generally divided into two main categories(14): spectral-based
and spatial-based, according to their algorithmic properties. Spectral-based graph convolutional
networks(15; 16; 17; 18) apply convolutional operations on graphs in Fourier domain. On the other
hand, due to the restriction of fixed graph structures on convolutional operations in Fourier domain,
spatial-based graph convolutional networks(19; 20; 21; 22; 23; 24) bypass it by alternative convo-
lutional operations which aggregate nodes’ information from their neighbor nodes. Apart from
GCNs, other variants of GNNs has been developed for applying machine learning techniques on
graphs. Graph attention network (GAT)(9) utilizes novel convolution-style approach with attention
mechanism. Xu et al. proposed graph isomorphism network (GIN) to maximize the discrimina-
tive power of a GNN. GraphSAGE (25) applys an inductive representation learning algorithm on
large graphs by sampling neighborhood and aggregating information. Graph neural networks are
specifically designed for handling graph-related tasks and have shown excellent performance in
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Figure 1: Overview of MCGC

various applications. However, we aim to simplify the framework architecture and investigate the
effectiveness of not using GNN layers in graph contrastive learning. Therefore, GNN layers are not
incorporated into our framework, allowing us to explore alternative approaches for graph learning.

2.2 Graph Contrastive Learning

As a self-supervised learning technique, contrastive learning aims to maximize the feature consistency
of positives in the latent space, while minimizing feature consistency of negatives. There has been a
surge of interest in leveraging contrastive learning to graph-related tasks, driven by its notable success
in the fields of computer vision and natural language processing. DGI(26) utilizes an approach of
learning node representations within graph-structured data by contrastive learning. As an extension of
DGI, InfoGraph(27) aims at graph-level learning tasks by utilizing mutual information maximization.
You et al. proposed GraphCL framework for GNN pre-training and analyzed influence of data
augmentations(11). Additionally, graph contrastive learning is explored in (28; 29; 30; 31; 32).

2.3 Supervised contrastive learning

Contrastive learning, as a self-supervised learning technique, requires no label information for
training, making it particularly valuable for datasets with a scarcity of labels. Khosla et al. (13)
proposed an extension of contrastive learning that exploits labels to enable supervised training. In
contrast to self-supervised contrastive learning, which considers only augmentations of the sample as
positives, supervised contrastive learning treats all samples belonging to the same class as positives,
as well as their augmentations. Conversely, samples and augmentations from different classes are
treated as negatives. Supervised contrastive learning exhibits improved robustness to corruption.
Inspired by it, Zheng et al.(33) presented a weakly supervised contrastive learning framework with
only two projection heads on image classification. A supervised contrastive learning objective for
fine-tuning language learning models in few shot learning is demonstrated in (34).

3 proposed framework

In this section, details of our proposed framework are presented. Figure 1 shows the proposed
MCGC framework. Firstly, graph augmentations are generated for subsequent stages. Then MCGC
exploits the feature extraction layer and sum aggregator as alternatives to GNN-based encoder to
create embeddings of graphs and augmented graphs, as shown in Figure 2. Supervised contrastive
learning method is utilized for maximizing the consistency among the positives and minimizing
the consistency among the negatives. Lastly, after the projection head is optimized by supervised
contrastive learning loss function, embeddings of graphs are fed into a classifier for final predictive
results.

3.1 Notations

Consider a graph Gg = (Ng, Eg),Gg ∈ D in a graph dataset D, where Ng denotes the set of all nodes
and Eg denotes the set of all edges in Gg . Let Ng to be the quantity of nodes and Eg to be the quantity
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Figure 2: Building a balanced matrix representation by feature extraction layer and pooling layer

of edges in graph Gg . Each node ni ∈ Ng has a d-dimensional feature vector denoted as xi ∈ Rd. In
this paper, a graph Gg is assumed to have no self loop. Matrix Ag denotes the adjacent matrix of the
graph Gg where Ag

ij = 1 indicates nodes ni and nj are adjacent.

3.2 Feature extraction layer

Non-Euclidean graph data inherently lack consistent features, therefore extra layers are required to
generate orderly arranged representations of graphs, which are mainly achieved by GNN layers with
learnable weight matrices in a GNN-base framework. However, GNN layers are not exploited in our
framework to demonstrate non-necessity in certain graph classification tasks. Therefore, we build a
feature extraction layer to firstly convert a raw graph data to representations of nodes in this graph.
Section Feature extraction layer in figure 2 shows the approaches of building representations of nodes
in a graph by the feature extraction layer. Consider a graph Gg , given the feature vector xi ∈ Rd of a
node ni ∈ Ng and the set of its adjacent nodes ADi = {xj |Ag

ij = 1}, we randomly sample k nodes
from ADi to derive topology information of graph. Indices of these sampled nodes {ni1, ni2, ...nik}
are concatenated to build a sampled neighbor list Neii of node ni. Extracted feature vector x′

i of
node ni is built by concatenating xi and Neii. ZN ∈ RNg×(d+k) denotes a matrix of representations
of all nodes in graph Gg , created by a vertical concatenation of extracted feature vectors of all nodes
ZN = ∥Ng

i=1x
′
i. Here, the value of k is either specified manually or set as max degree of all nodes

ni ∈ Ng .

3.3 Projection head and sum aggregator

Projection head gθ(·), which is a non-linear transformation with parameters θ, transforms the matrix
of representations of all nodes ZN ∈ RNg×(d+k) to latent embeddings of nodes gθ(ZN ) = Z ′

N ∈
RNg×p that are utilized for calculating contrastive learning losses in latent space, where p indicates
output size of projection head. MLP is broadly chosen as projection head in existing graph contrastive
learning approaches (11; 28), which transforms representations generated by a preceding GNN-
based encoder to embeddings in contrastive learning latent space. However, the encoder is removed
in our framework, causing projection head to be the only learnable transformation. Therefore,
functionalities of encoder and projection head in other works are combined into a single projection
head in our framework. Afterwards, a readout function aims to build an embedding of the entire
graph according to embeddings of individual nodes for classification tasks on graph level. The sum
aggregator is utilized in MCGC due to its better expressive power than mean and max aggregators(10).
Graph embedding Zg ∈ Rp of graph Gg is obtained by a sum aggregator Fsum() which calculates
summations through the feature dimension Zg = Fsum(Z ′

N ) =
∑

Ng
Z ′
N .

3.4 Graph supervised contrastive learning

Contrastive learning has gained significant attention in the field of machine learning and has shown
promising performance, particularly in computer vision and natural language processing domain.
One commonly used contrastive learning loss is InfoNCE(35) that is presented as equation 1.

L(ti) = −log
exp(zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)
(1)
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Here, ti represents a sample in dataset and A(i) indicates a set of all samples excluding ti, symbol ·
denotes the inner product, and τ denotes the temperature parameter which has been well explored in
(36). As a self-supervised learning loss function, it doesn’t exploit label information during training
since augmentations are the only positives for sample ti. As an extension of equation 1, supervised
contrastive learning loss function is proposed in (13) which is generalized to an arbitrary number of
positives, shown in equation 2.

LSup(ti) =
−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
(2)

Here, P (i) indicates a sample set containing all samples that share the same label with ti, and |P (i)|
denotes cardinality of P (i). According to equation 2, we treat all samples with a same label as
positives, while all other samples are negatives. The gradient of the loss function in equation 2 is
presented as equation 3.

∂L
∂zi

=
1

τ

 ∑
p∈P (i)

zp(Pip −
1

|P (i)|
) +

∑
n∈N(i)

znPin

 (3)

Where N(i) is a sample set containing all samples that have different labels from sample ti and Pit

is defined in equation 4.

Pit =
exp(zi · zt/τ)∑

a∈A(i) exp(zi · za/τ)
(4)

Therefore the gradient of loss function in equation 2 is calculated based on all positive and negative
samples. By maximizing the consistency among the positives and minimizing the consistency among
the negatives, graph embeddings with the same label tend to be closer together in the latent space.
In our framework, projection head gθ(·) and sum aggregator take matrix of representations of all
nodes ZN as an input and transform it to latent space as a graph embedding Zg, represented as
Fsum(gθ(Zn)) = Zg . Graph embedding is utilized as zi in equation 2 to calculate contrastive loss in
latent space. Therefore, projection head gθ(·) is optimized by equation 5.

θ = argmin
θ

∑
Gi∈D

LSup(Fsum(gθ(Zn))) (5)

3.5 Graph augmentation

Inspired by the image augmentation methods such as rotation and cropping used in image contrastive
learning, graph data augmentation methods aim to generate new graph data by applying certain
transformations to the original graphs while preserving their semantic information. Previous research
has explored and proposed various methods for graph augmentations (11). Here we utilize two
existing augmentation methods Edge dropping and Feature masking, as well as a new augmentation
method Index shuffling which is specifically designed for our framework.
Edge dropping augmentation method randomly discards certain edges from a given graph Gg. The
underlying assumption behind this method is that removing certain edges does not significantly alter
the semantic information of the graph. This method introduces variability into the graph data while
preserving important patterns and relationships within the graph.
Feature masking augmentation method randomly masks some elements in the feature vectors of
certain nodes, based on the assumption that a small percentage of missing values is unlikely to
significantly impact the performance of the model. It allows researchers to investigate the model’s
robustness to missing feature values and assess its ability to handle noisy data.
Nodes may lack meaningful indices in many graphs, leading to the assignments of random indices
when storing them into a data structure. Although the randomness of these indices does not alter the
graph’s underlying structure, it can introduce variations in the adjacency matrix, as well as extracted
feature vectors of nodes x′

i. Therefore, we propose the index shuffling augmentation method which
randomly shuffles the indices of all nodes within a graph, resulting in the regeneration of adjacency
matrix and extracted feature vectors of all nodes.
Note that most of random argumentation methods, including Edge dropping and Feature masking,
are risky to alter graph structure and generate misleading views (37), especially in some sensitive
fields like chemoinformatics where even a slight change in a compound can result in a significant
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variation in its chemical properties. However, Index shuffling is considered risk-free, as it builds
isomorphisms of original graph to retain graph semantics. Isomorphisms are not commonly utilized
as augmentations in other graph contrastive learning frameworks due to the abilities of GNN-based
encoders on identifying isomorphisms such as GIN(10). However, absence of GNN-based encoder in
our framework makes isomorphism augmentations are possible to be valuable because of their high
similarity with original graph.

4 Experiments

4.1 Datasets

We assessed the effectiveness of our proposed approaches by evaluating performance on multiple
benchmark graph datasets for graph classification tasks. These datasets were derived from the TU
Graph dataset(38), a comprehensive collection of benchmark datasets for graph learning tasks. It
contains a diverse range of graph datasets, including small molecules, bioinformatics, computer
visions, social networks and synthetic graphs. We selected 6 datasets from TU dataset: MUTAG(39),
PROTEINS(40), DD(41), NCI1(42), IMDB_BINARY (43) and IMDB_MULTI (43). By testing the
10-fold cross validation accuracies of our framework on these datasets, we assessed the effectiveness
of our proposed approaches. Table 1 shows detailed statistics of these datasets.

Table 1: Statistics of datasets

Number of
Graphs Classes Average

Nodes
Average
Edges

MUTAG 188 2 17.93 19.79
PROTEINS 1113 2 39.06 72.82
DD 1178 2 284.32 715.66
NCI1 4110 2 29.87 32.30
IMDB_BINARY 1000 2 19.77 96.53
IMDB_MULTI 1500 3 13.00 65.94

4.2 Settings

Our framework is implemented using Pytorch with Python version 3.9. We employed an linear layer
whose output dimension is 256 as the projection head gθ(·). Additionally, a two-layer MLP is utilized
as the classifier. For contrastive learning, learning rate is set as 0.001 and temperature parameter
τ is set as 0.07. Graph datasets in Table 1 are selected to evaluate the performance of MCGC. For
each dataset, we conducted 10-fold cross validation to obtain the average and standard deviation of
accuracies. Performance of our framework is evaluated and compared with GK kernels(44), WL
kernels(45), DGCNN(22), GIN(10), GraphCL(11) and InfoGraph(27). Specifically, as two graph
contrastive learning models in our experiments, GraphCL adopts GCN as its encoder, while GIN are
selected as encoder in InfoGraph.

4.3 Experimental results and PCA visualization analysis

Table 2 shows experimental results and comparisons with other models. According to Table 2, MCGC
demonstrates comparable performance on DD and IMDB_MULTI datasets. Moreover, it exhibits
superior performance on PROTEINS, MUTAG and IMDB_BINARY datasets compared to other
models. However, when considering the NCI1 dataset, MCGC’s classification performance is found
to be inferior to other models. In addition, the standard deviations of accuracies of MCGC are larger
than others, caused by randomness from indices assignments and neighboring nodes sampling, as
well as graph augmentations. It suggests that robustness of MCGC should be further improved to
minimize the interference from randomness.

We exploited the PCA dimensional reduction technique to visualize graph embeddings of PROTEINS,
MUTAG and IMDB_BINARY in the contrastive learning latent space, as an auxiliary method to
evaluate the effectiveness of proposed approaches. Figure 3 presents the distributions of graph
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Table 2: Experimental results

MUTAG PROTEINS DD NCI1 IMDB_B IMDB_M
GK 80.7 ± 1.4 71.0 ± 0.2 75.0 ± 0.8 64.5 ± 0.3 65.3 ± 0.9 44.6 ± 0.4
WL 84.6 ± 1.8 74.9 ± 0.6 77.4 ± 0.7 82.1 ± 0.7 72.4 ± 0.7 49.8 ± 0.5
DGCNN 85.8 ± 1.6 75.5 ± 0.9 79.3 ± 0.9 74.4 ± 0.4 70.0 ± 0.8 47.8 ± 0.9
GIN 89.5 ± 4.8 76.5 ± 2.4 75.6 ± 2.6 82.9 ± 1.5 75.4 ± 4.5 51.2 ± 2.4
GraphCL 87.0 ± 1.1 74.5 ± 0.4 78.1 ± 0.5 77.2 ± 0.6 70.9 ± 0.5 49.1 ± 0.4
InfoGraph 89.3 ± 1.0 75.0 ± 0.3 73.2 ± 1.6 76.8 ± 1.1 73.0 ± 0.6 49.4 ± 0.6
MCGC 92.5 ± 3.8 78.5 ± 3.0 77.6 ± 1.4 72.2 ± 1.4 77.8 ± 2.6 49.9 ± 1.6

Figure 3: PCA visualization of MUTAG in 2D space

embeddings of MUTAG in 2D space after applying PCA method. Figure 3 shows that majority of
red dots are clustered together and can be separated from most of blue dots, indicating effectiveness
of exploiting embeddings for further classification tasks. However, the distributions of visualized
embeddings of PROTEINS and IMDB_BINARY datasets are overlapped and not well separated,
therefore the figures of them are not presented here, which can be caused by the sensitivity of PCA
to outliers, a lower accuracy on these datasets, and probably a larger number of graphs in these
datasets. Furthermore, we observed that a higher accuracy does not necessarily lead to a better
separated visualized distribution of graph embeddings. Therefore performance of the models cannot
be solely estimated by distributions of graph embeddings, and visualization should be considered as
an auxiliary measurement only.

In conclusion, analysis of experimental results and PCA visualizations reveals several drawbacks
of the proposed framework. First, it doesn’t achieve higher performance on all datasets. Second,
the framework is not comparatively robust enough to handle randomness. Lastly, the distributions
of embeddings of some graph datasets may not be suitable for visualization using dimensional
reduction method like PCA. These drawbacks guide us with the potential future improvements for
our framework. Even though there are several drawbacks, MCGC provides effective approaches for
exploiting supervised contrastive learning on graphs without relying on any GNN layers.

4.4 Exploration on numbers of parameters

To evaluate simplicity of MCGC in comparison to other models, we conducted parameters analysis
experiments on MCGC, as well as two commonly used encoders in graph contrastive learning: the
GCN encoder and the GIN encoder. Note that the GCN encoder and GIN encoder are typically
connected with a separate projection head in most of graph contrastive learning framework, while
MCGC does not require that. In our experimental setting, we set output dimension of MCGC as 256.
For evaluating the GCN encoder, we deployed a two-layer GCN encoder with hidden dimension
(128,256), along with a projection head whose output dimension is 256. The GIN encoder had a
hidden dimension of 256 and consisted of 3 layers. Output dimension of projection head for GIN
encoder is set as 256*3. Accuracies are skipped here since they are already presented in Table 2.
Experimental results of parameters are presented in Table 3. Numbers of parameters in MCGC are
significantly smaller than both GCN encoder and GIN encoder, highlighting the simplicity of the
proposed model.
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Table 3: Number of parameters in models

MUTAG PROTEINS DD NCI1 IMDB_B IMDB_M
GCN Encoder+Proj Head 99840 99456 110336 103680 98944 98944
GIN Encoder+Proj Head 529408 528640 550400 537088 527616 527616
MCGC Encoder 2048 1280 23040 9728 256 256

4.5 Exploration on augmentations

According to equation 1, augmentations are indispensable in self-supervised contrastive learning as
the augmentations are only positive views of the current sample. Without these augmentations, the
lack of positive views can result in a zero loss value, making it impossible to calculate gradients for the
backward pass. However, since label information is exploited and all samples with a same label are
treated as positives in supervised contrastive learning shown as equation 2, augmentations theoretically
become unnecessary if batch size is large with respect to the number of classes. To investigate the
impact of augmentation methods and number of augmentations on the MCGC framework, we
conducted 10-fold cross validation on three datasets : MUTAG, PROTEINS and IMDB_BINARY,
since MCGC achieved best performance on them. Three augmentation methods Edge dropping,
Feature masking and Index shuffling are employed to generated different numbers of augmentations
(1 augmentation, 2 augmentations and 3 augmentations). Besides, we also conducted experiments
without any augmentation (No augmentation) which are used as the baseline. Experimental results
on MUTAG, PROTEINS and IMDB_BINARY are shown in Figure 4, Figure 5 and Figure 6
respectively. According to experimental results depicted in Figure 4, Figure 5 and Figure 6, neither

Figure 4: Augmentation experimental results on MUTAG dataset

Figure 5: Augmentation experimental results on PROTEINS dataset

method nor number of augmentations has large impact on performance of MCGC on these three
datasets. Considering introduction of randomness during the augmentation process, subtle variations
on experimental results are inevitable. For MUTAG and IMDB_BINARY datasets, comparing
to experimental results without augmentation, generating augmentations increases the range of
the accuracy variation. However, range of the accuracy variation is larger due to the absence of
augmentation on PROTEINS. Therefore, this suggests that effectiveness of augmentations may vary
one dataset to another on MCGC due to properties of graph datasets, leading an interest for further
investigation.

4.6 Ablation studies

We evaluated effectiveness of proposed framework by comparing with following three training
strategies on three datasets: MUTAG, PROTEINS and IMDB_BINARY since MCGC achieved
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Figure 6: Augmentation experimental results on IMDB_B dataset

best performance on them.
We remove projection head and supervised contrastive learning in MCGC, as well as graph augmen-
tations. Representations of nodes Zn generated by feature extraction layer are directly fed into sum
aggregator to produce a graph presentation for classification. Effectiveness of feature extraction layer
is evaluated by this strategy. We denote this training strategy as w/o SupCon.
Instead of optimizing parameters of projection head by supervised contrastive learning loss, we mod-
ify our framework by following the methodology of the auto-encoder. Note that due to the restriction
of not exploiting GNN layers, GAE (graph auto-encoder) and VGAE (variational graph auto-encoder)
are not utilized in ablation studies. In this case, graph augmentations won’t be generated due to
absence of contrastive learning. We consider the projection head as the encoder to created latent
embeddings of nodes from representations of nodes (Zn). Additionally, a decoder is utilized to build
reconstructed graph representations (Ẑn). The auto-encoder is pre-trained using the reconstruction
error as the loss function, denoted as L = (Zn, Ẑn). Node embeddings generated by the encoder are
used for further classification tasks. It helps us to compare the contrastive learning method with other
self-supervised learning method. This training strategy is referred to as w/ AE, w/o SupCon.
We substitute the supervised loss function (equation 2) by the self-supervised contrastive learning loss
function (equation 1). In this case, label information won’t be exploited during training projection
head. It allows us to compare the effectiveness of self-supervised and supervised contrastive learning.
This modified training strategy is denoted as w/ SelfCon.

Table 4: Experimental results on ablation studies

MUTAG PROTEINS IMDB_BINARY
w/o SupCon 80.2 ± 7.2 72.9 ± 3.4 67.3 ± 3.4
w/ AE, w/o SupCon 79.6 ± 4.2 71.7 ± 4.0 65.2 ± 3.1
w/ SelfCon 88.8 ± 3.8 74.9 ± 2.9 73.4 ± 1.6
MCGC 92.5 ± 3.8 78.5 ± 3.0 77.8 ± 2.6

We employed three different training strategies and conducted 10-fold cross validation to obtain
the average and standard deviation of accuracies of each training strategy. The experimental results
on ablation studies are presented in Table 4. By comparing with three other training strategies, we
conclude that approaches of our framework achieved best performance. Ablation studies demonstrate
the effectiveness of proposed approaches. We observed that the w/ SelfCon strategy achieved much
better performance compared to other two training strategies without contrastive learning, highlighting
the effectiveness of contrastive learning in graph tasks.

5 Conclusions

In this paper, we proposed a significantly simplified supervised contrastive learning framework
for graph classification tasks that does not rely on any GNN layers. The proposed framework
simplifies structure of graph contrastive learning by eliminating the need for complex GNN layers.
Furthermore, we have extended application of supervised contrastive learning to graph domain.
Experimental results on graph benchmark datasets and ablation studies indicate that, despite not
utilizing GNN layers, our framework achieved comparable or even superior performance on certain
graph classification tasks against some state-of-the-art models. Even though some drawbacks are
identified in experiments, approaches in proposed framework are effective for utilizing supervised
contrastive learning on graphs without any GNN layers.
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