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Abstract

As machine learning (ML) models are increasingly being deployed in high-stakes
applications, policymakers have suggested tighter data protection regulations (e.g.,
GDPR, CCPA). One key principle is the “right to be forgotten” which gives
users the right to have their data deleted. Another key principle is the right to
an actionable explanation, also known as algorithmic recourse, allowing users to
reverse unfavorable decisions. To date, it is unknown whether these two principles
can be operationalized simultaneously. Therefore, we introduce and study the
problem of recourse invalidation in the context of data deletion requests. More
specifically, we theoretically and empirically analyze the behavior of popular
state-of-the-art algorithms and demonstrate that the recourses generated by these
algorithms are likely to be invalidated if a small number of data deletion requests
(e.g., 1 or 2) warrant updates of the predictive model. For the setting of linear
models and overparameterized neural networks – studied through the lens of neural
tangent kernels (NTKs) – we suggest a framework to identify a minimal subset of
critical training points which, when removed, maximize the fraction of invalidated
recourses. Using our framework, we empirically show that the removal of as little as
2 data instances from the training set can invalidate up to 95 percent of all recourses
output by popular state-of-the-art algorithms. Thus, our work raises fundamental
questions about the compatibility of “the right to an actionable explanation” in the
context of the “right to be forgotten” while also providing constructive insights on
the determining factors of recourse robustness.

1 Introduction

Machine learning (ML) models make a variety of consequential decisions in domains such as finance,
healthcare, and policy. To protect users, laws such as the European Union’s General Data Protection
Regulation (GDPR) [21] or the California Consumer Privacy Act (CCPA) [40] constrain the usage
of personal data and ML model deployments. For example, individuals who have been adversely
impacted by the predictions of these models have the right to recourse [58], i.e., a constructive
instruction on how to act to arrive at a more desirable outcome (e.g., change a model prediction from
“loan denied” to “approved”). Several approaches in recent literature tackled the problem of providing
recourses by generating instance level counterfactual explanations [59, 55, 34, 43].

Complementarily, data protection laws provide users with greater authority over their personal data.
For instance, users are granted the right to withdraw consent to the usage of their data at any time [5].
These regulations affect technology platforms that train their ML models on personal user data under
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the respective legal regime. Law scholars have argued that the continued use of ML models relying
on deleted data instances could be deemed illegal [57].

Irrespective of the underlying mandate, data deletion has raised a number of algorithmic research
questions. In particular, recent literature has focused on the efficiency of deletion (i.e., how to delete
individual data points without retraining the model [24, 27]) and model accuracy aspects of data
deletion (i.e., how to remove data without compromising model accuracy [6, 29]). An aspect of data
deletion which has not been examined before is whether and how data deletion may impact model
explanation frameworks. Thus, there is a need to understand and systematically characterize the
limitations of recourse algorithms when personal user data may need to be deleted from trained ML
models. Indeed, deletion of certain data instances might invalidate actionable model explanations –
both for the deleting user and, critically, unsuspecting other users. Such invalidations can be especially
problematic in cases where users have already started to take costly actions to change their model
outcomes based on previously received explanations.

In this paper, we formally examine the problem of algorithmic recourse in the context of data deletion
requests. We consider the setting where a small set of individuals has decided to withdraw their data
and, as a consequence of the deletion request, the model needs to be updated [24]. In particular, this
work tackles the subsequent pressing question:

What is the worst impact that a deleted data instance can have on the recourse validity?

We approach this question by considering two distinct scenarios. The first setting considers to what
extent the outdated recourses still lead to a desirable prediction (e.g., loan approval) on the updated
model. For this scenario, we suggest a robustness measure called recourse outcome instability to
quantify the fragility of recourse methods. Second, we consider the setting where the recourse action
is being updated as a consequence of the prediction model update. In this case, we study what
maximal change in recourse will be required to maintain the desirable prediction. To quantify the
extent of this second problem, we suggest the notion of recourse action instability.

Given these robustness measures, we derive and analyze theoretical worst-case guarantees of the
maximal instability induced for linear models and neural networks in the overparameterized regime,
which we study through the lens of neural tangent kernels. We furthermore define an optimization
problem for empirically quantifying recourse instability under data deletion. For a given trained
ML model, we identify small sets of data points that maximize the proposed instability measures
when deleted. Since the resulting brute-force approach (i.e., retraining models for every possible
removal set) is NP-hard, we propose two relaxations for recourse instability maximization that can
be optimized using (i) end-to-end gradient descent or (ii) via a greedy approximation algorithm. To
summarize, in this work we make the following key contributions:

• Novel recourse robustness problem. We introduce the problem of recourse invalidation
under the right to be forgotten by defining two new recourse instability measures.

• Tractable algorithms. Using our instability measures, we present an optimization frame-
work to identify a small set of critical training data points which, when removed, invalidates
most of the issued recourses.

• Comprehensive experiments. We conduct extensive experiments on multiple real-world
data sets for both regression and classification tasks with our proposed algorithms, showing
that the removal of even one point from the training set can invalidate up to 95 percent of all
recourses output by state-of-the-art methods

Our results also have practical implications for system designers. First, our analysis and algorithms
help identify parameters and model classes leading to higher stability when a trained ML model is
subjected to deletion requests. Furthermore, our proposed methods can provide an informed way
towards practical implementations of data minimization [20], as one could argue that data points
contributing to recourse instability could be minimized out. Hence, our methods could increase
designer’s awareness and the compliance of their trained models.

2 Related Work

Algorithmic Approaches to Recourse. Several approaches in recent literature have been suggested
to generate recourse for users who have been negatively impacted by model predictions [53, 36, 13,
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59, 55, 56, 43, 37, 39, 34, 47, 12, 3, 51, 1]. These approaches generate recourses assuming a static
environment without data deletion requests, where both the model and the recourse remain stable.

A related line of work has focused on determining the extent to which recourses remain invariant
to the model choice [44, 7], to data distribution shifts [46, 54], perturbations to the input instances
[4, 14, 50], or perturbations to the recourses [45].

Sample Deletion in Predictive Models. Since according to EU’s GDPR individuals can request
to have their data deleted, several approaches in recent literature have been focusing on updating
a machine learning model without the need of retraining the entire model from scratch [61, 24,
31, 27, 28, 9]. A related line of work considers the problem of data valuation [22, 23]. Finally,
removing subsets of training data is an ingredient used for model debugging [15] or the evaluation of
explanation techniques [30, 48].

Contribution. While we do not suggest a new recourse algorithm, our work addresses the problem
of recourse fragility in the presence of data deletion requests, which has previously not been studied.
To expose this fragility, we suggest effective algorithms to delete a minimal subset of critical training
points so that the fraction of invalidated recourses due to a required model update is maximized.
Moreover, while prior research in the data deletion literature has primarily focused on effective data
removal strategies for predictive models, there is no prior work that studies to what extent recourses
output by state-of-the-art methods are affected by data deletion requests. Our work is the first to
tackle these important problems and thereby paves the way for recourse providers to evaluate and
rethink their recourse strategies in light of the right to be forgotten.

3 Preliminaries
The Predictive Model and the Data Deletion Mechanism. We consider prediction problems from
some input space Rd to an output space Y , where d is the number of input dimensions. We denote a
sample by z = (x, y), and denote the training data set by D = {z1, . . . , zn}. Consider the weighted
empirical risk minimization problem (ERM), which gives rise to the optimal model parameters:

wω = arg min
w′

n∑
i=1

ωi · `
(
yi, fw′(xi)

)
, (1)

where `(·, ·) is an instance-wise loss function (e.g., binary cross-entropy, mean-squared-error (MSE)
loss, etc.) and ω ∈ {0, 1}n are data weights that are fixed at training time. If ωi = 1, then the
point zi = (xi, yi) is part of the training data set, otherwise it is not. During model training, we
set ωi = 1 ∀i, that is, the decision maker uses all available training instances at training time. In
the optimization expressed in (1), the model parameters w are usually an implicit function of the
data weight vector ω and we write wω to highlight this fact; in particular, when all training instances
are used we write w1, where 1 ∈ Rn is a vector of 1s. In summary, we have introduced the weighted
ERM problem since it allows us to understand the impact of arbitrary data deletion patterns on
actionable explanations as we allow users to withdraw their entire input zi = (yi,xi) from the
training set used to train the model fw1 . Next, we present the recourse model we consider.

The Recourse Problem in the Context of the Data Deletion Mechanism. We follow an established
definition of counterfactual explanations originally proposed by [59]. For a given model fwω : Rd −→
R parameterized by w and a distance function d(·, ·) : X × X → R+, the problem of finding a
recourse x̌ = x + δ for a factual instance x is given by:

δω,x ∈ arg min
δ′∈Ad

(fwω (x + δ′)− s)2 + λ · d(x,x + δ′), (2)

where λ ≥ 0 is a scalar tradeoff parameter and s denotes the target score. In the optimization from
(2), the optimal recourse action δ usually depends on the model parameters and since the model
parameters themselves depend on the exact data weights configuration we write δω,x to highlight
this fact. The first term in the objective on the right-hand-side of (2) encourages the outcome fwω (x̌)
to become close to the user-defined target score s, while the second term encourages the distance
between the factual instance x and the recourse x̌ω := x + δω,x to be low. The set of constraints Ad
ensures that only admissible changes are made to the factual x.

Recourse Robustness Through the Lens of the Right to be Forgotten. We first introduce several
key terms, namely, prescribed recourses and recourse outcomes. A prescribed recourse x̌ refers to a
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recourse that was provided to an end user by a recourse method (e.g., salary was increased by $500).
The recourse outcome f(x̌) is the model’s prediction evaluated at the recourse. With these concepts
in place, we develop two recourse instability definitions.
Definition 1. (Recourse outcome instability) The recourse outcome instability with respect to a
factual instance x, where at least one data weight is set to 0, is defined as follows:

∆x(ω) =
∣∣fw1

(
x̌1

)
− fwω

(
x̌1

)∣∣, (3)

where fw1(x̌1) is the prediction at the prescribed recourse x̌1 based on the model that uses the full
training set (i.e., fw1 ) and fwω (x̌1) is the prediction at the prescribed recourse for an updated model
and data deletion requests have been incorporated into the predictive model (i.e., fwω ).

x1

f ′ = 0

f ′ = 1

Original boundary: fw1

Updated boundary: fwω

Invalidated recourse

x

x̃1

x2

(a) Recourse Outcome Instability

x1

f ′ = 0

f ′ = 1

Original boundary: fw1

Updated boundary: fwω

Invalidated recourse

Updated
recourse
x̃ω

x

x̃1

x2

(b) Recourse Action Instability

Figure 1: Visualizing the two
key robustness notions. In Fig.
1a, recourse x̃1 for an input x is
invalidated due to a model up-
date. In Fig. 1b, recourse is ad-
ditionally recomputed (i.e., x̃ω)
to avoid recourse invalidation.

The above definition concisely describes the effect of applying
“outdated” recourses to the updated model. We assume that only the
model parameters are being updated while the prescribed recourses
remain unchanged. For a discrete model with Y = {0, 1}, Defi-
nition 1 captures whether the prescribed recourses will be invalid
(∆x = 1) after deletion of training instances (see Fig. 1a). To
obtain invalidation rates of recourses for a continuous-score model
with target value s, we can also apply Definition 1 with a discretized
f ′(x) = I [f(x) > s], where I denotes the indicator function.

In Definition 2, consistent with related work (e.g., [59]), the distance
function d is specified to be a p-norm and the recourse is allowed
to change due to model parameter updates.
Definition 2. (Recourse action instability) The Recourse action
instability with respect to a factual input x, where at least one
data weight is set to 0, is defined as follows:

Φ(p)
x (ω) =

∥∥x̌1 − x̌ω
∥∥
p
, (4)

where p ∈ [1,∞), and x̌ω is the recourse obtained for the model
trained on the data instances that remain present in the data set
after the deletion request.

Definition 2 quantifies the extent to which the prescribed recourses
would have to additionally change to still achieve the desired re-
course outcome after data deletion requests (i.e., x̌ω , see Fig. 1b).
Note that we are interested in how the optimal low cost recourse
changes even if the outdated recourse would remain valid. Using
our invalidation measures defined above, in the next section, we
formally study the trade-offs between actionable explanations and
the right to be forgotten. To do so, we provide data dependent upper bounds on the invalidation
measures from Definitions 1 and 2, which practitioners can use to probe the worst-case vulnerability
of their algorithmic recourse to data deletion requests.

4 Finding the Set of Most Critical Data Points

The Objective Function. In this section, we present optimization procedures that can be readily
used to assess recourses’ vulnerability to deletion requests. On this way, we start by formulating
our optimization objective. We denote by m ∈ {∆,Φ(2)} the measure we want to optimize for.
We consider the summed instability of over the data set by omitting the subscript x, e.g., ∆ =∑

x∈Dtest ∆x. Our goal is to find the smallest number of deletion requests that leads to a maximum
impact on the instability measure m. To formalize this objective, we define the set of possible
data weight configurations:

Γα := {ω : Maximally bα · nc entries of ω are 0 and the remainder is 1.}. (5)

In (5), the parameter α controls the fraction of instances that are being removed from the training set.
For a fixed fraction α, our problem of interest becomes:

ω∗ = arg max
ω∈Γα

m(ω). (6)
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Fundamental Problems. When optimizing the above objective we face two fundamental problems:
(i) evaluating m(ω) for many weight configurations ω can be prohibitively expensive as the objective
is defined implicitly through solutions of several non-linear optimization problems (i.e., model fitting
and finding recourses). Further, (ii) even for an objective m(ω) which can be computed in constant
or polynomial time optimizing this objective can still be NP-hard (a proof is given in Appendix A.3).

Practical Algorithms. We devise two practical algorithms which approach the problem in (6) in
different ways. As for the problem of computing m(ω) in (i), we can either solve this by (a) using a
closed-form expression indicating the dependency of m on ω or (b) by using an approximation of
m that is differentiable with respect to ω. As for the optimization in (ii), once we have established
the dependency of m on ω we can either (a) use a gradient descent approach or (b) we use a greedy
method. Below we explain the individual steps required for the construction of our algorithms.

4.1 Computing the Objective

In the objectivem(ω), notice the dependencies ∆x(ω) = ∆x (f(w(ω), x̌)) for the recourse outcome
instability, and Φ

(2)
x (ω) = Φ

(2)
x (δ(w(ω),x))) for the recourse action instability. In the following,

we briefly discuss how we efficiently compute each of these functions without numerical optimization.

Model parameters from data weights w(ω). For the linear model, an analytical solution can
be obtained, wL(ω) =

(
X>ΩX

)−1
X>ΩY, where Ω = diag(ω). The same goes for the NTK

model where wNTK(ω) = Ω
1
2

(
Ω

1
2 K∞(X,X)Ω

1
2 + βI

)−1
Ω

1
2 Y [8, Eqn. 3]. When no closed-

form expressions for the model parameters exist, we can resort to the infinitesimal jackknife (IJ)
[33, 19, 26, 25], that can be seen as a linear approximation to this implicit function. We refer to
Appendix C for additional details on this matter.

Model prediction from model parameters f(w, x̌). Having established the model parameters,
evaluating the prediction at a given point can be quickly done even in a differentiable manner with
respect to w for the models we consider in this work.

Recourse action from model parameters δ(w, x̌). Estimating the recourse action is more chal-
lenging as it requires solving (2). However, a differentiable solution exists for linear models,
where the optimal recourse action is given by δL = s−wL(ω)>x

λ+‖wL(ω)‖22
wL(ω). When the underlying

predictor is a wide neural network we can approximate the recourse expression of the corre-
sponding NTK, δNTK ≈ s−fω,NTK(x)

λ+‖w̄NTK(ω̄)‖22
w̄NTK(ω), which stems from the first-order taylor expansion

fω,NTK(x + δ) ≈ fω,NTK(x) + δ>w̄NTK(ω) with w̄NTK(ω) = ∇xK(x,X)wNTK(ω).

4.2 Optimizing the Objective Function

The Greedy Algorithm. We consider the model on the full data set and compute the objective
function m(ω) under deletion of every instance (alone). We then select the instance that leads to the
highest increase in the objective. We add this instance to the set of deleted points. Subsequently,
we refit the model and compute the impact of deletion for every second instance, when deleted in
combination with the first one. Again, we add the instance that results in the largest increase to the set.
Iteratively repeating these steps, we identify more instances to be deleted. Computational complexity
depends on the implementation of the model weight recomputation, which is required O(αn2) times.

The Gradient Descent Algorithm. Because our developed computation of m(ω) can be made
differentiable, we also propose a gradient-based optimization framework. We consider the relaxation
of the problem in (6),

ω∗ = arg max
ω∈{0,1}n

m(ω)− ‖1− ω‖0, (7)

where the `0 norm encourages to change as few data weights from 1 to 0 as possible while few
removals of training instances should have maximum impact on the robustness measure. The problem
in (7) can be further relaxed to a continuous and unconstrained optimization problem. To do so we use
a recently suggested stochastic surrogate loss for the `0 term [63]. Using this technique, a surrogate
loss for (7) can be optimized using stochastic gradient descent (SGD). We refer to Appendix C for
more details and pseudo-code of the two algorithms.
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Figure 2: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for both the Admission and the Heloc data sets for regression and NTK models and various
recourse methods. Results were obtained by greedy optimization; see Appendix B for SGD results.

5 Experimental Evaluation

We experimentally evaluate our framework in terms of its ability to find significant recourse invalida-
tions using the instability measures presented in Section 3.

Data Sets. For our experiments on regression tasks we use two real-world data sets. In addition, we
provide results for two classification datasets in the Appendix B. First, we use law school data from
the Law School Admission Council (Admission). The council carried out surveys across 163 law
schools in the US, in which they collected information from 21,790 law students across the US [60].
The data contains information on the students’ prior performances. The task is to predict the students’
first-year law-school average grades. Second, we use the Home Equity Line of Credit (Heloc) data
set. Here, the target variable is a score indicating whether individuals will repay the Heloc account
within a fixed time window. Across both tasks we consider individuals in need of recourse if their
scores lie below the median score across the data set.

Recourse Methods. We apply our techniques to four different methods which aim to generate
low-cost recourses using different principles: SCFE was suggested by Wachter et al. [59] and uses a
gradient-based objective to find recourses, DICE [39] uses a gradient-based objective to find recourses
subject to a diversity constraint, and CEM [13] uses a generative model to encourage recourses to lie
on the data manifold. For all methods, we used the recourse method implementations from the CARLA
library [42] and specify the `1 cost constraint. Further details on these algorithms are provided in
App. C.

Evaluation Measures. For the purpose of our evaluation, we use both the recourse outcome instabil-
ity measure and the recourse action instability measure presented in Definitions 1 and 2. We evaluate
the efficacy of our framework to destabilize a large fraction of recourses using a small number of
deletion requests (up to 14). To find critical instances, we use the greedy and the gradient-based
algorithms described in Sec. 4. After having established a set of critical points, we recompute the
metrics with the refitted models and recourses to obtain a ground truth result.

For the recourse outcome instability, our metric ∆ counts the number of invalidated recourses. We
use the median as the target score s, i.e., if the recourse outcome flips back from a positive leaning
prediction (above median) to a negative one (below median) it is considered invalidated. When
evaluating recourse action instability, we identify a set of critical points, delete these points from
the train set and refit the predictive model. In this case, we also have to recompute the recourses to
evaluate Φp. We then measure the recourse instability using Definition 2 with p = 2. Additionally,
we compare with a random baseline, which deletes points uniformly at random from the train set. We
compute these measures for all individuals from the test set who require algorithmic recourse. To
obtain standard errors, we split the test set into 5 folds and report averaged results over these 5 folds.
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Figure 3: Quantifying the tradeoff between recourse action instability as measured in Definition 2
and the number of deletion requests for both the Admission and the Heloc data sets for the SCFE
method when the underlying model is linear or an NTK (results by SGD optimization).

Results. In Figure 2, we measure the tradeoff between recourse outcome instability and the number
of deletion requests. We plot the number of deletion requests against the fraction of all recourses
that become invalidated when up to k ∈ {1, . . . , 14} training points are removed from the training
set of the predictive model. When the underlying model is linear, we observe that the removal of as
few as 5 training points induces invalidation rates of all recourses that are as high as 95 % percent –
we observe a similar trend across all recourse methods. Note that a similar trend is present for the
NTK model; however, a larger number of deletion requests (roughly 9) is required to achieve similar
invalidation rates. Finally, also note that our approach is always much more effective at deleting
instances than the random baseline. In Figure 3, we measure the tradeoff between recourse action
instability and the number of deletion requests with respect to the SCFE recourse method when the
underlying predictive model is linear or an NTK model. For this complex objective, we use the
more efficient SGD optimization. Again, we observe that our optimization method significantly
outperforms the random baselines at finding the most influential points to be removed.

6 Conclusion

In this work, we made the first step towards understanding the tradeoffs between actionable model
explanations and the right to be forgotten. We theoretically analyzed the robustness of state-of-the-art
recourse methods under data deletion requests and suggested (i) a greedy and (ii) a gradient-based
algorithm to efficiently identify a small subset of individuals, whose data, when removed, would lead
to invalidation of a large number of recourses for unsuspecting other users. Our experimental evalua-
tion with multiple real-world data sets on both regression and classification tasks demonstrates that
the right to be forgotten presents a significant challenge to the reliability of actionable explanations.

Furthermore, our findings raise compelling questions on the deployment of counterfactual expla-
nations in practice. First of all, Are the two requirements of actionable explanations and the right
to be forgotten fundamentally at odds with one another? The theoretical and empirical results in
this work indicate that for many model and recourse method pairs, this might indeed be the case.
This finding leads to the pressing follow-up question: How can practitioners make sure that their
recourses stay valid under deletion requests? A first take might be to implement the principle of
data minimization [6, 5, 49] in the first place, i.e., exclude the k most critical data points from model
training. In addition to the increase in recourse robustness some deletion requests would then go
totally unheeded as the data might not be part of the trained ML models.

Finally, our theoretical results suggest that the robustness to deletion increases when the model
parameter changes under data deletion remain small. This formulation closely resembles the definition
of Differential Privacy (DP) [17, 10, 18]. We therefore conjecture that the reliability of actionable
recourse could benefit from models that have been trained under DP constraints As the field of AI
rapidly evolves, data protection authorities will further refine the precise interpretations of general
principles in regulations such as GDPR. The present paper contributes towards this goal theoretically,
algorithmically, and empirically by providing evidence of tensions between different data protection
principles.
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Appendix

A Theoretical Results

A.1 Upper Bounds on Recourse Outcome Instability

Proposition 1 (Upper Bound on Output Robustness for Linear Models). For the linear regression
model f(x) = w>x with weights given by w = (X>X)−1X>Y, an upper bound for the output
robustness by removing an instance (x, y) from the training set is given by:

∆x ≤ max
i∈[n]

‖di‖2 · ‖x̌1‖2, (8)

where di = (X>X)−1xi · ri
1−hii , ri = yi −w>xi and hii = x>i (X>X)−1xi.

Proof. By Definition 1, we have:

∆x =
∣∣w>1 x̌1 −w>−ix̌1

∣∣ (9)

=
∣∣(w1 −w−i

)>
x̌1

∣∣
=

∣∣∣∣((XTX)−1xi
(yi −wTxi)

1− hii

)>
x̌1

∣∣∣∣ (by Theorem 1) (10)

≤ ‖di‖2 · ‖x̌1‖2 (by Cauchy-Schwartz) (11)
≤ ‖x̌1‖2 ·max

i∈[n]
‖di‖2·, (12)

where di = (XTX)−1xi
(yi−wTxi)

1−hii . This completes our proof.

Proposition 2 (Upper Bound on Output Robustness for NTK). For the NTK model with wNTK =(
K∞(X,X) + λIn

)−1
Y, an upper bound for the output robustness by removing an instance (x, y)

from the training set is given by:
∆x ≤ ‖K∞(x̌1,X)‖2 ·max

i∈[n]
‖di‖2, (13)

where di = 1
kii

kik
>
i Y, where ki is the i-th column of the matrix

(
K∞(X,X) + βIn

)−1
, and kii is

its i-th diagonal element.

Proof. By Definition 1, and the assumption of the over-parameterized regime, we have:

∆x =
∣∣fNTK(x̌1)− f−iNTK(x̌1)

∣∣
=
∣∣(K∞(x̌1,X)

)>
wNTK −

(
K∞(x̌1,X)

)>(
(K∞(X,X) + βIn

)−1 − 1

kii
kik
>
i

)
Y
∣∣ (14)

=
∣∣(K∞(x̌1,X)

)> 1

kii
kik
>
i Y
∣∣ (15)

≤ ‖di‖2 · ‖K∞(x̌1,X)‖2 (by Cauchy-Schwartz)

≤ ‖x̌1‖2 ·max
i∈[n]

‖di‖2, (16)

where di = 1
kii

kik
>
i Y which completes our proof.

A.2 Upper Bounds on Recourse Action Instability

Proposition 3 (Upper Bound on Input Robustness). For the linear regression model f(x) = w>x
with weights given by w = (X>X)−1X>Y, an upper bound for the input robustness in the setting
s = 0, λ = 0 by removing the i-th instance (xi, yi) from the training set is given by:

Φ(2)
x ≤ ‖di‖2

4
√

2‖x‖2
min(‖w‖2, ‖w−i‖2)

, (17)

under the condition that w>w−i ≤ 0 (no diametrical weight changes), where w−i = w − di is the
weight after removal of training instance i and di = (XTX)−1xi

(yi−w>xi)
1−hii .

12



Proof. For a linear scoring function f(x) = w′>x with given parameters w′, under the squared `2
norm constraint with balance parameter λ, the optimal recourse action is given by [41]:

δ (w′) =
s−w′>x

‖w′‖22 + λ
·w′. (18)

Using Definition 2, we can express the total change in δ as a path integral over changes in w, times
the change Dδ

Dw they entail:

Φ(2)
x =

∥∥δ1 − δω∥∥2
=
∥∥δ (w)− δ (w−i)

∥∥
2

(19)

≤
∫ 1

0

∥∥∥∥Dδ

Dw
(γw + (1− γ)w−i)

∥∥∥∥‖w −w−i‖2dγ, (20)

where Dδ
Dw denotes the Jacobian, with the corresponding operator matrix norm. Defining w̃ :=

γw + (1− γ) w−i and using ‖w −w−i‖2 = ‖di‖2, we obtain

Φ(2)
x ≤ ‖di‖2

∫ 1

0

∥∥∥∥Dδ

Dw
(w̃)

∥∥∥∥
2

dγ. (21)

Because of the form δ(w′) = f(w′)w′, where f(w′) := s−w′>x
‖w′‖22+λ

is a scalar function, its Jacobian

has the form Dδ
Dw′ = w′ (∇f(w′))

>
+ f(w′)I. We will now derive a bound on the Jacobian’s

operator norm:∥∥∥∥ Dδ

Dw′
(w̃)

∥∥∥∥
2

= max
‖a‖=1

∥∥∥∥ Dδ

Dw′
a

∥∥∥∥
2

= max
‖a‖=1

∥∥∥∥w′ (∇f(w̃))
>

a + f(w̃)a

∥∥∥∥
2

(22)

≤ ‖∇f(w̃)‖2‖w̃‖2 + |f(w̃)|. (23)

Additionally, we know that for s = 0, |f(w′)| ≤ ‖x‖2‖w̃‖2‖w̃‖22
= ‖x‖2
‖w̃‖2 . The gradient is given by

‖∇f(w̃)‖2 =

∥∥∥∥−(‖w̃‖22 + λ)x− 2(s− w̃>x)w̃

(‖w̃‖22 + λ)2

∥∥∥∥
2

(24)

≤ (‖w̃‖22 + λ)‖x‖2 + 2(s+ ‖w̃‖2‖x‖2)‖2w̃‖2
‖w̃‖42

(25)

=
3‖x‖2
‖w̃‖22

(Using λ→ 0, s = 0). (26)

In summary, ∥∥∥∥ Dδ

Dw′
(w̃)

∥∥∥∥
2

≤ 3‖x‖2
‖w̃‖22

‖w̃‖2 +
‖x‖2
‖w̃‖2

=
4‖x‖2
‖w̃‖2

. (27)

Because w̃ is a line between w and w−i, its norm is bounded from below by ‖w̃‖2 ≥
1√
2

min(‖w‖2, ‖w−i‖2) ≥ 1√
2

(‖w‖2 − ‖w −w−i‖2) = 1√
2

(‖w‖2 − ‖di‖2). We can thus uni-
formly bound the integral and plug in the bound because of its positivity,

Φ(2)
x ≤ ‖di‖2

∫ 1

0

∥∥∥∥Dδ

Dw
(w̃)

∥∥∥∥
2

dγ (28)

≤ ‖di‖2
∫ 1

0

4
√

2‖x‖2
min(‖w‖2, ‖w−i‖2)

dγ (29)

= ‖di‖2
4
√

2‖x‖2
min(‖w‖2, ‖w−i‖2)

, (30)

which completes the proof.
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A.3 Calculating Recourse Outcome Instability for k Deletions is NP-hard

We can show that, for a general scoring function f , the problem defined in (6) is NP-hard. We make
this proof by providing a function f for which solving the recourse outcome invalidity problem is as
hard as solving the well-known Knapsack problem, that has been shown to be NP-hard [35]. The
knapsack problem is defined as follows:

max
qi∈{0,1}

n∑
i=1

viqi s.t.
n∑
i=1

yiqi ≤W, (31)

where the problem considers n fixed items (vi, yi)i=1...n with a value vi and knapsack weight yi > 0,
and W is a fixed weight budget. The optimization problem consists of choosing the items that
maximize the summed values but have a weight lower than W . To solve this problem through the
recourse outcome invalidation problem, we suppose there is a data point for each item. We can
choose any k > W

min yi
of points to be deleted, where this condition ensures that we can remove the

number of samples maximally required to solve the corresponding knapsack problem. Note that we
can always add a number of dummy points that have no effect such that the total number of data
points is at least k. Suppose there is a classifier function:

fω(x) :=

{ ∑n
i=1 vi(1− ωi),

∑n
i=1 yi(1− ωi) ≤W

0, else . (32)

In this case, solving Eqn. 6 comes down to finding the set of items (i.e., removing the data points)
that have maximum value, but stay under the threshold W . Thus, if we can solve Eqn. 6, the solution
to the equivalent knapsack problem is given by q = (1− ω).

A.4 Auxiliary Theoretical Results

We state the following classic result by [38] without proof.
Theorem 1. (Leave-One-Out Estimator, [38]) Define (xi, yi) as the point to be removed from the
training set. Given the optimal weight vector w = (X>X)−1X>Y which solves for a linear model
under mean-squared-error loss, the leave-one-out estimator is given by:

w −w−i = (XTX)−1xi
(yi −wTxi)

1− xTi (XTX)−1xi
= (XTX)−1xi

(yi −wTxi)

1− hii
=: di.

A.5 An Analytical NTK Kernel

In this section, we provide theoretical results that allow deriving the closed form solution of the NTK
for the two-layer ReLU network. First, see the paper by Jacot et al. [32] for the original derivation of
the neural tangent kernel.

A closed-form solution for two-layer ReLU networks. From [64, 16, Assumption 3.1] we obtain
the definition of the Kernel matrix K∞ (termed Gram matrix in the paper [16]) for ReLU networks:

K∞ij = K∞(xi,xj) = Ew∼N (0,I)

[
x>i xjI

{
w>xi ≥ 0,w>xj ≥ 0

}]
= x>i xjEw∼N (0,I)

[
I
{
w>xi ≥ 0,w>xj ≥ 0

}]
= x>i xj

π − arcos
(

x>
i xj

‖xi‖‖xj‖

)
2π

.

The last reformulation uses an analytical result by [11]. The derived result matches the one by [62],
which however does not provide a comprehensive derivation.

B Additional Experimental Results

Data sets for the Classification Tasks When considering classification tasks on the heloc and
admission data sets, we threshold the scores based on the median to obtain binary target labels. On
the Admission data set (in the classification setting), a counterfactual is found when the predicted first-
year average score switches from ‘below median’ to ‘above median’. We then count an invalidation if,
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after the model update, the score of a counterfactual switches back to ‘below median’. In addition to
the aforementioned data sets, we use both the Diabetes and the Compas data sets. The Diabetes data
set which contains information on diabetic patients from 130 different US hospitals [52]. The patients
are described using administrative (e.g., length of stay) and medical records (e.g., test results), and
the prediction task is concerned with identifying whether a patient will be readmitted within the next
30 days. We sub sampled a smaller data sets of 10000 points from this dataset. 8000 points are left to
train the model, while 2000 points are left for the test set. The Compas data set [2] contains data for
more than 10,000 criminal defendants in Florida. It is used by the jurisdiction to score defendant’s
likelihood of reoffending. We kept a small part of the raw data as features like name, id, casenumbers
or date-time were dropped. The classification task consists of classifying an instance into high risk of
recidivism. Across all data sets, we dropped duplicate instances.

Discussing the Results As suggested in Section 5, here we are discussing the remaining recourse
outcome invalidation results. We show these results for two settings. In Figure 4, we demonstrate the
efficacy of our greedy deletion algorithm across 4 data sets on the classification tasks using different
classification models (ANN, logistic regression, Kernel-SVM). For the logistic regression and the
ANN model, we use the infinitesimal jackknife approximation to calculate the probitively expensive
retraining step as described in Section 4. We observe that our method well outperforms random
guessing. The results also highlight that while the NTK theory allows to study the deletion effects
from a theoretical point of view, if one is interested in empirical worst-case approximations, the
infinitesimal jackknife can be a method of choice. As we observe this pattern across all recourse
methods, we hypothesize that this is related to the instability of the trained ANN models, and we
leave an investigation of this interesting phenomenon for future work.

Additionally, in Figure 5, we compare our SGD-based deletion algorithm to the greedy algorithm.
For the SGD-based deletion results, we observe inverse-u-shaped curves on some method-data-
model combinations. The reason for this phenomenon can be explained as follows: when the `0
regularization strength (i.e., η) is not strong enough, then the importance weights for the k-th removal
with k > 5 become more variable (i.e., SGD does not always select the most important data weight for
larger k). This drop in performance can be mitigated by increasing the strength of the `0 regularizer
within our SGD-based deletion algorithm.

In Figure 6, we study a simple removal strategy aimed at increasing the stability of algorithmic
recourse. To this end, we identified the 15 points that lead to the highest invalidation on the NTK and
linear regression models when the underlying recourse method is SCFE. Using our greedy method,
we remove these 15 points from the training data set, and we then then rerun our proposed greedy
removal algorithm. This strategy leads to an improvement of up to 6 percentage points over the initial
model where the 15 most critical points were included, suggesting that the removal of these critical
points can be used to alleviate the recourse instability issue. In future work, we plan to investigate
strategies that increase the robustness of algorithmic recourse even further.

Finally, in Figure 7 we study how well the critical points identified for the NTK model would
invalidate a wide 2-layer ReLU network with 10000 hidden nodes. To study that question, we
identified the points that lead to the highest invalidation on the NTK using our greedy method, and
we then use these identified training points to invalidate the recourses suggested by the wide ANN.
As before, we are running these experiments on the full data set across 5 folds. Figure 7 demonstrates
the results of this strategy for the SCFE recourse method. We see that this strategy increases the
robustness of up to 30 percentage points over the random baseline, suggesting that critical points
under NTK can be used to estimate recourse invalidation for wide ANN models.

C Implementation Details

C.1 Details on Model Training

We train the classification models using the hyperparameters given in Table 1. The ANN and the
Logistic regression models are fit using the quasi-newton lbgfs solver. We add L2-regularization to
the ANN weights. The other methods are trained via their analytical solutions. Below, in Algorithms
1 and 2, we show pseudocodes for both our greedy and sgd-based deletion methods to invalidate
the recourse outcome. In order to do the optimization with respect to the recourse action stability
measure, we slightly adjust Algorithm 2 to optimize the right metric from Definition 2.
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(d) Diabetes

Figure 4: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for the Admission, Heloc, Diabetes and Compas data sets for logistic regression, kernel svm,
and ANN models across recourse methods on classification tasks. Results were obtained by greedy
optimization. The dotted lines indicate the random baselines.

Model Parameters

Linear Regression OLS, no hyperparameters.
NTK Regression β = 2 (Admission), β = 5 (other data sets)

Logistic Regression L2-Regularization with C = 1.0
Kernel-LSSVM Gaussian Kernel with γ = 1.0 (see [9])

ANN 2-Layer, 30 Hidden units, Sigmoid, α = 10 (L2-Regularization)
Table 1: Model hyperparameters used in this work

C.2 Details on Generating the Counterfactuals

For DICE, for every test input, we generate two different counterfactual explanations. Then we
randomly pick either the first or second counterfactual to be the counterfactual assigned to the given
input. Across all recourse methods the success rates lie above 95%, i.e., for 95% of recourse seeking
individuals the algorithms can identify recourses. The only exception is admission data set for the
NTK model, where the success rate lies at 60%. Across all recourse methods we set λ→ 0. Note
that the default implementations use early stopping once a feasible recourse has been identified.
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(c) Heloc (Greedy)
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(d) Heloc (SGD)

Figure 5: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for the Admission and Heloc data sets for linear regression and NTK models across recourse
methods on regression tasks. Results were obtained by both SGD and Greedy optimization. The
dotted lines indicate the random baselines.

C.3 Details on the `0 Regularizer

Since an `0 regularizer is computationally intractable for high-dimensional optimization problems,
we have to resort to approximations. One such approximation approach was recently suggested by
(author?) [63]. The underlying idea consists of converting the combinatorial search problem to a
continuous search problem over distribution parameters. To this end, recall our optimization problem
from the main text:

ω∗ = arg max
ω∈{0,1}n

m(ω)− η · ‖1− ω‖0. (33)

We will now introduce Bernoulli random variables Zi ∈ {0, 1} with corresponding parameters πi to
model the individual ωi. Instead of optimizing the objective above with respect to ω we will optimize
with respect to distribution parameters π:

π∗ = arg max
π

m(Z(π))− η · ‖1− Z(π)‖0. (34)
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Figure 6: Measuring the efficacy of a simple removal strategy on the Heloc and Admission data set
for linear and NTK regression models. We removed the 15 critical points identified for the linear and
NTK models when the underlying recourse method is SCFE and reran the removal algorithm on the
remaining training set. Results were obtained by Greedy optimization. The dotted lines indicate the
random baselines.
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Figure 7: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for the Admission data set for a neural network regression model. We used the critical points
identified for the NTK model to invalidate the recourses identified by a wide 2-layer ReLU network
with 10000 hidden nodes. Results were obtained by Greedy optimization. The dotted lines indicate
the random baselines.

Since the above optimization problem is known to suffer from high-variance solutions, [63] suggest
to use a Gaussian-based continuous relaxation of the Bernoulli variables:

Z̃i = max(0,min(1, µi + εi)), (35)

where εi = N (0, σ2), resulting in the following optimization problem:

µ∗ = arg max
µ

m(Z̃(µ))− η · ‖1− Z̃(µ)‖0. (36)

At inference time, the optimal weights are then given by Z̃∗i = max(0,min(1, µ∗i )) ∀i ∈ [n]. To
obtain discrete weights, we take the argmax over each individual Z̃i.

C.4 Details on the Jackknife Approximation

When the model parameters w are a function of the data weights by solving (1) we can approximate
w(ω) using the infinitesimal Jackknife (IJ) without having to optimize (1) repeatedly [33, 19, 26, 25]:

wIJ(ω) = w1 −H−1
1 Gω−1, (37)
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Algorithm 1 Greedy recourse outcome invalidation

Required: Model: fw(1); Matrix of Recourses: X̌1 ∈ Rq×d; d: input dimension; q number of
recourse points on test set; n: # train points; M : max # deleted train points; s: invalidation target
ω(0) = 1n . All training instances present
for m = 1 : M do
ω(m) ← ω(m−1)

Ỹ = 0n×q . Recourse outcomes
J = 0n×q . Invalidations present

S(m) ←
{
i
∣∣∣ ω(m)

i 6= 0
}

. Set of train instances present at iteration m

for i ∈ S(m) do
w

(i)
new = update_w(ω

(m)
−i ) . ω

(m)
−i has additionally set weight i to 0.

. Use analytical or IJ solution for w(ω)

Ỹ[i, :] = f
w

(i)
new

(X̌1) . New recourse outcomes

J [i, :] = I(Ỹ[i, :] < s) . Invalidation present
end for
index← arg maxi∈S(m)‖J[i, :]‖1 . Find point that leads to highest invalidation
ω(m)[index] = 0 . Remove training point

end for
return: ω(M) . data weights indicating M removals

where G and H1 are the Jacobian and the Hessian matrices of the loss function with respect to
the data weights evaluated at the optimal model parameters w, i.e., Gω−1 = 1

n

∑n
i=1(ωi − 1) ·

∂`(fw(xi),yi)
∂w and H1 = 1

n

∑n
i=1

∂2`(fw(xi),yi)
∂w∂w> . Note that this technique computes the Hessian matrix

H1 only once. Using this Jackknife approximation, the Jacobian term Gω−1 becomes an explicit
function of the data weights which makes the Jackknife approximation amenable to optimization.
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Algorithm 2 SGD recourse outcome invalidation

Required: Model: fw(1); Matrix of Recourses: X̌1 ∈ Rq×d; d: input dimension; q number of
recourse points on test set; n: # train points; M : max # deleted train points; s: invalidation target
µ(1) = 1n . Mu are soft data weights that are opimized.
for m = 1 : Step do . Perform Step number of updates.

δ−loss=0.0
for k = 1 : K do . Use K Monte-Carlo Samples for the approximation

Sample ε(m)
k ∼ N

(
0, σ2In

)
ω

(m)
k = max

(
0,min

(
1,µ(m) + ε

(m)
k

))
. Sample (soft) data weights as in [63]

w
(m)
k,new = update_w(ω

(m)
k ) .

Compute model weights from data
weights either analytically or with IJ

l
(m)
k = sigmoid

(
f
w

(m)
k,new

(X̌1)− s
)

.
Predict with new weights and com-
pute soft invalidation.

δ−loss = δ−loss + ‖l(m)
k ‖1 . Add up soft inval. loss

end for
r(m) =

∑n
i=1 Φ

(
1−(µ(m))i

σ

)
. Sparsity Regularizer from [63]

µ(m+1) = µ(m) + γ∇µ(m)

(
δ−loss
D + λr(m)

)
. Grad. Descent with lr. γ

end for
removed_ind = argsort(µ(Step+1)) . Sort indices ascendingly
j = 0
ω = 1n
while j < M do . Binarize and fulfil max number M
ω[removed_ind[j]]= 0
j = j + 1

end while
return: ω . data weights indicating M removals
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