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ABSTRACT

We study two variants of the mirror descent-ascent algorithm for solving min-
max problems on the space of measures: simultaneous and sequential. We work
under assumptions of convexity-concavity and relative smoothness of the pay-
off function with respect to a suitable Bregman divergence, defined on the space
of measures via flat derivatives. We show that the convergence rates to mixed
Nash equilibria, measured in the Nikaidò-Isoda error, are of order O

(
N−1/2

)
and O

(
N−2/3

)
for the simultaneous and sequential schemes, respectively, which

is in line with the state-of-the-art results for related finite-dimensional algorithms.

1 INTRODUCTION

Numerous tasks in machine learning can be framed as optimization problems for functions defined
on the space of probability measures. For instance, in supervised learning, pioneering works (Chizat
& Bach, 2018; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018) showed that training a shallow
neural network (NN) in the mean-field regime (i.e., an infinite-width one-hidden-layer NN) can be
viewed as minimizing a convex function over the space of probability distributions of the parameters
of the network. This key insight proved to be a fruitful approach in analyzing convergence of train-
ing algorithms for infinite-width one-hidden-layer NNs (see, e.g., (Hu et al., 2021; Chizat, 2022a;
Nitanda et al., 2022; Suzuki et al., 2023)).

The paradigm of mean-field optimization has been extended to min-max settings in several works,
e.g., (Hsieh et al., 2019; Domingo-Enrich et al., 2020; Wang & Chizat, 2023; Lu, 2023; Trillos &
Trillos, 2023; Kim et al., 2024), which formulate the training of Generative Adversarial Networks
(GANs) and adversarial robustness as a problem of finding mixed Nash equilibria (MNEs) of min-
max games over the space of probability measures.

In this work, we study the convergence of an infinite-dimensional mirror descent-ascent algorithm
(MDA) to mixed Nash equilibria of a min-max game with a convex-concave payoff function. In
games, the design of learning algorithms heavily depends on the playing conventions the players can
adopt: simultaneous (players move at the same time) or sequential (each player moves upon observ-
ing the opponents’ moves). To our knowledge, the works concerned with studying the convergence
of discrete-time algorithms for mean-field min-max games only analyze the case of simultaneous
playing (see, e.g., (Hsieh et al., 2019; Wang & Chizat, 2023)). In contrast, we make a rigorous
comparison between the simultaneous and sequential algorithms, and prove that sequential playing
leads to faster convergence rate. This result theoretically underpins the common practice of training
GANs in an alternating fashion.

1.1 NOTATION AND SETUP

For any X ⊂ Rd, let P(X ) denote the set of probability measures on X . In game theory, if X is the
set of (pure) strategies available to the players, then P(X ) is known as the set of mixed strategies.
Let C,D ⊆ P(X ) be convex. We consider a convex-concave (cf. Assumption 1.5) payoff function
F : C × D → R and the associated min-max game

min
ν∈C

max
µ∈D

F (ν, µ). (1)
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We are interested in finding mixed Nash equilibria (MNEs) for game (1), i.e., pairs of strategies
(ν∗, µ∗) ∈ C × D such that, for any (ν, µ) ∈ C × D, we have

F (ν∗, µ) ≤ F (ν∗, µ∗) ≤ F (ν, µ∗). (2)

We observe that in the case in which F is bilinear, i.e., F (ν, µ) =
∫
X
∫
X f(x, y)ν(dx)µ(dy), for

some f : X ×X → R, measures characterized by (2) are MNEs in the classical sense of two-player
zero-sum games. Throughout, we assume that there exists at least one MNE for game (1).1

In min-max games, the distance between a pair of strategies (ν, µ) and an MNE is typically measured
using the Nikaidò-Isoda (NI) error (Nikaidô & Isoda, 1955), which, for all (ν, µ) ∈ C×D, is defined
by

NI(ν, µ) := max
µ′∈D

F (ν, µ′)− min
ν′∈C

F (ν′, µ).

Straight from the definition, we see that NI(ν, µ) ≥ 0 for all (ν, µ) ∈ C ×D, and from (2) it follows
that NI(ν, µ) = 0 if and only if (ν, µ) is an MNE.

1.2 MOTIVATING EXAMPLE: TRAINING OF GANS

Let ξ̂ ∈ P(Y) be the empirical measure of the i.i.d. sampled particles {xi}Mi=1 ⊂ Y, and let
ξ ∈ P(Z) be a source measure. Consider the measurable parametrized transport map Tθ : Z → Y
(which typically can be viewed as a neural network with parameters θ ∈ Θ ⊂ Rd). The pushfor-
ward of the measure ξ on Z via Tθ is the measure Tθ#ξ on Y characterized by

∫
Y φd (Tθ#ξ) =∫

Z (φ ◦ Tθ) dξ, for any measurable function φ : Y → R.

The aim of a GAN is to search for the optimal set of parameters θ∗ ∈ Θ that minimizes the dis-
tance between the generated measure Tθ∗#ξ and the empirical measure ξ̂. In order to evaluate this
distance, we define the function Dw : Y → R (which can also be viewed as a neural network with
parameters w ∈ W ⊂ Rd), and solve the min-max problem

min
θ∈Θ

max
w∈W

{∫
Y
Dw(y)

(
Tθ#ξ − ξ̂

)
(dy)

}
.

For example, if the family of functions {Dw}w∈W is either 1-Lipschitz continuous or uniformly
bounded, the resulting GAN corresponds to the Wasserstein GAN or the Total Variation GAN, re-
spectively (Arjovsky et al., 2017). On the other hand, if the family of functions {Dw}w∈W belongs
to the norm unit ball of a reproducing kernel Hilbert space (RKHS), we recover the Maximum Mean
Discrepancy (MMD) GAN (Li et al., 2017).

Solving this problem on the finite-dimensional subspaces θ, w ⊂ Rd may pose serious challenges
such as the lack of existence of pure Nash equilibria. Instead, we lift the problem to the space of
probability measures and search for MNEs, i.e., optimal distributions over the set of parameters.
That is, by setting f(θ, w) :=

∫
Y Dw(y)

(
Tθ#ξ − ξ̂

)
(dy), we solve the mean-field min-max game

min
ν∈P(Θ)

max
µ∈P(W)

{∫
W

∫
Θ

f(θ, w)ν(dθ)µ(dw)

}
. (3)

We will demonstrate theoretically (cf. Theorem 2.4 and Theorem 3.6) that sequential updates speed
up GANs training significantly. Note that the lifted problem is bilinear in ν and µ, so an MNE for
(3) exists under mild conditions (see footnote 1).

We stress, however, that our framework applies more broadly, and, while encompassing (3) as a
special case, covers also more general nonlinear convex-concave functions F . An example of an
application where a nonlinear F arises naturally is discussed in Example E.

1.3 RELATED WORKS

Mirror descent (MD) was originally proposed in (Nemirovski & Yudin, 1983) for solving convex
optimization problems and has been extensively studied on finite-dimensional vector spaces, see e.g.

1 If F is continuous and D is compact, then the existence of an MNE of (1) follows from Sion’s minimax
theorem (Sion, 1958). For the particular case when F (ν, µ) =

∫
X

∫
X f(x, y)ν(dx)µ(dy), an MNE exists due

to Glicksberg’s minimax theorem (Glicksberg, 1952) if f is continuous and C,D are compact.
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(Beck & Teboulle, 2003; Bubeck, 2015; Lu et al., 2018). One of its main advantages over traditional
gradient descent is that, by utilizing Bregman divergence as a regularization term instead of the usual
squared Euclidean norm, the MD method captures the geometry of the ambient space better than the
gradient descent scheme (see (Beck & Teboulle, 2003) for a detailed discussion).

Recently, the MD algorithm has been extended to infinite-dimensional settings for studying opti-
mization problems over spaces of measures, with applications in machine learning (e.g., Sinkhorn’s
and Expectation–Maximization algorithms, see (Aubin-Frankowski et al., 2022)) as well as in policy
optimization for reinforcement learning (Tomar et al., 2021; Kerimkulov et al., 2023).

By leveraging results from optimization on Rd (see (Bauschke et al., 2017; Lu et al., 2018)), the
work of (Aubin-Frankowski et al., 2022) extends the convergence proof from (Lu et al., 2018) to
the case of the infinite-dimensional MD method by showing that in order for the MD procedure
to converge with rate O

(
N−1

)
, it suffices to require convexity and relative smoothness of F (cf.

Assumptions 1.5 and 1.6, respectively).

Other works such as (Hsieh et al., 2019; Dvurechensky & Zhu, 2024) studied infinite-dimensional
MDA and Mirror Prox algorithms for finding MNEs of two-player zero-sum games. The most
closely related work to ours is (Hsieh et al., 2019), which focuses on min-max games for bilin-
ear objective functions and utilizes a particular case of the MDA algorithm with relative entropy
regularization.

Our paper generalizes the setting of (Hsieh et al., 2019) by considering a possibly non-linear convex-
concave objective function and the MDA algorithm with a general Bregman divergence. Moreover,
while (Hsieh et al., 2019) proves an explicit convergence rate O

(
N−1/2

)
only for the simultaneous

MDA algorithm, we also prove a faster convergence rate O
(
N−2/3

)
for the sequential scheme. For

a brief discussion on recent results on related Mirror Prox algorithms (not studied in the present
paper), see Appendix J.

1.4 OUR CONTRIBUTION

We provide a theoretical analysis of the proposed simultaneous and sequential MDA algorithms,
establishing convergence rates under convexity–concavity and relative smoothness of the objective
F with respect to a Bregman divergence. In particular, Theorem 2.4 and 3.6 show that the sequential
MDA scheme achieves faster convergence than the simultaneous one. We validate our results on
simple numerical experiments.

From one perspective, our work extends (Aubin-Frankowski et al., 2022) to the setting of min–max
games. A key obstacle we overcome is that, unlike in single-player MD in both infinite-dimensional
(cf. (Aubin-Frankowski et al., 2022)) and finite-dimensional (cf. (Lu et al., 2018)) settings, the
objective function for min-max problems is not monotonically decreasing along the iterates, which
forces us to work with the NI error and requires different proof techniques.

From another perspective, we generalize the results of (Hsieh et al., 2019) by considering a pos-
sibly non-linear convex–concave objective function and MDA algorithms with respect to a general
Bregman divergence. Whereas (Hsieh et al., 2019) derive an explicit convergence rate only for the
simultaneous MDA algorithm in the context of GAN training, we establish a faster rate for the se-
quential variant. Moreover, our more general framework also covers applications other than GANs,
such as adversarial training of neural networks (see Example E).

At the technical level, our convergence proof for sequential MDA relies on a duality between the
Bregman divergence on the space of measures and a corresponding dual Bregman divergence defined
on the space of bounded measurable functions. To our knowledge, the use of this dual formulation
of MDA on a function space is novel, and may be of independent interest.

1.5 BREGMAN DIVERGENCE ON THE SPACE OF PROBABILITY MEASURES

As noted in Section 1.3, the MD algorithm relies on the Bregman divergence. We now introduce this
concept rigorously for the space of probability measures using the flat derivative (Definition F.1),
following (Aubin-Frankowski et al., 2022), who defined it via directional derivatives.

Set E := C ∪ D ⊆ P(X ) and let h : P(X ) → R satisfy the following assumption.

3
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Assumption 1.1 (Differentiability and convexity of h). Assume that h is lower semi-continuous on
E and admits first-order flat derivative (cf. Definition F.1) on E . Moreover, assume that h : E → R
is strictly convex on E , i.e., for all λ ∈ [0, 1] and all ν′, ν ∈ E , we have h ((1− λ)ν + λν′) <
(1− λ)h(ν) + λh(ν′).

If Assumption 1.1 holds, then it can be shown, via (Hu et al., 2021, Lemma 4.1), that h is strictly
convex on E in the sense of Assumption 1.5, i.e., for any ν′, ν ∈ E , we have

h(ν′)− h(ν) >

∫
X

δh

δν
(ν, x)(ν′ − ν)(dx).

Under Assumption 1.1, we define the h-Bregman divergence (or simply Bregman divergence) on
the space of probability measures.
Definition 1.2 (Bregman divergence). The h-Bregman divergence is the map Dh : E × E → [0,∞)
given by

Dh(ν
′, ν) := h(ν′)− h(ν)−

∫
X

δh

δν
(ν, x)(ν′ − ν)(dx).

We observe that, by Assumption 1.1,
∫
X

δh
δν (ν, x)(ν

′−ν)(dx) is well-defined, and that Dh(ν
′, ν) ≥

0, for all ν′, ν ∈ E , with equality if and only if ν′ = ν.

We now give two examples of a function h and the corresponding sets E such that Assumption 1.1
is satisfied.
Example 1.3 (Relative entropy). Suppose that h is the relative entropy, i.e., h(ν) :=∫
X log ν(x)

π(x)ν(x)dx, where ν, π ∈ Pλ(X ), i.e., they are absolutely continuous with respect to the
Lebesgue measure on X and π is a fixed reference probability measure on Pλ(X ). Fix β > 0

and define Eβ :=

{
ν ∈ Pπ(X ) :

∥∥∥log ν(·)
π(·)

∥∥∥
L∞(X )

≤ β

}
. Note that Eβ is convex. From (Dupuis &

Ellis, 1997, Lemma 1.4.3), we know that the relative entropy is lower semi-continuous on P(X ),
hence on Eβ . Clearly, we see that h is strictly convex on Eβ due to the strict convexity of the map
(0,∞) ∋ z 7→ z log z. Moreover, it is proved in (Kerimkulov et al., 2024, Proposition 2.16) that h
admits the flat derivative

δh

δν
(ν, x) = log

ν(x)

π(x)
− h(ν), (4)

on Eβ , and for all ν, ν′ ∈ Eβ , the Bregman divergence Dh(ν
′, ν) is in fact the Kullback-Leibler

divergence (or relative entropy) KL(ν′, ν).

Example 1.4 (χ2-divergence). Suppose that h is the χ2-divergence, i.e., h(ν) :=

1
2

∫
X

(
ν(x)
π(x) − 1

)2
π(x)dx, where ν, π ∈ Pλ(X ). Let L2

π(X ) be the set of square integrable func-

tions on X with respect to π. Fix η > 0 and define Fη :=

{
ν ∈ Pπ(X ) :

∥∥∥ ν(·)
π(·)

∥∥∥
L2

π(X )
≤ η

}
. Note

that Fη is convex. From (Ambrosio et al., 2000, Theorem 2.34), we know that the the χ2-divergence
is lower semi-continuous on P(X ), hence on Fη. Clearly, we see that h is strictly convex on Fη due
to the strict convexity of the map (0,∞) ∋ z 7→ (z − 1)2. Moreover, it is proved in (Kerimkulov
et al., 2024, Proposition 2.18) that h admits the flat derivative δh

δν (ν, x) =
ν(x)
π(x) −

∫
Rd

ν(x)
π(x)ν(x)dx,

on Fη, and for all ν, ν′ ∈ Fη, the Bregman divergence Dh(ν
′, ν) is in fact the L2-distance

1
2

∥∥∥ν′(·)
π(·) − ν(·)

π(·)

∥∥∥2
L2

π(X )
.

For other examples of regularizers h that verify Assumption 1.1 and frequently appear in machine
learning applications, see (Kerimkulov et al., 2024, Proposition 2.20).

1.6 SIMULTANEOUS AND SEQUENTIAL MDA

In what follows, we state our standing assumptions and the necessary definitions for introducing the
simultaneous and sequential MDA schemes. Let F : C × D → R be such that ν 7→ F (ν, µ) and
µ 7→ F (ν, µ) admit first-order flat derivatives (cf. Definition F.1) on C and D, respectively.
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Assumption 1.5 (Convexity-concavity of F ). Assume that F is convex in ν and concave in µ, i.e.,
for any ν, ν′ ∈ C and any µ, µ′ ∈ D, we have DF (·,µ)(ν

′, ν) ≥ 0 and DF (ν,·)(µ
′, µ) ≤ 0.

Assumption 1.6 (Relative smoothness of F ). Assume that, given Lν , Lµ > 0, the function F is
Lν-smooth in ν and Lµ-smooth in µ relative to h, i.e., for any ν, ν′ ∈ C and any µ, µ′ ∈ D, we have
DF (·,µ)(ν

′, ν) ≤ LνDh(ν
′, ν) and DF (ν,·)(µ

′, µ) ≥ −LµDh(µ
′, µ).

In Proposition D.1 and E.1, we verify that Assumption 1.5 and 1.6 are satisfied by Example 1.2
and E. In Lemma C.3, we show that Assumption 1.5 and 1.6 correspond to the intuition we have
from optimization on Rd, where convexity and relative smoothness are equivalent, respectively, to
the Hessian of F being non-negative, and upper bounded by the Hessian of h weighted by the
smoothness constant.

For a given stepsize τ > 0, and fixed initial pair of strategies (ν0, µ0) ∈ C × D, for n ≥ 0, the
simultaneous and sequential MDA algorithms are respectively defined by

Algorithm 1: SIMULTANEOUS MDA
Input: Objective function F, initial measures (ν0, µ0), stepsize τ > 0
for n = 0, 1, . . . , N − 1 do

νn+1 = argmin
ν∈C

{
∫
X

δF
δν (ν

n, µn, x)(ν − νn)(dx) + 1
τDh(ν, ν

n)},

µn+1 = argmax
µ∈D

{
∫
X

δF
δµ (ν

n, µn, y)(µ− µn)(dy)− 1
τDh(µ, µ

n)}

Output:
(

1
N

∑N−1
n=0 νn, 1

N

∑N−1
n=0 µn

)

Algorithm 2: SEQUENTIAL MDA
Input: Objective function F, initial measures (ν0, µ0), stepsize τ > 0
for n = 0, 1, . . . , N − 1 do

νn+1 = argmin
ν∈C

{
∫
X

δF
δν (ν

n, µn, x)(ν − νn)(dx) + 1
τDh(ν, ν

n)},

µn+1 = argmax
µ∈D

{
∫
X

δF
δµ (ν

n+1, µn, y)(µ− µn)(dy)− 1
τDh(µ, µ

n)}

Output:
(

1
N

∑N−1
n=0 νn+1, 1

N

∑N−1
n=0 µn

)

Although we abuse the notation by denoting both (1) and (2) by (νn, µn)n≥0, we will make it clear
from the context which algorithm we consider.

Algorithm (1) is referred to as simultaneous because both players update their strategy from step n
to n+1 at the same time, whereas Algorithm (2) is called sequential because the minimizing player
is first updating their move from step n to n + 1, and then the maximizing player is acting upon
observing the minimizing player’s (n+ 1)-th action. Note that due to the symmetry of the players,
the analysis of scheme (2) also covers the case when the maximizing player moves first followed by
the minimizing player.

The motivation behind the use of the terms involving δF
δν and δF

δµ in algorithms (1) and (2),
is that instead of minimizing and maximizing directly on F (which could be a potentially in-
tractable problem), we minimize and maximize over ν and µ in the first-order linear approxima-
tions F (νn, µn)+

∫
X

δF
δν (ν

n, µn, x)(ν−νn)(dx) and F (νn, µn)+
∫
X

δF
δµ (ν

n, µn, y)(µ−µn)(dy).

In order to make sure that these approximations around (νn, µn) are precise enough, we penalize
the distance between (νn+1, µn+1) and (νn, µn) by introducing the Bregman regularization terms
1
τDh(ν, ν

n) and 1
τDh(µ, µ

n).

We observe that by varying the choices of h in Definition 1.2 we obtain a collection of different
update rules in the MDA algorithms (1) and (2). When h is the relative entropy, we can view (1) and
(2) as Euler discretizations of a Fisher-Rao gradient flow, whose continuous-time convergence with

5
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explicit rates for mean-field min-max games was proved in (Lascu et al., 2024) (cf. also (Liu et al.,
2023) for single-player convex optimization).

2 CONVERGENCE OF THE SIMULTANEOUS MDA ALGORITHM (1)

In this section, we state the main result on the convergence of the simultaneous MDA algorithm.
Proving that the simultaneous MDA algorithm (1) converges relies on the following key assumption.
Assumption 2.1. Suppose that F is Lipschitz relative to h, i.e., there exists LF > 0 such that, for
any ν, ν′ ∈ C and any µ, µ′ ∈ D,

|F (ν′, µ′)− F (ν, µ)|2 ≤ LF (Dh(ν
′, ν) +Dh(µ

′, µ)) .

Remark 2.2. We show in Lemma C.2 that Assumption 2.1 is satisfied (via Pinsker’s inequality, that
is, TV2(ν′, ν) ≤ 1

2 KL(ν′, ν)) when F has bounded first-order flat derivatives in ν and µ, and h is
the relative entropy, i.e., h(ν) :=

∫
X log ν(x)

π(x)ν(x)dx, where ν, π ∈ P(X ) are absolutely continuous
with respect to the Lebesgue measure on X and π is a fixed reference probability measure on P(X ).
For other examples of functions h which satisfy the inequality TV2(ν′, ν) ≤ 1

2Dh(ν
′, ν), and hence

Assumption 2.1, see (Chizat, 2022b, Lemma 3.2) and (Kerimkulov et al., 2024, Proposition 2.18).
Remark 2.3. A similar notion to the Lipschitz property from Assumption 2.1, which goes under the
name of Bregman continuity, was introduced in (Antonakopoulos et al., 2019) as a generalization of
the standard Lipschitz continuity.

We are ready to state the first main result of the paper.
Theorem 2.4 (Convergence of the simultaneous MDA algorithm (1)). Let (ν∗, µ∗) be an MNE of (1)
and (ν0, µ0) be such that supν∈C Dh(ν, ν

0) + supµ∈D Dh(µ, µ
0) < ∞. Suppose that Assumption

1.1, 1.5, 1.6 and 2.1 hold. Suppose that τL ≤ 1
2 , with L := max{Lν , Lµ}. Then, we have

NI

(
1

N

N−1∑
n=0

νn,
1

N

N−1∑
n=0

µn

)
≤ 4

√
LF

(
supν∈C Dh(ν, ν0) + supµ∈D Dh(µ, µ0)

)
N

.

Remark 2.5. Theorem 2.4 is consistent with the already known convergence rate O
(

1√
N

)
of

the MDA algorithm for min-max games with strategies in compact convex subsets of Rd; see e.g.
(Bubeck, 2015, Theorem 5.1).
Remark 2.6 (Initialization condition). The initialization requirement in Theorem 2.4, namely,
supν∈C Dh(ν, ν

0) + supµ∈D Dh(µ, µ
0) < ∞ must be verified case by case, depending on the

choice of h and the admissible classes C,D. Such verifications for Examples 1.3 and 1.4 are carried
out in Lemmas C.7 and C.8, respectively.
Remark 2.7 (About the proof of Theorem 2.4). In their proof of convergence of the infinite-
dimensional MD algorithm for convex F, (Aubin-Frankowski et al., 2022) show that relative smooth-
ness is sufficient to prove that F is monotonically decreasing along the sequence (νn)n≥0 generated
by MD, i.e., F (νn+1) ≤ F (νn), for all n ≥ 0. The monotonicity property is key to establishing that
the MD scheme converges to a minimizer of F with rate O( 1

N ). In the case of (1), Assumption 1.6
and the fact that τL ≤ 1

2 imply that F (νn+1, µn) ≤ F (νn, µn) ≤ F (νn, µn+1), for all n ≥ 0.
Thus, in the min-max setup, relative smoothness does not imply monotonic decay of F along the
iterates. In contrast, we show that combining Assumption 1.6 with Assumption 2.1 allows us to con-
trol the Bregman divergence between consecutive iterates, i.e., Dh(ν

n+1, νn) and Dh(µ
n+1, µn),

by O(τ2) (see Lemma A.1). This condition will turn out to be sufficient to bypass the lack of mono-
tonicity of F and also will guarantee the convergence in NI of the simultaneous MDA algorithm (1)
with rate O

(
1√
N

)
. For the proof, see Section A.

3 CONVERGENCE OF THE SEQUENTIAL MDA ALGORITHM (2)

Before we state the main result concerning the convergence of the sequential MDA algorithm (2),
we introduce the necessary notions on the dual space of the space of probability measures.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Let (M(X ), ∥ · ∥TV) be the Banach space of finite signed measures µ on X equipped with the total
variation norm ∥µ∥TV := |µ|(X ). Let (Bb (X ) , ∥ · ∥∞) be the Banach space of bounded measurable
functions from X ⊂ Rd to (R, | · |) , where | · | is the Euclidean norm. For any (f,m) ∈ Bb(X ) ×
M(X ), we define the duality pairing ⟨·, ·⟩ : Bb(X )×M(X ) → R by

⟨f,m⟩ :=
∫
X
f(x)m(dx). (5)

Next, we define the notion of convex conjugate of h : P(X ) → R relative to the duality pairing (5).
Definition 3.1 (Convex conjugate). Let h : P(X ) → R be a function. Then the map h∗ : Bb(X ) →
R given by h∗(f) := supm∈P(X ) {⟨f,m⟩ − h(m)} is called the convex conjugate of h.

Regardless of the convexity of h, it follows from (Bonnans & Shapiro, 2000, Theorem 2.112)
that h∗ is convex on Bb(X ), i.e., for all λ ∈ [0, 1] and all f ′, f ∈ Bb(X ), we have that
h∗ ((1− λ)f + λf ′) ≤ (1 − λ)h∗(f) + λh∗(f ′). In Example G.2, we provide the explicit form of
h∗ when h is the entropy. The following corollary shows that the first variation of h∗ is the unique
maximizer of m 7→ ⟨f,m⟩−h(m). This result is expected since on Rd the “gradient” of the convex
conjugate (of a strictly convex function) is the maximizer of the Legendre–Fenchel transformation.
Corollary 3.2. Let h∗ : Bb(X ) → R be the convex conjugate of h. If Assumption 1.1 holds and h∗

admits the first variation δh∗

δf (f) (cf. (42)) on Bb(X ), then

δh∗

δf
(f) = argmax

m∈E
{⟨f,m⟩ − h(m)} . (6)

As shown in Example G.9, when h is chosen as the entropy, its convex conjugate h∗ admits the
first variation δh∗

δf (f). If Assumption 1.1 holds, then, via (Hu et al., 2021, Lemma 4.1), we can
characterize the convexity of h∗ with respect to its first variation, i.e., for any f, f ′ ∈ Bb(X ),

h∗(f ′)− h∗(f) ≥
∫
X
(f ′(x)− f(x))

δh∗

δf
(f)(dx),

and furthermore we can define the Bregman divergence between f and f ′ on the dual space.
Definition 3.3 (Dual Bregman divergence). Let h∗ : Bb(X ) → R be the convex conjugate of h. The
dual h∗-Bregman divergence is the map Dh∗ : Bb(X )×Bb(X ) → [0,∞) given by

Dh∗(f ′, f) := h∗(f ′)− h∗(f)−
∫
X
(f ′(x)− f(x))

δh∗

δf
(f)(dx).

Since f, g are bounded and δh∗

δg (g) is a probability measure (cf. Definition G.8), it follows that∫
X (f(x)− g(x)) δh∗

δg (g)(dx) is well-defined. Moreover, since h∗ is convex, Dh∗(f ′, f) ≥ 0, for
all f ′, f ∈ Bb(X ).

The following Lipschitzness assumption on the second variation δ2h∗

δf2 (cf. Definition G.13) will turn
out to be crucial for showing the improvement in the convergence rate of the sequential algorithm
(2) compared to the simultaneous algorithm.

Assumption 3.4. Suppose that (Bb(X )×Bb(X )) ∋ (f, g) 7→ δ2h∗

δf2 (f)(g) ∈ M(X × X ) is TV-
Lipschitz, i.e., there exists Lh∗ > 0 such that, for all f, g, f ′, g′ ∈ Bb(X ), it holds that∥∥∥∥δ2h∗

δf2
(f ′)(g′)− δ2h∗

δf2
(f)(g)

∥∥∥∥
TV

≤ Lh∗ (∥f ′ − f∥∞ + ∥g′ − g∥∞) ,

In Example G.14 and Proposition G.15, we provide the explicit form of the second variation δ2h∗

δf2

and verify Assumption 3.4, respectively, in the case where h is the entropy.

The following assumption ensures that F and its flat derivatives δF
δν ,

δF
δµ are uniformly bounded.

Assumption 3.5 (Uniform boundedness of F and its flat derivatives). Suppose that there exists
M > 0, Cν > 0 and Cµ > 0 such that for all ν, µ ∈ P(X ), and all x, y ∈ X , we have

|F (ν, µ)| ≤ M,

∣∣∣∣δFδν (ν, µ, x)

∣∣∣∣ ≤ Cν ,

∣∣∣∣δFδµ (ν, µ, y)

∣∣∣∣ ≤ Cµ.
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In Proposition D.1 and E.1, we verify that Assumption 3.5 is satisfied by Example 1.2 and E.

Now, we are ready to state the second main result of the paper.

Theorem 3.6 (Convergence of the sequential MDA algorithm (2)). Let (ν∗, µ∗) be an MNE of
(1) and (ν0, µ0) be such that supν∈C Dh(ν, ν

0) + supµ∈D Dh(µ, µ
0) < ∞ (cf. Remark 2.6). Let

Assumption 1.1, 1.5, 1.6, 2.1, 3.4 and 3.5 hold. Suppose that τL ≤ 1
2 , with L := max{Lν , Lµ}.

Then, we have

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

2N2/3

(
3

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)2/3

×

× (κLh∗ + 2LFL))
1/3

+ 2M

)
, (7)

where κ := C3
ν + C3

µ.

Remark 3.7. In particular, if F (ν, µ) =
∫
X
∫
X f(x, y)ν(dx)µ(dy), for a bounded function f :

X × X → R, then Assumption 2.1 is satisfied and in Definition 1.6 we have Lν = Lµ = 0.
Therefore, L = 0 in (7), and hence Theorem 3.6 is consistent with the already known convergence
rate O

(
1

N2/3

)
of the MDA algorithm for min-max games with strategies in compact convex subsets

of Rd and bilinear payoff function; see (Wibisono et al., 2022, Theorem 3.2 and Corollary 3.3). Since
we work in an infinite-dimensional setting with a non-linear convex-concave objective function F,
Theorem 3.6 substantially generalizes the results of (Wibisono et al., 2022).

Remark 3.8 (About the proof of Theorem 3.6). The main difference compared to Theorem 2.4 is
the extra term F (νn+1, µn) − F (νn, µn) which arises from the non-symmetry of the flat deriva-
tives of F in Algorithm (2). We combine this difference with

∫
X

δF
δν (ν

n, µn, x)(νn − νn+1)(dx)

and
∫
X

δF
δµ (ν

n+1, µn, y)(µn+1 − µn)(dy) via relative smoothness. This produces the Bregman
commutators Dh(ν

n, νn+1)−Dh(ν
n+1, νn) and Dh(µ

n, µn+1)−Dh(µ
n+1, µn). To handle these

commutators, we pass from the measure space to the dual space of bounded measurable functions.
Hence, the commutators become Dh∗

(
δh
δν (ν

n+1, ·), δh
δν (ν

n, ·)
)
−Dh∗

(
δh
δν (ν

n, ·), δh
δν (ν

n+1, ·)
)

and
analogously for µ. Applying Assumption 3.4 and 3.5, we show that these commutators are of order
O(τ3). This refined estimate yields the improved convergence rate O

(
1

N2/3

)
. For the proof, see

Section A.

4 NUMERICAL EXAMPLE

In this section, we outline how to implement the infinite-dimensional algorithms (1) and (2) in the
case where h is the relative entropy. For brevity, we present the derivations only for Algorithm (1),
as the arguments for Algorithm (2) are entirely analogous. The complete algorithms for both the
simultaneous and sequential MDA schemes can be found in Algorithm (3) and Algorithm (4) in
Section B.

4.1 SIMULATION OF INFINITE-DIMENSIONAL MDA

As shown in Example 1.3, by taking h to be the entropy, the corresponding h-Bregman divergence is
exactly the KL divergence. Moreover, using the flat derivative formula (4), the first-order optimality
condition (Hu et al., 2021, Proposition 2.5) applied to

(
νn+1, µn+1

)
in Algorithm (1) gives{

log νn+1(x)− log νn(x) = −τ δF
δν (ν

n, µn, x) + C,

logµn+1(y)− logµn(y) = τ δF
δµ (ν

n, µn, y) + C ′,

for every n ≥ 0 and, for all x, y ∈ X Lebesgue a.e., where C,C ′ ∈ R. By summing over n and
exponentiating both sides, we obtain{

νn(x) ∝ ν0(x)e−τ
∑n−1

k=0
δF
δν (νk,µk,x),

µn(y) ∝ µ0(y)eτ
∑n−1

k=0
δF
δµ (νk,µk,y),

8
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where the constants C,C ′ are absorbed into the normalizations. For simplicity, suppose the ini-
tial samples (Xj , Yj)

J
j=1 are drawn uniformly, so that (ν0, µ0) are uniform densities. We set

(Xj,0, Yj,0)
J
j=1 = (Xj , Yj)

J
j=1 and sample from (ν1, µ1) via Langevin dynamics:

Xj,t+1 = Xj,t − γ∇δF

δν
(ν0, µ0, Xj,t) +

√
2γ

τ
Nj,t,

Yj,t+1 = Yj,t + γ∇δF

δµ
(ν0, µ0, Yj,t) +

√
2γ

τ
Nj,t,

for 1 ≤ j ≤ J and 0 ≤ t ≤ T − 1, where γ > 0 is the step size and Nj,t are i.i.d stan-
dard Gaussian variables. For sufficiently large J and T , the terminal particles (Xj,T , Yj,T )

J
j=1

approximate samples from (ν1, µ1). Repeating this procedure recursively then yields samples from
(ν2, µ2), . . . , (νn, µn).

4.2 TRAINING GANS BY MDA

We train the mean-field GAN from Example 1.2 using simultaneous and sequential MDA-GAN
(Algorithms (5) and (6)) on the 8-Gaussian mixture and Swiss Roll datasets (Gulrajani et al., 2017).
Full algorithmic details, including hyperparameters and network architectures, are in Section B.
Both methods are run for 2000 iterations, with performance assessed by visualizing generated sam-
ples at 400, 1000, and 2000 iterations.

(a) Iteration n = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 1: Simultaneous MDA-GAN (Algorithm 5) learning an 8-Gaussian mixture

(a) Iteration n = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 2: Sequential MDA-GAN (Algorithm 6) learning an 8-Gaussian mixture

Figures 1 and 2 show the training dynamics of simultaneous and sequential MDA-GANs on the
8-Gaussian mixture, with analogous results on the Swiss Roll in Figures 3 and 4. In both settings,
generated samples start far from the data but the sequential variant captures the multi-modal structure
and the spiral geometry of the Swiss Roll more clearly and at earlier iterations. In Section B, we plot
the L1-Wasserstein distance W1

(
Tθn#ξ, ξ̂

)
for both tasks over iterations n, confirming the faster

convergence of sequential MDA-GAN.

9
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Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces,
2023. arXiv:2310.02951.
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A PROOFS OF THEOREM 2.4 AND THEOREM 3.6

This section is dedicated to the proofs of the main results, namely Theorem 2.4 and Theorem 3.6.
Before we proceed, we will need an auxiliary result, which will turn out to be essential for proving
both main theorems. The proof of Lemma A.1 is given in Appendix C.

Lemma A.1. Let Assumption 1.1, 1.6 and 2.1 hold. Suppose that τL ≤ 1
2 , with L := max{Lν , Lµ}.

Then, for both Algorithms (1) and (2), it holds, for all n ≥ 0, that

Dh(ν
n+1, νn) ≤ 4LF τ

2 and Dh(µ
n+1, µn) ≤ 4LF τ

2.

A.1 PROOF OF THEOREM 2.4

Proof of Theorem 2.4. Since ν 7→ τ
∫
X

δF
δν (ν

n, µn, x)(ν−νn)(dx) is convex, applying Lemma C.1
with ν̄ = νn+1 and µ = νn implies that, for any ν ∈ C, we have

τ

∫
X

δF

δν
(νn, µn, x)(ν − νn)(dx) +Dh(ν, ν

n) ≥ τ

∫
X

δF

δν
(νn, µn, x)(νn+1 − νn)(dx)

+Dh(ν
n+1, νn) +Dh(ν, ν

n+1),
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or, equivalently,

− τ

∫
X

δF

δν
(νn, µn, x)(ν − νn)(dx)−Dh(ν, ν

n) ≤ −τ

∫
X

δF

δν
(νn, µn, x)(νn+1 − νn)(dx)

−Dh(ν
n+1, νn)−Dh(ν, ν

n+1). (8)

Similarly, since µ 7→ −τ
∫
X

δF
δµ (ν

n, µn, y)(µ − µn)(dy) is convex, applying Lemma C.1 with
ν̄ = µn+1 and µ = µn implies that, for any µ ∈ D, we have

τ

∫
X

δF

δµ
(νn, µn, y)(µ− µn)(dy)−Dh(µ, µ

n) ≤ τ

∫
X

δF

δµ
(νn, µn, y)(µn+1 − µn)(dy)

−Dh(µ
n+1, µn)−Dh(µ, µ

n+1). (9)

Using the convexity of ν 7→ F (ν, µ) in (8), with ν = νn and µ = µn, we have that

F (νn, µn)− F (ν, µn)− 1

τ
Dh(ν, ν

n) ≤
∫
X

δF

δν
(νn, µn, x)(νn − νn+1)(dx)

− 1

τ
Dh(ν

n+1, νn)− 1

τ
Dh(ν, ν

n+1). (10)

From Lν-relative smoothness and the fact that τL ≤ 1
2 < 1, it follows that

F (νn+1, µn) ≤ F (νn, µn) +

∫
X

δF

δν
(νn, µn, x)(νn+1 − νn)(dx) + LνDh(ν

n+1, νn)

≤ F (νn, µn) +

∫
X

δF

δν
(νn, µn, x)(νn+1 − νn)(dx) +

1

τ
Dh(ν

n+1, νn). (11)

Hence, combining (10) with (11), we obtain for any ν ∈ C that

F (νn, µn) − F (ν, µn) − 1

τ
Dh(ν, ν

n) ≤ F (νn, µn) − F (νn+1, µn) − 1

τ
Dh(ν, ν

n+1). (12)

Similarly, using concavity of µ 7→ F (ν, µ) in (9), with ν = νn and µ = µn, we have that

F (νn, µ)− F (νn, µn)− 1

τ
Dh(µ, µ

n) ≤
∫
X

δF

δµ
(νn, µn, y)(µn+1 − µn)(dy)

− 1

τ
Dh(µ

n+1, µn)− 1

τ
Dh(µ, µ

n+1). (13)

From Lµ-relative smoothness and the fact that τL ≤ 1
2 < 1, it follows that

F (νn, µn+1) ≥ F (νn, µn) +

∫
X

δF

δµ
(νn, µn, y)(µn+1 − µn)(dy)− LµDh(µ

n+1, µn)

≥ F (νn, µn) +

∫
X

δF

δµ
(νn, µn, y)(µn+1 − µn)(dy)− 1

τ
Dh(µ

n+1, µn). (14)

Hence, combining (13) with (14), we obtain for any µ ∈ D that

F (νn, µ) − F (νn, µn) − 1

τ
Dh(µ, µ

n) ≤ F (νn, µn+1) − F (νn, µn) − 1

τ
Dh(µ, µ

n+1). (15)

Adding inequalities (12) and (15) implies that for any (ν, µ) ∈ C × D we have

F (νn, µ)− F (ν, µn) ≤ F (νn, µn)− F (νn+1, µn) + F (νn, µn+1)− F (νn, µn)

+
1

τ
Dh(ν, ν

n) +
1

τ
Dh(µ, µ

n)− 1

τ
Dh(ν, ν

n+1)− 1

τ
Dh(µ, µ

n+1). (16)

By Assumption 2.1, we have that

|F (νn, µn)− F (νn+1, µn)|2 = |F (νn+1, µn)− F (νn, µn)|2 ≤ LFDh(ν
n+1, νn) ≤ 4L2

F τ
2,

13
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and
|F (νn, µn+1)− F (νn, µn)|2 ≤ LFDh(µ

n+1, µn) ≤ 4L2
F τ

2,

where the last inequalities follows from Lemma A.1. Therefore, from (16), we obtain

F (νn, µ)−F (ν, µn) ≤ 4LF τ+
1

τ
Dh(ν, ν

n)+
1

τ
Dh(µ, µ

n)− 1

τ
Dh(ν, ν

n+1)− 1

τ
Dh(µ, µ

n+1),

Summing the previous inequality over n = 0, 1, ..., N − 1, using Dh(ν, ν
N ) +Dh(µ, µ

N ) ≥ 0, for
any (ν, µ) ∈ C ×D, bounding the right-hand from above by its supremum over (ν, µ) ∈ C ×D, and
dividing by N gives

1

N

N−1∑
n=0

(F (νn, µ)− F (ν, µn)) ≤ 4LF τ +
1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)
. (17)

Since ν 7→ F (ν, µ) and µ 7→ −F (ν, µ) are convex, it follows by Jensen’s inequality that

1

N

N−1∑
n=0

(F (νn, µ)− F (ν, µn)) =
1

N

N−1∑
n=0

F (νn, µ)− 1

N

N−1∑
n=0

F (ν, µn)

≥ F

(
1

N

N−1∑
n=0

νn, µ

)
− F

(
ν,

1

N

N−1∑
n=0

µn

)
. (18)

Combining (17) with (18) and taking maximum over (ν, µ) gives

NI

(
1

N

N−1∑
n=0

νn,
1

N

N−1∑
n=0

µn

)
≤ 4LF τ +

1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)
.

Minimizing the right-hand side over τ amounts to taking

τ =
1

2

√
supν∈C Dh(ν, ν0) + supµ∈D Dh(µ, µ0)

LFN
,

and hence we obtain

NI

(
1

N

N−1∑
n=0

νn,
1

N

N−1∑
n=0

µn

)
≤ 4

√
LF

(
supν∈C Dh(ν, ν0) + supµ∈D Dh(µ, µ0)

)
N

.

A.2 PROOF OF THEOREM 3.6

Proof of Theorem 3.6. We start the proof by following the same calculations from Theorem 2.4. For
(2), after applying Lemma C.1 and using convexity-concavity of F, (10) remains unchanged, i.e.,

F (νn, µn)− F (ν, µn)− 1

τ
Dh(ν, ν

n) ≤
∫
X

δF

δν
(νn, µn, x)(νn − νn+1)(dx)

− 1

τ
Dh(ν

n+1, νn)− 1

τ
Dh(ν, ν

n+1),

while (13) becomes

F (νn+1, µ)− F (νn+1, µn)− 1

τ
Dh(µ, µ

n) ≤
∫
X

δF

δµ
(νn+1, µn, y)(µn+1 − µn)(dy)

− 1

τ
Dh(µ

n+1, µn)− 1

τ
Dh(µ, µ

n+1).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Adding the previous two inequalities, summing the resulting inequality over n = 0, 1, ..., N − 1,
dividing by N, using (18) and taking maximum over (ν, µ) we arrive at

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

N

N−1∑
n=0

(∫
X

δF

δν
(νn, µn, x)(νn − νn+1)(dx)

+

∫
X

δF

δµ
(νn+1, µn, y)(µn+1 − µn)(dy)

)
+

1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)

+
1

N

N−1∑
n=0

(
F (νn+1, µn)− F (νn, µn)

)
− 1

Nτ

N−1∑
n=0

(
Dh(ν

n+1, νn) +Dh(µ
n+1, µn)

)
, (19)

where we used the fact that Dh(ν, ν
N ) +Dh(µ, µ

N ) ≥ 0, for any (ν, µ) ∈ C × D.

Note that the key difference to the estimates from Theorem 2.4 is the appearance of the term
F (νn+1, µn) − F (νn, µn) due to the non-symmetry of the flat derivatives of F in (2). The
idea is to combine F (νn+1, µn) − F (νn, µn) with both

∫
X

δF
δν (ν

n, µn, x)(νn − νn+1)(dx) and∫
X

δF
δµ (ν

n+1, µn, y)(µn+1 − µn)(dy) via relative smoothness in order to obtain Dh(ν
n, νn+1) −

Dh(ν
n+1, νn) and Dh(µ

n, µn+1)−Dh(µ
n+1, µn), which will prove to be of order O(τ3).

Since the flat derivative of E ∋ m 7→ Dh(m,m′) ∈ [0,∞) is given by δ
δmDh(·,m′) = δh

δm (m,x)−
δh
δm (m′, x), it follows that the first-order conditions for (2) read{

δh
δν (ν

n+1, x)− δh
δν (ν

n, x) = −τ δF
δν (ν

n, µn, x),
δh
δµ (µ

n+1, y)− δh
δµ (µ

n, y) = τ δF
δµ (ν

n+1, µn, y),
(20)

for all (x, y) ∈ X × X Lebesgue a.e. It can be shown directly from Definition 1.2 that∫
X

(
δh

δν
(ν′, x)− δh

δν
(ν, x)

)
(ν′ − ν)(dx) = Dh(ν

′, ν) +Dh(ν, ν
′), (21)

for all ν, ν′ ∈ C, and analogously for Dh(µ
′, µ) +Dh(µ, µ

′). Then, using (20) and (21) we obtain
that

−
∫
X

δF

δν
(νn, µn, x)(νn+1 − νn)(dx) =

1

τ

∫
X

(
δh

δν
(νn+1, x)− δh

δν
(νn, x)

)
(νn+1 − νn)(dx)

=
1

τ

(
Dh(ν

n+1, νn) +Dh(ν
n, νn+1)

)
, (22)

and similarly∫
X

δF

δµ
(νn+1, µn, y)(µn+1 −µn)(dy) =

1

τ

∫
X

(
δh

δµ
(µn+1, y)− δh

δµ
(µn, y)

)
(µn+1 −µn)(dy)

=
1

τ

(
Dh(µ

n+1, µn) +Dh(µ
n, µn+1)

)
. (23)

Therefore, using (22) and (23) in (19), we obtain that

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)

+
1

Nτ

N−1∑
n=0

(
Dh(ν

n+1, νn) +Dh(ν
n, νn+1) +Dh(µ

n+1, µn) +Dh(µ
n, µn+1)

)

+
1

N

N−1∑
n=0

(
F (νn+1, µn)− F (νn, µn)

)
− 1

Nτ

N−1∑
n=0

(
Dh(ν

n+1, νn) +Dh(µ
n+1, µn)

)
. (24)

Then, we observe that

Dh(ν
n, νn+1) =

1

2

(
Dh(ν

n, νn+1)−Dh(ν
n+1, νn)

)
+
1

2

(
Dh(ν

n, νn+1) +Dh(ν
n+1, νn)

)
,

(25)
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and a similar representation holds for Dh(µ
n, µn+1). Similarly, we can write

F (νn+1, µn)− F (νn, µn) =
1

2

(
F (νn+1, µn)− F (νn, µn)

)
+

1

2

(
F (νn+1, µn)− F (νn+1, µn+1) + F (νn+1, µn+1)− F (νn, µn)

)
. (26)

Therefore, putting (25) and (26) into (24) gives

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)

+
1

2Nτ

N−1∑
n=0

(
Dh(ν

n, νn+1)−Dh(ν
n+1, νn) +Dh(µ

n, µn+1)−Dh(µ
n+1, µn)

)
+

1

2N

N−1∑
n=0

(
1

τ
(Dh(ν

n, νn+1) +Dh(ν
n+1, νn)) + F (νn+1, µn)− F (νn, µn)

)

+
1

2N

N−1∑
n=0

(
1

τ
(Dh(µ

n, µn+1) +Dh(µ
n+1, µn)) + F (νn+1, µn)− F (νn+1, µn+1)

+ F (νn+1, µn+1)− F (νn, µn)

)
. (27)

Combining the fact that ν 7→ F (ν, µ) is Lν-smooth relative to h with the first-order condition (20),
we have that

F (νn+1, µn)− F (νn, µn) ≤
∫
X

δF

δν
(νn, µn, x)(νn+1 − νn)(dx) + LνDh(ν

n+1, νn)

= −1

τ

∫
X

(
δh

δν
(νn+1, x)− δh

δν
(νn, x)

)
(νn+1 − νn)(dx) + LνDh(ν

n+1, νn)

= −1

τ

(
Dh(ν

n+1, νn) +Dh(ν
n, νn+1)

)
+ LνDh(ν

n+1, νn), (28)

where the last equality follows from (21).

Similarly, using Lµ-smoothness of µ 7→ F (ν, µ) relative to h together with (20), we can show that

F (νn+1, µn)−F (νn+1, µn+1)+
1

τ

(
Dh(µ

n, µn+1) +Dh(µ
n+1, µn)

)
≤ LµDh(µ

n+1, µn). (29)

Therefore, using (28) and (29) in (27), and recalling that L = max{Lν , Lµ} gives

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)

+
1

2Nτ

N−1∑
n=0

(
Dh(ν

n, νn+1)−Dh(ν
n+1, νn) +Dh(µ

n, µn+1)−Dh(µ
n+1, µn)

)
+

L

2N

N−1∑
n=0

(
Dh(ν

n+1, νn) +Dh(µ
n+1, µn)

)
+

1

2N

(
F
(
νN , µN

)
− F (ν0, µ0)

)
. (30)

Since, by Lemma A.1, Dh(ν
n+1, νn) ≤ 4LF τ

2 and Dh(µ
n+1, µn) ≤ 4LF τ

2, it suffices to show
that Dh(ν

n, νn+1) −Dh(ν
n+1, νn) +Dh(µ

n, µn+1) −Dh(µ
n+1, µn) is of order O(τ3). Indeed,

we could then choose τ = O
(

1
N1/3

)
, and since by Assumption 3.5,

∣∣F (νN , µN
)∣∣ ≤ M, we would

obtain that

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ O

(
1

N2/3

)
+O

(
1

N

)
= O

(
1

N2/3

)
,
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because 1
N ≤ 1

N2/3 , for all N ≥ 1.

In order to show that Dh(ν
n, νn+1)−Dh(ν

n+1, νn) +Dh(µ
n, µn+1)−Dh(µ

n+1, µn) is O(τ3),
we will leverage the connection between Bregman divergence and dual Bregman divergence given
by Lemma H.3 together with Assumption 3.4, 3.5.

If we denote fn := δh
δν (ν

n, ·), for any n ≥ 0, then by Lemma H.3, we have that Dh(ν
n, νn+1) =

Dh∗(fn+1, fn). For any ε ∈ [0, 1] denote fε,n+1 = εfn+1 + (1 − ε)fn and fε,n = εfn + (1 −
ε)fn+1. By Definition 3.3, we have that

Dh∗(fn+1, fn) = h∗(fn+1)− h∗(fn)−
∫
X

(
fn+1(x)− fn(x)

) δh∗

δf
(fn)(dx)

=

∫ 1

0

〈
fn+1 − fn,

δh∗

δf
(fλ,n+1)

〉
dλ−

〈
fn+1 − fn,

δh∗

δf
(fn)

〉
=

∫ 1

0

〈
fn+1 − fn,

δh∗

δf
(fλ,n+1)− δh∗

δf
(fn)

〉
dλ

=

∫ 1

0

∫ 1

0

∫
X×X

λ
(
fn+1(x)− fn(x)

) (
fn+1(x′)− fn(x′)

) δ2h∗

δf2
(fηλ,n+1)(fηλ,n+1)(dx′⊗dx)dηdλ,

where the second and last equalities follow from (43) and (46), respectively. Similarly, by Lemma
H.3, we have that Dh(ν

n+1, νn) = Dh∗(fn, fn+1), and hence

Dh∗(fn, fn+1) =

∫ 1

0

∫ 1

0

∫
X×X

λ
(
fn(x)− fn+1(x)

) (
fn(x′)− fn+1(x′)

)
×

× δ2h∗

δf2
(fηλ,n)(fηλ,n)(dx′ ⊗ dx)dηdλ.

Therefore, we obtain that

Dh∗(fn+1, fn)−Dh∗(fn, fn+1) =

∫ 1

0

∫ 1

0

∫
X×X

λ(fn+1(x)− fn(x))(fn+1(x′)− fn(x′))×

×

(
δ2h∗

δf2
(fηλ,n+1)(fηλ,n+1)− δ2h∗

δf2
(fηλ,n)(fηλ,n)

)
(dx′ ⊗ dx)dηdλ.

Using Assumption 3.4, we further obtain

Dh∗(fn+1, fn)−Dh∗(fn, fn+1) ≤
∫ 1

0

∫ 1

0

∣∣∣∣∣
∫
X×X

λ(fn+1(x)−fn(x))(fn+1(x′)−fn(x′))×

×

(
δ2h∗

δf2
(fηλ,n+1)(fηλ,n+1)− δ2h∗

δf2
(fηλ,n)(fηλ,n)

)
(dx′ ⊗ dx)

∣∣∣∣∣dηdλ
≤ ∥fn+1−fn∥2∞

∫ 1

0

∫ 1

0

∫
X×X

λ

∣∣∣∣∣δ2h∗

δf2
(fηλ,n+1)(fηλ,n+1)−δ2h∗

δf2
(fηλ,n)(fηλ,n)

∣∣∣∣∣(dx′⊗dx)dηdλ

= ∥fn+1 − fn∥2∞
∫ 1

0

λ

∫ 1

0

∥∥∥∥∥δ2h∗

δf2
(fηλ,n+1)(fηλ,n+1)− δ2h∗

δf2
(fηλ,n)(fηλ,n)

∥∥∥∥∥
TV

dηdλ

≤ 2Lh∗∥fn+1 − fn∥3∞
∫ 1

0

λ

∫ 1

0

|1− 2ηλ|dηdλ ≤ Lh∗∥fn+1 − fn∥3∞,

where the third inequality follows since |1−2ηλ| ≤ 1, for all η, λ ∈ [0, 1]. The first-order condition
for the minimizing player in (20) can be rewritten as

fn+1(x)− fn(x) = −τ
δF

δν
(νn, µn, x), (31)
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for all x ∈ X Lebesgue a.e. By Assumption 3.5, there exists Cν > 0 such that
∥∥ δF

δν (ν
n, µn, ·)

∥∥
∞ ≤

Cν , for any n ≥ 0. Hence, we obtain that

Dh∗(fn+1, fn)−Dh∗(fn, fn+1) ≤ Lh∗∥fn+1−fn∥3∞ = Lh∗τ3
∥∥∥∥δFδν (νn, µn, ·)

∥∥∥∥3
∞

≤ Lh∗τ3C3
ν ,

Similarly, denoting gn := δh
δµ (µ

n, ·), for any n ≥ 0, and repeating the steps above, we can prove
that

Dh∗(gn+1, gn)−Dh∗(gn, gn+1) ≤ Lh∗∥gn+1−gn∥3∞ = Lh∗τ3
∥∥∥∥δFδµ (νn+1, µn, ·)

∥∥∥∥3
∞

≤ Lh∗τ3C3
µ,

where Cµ > 0 exists due Assumption 3.5.

Set κ := C3
ν + C3

µ > 0. Then,

Dh(ν
n, νn+1)−Dh(ν

n+1, νn) +Dh(µ
n, µn+1)−Dh(µ

n+1, µn) ≤ κLh∗τ3. (32)

Hence, using Lemma A.1, (32) and Assumption 3.5, estimate (30) becomes

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)

+
1

2Nτ

N−1∑
n=0

((
Dh(ν

n, νn+1)−Dh(ν
n+1, νn)

)
+
(
Dh(µ

n, µn+1)−Dh(µ
n+1, µn)

))

+
L

2N

N−1∑
n=0

(
Dh(ν

n+1, νn) +Dh(µ
n+1, µn)

)
+

1

2N

(
F
(
νN , µN

)
− F (ν0, µ0)

)
=

1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)
+

(
1

2
κLh∗ + 4LFL

)
τ2 +

M

N
.

Minimizing the right-hand side over τ amounts to taking

τ =

(
supν∈C Dh(ν, ν

0) + supµ∈D Dh(µ, µ
0)

N(κLh∗ + 2LFL)

)1/3

,

and since 1
N ≤ 1

N2/3 , for any N ≥ 1, it follows that

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn

)
≤ 1

2N2/3

(
3

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)2/3

×

× (κLh∗ + 2LFL))
1/3

+ 2M

)
.

B DETAILS ON NUMERICAL EXPERIMENTS

In this section, we present the additional details of the numerical experiments. We begin by summa-
rizing the implementable versions of the simultaneous and sequential MDA algorithms introduced
in Section 4. We now turn to Algorithms (3) and (4) in the setting where F corresponds to the GAN
objective introduced in Example 1.2. Recall that F takes the form

F (ν, µ) =

∫
W

∫
Θ

∫
Y
Dw(y)

(
Tθ#ξ − ξ̂

)
(dy)ν(dθ)µ(dw)

=

∫
W

∫
Θ

∫
Y
Dw(y) (Tθ#ξ) (dy)ν(dθ)µ(dw)−

∫
W

∫
Y
Dw(y)ξ̂(dy)µ(dw)

18
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Algorithm 3: IMPLEMENTABLE SIMULTANEOUS MDA
Input: objective function F, initial measures (ν0, µ0), stepsize τ, γ > 0, time horizons K,N

and number of particles J
Generate i.i.d

(
X0

j , Y
0
j

)J
j=1

∼ (ν0, µ0)

Set
(
X0

j,0, Y
0
j,0

)J
j=1

=
(
X0

j , Y
0
j

)J
j=1

for n = 0, 1, . . . , N − 1 do
for k = 0, 1, . . . ,K − 1 do

Generate independent Gaussian random variables Nn
j,k

for j = 1, 2, . . . , J do
Xn

j,k+1 = Xn
j,k − γ∇ δF

δν (ν
n, µn, Xn

j,k) +
√

2γ
τ Nn

j,k

Y n
j,k+1 = Y n

j,k + γ∇ δF
δµ (ν

n, µn, Y n
j,k) +

√
2γ
τ Nn

j,k

for j = 1, 2, . . . , J do
Xn+1

j,0 = Xn
j,K , Y n+1

j,0 = Y n
j,K

νn = 1
J

∑J
j=1 δXn

j,0
, µn = 1

J

∑J
j=1 δY n

j,0

Output:
(

1
N

∑N−1
n=0 νn, 1

N

∑N−1
n=0 µn

)

Algorithm 4: IMPLEMENTABLE SEQUENTIAL MDA
Input: objective function F, initial measures (ν0, µ0), stepsize τ, γ > 0, time horizons K,N

and number of particles J
Generate i.i.d

(
X0

j , Y
0
j

)J
j=1

∼ (ν0, µ0)

Set
(
X0

j,0, Y
0
j,0

)J
j=1

=
(
X0

j , Y
0
j

)J
j=1

for n = 0, 1, . . . , N − 1 do
for k = 0, 1, . . . ,K − 1 do

Generate independent Gaussian random variables Nn
j,t

for j = 1, 2, . . . , J do
Xn

j,k+1 = Xn
j,k − γ∇ δF

δν (ν
n, µn, Xn

j,k) +
√

2γ
τ Nn

j,k

for j = 1, 2, . . . , J do
Xn+1

j,0 = Xn
j,K

νn+1 = 1
J

∑J
j=1 δXn+1

j,0

for k = 0, 1, . . . ,K − 1 do
Generate independent Gaussian random variables Nn

j,k

for j = 1, 2, . . . , J do
Y n
j,k+1 = Y n

j,k + γ∇ δF
δµ (ν

n+1, µn, Y n
j,k) +

√
2γ
τ Nn

j,k

for j = 1, 2, . . . , J do
Y n+1
j,0 = Y n

j,K

µn = 1
J

∑J
j=1 δY n

j,0

Output:
(

1
N

∑N−1
n=0 νn+1, 1

N

∑N−1
n=0 µn

)

By Definition F.1, we have

δF

δν
(ν, µ, θ) =

∫
W

∫
Y
Dw(y) (Tθ#ξ) (dy)µ(dw),

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

δF

δµ
(ν, µ, w) =

∫
Θ

∫
Y
Dw(y) (Tθ#ξ) (dy)ν(dθ)−

∫
Y
Dw(y)ξ̂(dy).

The flat derivatives can be approximated using empirical averages. For a batch of real data
{ξreal

1 , . . . , ξreal
M } ∼ ξ̂, we have ∫

Y
Dw(y)ξ̂(dy) ≈

1

M

M∑
i=1

Dw(ξ
real
i ).

For the term in δF
δµ (ν, µ, w) that involves integration with respect to both ν and the generated data

Tθ#ξ, we approximate via sampling as follows. We sample

{θ(1), θ(2), ..., θ(J)} ∼ ν,
{
Z

(j)
i

}M

i=1
∼ Tθ(j)#ξ,

leading to the estimator∫
Θ

∫
Y
Dw(y) (Tθ#ξ) (dy)ν(dθ) ≈ 1

JM

M∑
i=1

J∑
j=1

Dw

(
X

(j)
i

)
.

Analogously, for δF
δν (ν, µ, θ) we sample

{w(1), w(2), ..., w(J)} ∼ µ, {Zi}Mi=1 ∼ Tθ#ξ,

and approximate ∫
W

∫
Y
Dw(y) (Tθ#ξ) (dy)µ(dw) ≈ 1

JM

M∑
i=1

J∑
j=1

Dw(j) (Zi) .

To mitigate the computational cost of Algorithms (3) and (4), we follow the approach of (Hsieh
et al., 2019) and employ Langevin dynamics with exponential damping (see also their Algorithm
3). Below, we present this algorithm in both the simultaneous and sequential variants used in our
experiments.

Algorithm 5: SIMULTANEOUS MDA-GAN

Input: Initial parameters w0, θ0, step sizes {γn}N−1
n=0 , {τn}

N−1
n=0 , time horizon {Kn}N−1

n=0 ,
averaging parameter β ∈ [0, 1], source probability measure ξ

for n = 0, 1, . . . , N − 1 do
Set w̄n, wn

0 = wn and θ̄n, θn0 = θn;
for k = 0, 1, . . . ,Kt − 1 do

A = {Z1, . . . , ZM} ∼ Tθn
k
#ξ;

θnk+1 = θnk − γn

M
∇θ

∑
Zi∈A

Dwn(Zi) +

√
2γn

τn
Nn

k ;

B = {ξreal
1 , . . . , ξreal

M } ∼ ξ̂;
B′ = {Z ′

1, . . . , Z
′
M} ∼ Tθn#ξ;

wn
k+1 = wn

k +
γn

M
∇w

∑
Z′

i∈B′

Dwn
k
(Z ′

i)−
γn

M
∇w

∑
ξreal
i ∈B

Dwn
k
(ξreal

i ) +

√
2γn

τn
Nn

k ;

w̄n = (1− β)w̄n + βwn
k+1, θ̄n = (1− β)θ̄n + βθnk+1;

wn+1 = (1− β)wt + βw̄n, θn+1 = (1− β)θn + βθ̄n;

Output: wN , θN

In all experiments, we closely follow the specifications from (Hsieh et al., 2019). We adopt the
gradient-penalized discriminator of (Gulrajani et al., 2017) as a soft-constraint alternative to the
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Algorithm 6: SEQUENTIAL MDA-GAN

Input: Initial parameters w0, θ0, step sizes {γn}N−1
n=0 , {τn}

N−1
n=0 , time horizon {Kn}N−1

n=0 ,
averaging parameter β ∈ [0, 1], source probability measure ξ

for n = 0, 1, . . . , N − 1 do
Set w̄n, wn

0 = wn and θ̄n, θn0 = θn;
for k = 0, 1, . . . ,Kt − 1 do

A = {Z1, . . . , ZM} ∼ Tθn
k
#ξ;

θnk+1 = θnk − γn

M
∇θ

∑
Zi∈A

Dwn(Zi) +

√
2γn

τn
Nn

k ;

θ̄n = (1− β)θ̄n + βθnk+1;

θn+1 = (1− β)θn + βθ̄n;
for k = 0, 1, . . . ,Kt − 1 do

B = {ξreal
1 , . . . , ξreal

M } ∼ ξ̂;
B′ = {Z ′

1, . . . , Z
′
M} ∼ Tθn+1#ξ;

wn
k+1 = wn

k +
γn

M
∇w

∑
Z′

i∈B′

Dwn
k
(Z ′

i)−
γn

M
∇w

∑
ξreal
i ∈B

Dwn
k
(ξreal

i ) +

√
2γn

τn
Nn

k ;

w̄n = (1− β)w̄n + βwn
k+1;

wn+1 = (1− β)wt + βw̄n;

Output: wN , θN

original Wasserstein GAN formulation to increase stability. The gradient penalty parameter is set to
λ = 0.1. For our Simultaneous and Sequential MDA-GANs, we fix the damping factor to β = 0.8.
The scheduling of the parameters Kn, γn, and τn is Kn = ⌊(1 + 10−5)n⌋, γn = γ(1 − 10−5)n,
with γ = 0.01, and τn = τ(1 − 5 × 10−5)−t, with τ = 100. The number of samples per batch
is M = 1024. For both the 8-Gaussian mixture and Swiss Roll datasets, we use fully connected
networks for the generator and discriminator, each consisting of two-hidden-layers with J = 512
neurons on each layer. The generator and discriminator networks use ReLU activations, except for
the output layer of the discriminator, which employs a tanh activation. All network parameters are
initialized from a normal distribution N (0, 0.01).

(a) Iteration n = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 3: Simultaneous MDA-GAN (Algorithm 5) learning the Swiss Roll

C PROOFS OF ADDITIONAL RESULTS

In this section, we present the proofs of the additional results of the paper. We start with the proofs
of Lemma A.1 and Lemma C.1, which play a key role in proving the main results. Then we continue
with the proofs of some auxiliary results.
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(a) Iteration n = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 4: Sequential MDA-GAN (Algorithm 6) learning the Swiss Roll

(a) 8-Gaussian mixture (b) Swiss Roll

Figure 5: L1-Wasserstein distance between generated and real data for the 8-Gaussian mixture and
Swiss Roll
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C.1 PROOF OF LEMMA A.1

Proof of Lemma A.1. We will only prove the lemma for scheme (1) since the argument for (2) is
almost identical. From Lν-relative smoothness and the definition of νn+1 in (1), for any ν ∈ C, it
follows that

F (νn+1, µn) ≤ F (νn, µn)+

∫
X

δF

δν
(νn, µn, x)(νn+1−νn)(dx)+

(
1

τ
+ Lν − 1

τ

)
Dh(ν

n+1, νn)

≤ F (νn, µn) +

∫
X

δF

δν
(νn, µn, x)(ν − νn)(dx) +

1

τ
Dh(ν, ν

n) +

(
Lν − 1

τ

)
Dh(ν

n+1, νn).

Setting ν = νn, we obtain that

F (νn+1, µn) ≤ F (νn, µn) +

(
Lν − 1

τ

)
Dh(ν

n+1, νn).

Recall L := max{Lν , Lµ} > 0. By assumption, τL ≤ 1
2 , and so we get

1

2τ
Dh(ν

n+1, νn) ≤ F (νn, µn)− F (νn+1, µn) ≤
√

LF

√
Dh(νn+1, νn),

where the last inequality follows from Assumption 2.1. Hence, since Dh(ν
n+1, νn) ≥ 0, for all

n ≥ 0, we obtain that
Dh(ν

n+1, νn) ≤ 4LF τ
2.

From Lµ-relative smoothness and the definition of µn+1 in (1), for any µ ∈ D, it follows that

F (νn, µn+1) ≥ F (νn, µn)+

∫
X

δF

δµ
(νn, µn, y)(µn+1−µn)(dy)−

(
1

τ
+ Lµ − 1

τ

)
Dh(µ

n+1, µn)

≥ F (νn, µn) +

∫
X

δF

δµ
(νn, µn, y)(µ− µn)(dy)− 1

τ
Dh(µ, µ

n)−
(
Lµ − 1

τ

)
Dh(µ

n+1, µn).

Setting µ = µn, we obtain that

F (νn, µn+1) ≥ F (νn, µn)−
(
Lµ − 1

τ

)
Dh(µ

n+1, µn).

Using again the assumption τL ≤ 1
2 , we get

1

2τ
Dh(µ

n+1, µn) ≤ F (νn, µn+1)− F (νn, µn) ≤
√
LF

√
Dh(µn+1, µn),

where the last inequality follows from Assumption 2.1. Hence, since Dh(µ
n+1, µn) ≥ 0, for all

n ≥ 0, we obtain that
Dh(µ

n+1, µn) ≤ 4LF τ
2.

C.2 PROOF OF LEMMA C.1

Lemma C.1 (Three-point inequality). Let Assumption 1.1 hold. Let G : E → R be convex and
admit flat derivative on E . For all µ ∈ E , suppose that there exists ν̄ ∈ E such that

ν̄ ∈ argmin
ν∈E

{G(ν) +Dh(ν, µ)}.

Then, for any ν ∈ E , we have

G(ν) +Dh(ν, µ) ≥ G(ν̄) +Dh(ν̄, µ) +Dh(ν, ν̄).

Proof. From Definition 1.2, we have

Dh(ν, µ) = h(ν)− h(µ)−
∫
X

δh

δµ
(µ, y)(ν − µ)(dy),
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and hence, for any µ ∈ K, and all y ∈ X Lebesgue a.e., we have(
δDh

δν
(ν, µ, y)

) ∣∣∣∣
ν=ν̄

=
δh

δν
(ν̄, y)− δh

δµ
(µ, y).

Therefore, for any µ ∈ K, we have that

DDh(·,µ)(ν, ν̄) = Dh(ν, µ)−Dh(ν̄, µ)−
∫
X

(
δDh

δν
(ν, µ, y)

) ∣∣∣∣
ν=ν̄

(ν − ν̄)(dy)

= Dh(ν, µ)−Dh(ν̄, µ)−
∫
X

δh

δν
(ν̄, y)(ν − ν̄)(dy) +

∫
X

δh

δµ
(µ, y)(ν − ν̄)(dy)

= h(ν)− h(ν̄)−
∫
X

δh

δµ
(µ, y)(ν − µ)(dy) +

∫
X

δh

δµ
(µ, y)(ν̄ − µ)(dy)

−
∫
X

δh

δν
(ν̄, y)(ν − ν̄)(dy) +

∫
X

δh

δµ
(µ, y)(ν − ν̄)(dy)

= h(ν)− h(ν̄)−
∫
X

δh

δν
(ν̄, y)(ν − ν̄)(dy)

= Dh(ν, ν̄).

Given µ ∈ K, if we denote g(ν) := G(ν) +Dh(ν, µ), then by linearity of flat derivative, we further
obtain that

Dg(ν, ν̄) = DG(·)+Dh(·,µ)(ν, ν̄) = DG(ν, ν̄) +DDh(·,µ)(ν, ν̄) = DG(ν, ν̄) +Dh(ν, ν̄) ≥ Dh(ν, ν̄),

since DG(ν, ν̄) ≥ 0 by convexity of G. By optimality of ν̄, the first-order condition δg
δν (ν̄, y) =

constant holds for all y ∈ X Lebesgue a.e., and hence

g(ν)− g(ν̄)−Dg(ν, ν̄) = 0.

Therefore, we obtain that

g(ν) = g(ν̄) +Dg(ν, ν̄) ≥ g(ν̄) +Dh(ν, ν̄),

which is the desired inequality.

C.3 PROOFS OF AUXILIARY RESULTS

In this subsection, we start by establishing two results: one concerning the verification of Assump-
tion 2.1 and the other on the uniform boundedness of the second-order flat derivatives of F.
Lemma C.2 (Verification of Assumption 2.1 for h relative entropy). Suppose that there exists
CF,ν > 0 and CF,µ > 0 such that, for all (ν, µ) ∈ C × D, and all (x, y) ∈ X × X , it holds
that ∣∣∣∣δFδν (ν, µ, x)

∣∣∣∣ ≤ CF,ν ,

∣∣∣∣δFδµ (ν, µ, y)

∣∣∣∣ ≤ CF,µ.

Take h to be the relative entropy, i.e., h(ν) :=
∫
X log ν(x)

π(x)ν(dx), where ν, π ∈ P(X ) are absolutely
continuous with respect to Lebesgue measure on X and π is fixed reference probability measures on
P(X ). Then Assumption 2.1 is satisfied.

Proof. Since h is the relative entropy, it follows from Example 1.3 that Bregman divergence is in
fact the Kullback-Leibler divergence. Then, from Definition F.1, we have

|F (ν′, µ′)− F (ν, µ)| = |F (ν′, µ′)− F (ν, µ′) + F (ν, µ′)− F (ν, µ)|
≤ |F (ν′, µ′)− F (ν, µ′)|+ |F (ν, µ′)− F (ν, µ)|

=

∣∣∣∣∫ 1

0

∫
X

δF

δν
(ν + ε(ν′ − ν), µ′, x) (ν′ − ν)(dx)dε

∣∣∣∣
+

∣∣∣∣∫ 1

0

∫
X

δF

δµ
(ν, µ+ ε(µ′ − µ), y) (µ′ − µ)(dy)dε

∣∣∣∣
≤ CF,ν TV (ν′, ν) + CF,µ TV (µ′, µ) ,
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where the last inequality follows since F is assumed to have bounded first-order flat derivatives by
CF,ν , CF,µ > 0, respectively. The conclusion follows by squaring both sides and applying Pinsker’s
inequality, that is, TV2(ν′, ν) ≤ 1

2 KL(ν′, ν).

We show that, under Assumption 1.5 and 1.6, the second-order flat derivatives δ2F
δν2 ,− δ2F

δµ2 are non-

negative and bounded above by δ2h
δν2 ,

δ2h
δµ2 multiplied by the respective smoothness constants.

Lemma C.3 (Uniform boundedness of second order flat derivatives of F ). Let Assumption 1.5, 1.1
and 1.6 hold. Suppose that ν 7→ F (ν, µ), µ 7→ F (ν, µ), and h admit second-order flat derivative
(cf. (40)) on C,D and E , respectively. Then, we have

0 ≤
∫ 1

0

∫
X

∫ ε

0

∫
X

δ2F

δν2
(ν + η(ν′ − ν), µ, x, x′) (ν′ − ν)(dx′)dη(ν′ − ν)(dx)dε

≤ Lν

∫ 1

0

∫
X

∫ ε

0

∫
X

δ2h

δν2
(ν + η(ν′ − ν), x, x′) (ν′ − ν)(dx′)dη(ν′ − ν)(dx)dε,

0 ≤ −
∫ 1

0

∫
X

∫ ε

0

∫
X

δ2F

δµ2
(ν, µ+ η(µ′ − µ), y, y′) (µ′ − µ)(dy′)dη(µ′ − µ)(dy)dε

≤ Lµ

∫ 1

0

∫
X

∫ ε

0

∫
X

δ2h

δµ2
(µ+ η(µ′ − µ), y, y′) (µ′ − µ)(dy′)dη(µ′ − µ)(dy)dε.

Proof. We observe that combining relative smoothness and convexity for ν 7→ F (ν, µ) gives that
for some Lν > 0, any ν, ν′ ∈ C and any µ, µ′ ∈ D, we have

0 ≤ F (ν′, µ)− F (ν, µ)−
∫
X

δF

δν
(ν, µ, x)(ν′ − ν)(dx) ≤ LνDh(ν

′, ν). (33)

Since ν 7→ F (ν, µ), µ 7→ F (ν, µ), and h admit second-order flat derivative (cf. (40)) on C,D and
E , respectively, from (33), we obtain

0 ≤
∫ 1

0

∫
X

∫ ε

0

∫
X

δ2F

δν2
(ν + η(ν′ − ν), µ, x, x′) (ν′ − ν)(dx′)dη(ν′ − ν)(dx)dε

≤ Lν

∫ 1

0

∫
X

∫ ε

0

∫
X

δ2h

δν2
(ν + η(ν′ − ν), x, x′) (ν′ − ν)(dx′)dη(ν′ − ν)(dx)dε.

The analogous inequalities are similarly obtained for relative smoothness and relative concavity.

When F is strongly-convex-strongly-concave relative to h and Assumption 1.1 holds, it can be
shown that (ν∗, µ∗) is the unique MNE of (1) (see the proof of (Lascu et al., 2025, Lemma A.5)).
Moreover, based on relative convexity-concavity of F, we prove in Lemma C.5 that the NI error
satisfies a type of “quadratic growth” inequality relative to h.

Assumption C.4 (Relative convexity-concavity). Assume that, given ℓν , ℓµ > 0, the function F is
ℓν-strongly convex in ν and ℓµ-strongly concave in µ relative to h, i.e., for any ν, ν′ ∈ C and any
µ, µ′ ∈ D, we have

DF (·,µ)(ν
′, ν) = F (ν′, µ)− F (ν, µ)−

∫
X

δF

δν
(ν, µ, x)(ν′ − ν)(dx) ≥ ℓνDh(ν

′, ν), (34)

DF (ν,·)(µ
′, µ) = F (ν, µ′)− F (ν, µ)−

∫
X

δF

δµ
(ν, µ, y)(µ′ − µ)(dy) ≤ −ℓµDh(µ

′, µ). (35)

Lemma C.5 (“Quadratic growth” of NI error relative to h). Suppose that Assumption 1.1 and C.4
hold. Then, for all (ν, µ) ∈ C × D, it holds that

NI (ν, µ) ≥ ℓ (Dh(ν, ν
∗) +Dh(µ, µ

∗)) ,

where ℓ := min{ℓν , ℓµ}.
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Remark C.6. We refer to Lemma C.5 as “quadratic growth” of NI error relative to h due to the
similar notion of quadratic growth of a convex function relative to the squared Euclidean norm on
Rd (see e.g. (Anitescu, 2000)).

Proof. Let (ν, µ) ∈ C × D. Since F is ℓν-strongly convex in ν and ℓµ-strongly concave in µ, it
follows that

F (ν, µ∗)− F (ν∗, µ∗) ≥
∫
X

δF

δν
(ν∗, µ∗, x)(ν − ν∗)(dx) + ℓνDh(ν, ν

∗),

F (ν∗, µ)− F (ν∗, µ∗) ≤
∫
X

δF

δµ
(ν∗, µ∗, y)(µ− µ∗)(dy)− ℓµDh(µ, µ

∗).

Since (ν∗, µ∗) is the MNE of F, we have

δF

δν
(ν∗, µ∗, x) = constant,

δF

δµ
(ν∗, µ∗, y) = constant,

for all (x, y) ∈ X × X Lebesgue a.e. Hence, adding the inequalities above and using the definition
of NI error, we get

NI (ν, µ) ≥ ℓ (Dh(ν, ν
∗) +Dh(µ, µ

∗)) .

By Lemma C.5, the time-averaged iterates
(

1
N

∑N−1
n=0 νn, 1

N

∑N−1
n=0 µn

)
converge in Bregman di-

vergence to the unique MNE (ν∗, µ∗) of (1) with the rates proved in Theorem 2.4 and Theorem 3.6,
respectively.

We now check that the condition supν∈C Dh(ν, ν
0)+supµ∈D Dh(µ, µ

0) < ∞ required in Theorems
2.4 and 3.6 is satisfied in the specific cases of Examples 1.3 and 1.4.

Lemma C.7. Let h denote the relative entropy from Example 1.3, and set Eβ = C ∪ D. Suppose
ν0, µ0 ∈ Eβ , and assume there exists C1, C2 > 0 such that, for all ν, µ ∈ P(X ),∥∥∥∥δFδν (ν, µ, ·)

∥∥∥∥
L∞(X )

≤ C1,

∥∥∥∥δFδµ (ν, µ, ·)
∥∥∥∥
L∞(X )

≤ C2.

Then the iterates produced by Algorithms (1) and (2) remain in Eβ , i.e.,

(νn, µn)n≥0 ⊂ Eβ .

Furthermore, they satisfy the uniform bound

sup
ν∈C

KL(ν, ν0) + sup
µ∈D

KL(µ, µ0) ≤ 6β + 2τC1 + 2τC2.

Proof. We provide the proof only for Algorithm (1), as the argument for the other algorithm is
essentially the same. Using the flat derivative formula (4), the first-order optimality condition (Hu
et al., 2021, Proposition 2.5) applied to

(
νn+1, µn+1

)
in Algorithm (1) gives{

log ν1(x)
π(x) − log ν0(x)

π(x) = −τ δF
δν (ν

0, µ0, x)− log
∫
X e−τ δF

δν (ν0,µ0,x) ν
0(x)
π(x) π(x)dx,

log µ1(y)
π(y) − log µ0(y)

π(y) = τ δF
δµ (ν

0, µ0, y)− log
∫
X eτ

δF
δµ (ν0,µ0,y) µ0(y)

π(y) π(y)dy,

for all x, y ∈ X a.e. Taking the sup-norm on both sides over x, y and using the assumptions gives∥∥∥∥log ν1(·)
π(·)

∥∥∥∥
L∞(X )

≤ 2β + 2τC1,

∥∥∥∥log µ1(·)
π(·)

∥∥∥∥
L∞(X )

≤ 2β + 2τC2,
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and inductively, (νn, µn)n≥0 ⊂ Eβ . Therefore, for any (ν, µ) ∈ Eβ ,

KL(ν, ν0) + KL(µ, µ0) =

∫
X

(
log

ν(x)

π(x)
− log

ν0(x)

π(x)

)
ν(x)dx

+

∫
X

(
log

µ(y)

π(y)
− log

µ0(y)

π(y)

)
µ(y)dy

≤ 6β + 2τC1 + 2τC2,

hence the conclusion.

Lemma C.8. Let h denote the χ2-divergence from Example 1.4, and set Fη = C ∪ D. Suppose
ν0, µ0 ∈ Fη, and assume there exists C1, C2 > 0 such that, for all ν, µ ∈ P(X ),∥∥∥∥δFδν (ν, µ, ·)

∥∥∥∥
L2

π(X )

≤ C1,

∥∥∥∥δFδµ (ν, µ, ·)
∥∥∥∥
L2

π(X )

≤ C2.

Then the iterates produced by Algorithms (1) and (2) remain in Fη, i.e.,
(νn, µn)n≥0 ⊂ Fη.

Furthermore, they satisfy the uniform bound

1

2
sup
ν∈C

∥∥∥∥ν(·)π(·)
− ν0(·)

π(·)

∥∥∥∥2
L2

π(X )

+
1

2
sup
µ∈D

∥∥∥∥µ(·)π(·)
− µ0(·)

π(·)

∥∥∥∥2
L2

π(X )

≤ 4η + τC1 + τC2.

Proof. We provide the proof only for Algorithm (1), as the argument for the other algorithm is
essentially the same. The first-order condition (see e.g., (Bonnans & Shapiro, 2000, Section 5.1.1))
shows that for a.e. x, y ∈ X ,〈

δF

δν
(ν0, µ0, ·) + 1

τ

(
dν1

dπ
− dν0

dπ

)
, ϕ− dν1

dπ

〉
L2

π

≥ 0, ∀ϕ ∈ C ,〈
δF

δµ
(ν0, µ0, ·)− 1

τ

(
dµ1

dπ
− dµ0

dπ

)
, ϕ− dµ1

dπ

〉
L2

π

≥ 0, ∀ϕ ∈ C ,

where ⟨·, ·⟩L2
π

is the inner product on L2
π(X ), and C is the nonempty closed convex set defined by

C =

{
ϕ ∈ L2

π(X )

∣∣∣∣ϕ ≥ 0 π-a.e. on X and
∫

ϕ(x)π(dx) = 1

}
.

Define the projection map ΠC : L2
π(X ) 7→ C such that ΠC(φ) = argminϕ∈C ∥ϕ− φ∥L2

π(X ) for all
φ ∈ L2

π(X ), which satisfies
⟨Π(φ)− φ, ϕ−Π(φ)⟩L2

π
≥ 0, ∀ϕ ∈ C.

Then
dν1

dπ
= ΠC

(
dν0

dϱ
− τ

δF

δν
(ν0, µ0, ·)

)
,

dµ1

dπ
= ΠC

(
dµ0

dϱ
+ τ

δF

δµ
(ν0, µ0, ·)

)
.

Note ∥ΠC(φ1) − ΠC(φ2)∥L2
π(X ) ≤ ∥φ1 − φ2∥L2

π(X ) for all φ1, φ2 ∈ L2
π(X ) (see e.g., (Ciarlet,

2013, Theorem 4.3-1)). Moreover, since dν0

dπ = ΠC

(
dν0

dπ

)
, dµ0

dπ = ΠC

(
dµ0

dπ

)
, for a.e. x, y ∈ X ,∥∥∥∥dν1dπ

∥∥∥∥
L2

π(A)

≤
∥∥∥∥dν0dπ

∥∥∥∥
L2

π(A)

+ τ

∥∥∥∥δFδν (ν0, µ0, ·)
∥∥∥∥
L2

π(A)

≤ η + τC1,∥∥∥∥dµ1

dπ

∥∥∥∥
L2

π(A)

≤
∥∥∥∥dµ0

dπ

∥∥∥∥
L2

π(A)

+ τ

∥∥∥∥δFδµ (ν0, µ0, ·)
∥∥∥∥
L2

π(A)

≤ η + τC2,

and inductively, (νn, µn)n≥0 ⊂ Fη. Therefore, for any (ν, µ) ∈ Fη,

1

2

∥∥∥∥ν(·)π(·)
− ν0(·)

π(·)

∥∥∥∥2
L2

π(X )

+
1

2

∥∥∥∥µ(·)π(·)
− µ0(·)

π(·)

∥∥∥∥2
L2

π(X )

≤ 4η + τC1 + τC2,

hence the conclusion.
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D VERIFICATION OF ASSUMPTION 1.5, 1.6, 2.1 AND 3.5 FOR EXAMPLE 1.2

In this section we verify that Assumption 1.5, 1.6, 2.1, and 3.5 are satisfied by the objective function
F in Example 1.2.

Proposition D.1 (Verification of assumptions for Example 1.2). Let Y,Z ⊂ Rd, with ξ̂ ∈ P(Y)
and ξ ∈ P(Z). Suppose Tθ : Z → Y is measurable with θ ∈ Θ ⊂ Rd, and Dw : Y → R is
uniformly bounded and measurable with w ∈ W ⊂ Rd. Then Assumptions 1.5, 1.6, 2.1 and 3.5 are
satisfied by the objective

F (ν, µ) :=

∫
W

∫
Θ

f(θ, w)ν(dθ)µ(dw)

from Example 1.2.

Proof. By Definition F.1,
δF

δν
(ν, µ, θ) =

∫
W

f(θ, w)µ(dw),

and
δF

δµ
(ν, µ, w) =

∫
Θ

f(θ, w)ν(dθ).

Therefore, Assumption 1.5 holds with equality, and Assumption 1.6 holds with equality with Lν =
Lµ = 0. Since Dw is uniformly bounded by some MD > 0, we have

|f(θ, w)| =
∣∣∣∣∫

Y
Dw(y)

(
Tθ#ξ − ξ̂

)
(dy)

∣∣∣∣
≤
∫
Y
|Dw(y)| (Tθ#ξ) (dy) +

∫
Y
|Dw(y)| ξ̂(dy) ≤ 2MD,

where the last inequality holds because ξ̂ ∈ P(Y) and, since ξ ∈ P(Z), we have Tθ#ξ ∈ P(Y).
Therefore,

|F (ν′, µ′)− F (ν, µ)| = |F (ν′, µ′)− F (ν′, µ) + F (ν′, µ)− F (ν, µ)|

≤
∫
w

∫
θ

|f(θ, w)|ν′(dθ)|µ′ − µ|(dw)

+

∫
w

∫
θ

|f(θ, w)||ν′ − ν|(dθ)µ(dw)

≤ 4MD (TV(ν′, ν) + TV(µ′, µ)) ,

since TV(m′,m) = 1
2

∫
|m′−m|dx for all m ∈ P(X ) by (Tsybakov, 2008, Lemma 2.1). Squaring

both sides and applying Remark 2.2 yields

|F (ν′, µ′)− F (ν, µ)|2 ≤ 8M2
D (Dh(ν

′, ν) +Dh(µ
′, µ)) ,

for all ν′, µ′, ν, µ ∈ P(X ). Hence, Assumption 2.1 holds with LF = 8M2
D. Finally, we have

|F (ν, µ)| ≤ 2MD,

∣∣∣∣δFδν (ν, µ, θ)

∣∣∣∣ ≤ 2MD,

∣∣∣∣δFδµ (ν, µ, w)

∣∣∣∣ ≤ 2MD,

for all ν, µ ∈ P(X ) and all θ ∈ θ, w ∈ w. Hence, Assumption 3.5 holds with M = Cν = Cµ =
2MD.

E EXAMPLE: ADVERSARIAL TRAINING OF MEAN-FIELD NEURAL
NETWORKS

Let Y ⊂ R and Z ⊂ Rd−1 be compact with µ̂ ∈ P(Y × Z) representing the training data (y, z) ∈
Y × Z. Let (w, b) ∈ Rd−1 × R be the parameters of the neural network and let φ : R → R be
a bounded, continuous, non-constant activation function. For x := (w, b) ∈ Rd and z ∈ Rd−1,
define the function φ̂(x, z) := ℓ(b)φ(w · z), where ℓ : R → [−K,K] is a clipping function with
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clipping threshold K > 0. The training of the two-layer neural network aims to find the optimal set
of parameters {xi}Ni=1 which minimize the non-convex L2-loss function

F 0
N (x1, ..., xN ) :=

1

2

∫
Y×Z

∣∣∣∣y − 1

N

N∑
i=1

φ̂(xi, z)

∣∣∣∣2µ̂(dy,dz). (36)

Instead of solving the non-convex minimization problem (36), we lift it to space of probability
measures and consider the mean-field optimization problem (see e.g. (Hu et al., 2021, Section 3)
and the references therein)

min
ν∈P(Rd)

F 0(ν), with F 0(ν) :=
1

2

∫
Y×Z

∣∣y − EX∼ν [φ̂(X, z)]
∣∣2 µ̂(dy,dz).

To account for potential attacks by an adversary aiming to manipulate the training data µ̂, we min-
imize over the parameter distribution ν, considering the “worst-case” perturbation of µ̂. This leads
to the following mean-field min-max game

min
ν∈P(Rd)

max
µ∈P(Y×Z)

F 0(ν, µ)− TV2(µ, µ̂), (37)

where TV2 denotes the squared total variation distance, which represents the cost incurred by the ad-
versary to alter the original training data µ̂. The resulting objective F (ν, µ) := F 0(ν, µ)−TV2(µ, µ̂)
is a non-linear function covered by our general framework. The choice of the incurred cost in (37)
is, to an extent, arbitrary, and we focus here on TV2 due to its convenience for verifying our as-
sumptions. Alternative cost functions include the Wasserstein distance (Bai et al., 2023; Trillos &
Trillos, 2023) and the KL divergence (Si et al., 2023).

Proposition E.1 (Verification of assumptions for Example E). Let Y ⊂ R and Z ⊂ Rd−1 be
compact with µ̂ ∈ P(Y × Z). For x := (w, b) ∈ Rd and z ∈ Rd−1, let φ̂(x, z) := ℓ(b)φ(w · z),
where ℓ : R → [−K,K] is a clipping function with clipping threshold K > 0 and φ : R → R is a
bounded, continuous, non-constant function. Then Assumptions 1.5, 1.6, 2.1, and 3.5 are satisfied
by the objective

F (ν, µ) =
1

2

∫
Y×Z

∣∣y − EX∼ν [φ̂(X, z)]
∣∣2 µ(dy,dz)− TV2(µ, µ̂).

Proof. Observe that by linearity of the expectation in ν and convexity of | · |2, the function

F 0(ν, µ) =
1

2

∫
Y×Z

∣∣y − EX∼ν [φ̂(X, z)]
∣∣2 µ(dy,dz)

satisfies the flat-convexity condition

F 0((1− ε)ν + εν′, µ) ≤ (1− ε)F 0(ν, µ) + εF 0(ν′, µ),

for any ν, ν′ ∈ P(Rd), µ ∈ P(Y × Z) and any ε ∈ [0, 1]. Hence, by (Hu et al., 2021, Lemma 4.1),
ν 7→ F (ν, µ) satisfies DF (·,µ)(ν

′, ν) ≥ 0. Again, by convexity of | · |2, it holds that TV2 is convex,
that is,

TV2((1− ε)µ+ εµ′, µ̂) ≤ (1− ε) TV2(µ, µ̂) + εTV2(µ′, µ̂),

for any µ, µ′ ∈ P(Y×Z) and any ε ∈ [0, 1]. Also, by linearity of F 0 in µ, it follows that F satisfies
the flat concavity condition

F (ν, (1− ε)µ+ εµ′) ≥ (1− ε)F (ν, µ) + εF (ν, µ′),

for any µ′, µ ∈ P(Y × Z), ν ∈ P(Rd) and any ε ∈ [0, 1]. Hence, by (Hu et al., 2021, Lemma 4.1),
µ 7→ F (ν, µ) satisfies DF (ν,·)(µ

′, µ) ≤ 0. Therefore, F satisfies Assumption 1.5.

To verify Assumption 1.6, it is enough to show that for all ν′, ν ∈ P(Rd), µ ∈ P(Y × Z) and all
x ∈ Rd, ∣∣∣∣δFδν (ν′, µ, x)− δF

δν
(ν, µ, x)

∣∣∣∣ ≤ CF TV(ν′, ν)
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since by Definition F.1, this implies

F (ν′, µ)− F (ν, µ)−
∫
Rd

δF

δν
(ν, µ, x)(ν′ − ν)(dx)

=

∫ 1

0

∫
Rd

(
δF

δν
(ν + ε(ν′ − ν), µ, x)− δF

δν
(ν, µ, x)

)
(ν′ − ν)(dx)dε

≤ 2CF

∫ 1

0

TV(ν + ε(ν′ − ν), ν) TV(ν′, ν)dε

≤ 2CF

∫ 1

0

εTV2(ν′, ν)dε

= CF TV2(ν′, ν) ≤ CF

2
Dh(ν

′, ν),

where the last inequality follows from Remark 2.2. Thus, DF (·,µ)(ν
′, ν) ≤ LνDh(ν

′, ν) in As-
sumption 1.6 holds with Lν = CF

2 . The same argument applies to DF (ν,·)(µ
′, µ) ≥ −LµDh(µ

′, µ)
in Assumption 1.6.

Note that
δF

δν
(ν, µ, x) = −

∫
Y×Z

(
y − EX∼ν [φ̂(X, z)]

)
φ̂(x, z)µ(dy,dz).

Since φ is bounded by Mφ > 0, we obtain∣∣∣∣δFδν (ν′, µ, x)− δF

δν
(ν, µ, x)

∣∣∣∣ ≤ ∫
Y×Z

∫
Rd

|φ̂(x, z)| |ν′ − ν| (dx) |φ̂(x, z)|µ(dy,dz)

≤ 2K2M2
φ TV(ν′, ν).

Thus, Lν = K2M2
φ.

Let r := (y, z) ∈ Rd, and assume for simplicity that both µ, µ̂ are absolutely continuous with respect
to Lebesgue measure. We claim that

δTV(·, µ̂)
δµ

(µ, r) =
1

2
sign (µ(r)− µ̂(r)) ,

for µ ̸= µ̂ a.e. Fix µ̂. For any µ′, any µ ̸= µ̂ a.e., and any ε ∈ (0, 1), (Tsybakov, 2008, Lemma 2.1)
gives

lim
ε→0

1

ε
(TV(µ+ ε(µ′ − µ), µ̂)− TV(µ, µ̂))

= lim
ε→0

1

2ε

∫
Rd

(|µ(r)− µ̂(r) + ε(µ′(r)− µ(r))| − |µ(r)− µ̂(r)|) dr.

Since | · | is differentiable at every v ̸= 0 with derivative sign(v), we obtain by dominated conver-
gence

lim
ε→0

1

ε
(TV(µ+ ε(µ′ − µ), µ̂)− TV(µ, µ̂)) =

1

2

∫
Rd

sign (µ(r)− µ̂(r)) (µ′(r)− µ(r))(dr).

To justify dominated convergence, note that for every r, the reverse triangle inequality gives∣∣∣∣ |µ(r)− µ̂(r) + ε(µ′(r)− µ(r))| − |µ(r)− µ̂(r)|
ε

∣∣∣∣ ≤ |µ′(r)− µ(r)| ∈ L1(Rd).

If µ = µ̂ a.e., then the map R ∋ v 7→ |v| is not differentiable at v = 0 but its subdifferential is the
interval [−1, 1]. Hence, the subdifferential of TV at such measures is the interval [− 1

2 ,
1
2 ].

Finally, by the chain rule,

δTV2(·, µ̂)
δµ

(µ, r) = 2TV(µ, µ̂)
δTV(·, µ̂)

δµ
(µ, r),
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and we immediately see that δTV2(·,µ̂)
δµ (µ, r) = 0 if µ = µ̂ a.e.. Hence, combining both cases,

δTV2(·, µ̂)
δµ

(µ, r) =

{
TV(µ, µ̂) sign (µ(r)− µ̂(r)) , µ ̸= µ̂ a.e.,
0, µ = µ̂ a.e.

Consequently,
δF

δµ
(ν, µ, r) =

1

2

∣∣y − EX∼ν [φ̂(X, z)]
∣∣2 − TV(µ, µ̂) sign (µ(r)− µ̂(r)) .

Hence,∣∣∣∣δFδµ (ν, µ′, )− δF

δµ
(ν, µ, r)

∣∣∣∣ = |TV(µ′, µ̂) sign (µ′(r)− µ̂(r))− TV(µ, µ̂) sign (µ(r)− µ̂(r))| .

(38)
If sign(µ′(r)− µ̂(r)) = sign(µ(r)− µ̂(r)) > 0 a.e. or both are < 0 a.e., then (38) becomes∣∣∣∣δFδµ (ν, µ′, r)− δF

δµ
(ν, µ, r)

∣∣∣∣ = |TV(µ′, µ̂)− TV(µ, µ̂)|

=
1

2

∣∣∣∣∫
Rd

(µ′(r)− µ̂(r))dr −
∫
Rd

(µ(r)− µ̂(r))dr

∣∣∣∣
≤ TV(µ′, µ).

If sign(µ′(r)− µ̂(r)) > 0 a.e. and sign(µ(r)− µ̂(r)) < 0 a.e., or vice versa, then (38) becomes∣∣∣∣δFδµ (ν, µ′, r)− δF

δµ
(ν, µ, r)

∣∣∣∣ = TV(µ′, µ̂) + TV(µ, µ̂)

=
1

2

∫
Rd

|µ′(r)− µ̂(r)|dr + 1

2

∫
Rd

|µ(r)− µ̂(r)|dr

=
1

2

∫
Rd

(µ′(r)− µ̂(r)) dr +
1

2

∫
Rd

(µ̂(r)− µ(r)) dr

≤ TV(µ′, µ).

Thus, Lµ = 1
2 .

To verify Assumption 2.1 and 3.5, note that∣∣∣∣δFδν (ν, µ, x)

∣∣∣∣ ≤ ∫
Y×Z

∣∣y − EX∼ν [φ̂(X, z)]
∣∣ |φ̂(x, z)|µ(dy,dz)

≤ KMφ (µY +KMφ) := Cν ,

where
µY :=

∫
Y×Z

|y|µ(dy,dz) < ∞

since Y × Z is compact.

Similarly, ∣∣∣∣δFδµ (ν, µ, r)

∣∣∣∣ = ∣∣∣∣12 ∣∣y − EX∼ν [φ̂(X, z)]
∣∣2 − TV(µ, µ̂) sign (µ(r)− µ̂(r))

∣∣∣∣
≤ 1 +

1

2
(diam(Y) +KMφ)

2 := Cµ,

since Y is compact and TV(µ, µ̂) ≤ 1.

For ν′, ν ∈ P(Rd) and µ′, µ ∈ P(Y × Z),

|F (ν′, µ′)− F (ν, µ)| = |F (ν′, µ′)− F (ν, µ′) + F (ν, µ′)− F (ν, µ)|
≤ |F (ν′, µ′)− F (ν, µ′)|+ |F (ν, µ′)− F (ν, µ)|

=

∣∣∣∣∫ 1

0

∫
X

δF

δν
(ν + ε(ν′ − ν), µ′, x) (ν′ − ν)(dx)dε

∣∣∣∣
+

∣∣∣∣∫ 1

0

∫
X

δF

δµ
(ν, µ+ ε(µ′ − µ), y) (µ′ − µ)(dy)dε

∣∣∣∣
≤ 2Cν TV (ν′, ν) + 2Cµ TV (µ′, µ) .

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Squaring both sides and using Remark 2.2 gives that Assumption 2.1 holds with LF =
8max{C2

ν , C
2
µ}

For Assumption 3.5, observe that

|F (ν, µ)| ≤ 1

2
+

1

2
(diam(Y) +KMφ)

2 := M,

since Y is compact and TV(µ, µ̂) ≤ 1.

F DIFFERENTIABILITY ON THE PRIMAL SPACE

In this section, following (Carmona & Delarue, 2018, Definition 5.43) and (Santambrogio, 2015,
Definition 7.12), we introduce the notion of differentiability on the space of probability measure
that we utilize throughout the paper.
Definition F.1. For any X ⊂ Rd, let K ⊆ P(X ) be convex. A function F : P(X ) → R admits
first-order flat derivative on K, if there exists a measurable function δF

δν : K×X → R such that, for
any ν, ν′ ∈ K, there exists C > 0 such that, for all x ∈ X , we have

∣∣ δF
δν (ν, x)

∣∣ ≤ C, and it holds
that

lim
ε→0

F (ν + ε(ν′ − ν))− F (ν)

ε
=

∫
X

δF

δν
(ν, x) (ν′ − ν) (dx). (39)

The functional δF
δν is called the flat derivative of F on K. We note that δF

δν exists up to an additive
constant, and thus we make the normalizing convention

∫
X

δF
δν (ν, x)ν(dx) = 0.

If, for any fixed x ∈ X , the map ν 7→ δF
δν (ν, x) satisfies Definition F.1, we say that F admits a

second-order flat derivative denoted by δ2F
δν2 . Consequently, by Definition F.1, there exists a measur-

able functional δ2F
δν2 : K ×X × X → R such that

lim
ε→0

1

ε

(
δF

δν
(ν + ε(ν′ − ν), x)− δF

δν
(ν, x)

)
=

∫
X

δ2F

δν2
(ν, x, x′) (ν′ − ν) (dx′). (40)

G DIFFERENTIABILITY ON THE DUAL SPACE

In this section, we start by recalling the notions of Fréchet and Gâteaux derivative for functions
H : Bb (X ) → X, where (Bb (X ) , ∥ · ∥∞) is the Banach space of real-valued bounded measurable
functions on X ⊂ Rd and (X, ∥ · ∥X) is a normed vector space; see e.g. Chapters 7, 1, 3 in (Alipran-
tis & Border, 2007; Ambrosetti & Prodi, 1995; Ortega & Rheinboldt, 1970), respectively. Based
on these notions of differentiablity, we will introduce the notions of first and second variation for
functions H.

G.1 PRELIMINARIES ON FRÉCHET AND GÂTEAUX DERIVATIVES

For X ⊂ Rd, let L (Bb (X ) ,X) and L (Bb (X )) denote the space of continuous linear maps from
Bb (X ) to X, and from Bb (X ) to itself, respectively.
Definition G.1 (Fréchet differentiability). Let U ⊂ Bb (X ) be open. Given f ∈ U , the function
H : U → X is Fréchet differentiable at f if there exists T ∈ L(Bb(X ),X) such that, for all
g ∈ Bb(X ),

lim
∥g∥∞→0

∥H (f + g)−H(f)− T (g)∥X
∥g∥∞

= 0.

If it exists, the map T is unique, we write T = ∇FH(f), and call ∇FH(f) the Fréchet derivative
of H at f. If H is Fréchet differentiable at every f ∈ U , then we say that H is Fréchet differentiable
on U .
Example G.2 (Convex conjugate of entropy). If h is the entropy, then a straightforward calculation
directly from Definition 3.1 shows that its dual h∗ is given by

h∗(f) = log

(∫
X
ef(z)dz

)
.
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Example G.3 (Fréchet derivative of entropy). From Definition G.1 and following the argument from
(Kerimkulov et al., 2023, Proposition 3.9), we can show that h∗ is Fréchet differentiable on Bb(X )
with Fréchet derivative given by

∇Fh
∗(f)(g) =

∫
X
g(z)

ef(z)∫
X ef(z)dz

dz, (41)

for all g ∈ Bb(X ).

Definition G.4 (Gâteaux differentiability). Let U ⊂ Bb (X ) be open. Given f ∈ U , the function
H : U → X is Gâteaux differentiable at f if there exists T ∈ L(Bb(X ),X) such that for any
direction f ′ ∈ Bb(X ),

lim
ε↓0

H (f + εf ′)−H (f)

ε
= T (f ′) .

If it exists, the map T is unique, we write T = ∇GH(f), and call ∇GH(f) the Gâteaux derivative of
H at f. If H is Gâteaux differentiable at every f ∈ U , then we say that H is Gâteaux differentiable
on U .

As observed in Chapter 1, 3 in (Ambrosetti & Prodi, 1995; Ortega & Rheinboldt, 1970), if H is
Fréchet differentiable, then it is automatically Gâteaux differentiable and the two derivatives coin-
cide, i.e., ∇FH = ∇GH. Moreover, (Ortega & Rheinboldt, 1970, Proposition 3.1.6) proves that
Fréchet differentiability of H at f ∈ U implies that H is continuous at f, whereas in the case of
Gâteaux differentiability, this does not necessarily hold; see (Ortega & Rheinboldt, 1970, Proposi-
tion 3.1.4).

Following the discussions in (Aliprantis & Border, 2007; Ambrosetti & Prodi, 1995; Ortega &
Rheinboldt, 1970), it is possible to extend Definition G.1 to higher-order Fréchet derivatives.
Definition G.5 (Second-order Fréchet differentiability). Let U ⊂ Bb (X ) be open and let f ∈
U . Suppose that H : U → X is Fréchet differentiable (cf. Definition G.1) at f, and ad-
mits Fréchet derivative ∇FH(f). Then ∇FH(f) is Fréchet differentiable at f, if there exists
T ∈ L (Bb(X ),L (Bb(X ),X)) such that for all f ′, f ′′ ∈ Bb(X ),

lim
∥f ′′∥∞→0

∥∇FH (f + f ′′) (f ′)−∇FH(f)(f ′)− T (f ′′) (f ′)∥X
∥f ′′∥∞

= 0.

If it exists, the map T is unique, we write T = ∇2
FH(f), and call ∇2

FH(f) the second Fréchet
derivative of H at f.
Example G.6 (Second order Fréchet derivative of entropy). If h is the entropy, using (41) and
following the argument from (Kerimkulov et al., 2023, Proposition 3.6), we can show that ∇Fh

∗(f)
is Fréchet differentiable on Bb (X ) with Fréchet derivative given by

∇2
Fh

∗(f)(f ′)(g) =

∫
X
g(x)

(
f ′(x)−

∫
X
f ′(z)

ef(z)∫
X ef(z)dz

dz

)
ef(x)∫

X ef(z)dz
dx

=

∫
X

(
g(x)−

∫
X
g(z)

ef(z)∫
X ef(z)dz

dz +

∫
X
g(z)

ef(z)∫
X ef(z)dz

dz

)
×

×
(
f ′(x)−

∫
X
f ′(z)

ef(z)∫
X ef(z)dz

dz

)
ef(x)∫

X ef(z)dz
dx

=

∫
X

(
g(x)−

∫
X
g(z)

ef(z)∫
X ef(z)dz

dz

)(
f ′(x)−

∫
X
f ′(z)

ef(z)∫
X ef(z)dz

dz

)
ef(x)∫

X ef(z)dz
dx,

for all g ∈ Bb(X ), where the last line used the fact that∫
X

∫
X
g(z)

ef(z)∫
X ef(z)dz

(
f ′(x)−

∫
X
f ′(z)

ef(z)∫
X ef(z)dz

dz

)
ef(x)∫

X ef(z)dz
dzdx = 0.

The motivation behind working with Fréchet instead of Gâteaux differentiability is that the higher-
order derivatives in the case of the former could be identified with continuous symmetric multi-
linear maps. As proved in Section 3 of Chapter 1 from (Ambrosetti & Prodi, 1995), the space
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L (Bb(X ),L (Bb(X ),X)) is isometrically isomorphic to L2 (Bb(X ),X) , i.e., the space of continu-
ous bilinear maps from Bb(X ) × Bb(X ) to X, and therefore, we could naturally view the second-
order Fréchet derivative of H, if it exists, as a continuous bilinear map.

Furthermore, due to (Ambrosetti & Prodi, 1995, Theorem 3.5), we have that the second-order
Fréchet derivative is always symmetric. On the contrary, the second-order Gâteaux derivative is
not necessarily symmetric as noted on page 78 in (Ortega & Rheinboldt, 1970).
Remark G.7. If we replace Bb(X ) with Rd and X with R, then the first and second-order Fréchet
derivatives are precisely the gradient and Hessian matrix of H at f.

G.2 FIRST AND SECOND VARIATIONS

Following Chapter 2 from (Abraham et al., 2012), we introduce the notions of first and second
variation for Fréchet differentiable functions H, relative to the duality pairing (5).
Definition G.8 (First variation of H). Let H : Bb(X ) → X be Fréchet differentiable at f ∈ Bb(X ).
If it exists, the first variation of H at f is the unique continuous map Bb(X ) ∋ f 7→ δH

δf (f) ∈ P(X )

such that, for all g ∈ Bb(X ), 〈
g,

δH

δf
(f)

〉
:= ∇FH(f)(g).

Example G.9 (First variation of the dual of entropy). From Example G.2, we observe that the first
variation δh∗

δf : Bb(X ) → P(X ) of h∗ is given by

δh∗

δf
(f)(dz) =

ef(z)∫
X ef(z)dz

dz.

Assuming that H : Bb(X ) → R is Fréchet differentiable at f ∈ Bb(X ) with Fréchet derivative
∇FH(f), then it is Gâteaux differentiable (cf. Definition G.4) with the same derivative, and there-
fore the first variation of H at f can be characterized as〈

g,
δH

δf
(f)

〉
= lim

ε↓0

1

ε
(H (f + εg)−H (f)) , (42)

for all g ∈ Bb(X ).

Let f, g ∈ Bb(X ). For any λ ∈ [0, 1], set fλ := f + λg. Then since fλ ∈ Bb(X ), for all λ ∈ [0, 1],
it follows by (42) that

lim
ε↓0

1

ε

(
H
(
fλ + εg

)
−H

(
fλ
))

=

〈
g,

δH

δf

(
fλ
)〉

.

Since fλ + εg = fλ+ε, it follows by the fundamental theorem of calculus that

H(f + g)−H(f) =

∫ 1

0

lim
ε↓0

1

ε

(
H
(
fλ+ε

)
−H

(
fλ
))

dλ =

∫ 1

0

〈
g,

δH

δf

(
fλ
)〉

dλ. (43)

With the definition of first variation at hand, we can introduce necessary and sufficient conditions
for H to have an extremum at f ∈ Bb(X ).

Lemma G.10 (Necessary first-order condition on Bb(X )). Let X = R. Suppose that H : Bb(X ) →
R admits first variation at f. If H has an extremum at f, then it holds that

δH

δf
(f) = 0.

Proof. For a proof, see (Abraham et al., 2012, Proposition 2.4.22).

Lemma G.11 (Sufficient first-order condition on Bb(X )). Let U ⊂ Bb(X ) be non-empty and con-
vex. Suppose that H : U → R admits first variation on U and is convex in the sense that, for
all λ ∈ [0, 1], and all f, g ∈ U , it holds that H ((1− λ)f + λg) ≤ (1 − λ)H(f) + λH(g). If
δH
δf (f

∗) = 0, for some f∗ ∈ U , then f∗ is a global minimum of H.
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Remark G.12. An analogous result can be identically proved for concave functions and global
maxima, so we will give the proof only for the convex case.

Proof. Since H is convex and admits first variation, following the argument in (Hu et al., 2021,
Lemma 4.1), it can be shown that for any f, g ∈ U

H(g) ≥ H(f) +

〈
g − f,

δH

δf
(f)

〉
.

For f = f∗ and using the assumption that δH
δf (f

∗) = 0, we get

H(g) ≥ H(f∗),

for all g ∈ U , i.e. f∗ is a global minimum.

Definition G.13 (Second variation of H). Let H : Bb(X ) → X be twice Fréchet differentiable
at f ∈ Bb(X ). If it exists, the second variation of H at f is the unique element δ2H

δf2 (f) ∈
L2 (Bb(X ),X) such that, for all g, g′ ∈ Bb(X ),∫

X×X
g(x)

δ2H

δf2
(f)(f)(dy ⊗ dx)g′(y) := ∇2

FH(f)(g)(g′),

where δ2H
δf2 (f)(f)(dy ⊗ dx) := δ2H

δf2 (f)(dx)(f)(dy).

Example G.14 (Second variation of the dual of entropy). From Example G.6, we observe that the
second variation δ2h∗

δf2 : Bb(X ) → L (Bb(X ),M(X )) of h∗ is given by

δ2h∗

δf2
(f)(g)(dx) =

(
g(x)−

∫
X
g(z)

ef(z)∫
X ef(z)dz

dz

)
ef(x)∫

X ef(z)dz
dx. (44)

Assume that H : Bb(X ) → X is twice Fréchet differentiable at f ∈ Bb(X ). Then its first-order
Fréchet derivative ∇FH(f) is Fréchet differentiable at f, and thus it is Gâteaux differentiable (cf.
Definition G.4) with the same second-order derivative. Hence, using Definition G.8, the second
variation of H at f can be characterized in terms of the first variation as∫

X×X
g(x)

δ2H

δf2
(f)(f)(dy ⊗ dx)g′(y) = lim

ε↓0

1

ε

〈
g,

(
δH

δf
(f + εg′)− δH

δf
(f)

)〉
, (45)

for all g, g′ ∈ Bb(X ).

Let f, g, g′ ∈ Bb(X ). For any λ ∈ [0, 1], set fλ := f + λg′. Then since fλ ∈ Bb(X ), for all
λ ∈ [0, 1], it follows by (45) that

lim
ε↓0

1

ε

〈
g,

(
δH

δf

(
fλ + εg′

)
− δH

δf

(
fλ
))〉

=

∫
X×X

g(x)
δ2H

δf2

(
fλ
) (

fλ
)
(dy ⊗ dx)g′(y).

Since fλ + εg′ = fλ+ε, it follows that〈
g,

(
δH

δf
(f + g′)− δH

δf
(f)

)〉
=

〈
g,

∫ 1

0

lim
ε↓0

1

ε

(
δH

δf

(
fλ+ε

)
− δH

δf

(
fλ
))

dλ

〉
=

∫ 1

0

lim
ε↓0

1

ε

〈
g,

(
δH

δf

(
fλ+ε

)
− δH

δf

(
fλ
))〉

dλ (46)

=

∫ 1

0

∫
X×X

g(x)
δ2H

δf2

(
fλ
) (

fλ
)
(dy ⊗ dx)g′(y)dλ,

where the first equality follows from the fundamental theorem of calculus and the second equality
from Fubini’s theorem and the dominated convergence theorem.
Proposition G.15 (Verification of Assumption 3.4 for entropy). Suppose that X ⊂ Rd is bounded.
Let f, g ∈ Bb(X ) and denote φ(f)(dx) := ef(x)∫

X ef(z)dz
dx ∈ P(X ). Then, for h being the entropy, its

second variation (44) satisfies Assumption 3.4.
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Proof. Note that the second variation (44) can be written as

δ2h∗

δf2
(f)(g)(dx) =

(
g(x)−

∫
X
g(z)φ(f)(dz)

)
φ(f)(dx).

Since φ(f) is absolutely continuous with respect to Lebesgue measure on X , it follows that∥∥∥∥δ2h∗

δf2
(f ′)(g′)− δ2h∗

δf2
(f)(g)

∥∥∥∥
TV

=

∫
X

∣∣∣∣δ2h∗

δf2
(f ′)(g′)− δ2h∗

δf2
(f)(g)

∣∣∣∣ (dx)
=

∫
X

∣∣∣∣(g′(x)− ∫
X
g′(z)φ(f ′)(z)dz

)
φ(f ′)(x)−

(
g(x)−

∫
X
g(z)φ(f)(z)dz

)
φ(f)(x)

∣∣∣∣ dx
=

∫
X

∣∣∣∣∣g′(x)φ(f ′)(x)− φ(f ′)(x)

∫
X
g′(z)φ(f ′)(z)dz − g(x)φ(f)(x) + φ(f)(x)

∫
X
g(z)φ(f)(z)dz

∣∣∣∣∣dx
≤ I1 + I2,

where
I1 =

∫
X
|g′(x)φ(f ′)(x)− g(x)φ(f)(x)|dx,

I2 =

∫
X

∣∣∣∣φ(f)(x)∫
X
g(z)φ(f)(z)dz − φ(f ′)(x)

∫
X
g′(z)φ(f ′)(z)dz

∣∣∣∣dx,
and the last inequality follows from triangle inequality. For I1, we observe that

I1 =

∫
X
|g′(x)φ(f ′)(x)− g′(x)φ(f)(x) + g′(x)φ(f)(x)− g(x)φ(f)(x)|dx

≤
∫
X
|g′(x)| |φ(f ′)(x)− φ(f)(x)|dx+

∫
X
|φ(f)(x)| |g′(x)− g(x)|dx.

Since f, g′ ∈ Bb(X ), there exist Cg′ , Cf > 0 such that |g′(x)| ≤ Cg′ and |φ(f)(x)| ≤ Cf , for all
x ∈ X . Since f, f ′ are bounded on X , following the argument in (Lascu et al., 2025, Lemma A.2),
we deduce that f 7→ φ(f) is Lipschitz, i.e., there exists Lφ > 0 such that, for all x ∈ X ,

|φ(f ′)(x)− φ(f)(x)| ≤ Lφ |f ′(x)− f(x)| .

Hence, I1 becomes

I1 ≤ Cg′Lφ

∫
X
|f ′(x)− f(x)|dx+ Cf

∫
X
|g′(x)− g(x)|dx

≤ max{Cg′Lφ, Cf}
∫
X
(|f ′(x)− f(x)|+ |g′(x)− g(x)|) dx

≤ max{Cg′Lφ, Cf}|X | (∥f ′ − f∥∞ + ∥g′ − g∥∞) .

Similarly, for I2, we have that

I2 =

∫
X

∣∣∣∣∣φ(f)(x)
∫
X
g(z)φ(f)(z)dz − φ(f)(x)

∫
X
g′(z)φ(f ′)(z)dz

+ φ(f)(x)

∫
X
g′(z)φ(f ′)(z)dz − φ(f ′)(x)

∫
X
g′(z)φ(f ′)(z)dz

∣∣∣∣∣dx
≤
∫
X
|φ(f)(x)|

∫
X
|g(z)φ(f)(z)− g′(z)φ(f ′)(z)|dzdx

+

∫
X
|φ(f)(x)− φ(f ′)(x)|

∫
X
|g′(z)||φ(f ′)(z)|dzdx

≤ Cf

∫
X
|g(z)φ(f)(z)− g′(z)φ(f ′)(z)|dz + Cg′Cf ′Lφ

∫
X
|f(x)− f ′(x)|dx

≤ Cf

∫
X
|g(z)φ(f)(z)− g′(z)φ(f ′)(z)|dz + Cg′Cf ′Lφ|X |∥f ′ − f∥∞.
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We observe that

Cf

∫
X
|g(z)φ(f)(z)− g′(z)φ(f ′)(z)|dzdx

= Cf

∫
X
|g(z)φ(f)(z)− g′(z)φ(f)(z) + g′(z)φ(f)(z)− g′(z)φ(f ′)(z)|dzdx

≤ Cf

∫
X
|g(z)− g′(z)||φ(f)(z)|dzdx+ Cf

∫
X
|g′(z)|φ(f)(z)− φ(f ′)(z)|dzdx

≤ |X |C2
f∥g′ − g∥∞ + |X |CfCg′Lφ∥f ′ − f∥∞.

Hence, we get that

I1 + I2 ≤ |X |max{Cg′Lφ, Cf} (∥f ′ − f∥∞ + ∥g′ − g∥∞)

+ |X |C2
f∥g′ − g∥∞ + |X |CfCg′Lφ∥f ′ − f∥∞ + |X |Cg′Cf ′Lφ∥f ′ − f∥∞

= |X |max{Cg′Lφ, Cf} (∥f ′ − f∥∞ + ∥g′ − g∥∞)

+ |X |C2
f∥g′ − g∥∞ + |X | (Cf + Cf ′)Cg′Lφ∥f ′ − f∥∞

≤ |X |
(
max{Cg′Lφ, Cf}+max{C2

f , (Cf + Cf ′)Cg′Lφ}
)
(∥f ′ − f∥∞ + ∥g′ − g∥∞) .

Setting Lh∗ := |X |
(
max{Cg′Lφ, Cf}+max{C2

f , (Cf + Cf ′)Cg′Lφ}
)

finishes the verification.

H TECHNICAL RESULTS ON DUALITY

In this section we state and prove some technical results which are central to the proof technique via
dual Bregman divergence that we developed in Subsection 3.
Proposition H.1. Let Assumption 1.1 hold. Let h∗ : Bb(X ) → R be the convex conjugate of h.
Then, the following are equivalent:

1. The supremum of E ∋ m 7→ ⟨g∗,m⟩ − h(m) ∈ R is attained at m = m∗,

2. g∗(x)− δh
δm (m∗, x) = constant, for all x ∈ X Lebesgue a.e.,

3. The supremum of Bb(X ) ∋ g 7→ ⟨g,m∗⟩ − h∗(g) ∈ R is attained at g = g∗,

4. m∗ = δh∗

δg (g∗).

Proof. (1) =⇒ (2): Suppose that (1) holds. Then the supremum of m 7→ ⟨g∗,m⟩ − h(m)
is attained at the maximizer m∗ = argmaxm∈E {⟨g∗,m⟩ − h(m)} . Hence, by (Hu et al., 2021,
Proposition 2.5), m∗ satisfies the first-order condition

g∗(z)− δh

δm
(m∗, z) = constant,

for all z ∈ X Lebesgue a.e.

(2) =⇒ (1): Suppose that (2) holds. Observe that the map m 7→ ⟨g∗,m⟩ − h(m) is strictly
concave due to the strict convexity of h and the linearity of m 7→ ⟨g∗,m⟩. Then by the converse
of (Hu et al., 2021, Proposition 2.5), it follows that m∗ is the maximizer of the map E ∋ m 7→
⟨g∗,m⟩ − h(m) ∈ R, and so (1) holds.

(3) =⇒ (4): Suppose that (3) holds. Then the supremum in g 7→ ⟨g,m∗⟩ − h∗(g) is attained at
a maximizer g∗ ∈ argmaxg∈Bb(X ) {⟨g,m∗⟩ − h∗(g)} . Hence, by Lemma G.10, it follows that g∗

satisfies the first-order condition
m∗ =

δh

δg
(g∗).

(4) =⇒ (3): Suppose that (4) holds. Observe that Bb(X ) is convex and the map g 7→ ⟨g,m∗⟩ −
h∗(g) is concave due to the convexity of h∗ and the linearity of g 7→ ⟨g,m∗⟩. Hence, by Lemma
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G.11, it follows that g∗ is a maximizer of the map Bb(X ) ∋ g 7→ ⟨g,m∗⟩ − h∗(g) ∈ R, and so (3)
holds.

(1) =⇒ (3): Suppose that (1) holds. Then, by Definition 3.1, we have that h∗(g) = ⟨g,m∗⟩ −
h(m∗), and equivalently h(m∗) = ⟨g,m∗⟩ − h∗(g). Clearly, P(X ) is convex and (P(X ),TV) ,
where TV is the total variation distance, is Hausdorff since it is a metric space, hence we can
apply the Fenchel-Moreau theorem (Zalinescu, 2002, Theorem 2.3.3) to conclude that h∗∗ = h, i.e.,
h(m∗) = supg∈Bb(X ){⟨g,m∗⟩−h∗(g)}. Therefore, h(m∗) is the supremum of g 7→ ⟨g,m∗⟩−h∗(g)
attained at g = g∗.

(3) =⇒ (1): Suppose (3) holds. Then h∗∗(m∗) = ⟨g∗,m∗⟩ − h∗(g∗), or equivalently h∗(g∗) =
⟨g∗,m∗⟩ − h∗∗(m∗). Again, by the Fenchel-Moreau theorem (Zalinescu, 2002, Theorem 2.3.3),
h∗∗(m) = h(m), for all m ∈ E , and hence h∗(g∗) = ⟨g∗,m∗⟩ − h(m∗). Hence, by Definition 3.1,
the supremum of m 7→ ⟨g∗,m⟩ − h(m) is realized at m = m∗.

Lemma H.2. Let Assumption 1.1 hold. Let h∗ : Bb(X ) → R be the convex conjugate of h. Fix
f, g ∈ Bb(X ) and µ, µ′ ∈ E . If f(z) = δh

δm (µ, z) and g(z) = δh
δm (µ′, z), for all z ∈ X Lebesgue

a.e., up to an additive constant, then

Dh∗(f, g) = Dh(µ
′, µ).

Proof. By Definition 3.3, we have that

Dh∗(f, g) = h∗(f)− h∗(g)−
∫
X
(f(z)− g(z))

δh∗

δg
(g)(dz)

= ⟨f, µ⟩ − h(µ)− ⟨g, µ′⟩+ h(µ′)−
∫
X
(f(z)− g(z))

δh∗

δg
(g)(dz)

= h(µ′)− h(µ) +

∫
X

δh

δm
(µ, z)µ(dz)−

∫
X

δh

δm
(µ′, z)µ′(dz)−

∫
X

(
δh

δm
(µ, z)− δh

δm
(µ′, z)

)
µ′(dz)

= h(µ′)− h(µ)−
∫
X

δh

δm
(µ, z)(µ′ − µ)(dz) = Dh(µ

′, µ),

where the second and third equalities follow from Lemma H.1 and Corollary 3.2, while the last
equality follows from the definition of the Bregman divergence.

Lemma H.3. Consider (1) and (2). Let Assumption 1.1 hold. Let h∗ : Bb(X ) → R be the convex
conjugate of h. For each n ≥ 0, fix fn, gn ∈ Bb(X ), νn ∈ C and µn ∈ D. If fn = δh

δν (ν
n, ·) and

gn = δh
δµ (µ

n, ·), then, for any n ≥ 0, we have that

Dh(ν
n+1, νn) = Dh∗(fn, fn+1), Dh(ν

n, νn+1) = Dh∗(fn+1, fn),

Dh(µ
n+1, µn) = Dh∗(gn, gn+1), Dh(µ

n, µn+1) = Dh∗(gn+1, gn).

Proof. First, observe that due to Assumption 1.1, the pairs (νn+1, µn+1) in (1) and (2) are unique.
We will only present the proof for (1) since the argument for (2) is identical. The updates in (1) can
be equivalently written as

νn+1 = argmin
ν∈C

{∫
X

δF

δν
(νn, µn, x)(ν − νn)(dx) +

1

τ
Dh(ν, ν

n)

}
= argmin

ν∈C

{∫
X
τ
δF

δν
(νn, µn, x)(ν − νn)(dx) + h(ν)− h(νn)−

∫
X

δh

δν
(νn, x)(ν − νn)(dx)

}
= argmin

ν∈C

{∫
X

(
τ
δF

δν
(νn, µn, x)− δh

δν
(νn, x)

)
(ν − νn)(dx) + h(ν)

}
(47)

= argmax
ν∈C

{∫
X

(
δh

δν
(νn, x)− τ

δF

δν
(νn, µn, x)

)
(ν − νn)(dx)− h(ν)

}
= argmax

ν∈C

{∫
X

(
δh

δν
(νn, x)− τ

δF

δν
(νn, µn, x)

)
ν(dx)− h(ν)

}
,
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and

µn+1 = argmax
µ∈D

{∫
X

δF

δµ
(νn, µn, y)(µ− µn)(dy)− 1

τ
Dh(µ, µ

n)

}
= argmax

µ∈D

{∫
X
τ
δF

δµ
(νn, µn, y)(µ− µn)(dy)− h(µ) + h(µn) +

∫
X

δh

δµ
(µn, y)(µ− µn)(dy)

}
= argmax

µ∈D

{∫
X

(
δh

δµ
(µn, y) + τ

δF

δµ
(νn, µn, y)

)
(µ− µn)(dy)− h(µ)

}
(48)

= argmax
µ∈D

{∫
X

(
δh

δµ
(µn, y) + τ

δF

δµ
(νn, µn, y)

)
µ(dy)− h(µ)

}
.

Using the notation fn = δh
δν (ν

n, ·) and gn = δh
δµ (µ

n, ·), for each n ≥ 0, the first-order conditions
for (1) can be equivalently written as

fn+1(x)− fn(x) = −τ
δF

δν
(νn, µn, x), (49)

gn+1(y)− gn(y) = τ
δF

δµ
(νn, µn, y), (50)

for all (x, y) ∈ X × X Lebesgue a.e. Then using (6), (47) becomes

νn+1 = argmax
ν∈C

{∫
X

(
fn(x)− τ

δF

δν
(νn, µn, x)

)
ν(dx)− h(ν)

}
= argmax

ν∈C

{∫
X
fn+1(x)ν(dx)− h(ν)

}
=

δh∗

δf
(fn+1), (51)

for all n ≥ 0. Similarly, from (48), we have that

µn+1 =
δh∗

δf
(gn+1), (52)

for all n ≥ 0. The conclusion follows directly from Lemma H.2.

I PROOF OF CONVERGENCE FOR THE MDA IMPLICIT ALGORITHM

In this section, we prove that an implicit Euler discretization of the Fisher-Rao flows studied
in (Lascu et al., 2024) yields a linear convergence rate O(1/N), which matches the result in
continuous-time under the same assumption of convexity-concavity of F (see (Lascu et al., 2024,
Theorem 2.3)). However, a major weakness of this implicit game is that it is not implementable in
practice as opposed to (1) and (2).

For a given stepsize τ > 0, and fixed initial pair of strategies (ν0, µ0) ∈ C × D, for n ≥ 0, the
implicit MDA algorithm is defined by

Algorithm 7: IMPLICIT MDA
Input: Initial measures (ν0, µ0), stepsize τ > 0
for n = 0, 1, . . . , N − 1 do

νn+1 = argmin
ν∈C

{
∫
X

δF
δν (ν

n, µn+1, x)(ν − νn)(dx) + 1
τDh(ν, ν

n)},

µn+1 = argmax
µ∈D

{
∫
X

δF
δµ (ν

n+1, µn, y)(µ− µn)(dy)− 1
τDh(µ, µ

n)}

Output:
(

1
N

∑N−1
n=0 νn+1, 1

N

∑N−1
n=0 µn

)
Theorem I.1 (Convergence of the implicit MDA algorithm (7)). Let (ν∗, µ∗) be an MNE of (1) and
(ν0, µ0) be such that supν∈C Dh(ν, ν

0) + supµ∈D Dh(µ, µ
0) < ∞. Let Assumption 1.1, 1.5 and

1.6 hold. Suppose that τL ≤ 1, where L := max{Lν , Lµ}. Then, we have

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn+1

)
≤ 1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)
.
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Proof. Since ν 7→ τ
∫

δF
δν (ν

n, µn+1, x)(ν − νn)(dx) is convex, applying Lemma C.1 with ν̄ =

νn+1 and µ = νn implies that, for any ν ∈ C, we have

τ

∫
δF

δν
(νn, µn+1, x)(ν − νn)(dx) +Dh(ν, ν

n) ≥ τ

∫
δF

δν
(νn, µn+1, x)(νn+1 − νn)(dx)

+Dh(ν
n+1, νn) +Dh(ν, ν

n+1),

or, equivalently,

− τ

∫
δF

δν
(νn, µn+1, x)(ν− νn)(dx)−Dh(ν, ν

n) ≤ −τ

∫
δF

δν
(νn, µn+1, x)(νn+1 − νn)(dx)

−Dh(ν
n+1, νn)−Dh(ν, ν

n+1). (53)

Similarly, since µ 7→ −τ
∫

δF
δµ (ν

n+1, µn, y)(µ − µn)(dy) is convex, applying Lemma C.1 with
ν̄ = µn+1 and µ = µn implies that, for any µ ∈ D, we have

τ

∫
δF

δµ
(νn+1, µn, y)(µ− µn)(dy)−Dh(µ, µ

n) ≤ τ

∫
δF

δµ
(νn+1, µn, y)(µn+1 − µn)(dy)

−Dh(µ
n+1, µn)−Dh(µ, µ

n+1). (54)

Using the convexity of ν 7→ F (ν, µ) in (53), with ν = νn and µ = µn+1, we have that

F (νn, µn+1)− F (ν, µn+1)− 1

τ
Dh(ν, ν

n) ≤
∫
X

δF

δν
(νn, µn+1, x)(νn − νn+1)(dx)

− 1

τ
Dh(ν

n+1, νn)− 1

τ
Dh(ν, ν

n+1). (55)

From Lν-relative smoothness and the fact that τL ≤ 1, it follows that

F (νn+1, µn+1) ≤ F (νn, µn+1) +

∫
X

δF

δν
(νn, µn+1, x)(νn+1 − νn)(dx) + LνDh(ν

n+1, νn)

≤ F (νn, µn+1) +

∫
X

δF

δν
(νn, µn+1, x)(νn+1 − νn)(dx) +

1

τ
Dh(ν

n+1, νn). (56)

Hence, combining (55) with (56), we obtain that

F (νn, µn+1)−F (ν, µn+1)− 1

τ
Dh(ν, ν

n) ≤ F (νn, µn+1)−F (νn+1, µn+1)− 1

τ
Dh(ν, ν

n+1).

(57)

Similarly, using concavity of µ 7→ F (ν, µ) in (54), with ν = νn+1 and µ = µn, we have that

F (νn+1, µ)− F (νn+1, µn)− 1

τ
Dh(µ, µ

n) ≤
∫
X

δF

δµ
(νn+1, µn, y)(µn+1 − µn)(dy)

− 1

τ
Dh(µ

n+1, µn)− 1

τ
Dh(µ, µ

n+1). (58)

From Lµ-relative smoothness and the fact that τL ≤ 1, it follows that

F (νn+1, µn+1) ≥ F (νn+1, µn) +

∫
X

δF

δµ
(νn+1, µn, y)(µn+1 − µn)(dy)− LµDh(µ

n+1, µn)

≥ F (νn+1, µn) +

∫
X

δF

δµ
(νn+1, µn, y)(µn+1 − µn)(dy)− 1

τ
Dh(µ

n+1, µn). (59)

Hence, combining (58) with (59), we obtain that

F (νn+1, µ)−F (νn+1, µn)− 1

τ
Dh(µ, µ

n) ≤ F (νn+1, µn+1)−F (νn+1, µn)− 1

τ
Dh(µ, µ

n+1).

(60)
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Adding inequalities (57) and (60) implies that

F (νn+1, µ)− F (ν, µn+1) ≤ F (νn+1, µn+1)− F (νn+1, µn+1)

+
1

τ
Dh(ν, ν

n) +
1

τ
Dh(µ, µ

n)− 1

τ
Dh(ν, ν

n+1)− 1

τ
Dh(µ, µ

n+1)

Summing the previous inequality over n = 0, 1, ..., N −1, bounding the right-hand side from above
by its supremum over (ν, µ), dividing by N, applying Jensen’s inequality and taking maximum over
(ν, µ) in the left-hand side leads to

NI

(
1

N

N−1∑
n=0

νn+1,
1

N

N−1∑
n=0

µn+1

)
≤ 1

Nτ

(
sup
ν∈C

Dh(ν, ν
0) + sup

µ∈D
Dh(µ, µ

0)

)
,

where the last inequality follows since Dh(ν, ν
N ) +Dh(µ, µ

N ) ≥ 0, for all (ν, µ) ∈ C × D.

J FURTHER RELATED WORKS

Besides the vanilla MDA algorithm, (Hsieh et al., 2019) considers the entropic Mirror Prox algo-
rithm, which requires the computation of an extra gradient at an intermediate point and two projec-
tions onto the dual space. Although it is proved in (Hsieh et al., 2019) that the Mirror Prox algorithm
achieves O

(
N−1

)
convergence rate for deterministic gradients, it is also outlined that for stochastic

gradients (which one has typically access to in practice) Mirror Prox and simultaneous MDA achieve
the same rate O

(
N−1/2

)
.

Another approach based on reproducing kernel Hilbert spaces (RKHS) is developed in (Dvurechen-
sky & Zhu, 2024) and achieves the same convergence rates O

(
N−1

)
and O

(
N−1/2

)
for the de-

terministic and stochastic Mirror Prox algorithm, respectively. To our knowledge, the analysis of a
sequential version of the Mirror Prox algorithm has not appeared in the literature.
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