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ABSTRACT

We study two variants of the mirror descent-ascent algorithm for solving min-
max problems on the space of measures: simultaneous and sequential. We work
under assumptions of convexity-concavity and relative smoothness of the pay-
off function with respect to a suitable Bregman divergence, defined on the space
of measures via flat derivatives. We show that the convergence rates to mixed
Nash equilibria, measured in the Nikaido-Isoda error, are of order O (N -1/ 2)

and O (N -2/ 3) for the simultaneous and sequential schemes, respectively, which
is in line with the state-of-the-art results for related finite-dimensional algorithms.

1 INTRODUCTION

Numerous tasks in machine learning can be framed as optimization problems for functions defined
on the space of probability measures. For instance, in supervised learning, pioneering works (Chizat
& Bach| 2018; Mei et al., [2018; [Rotskoff & Vanden-Eijnden, |2018)) showed that training a shallow
neural network (NN) in the mean-field regime (i.e., an infinite-width one-hidden-layer NN) can be
viewed as minimizing a convex function over the space of probability distributions of the parameters
of the network. This key insight proved to be a fruitful approach in analyzing convergence of train-
ing algorithms for infinite-width one-hidden-layer NN (see, e.g., (Hu et al., 2021} (Chizat, |2022aj
Nitanda et al., 2022; |Suzuki et al., 2023)).

The paradigm of mean-field optimization has been extended to min-max settings in several works,
e.g., (Hsieh et al.l |2019; [Domingo-Enrich et al., 2020; |Wang & Chizat, 2023}, [Lul 2023} Trillos &
Trillos) 2023} [Kim et al.| [2024)), which formulate the training of Generative Adversarial Networks
(GANS) and adversarial robustness as a problem of finding mixed Nash equilibria (MNEs) of min-
max games over the space of probability measures.

In this work, we study the convergence of an infinite-dimensional mirror descent-ascent algorithm
(MDA) to mixed Nash equilibria of a min-max game with a convex-concave payoff function. In
games, the design of learning algorithms heavily depends on the playing conventions the players can
adopt: simultaneous (players move at the same time) or sequential (each player moves upon observ-
ing the opponents’ moves). To our knowledge, the works concerned with studying the convergence
of discrete-time algorithms for mean-field min-max games only analyze the case of simultaneous
playing (see, e.g., (Hsieh et al., [2019; Wang & Chizat, [2023)). In contrast, we make a rigorous
comparison between the simultaneous and sequential algorithms, and prove that sequential playing
leads to faster convergence rate. This result theoretically underpins the common practice of training
GANSs in an alternating fashion.

1.1 NOTATION AND SETUP

For any X C R?, let P(X) denote the set of probability measures on X'. In game theory, if X’ is the
set of (pure) strategies available to the players, then P(X") is known as the set of mixed strategies.
Let C,D C P(X) be convex. We consider a convex-concave (cf. Assumption payoff function
F : C x D — R and the associated min-max game
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We are interested in finding mixed Nash equilibria (MNEs) for game (), i.e., pairs of strategies
(v*, u*) € C x D such that, for any (v, u) € C x D, we have

F(v', 1) < P, 1*) < F(v, ). @)

We observe that in the case in which F is bilinear, i.e., F(v, 1) = [, [ f(x,y)v(dz)u(dy), for
some [ : X x X — R, measures characterized by (2)) are MNEs in the classical sense of two-player
zero-sum games. Throughout, we assume that there exists at least one MNE for game

In min-max games, the distance between a pair of strategies (v, ) and an MNE is typically measured
using the Nikaidd-Isoda (NI) error (Nikaidd & Isodal (1955)), which, for all (v, 1) € C x D, is defined
by
NI(v, p) = F(v, ') — min F(V/, p).
(v, 1) = max (v, p') — min (', )
Straight from the definition, we see that NI(v, 1) > 0 for all (v, ) € C x D, and from (2)) it follows
that NI(v, 1) = 0 if and only if (v, 1) is an MNE.

1.2 MOTIVATING EXAMPLE: TRAINING OF GANS

Let £ € P(Y) be the empirical measure of the i.i.d. sampled particles {z;}M, C ), and let

¢ € P(Z) be a source measure. Consider the measurable parametrized transport map Ty : Z — Y
(which typically can be viewed as a neural network with parameters # € © C R?). The pushfor-
ward of the measure £ on Z via T} is the measure Tp#& on Y characterized by fy od (Ty#E) =

J = (p o Tp)d&, for any measurable function ¢ : ) — R.

The aim of a GAN is to search for the optimal set of parameters §* € O that minimizes the dis-
tance between the generated measure Ty~ #¢ and the empirical measure é . In order to evaluate this
distance, we define the function D,, : ) — R (which can also be viewed as a neural network with
parameters w € VY C R?), and solve the min-max problem

min max {/y Dy (y) (Te#§ 5) (dy)} -
For example, if the family of functions {D.,} ¢,y is either 1-Lipschitz continuous or uniformly
bounded, the resulting GAN corresponds to the Wasserstein GAN or the Total Variation GAN, re-
spectively (Arjovsky et al.,[2017). On the other hand, if the family of functions { Dy}, belongs
to the norm unit ball of a reproducing kernel Hilbert space (RKHS), we recover the Maximum Mean
Discrepancy (MMD) GAN (Li et al.| [2017).

Solving this problem on the finite-dimensional subspaces 6,w C R? may pose serious challenges
such as the lack of existence of pure Nash equilibria. Instead, we lift the problem to the space of
probability measures and search for MNEs, i.e., optimal distributions over the set of parameters.

That is, by setting f (6, w) := [}, D (y) (Tg#«f - é) (dy), we solve the mean-field min-max game

Vér;)i(%)“é%&}%{/W/@f(&w)V(d@)u(dW)}~ 3)

We will demonstrate theoretically (cf. Theorem [2.4]and Theorem [3.6)) that sequential updates speed
up GANSs training significantly. Note that the lifted problem is bilinear in v and y, so an MNE for
(3) exists under mild conditions (see footnote [T).

We stress, however, that our framework applies more broadly, and, while encompassing as a
special case, covers also more general nonlinear convex-concave functions F'. An example of an
application where a nonlinear F arises naturally is discussed in Example [E]

1.3 RELATED WORKS

Mirror descent (MD) was originally proposed in (Nemirovski & Yudin, [1983)) for solving convex
optimization problems and has been extensively studied on finite-dimensional vector spaces, see e.g.

"If F is continuous and D is compact, then the existence of an MNE of (1) follows from Sion’s minimax
theorem (Sion, |1958). For the particular case when F'(v, i) = [, [, f(z,y)v(dz)u(dy), an MNE exists due
to Glicksberg’s minimax theorem (Glicksberg}, [1952) if f is continuous and C, D are compact.
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(Beck & Teboulle, 2003} Bubeck, 2015} Lu et al.l[2018). One of its main advantages over traditional
gradient descent is that, by utilizing Bregman divergence as a regularization term instead of the usual
squared Euclidean norm, the MD method captures the geometry of the ambient space better than the
gradient descent scheme (see (Beck & Teboullel 2003)) for a detailed discussion).

Recently, the MD algorithm has been extended to infinite-dimensional settings for studying opti-
mization problems over spaces of measures, with applications in machine learning (e.g., Sinkhorn’s
and Expectation—-Maximization algorithms, see (Aubin-Frankowski et al.|[2022)) as well as in policy
optimization for reinforcement learning (Tomar et al.,|2021}; |Kerimkulov et al., [2023]).

By leveraging results from optimization on R4 (see (Bauschke et al.l 2017} |Lu et al., [2018)), the
work of (Aubin-Frankowski et al., [2022) extends the convergence proof from (Lu et al., [2018)) to
the case of the infinite-dimensional MD method by showing that in order for the MD procedure
to converge with rate O (N *1) , it suffices to require convexity and relative smoothness of F' (cf.

Assumptions[[.5]and respectively).

Other works such as (Hsieh et al., |2019; |Dvurechensky & Zhu, 2024) studied infinite-dimensional
MDA and Mirror Prox algorithms for finding MNEs of two-player zero-sum games. The most
closely related work to ours is (Hsieh et al., 2019), which focuses on min-max games for bilin-
ear objective functions and utilizes a particular case of the MDA algorithm with relative entropy
regularization.

Our paper generalizes the setting of (Hsieh et al.; 2019) by considering a possibly non-linear convex-
concave objective function and the MDA algorithm with a general Bregman divergence. Moreover,
while (Hsieh et al.,[2019) proves an explicit convergence rate O (N -1/ 2) only for the simultaneous

MDA algorithm, we also prove a faster convergence rate O (N -2/ 3) for the sequential scheme. For
a brief discussion on recent results on related Mirror Prox algorithms (not studied in the present
paper), see Appendix [J|

1.4 OUR CONTRIBUTION

We provide a theoretical analysis of the proposed simultaneous and sequential MDA algorithms,
establishing convergence rates under convexity—concavity and relative smoothness of the objective
F with respect to a Bregman divergence. In particular, Theorem[2.4]and 3.6]show that the sequential
MDA scheme achieves faster convergence than the simultaneous one. We validate our results on
simple numerical experiments.

From one perspective, our work extends (Aubin-Frankowski et al., | 2022) to the setting of min—max
games. A key obstacle we overcome is that, unlike in single-player MD in both infinite-dimensional
(cf. (Aubin-Frankowski et al., [2022))) and finite-dimensional (cf. (Lu et al.l 2018)) settings, the
objective function for min-max problems is not monotonically decreasing along the iterates, which
forces us to work with the NI error and requires different proof techniques.

From another perspective, we generalize the results of (Hsieh et al., |2019) by considering a pos-
sibly non-linear convex—concave objective function and MDA algorithms with respect to a general
Bregman divergence. Whereas (Hsieh et al., |2019)) derive an explicit convergence rate only for the
simultaneous MDA algorithm in the context of GAN training, we establish a faster rate for the se-
quential variant. Moreover, our more general framework also covers applications other than GANS,
such as adversarial training of neural networks (see Example [E)).

At the technical level, our convergence proof for sequential MDA relies on a duality between the
Bregman divergence on the space of measures and a corresponding dual Bregman divergence defined
on the space of bounded measurable functions. To our knowledge, the use of this dual formulation
of MDA on a function space is novel, and may be of independent interest.

1.5 BREGMAN DIVERGENCE ON THE SPACE OF PROBABILITY MEASURES

As noted in Section[I.3] the MD algorithm relies on the Bregman divergence. We now introduce this
concept rigorously for the space of probability measures using the flat derivative (Definition [},
following (Aubin-Frankowski et al.|2022)), who defined it via directional derivatives.

Set£:=CUD C P(X) and let h : P(X) — R satisfy the following assumption.
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Assumption 1.1 (Differentiability and convexity of h). Assume that h is lower semi-continuous on
& and admits first-order flat derivative (cf. Definition[F1)) on E. Moreover, assume that h : € — R
is strictly convex on &, i.e., for all A € [0,1] and all V',v € &, we have h (1 — \)v+ /') <
(1 = X)h(v) + AR(V).

If Assumption [I.T]holds, then it can be shown, via (Hu et al.,[2021, Lemma 4.1), that h is strictly
convex on & in the sense of Assumption|[L.3] i.e., for any v/, v € £, we have

h(v') — h(v) > / gi(y z)(V —v)(dx).

Under Assumption we define the h-Bregman divergence (or simply Bregman divergence) on
the space of probability measures.

Definition 1.2 (Bregman divergence). The h-Bregman divergence is the map Dy, : £ x € — [0, 00)

given by
oh

Dn(V',v) = h(v) — h(v) — >

— (v, 2)(v' — v)(dx).

We observe that, by Assumptlon. f v 5oy, x) (v —v)(dz) is well-defined, and that Dy, (', v) >
0, for all ', v € £, with equality if and only if v =v.

We now give two examples of a function h and the corresponding sets £ such that Assumption
is satisfied.

Example 1.3 (Relative entropy). Suppose that h is the relative entropy, ie., h(v) =

S log ”(xg (x)dx, where v,m € Px(X), ie., they are absolutely continuous with respect to the
Lebesgue measure on X and 7 is a fixed reference probability measure on Px(X). Fix § > 0

and define £g = {V € Px( Hlog 0 HL . < B} . Note that Eg is convex. From (Dupuis &

Ellis, [1997| Lemma 1.4.3), we know that the relative entropy is lower semi-continuous on P(X),
hence on Eg. Clearly, we see that h is strictly convex on Eg due to the strict convexity of the map
(0,00) 3 2z > zlog z. Moreover, it is proved in (Kerimkulov et al.|, [2024, Proposition 2.16) that h

admits the flat derivative
oh B v(z)
G (2) =log 205 (), @

on Eg, and for all v,v' € Eg, the Bregman divergence Dy (vV',v) is in fact the Kullback-Leibler
divergence (or relative entropy) KL(V', v).

Example 1.4 (y2-divergence). Suppose that h is the x>*-divergence, ie., h(v) =

2

1y (% - 1) 7(x)dx, where v, m € Px(X). Let L2(X) be the set of square integrable func-
v()

O || 2 2y < 77} . Note
that F,, is convex. From (Ambrosio et al., 2000, Theorem 2.34), we know that the the x2-divergence
is lower semi-continuous on P(X), hence on F,. Clearly, we see that h is strictly convex on F, due
to the strict convexity of the map (0,00) 3 z + (z — 1)2. Mareover it is proved in (Kerimkulov

et al.| 2024} Proposition 2.18) that h admits the flat derivative S (v, ) = Z(x) Jga ALy (2)da,

ﬂ'(w

tions on X with respect to . Fix 1 > 0 and define F,, := {1/ € Pr(X):

on Fy, and for all v,v' € F,, the Bregman divergence Dy(V',v) is in fact the L?- dtstance
40 _ () 2 .
L3(X)

1
2

) w()

For other examples of regularizers h that verify Assumption and frequently appear in machine
learning applications, see (Kerimkulov et al.|[2024, Proposition 2.20).

1.6 SIMULTANEOUS AND SEQUENTIAL MDA

In what follows, we state our standing assumptions and the necessary definitions for introducing the
simultaneous and sequential MDA schemes. Let F' : C x D — R be such that v — F(v, 1) and
p+— F(v, ) admit first-order flat derivatives (cf. Definition|[F.1) on C and D, respectively.
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Assumption 1.5 (Convexity-concavity of F'). Assume that F' is convex in v and concave in p, i.e.,
forany v,v" € C and any pi, 1t € D, we have Dp(. ., (V',v) > 0 and D,y (1, 1) < 0.

Assumption 1.6 (Relative smoothness of F'). Assume that, given L,,L, > 0, the function I is
L, -smooth in v and L,,-smooth in i relative to h, i.e., for any v, V" € C and any p, 1" € D, we have
Dp (W' v) < L,Dy(v',v)and Dpg, (1, ) > =L, D', ).

In Proposition [D.1] and [E.T] we verify that Assumption [I.5] and [I.6] are satisfied by Example [I.2]
and [E] In Lemma we show that Assumption [I.3] and [I.6] correspond to the intuition we have
from optimization on ]R , where convexity and relatwe smoothness are equivalent, respectively, to
the Hessian of F' being non negative, and upper bounded by the Hessian of h weighted by the
smoothness constant.

For a given stepsize 7 > 0, and fixed initial pair of strategies (v, o) € C x D, for n > 0, the
simultaneous and sequential MDA algorithms are respectively defined by

Algorithm 1: SIMULTANEOUS MDA

Input: Objective function F) initial measures (v, u°), stepsize 7 > 0
forn=0,1,...,N —1do
ot S g min [ S (07, %) = 7)) + LD (07),

p = arg I%aX{fx S 1™ y) (= ™) (dy) — £ Dy, )}

Output: (%Zn 0 VN g M )

Algorithm 2: SEQUENTIAL MDA

Input: Objective function F) initial measures (v°, u°), stepsize 7 > 0
forn=0,1,...,N —1d0
il = arg min{ [, 3£ ", u", 2) (v — v")(dz) + LDy (v,v™)},
ec

prtt = arg H;ax{fx SE (Wt wm ) (= ™) (dy) — £Da(p, ™)}

Output: (% ij o1 RN N Z n)

Although we abuse the notation by denoting both (1)) and (2) by (v™, u™),>0, we will make it clear
from the context which algorithm we consider.

Algorithm () is referred to as simultaneous because both players update their strategy from step n
to n + 1 at the same time, whereas Algorithm () is called sequential because the minimizing player
is first updating their move from step n to n + 1, and then the maximizing player is acting upon
observing the minimizing player’s (n + 1)-th action. Note that due to the symmetry of the players,
the analysis of scheme (2)) also covers the case when the maximizing player moves first followed by
the minimizing player.

The motivation behind the use of the terms involving ‘; and 5F in algorithms and ,

L

is that instead of minimizing and maximizing directly on F (whlch could be a potentially 1n-
tractable problem) we m1n1mlze and maximize over v and ;L in the ﬁrst order linear approxima-

tions F(u", ") + [ 55 (", ", ) (v =) (dzx) and F (v, p") + [y §5 (0", 0™, ) (= o) (dy).-
In order to make sure that these approximations around (v™, u™) are prec1se enough, we penalize
the distance between (v"*1, u"*1) and (v™, ™) by introducing the Bregman regularization terms
%Dh(y, v™) and %Dh(,u, u).

We observe that by varying the choices of A in Definition we obtain a collection of different
update rules in the MDA algorithms (I)) and (2). When h is the relative entropy, we can view (I)) and
as Euler discretizations of a Fisher-Rao gradient flow, whose continuous-time convergence with
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explicit rates for mean-field min-max games was proved in (Lascu et al.| 2024)) (cf. also (Liu et al.,
2023) for single-player convex optimization).

2 CONVERGENCE OF THE SIMULTANEOUS MDA ALGORITHM ()

In this section, we state the main result on the convergence of the simultaneous MDA algorithm.
Proving that the simultaneous MDA algorithm (I)) converges relies on the following key assumption.

Assumption 2.1. Suppose that F is Lipschitz relative to h, i.e., there exists Ly > 0 such that, for
anyv,v' € Cand any p, 1/’ € D,

[P 1) = F(v,w)[* < Le (Dh(v',v) + Di(p, 1))

Remark 2.2. We show in Lemma|C.2] that Assumption[2.1]is satisfied (via Pinsker’s inequality, that
is, TV*(v/,v) < & 5 KL(V/, 1/)) when F' has bounded first-order flat derivatives in v and ., and h is

the relative entropy, i.e., h(v) := [, log ”(xg v(z)dx, where v, m € P(X) are absolutely continuous

with respect to the Lebesgue measure on X and T is a fixed reference probability measure on P(X).
For other examples of functions h which satisfy the inequality TV*(v',v) < % 5D (V',v), and hence
Assumption[2.1) see (Chizat, 2022b, Lemma 3.2) and (Kerimkulov et al.| 2024 Proposition 2.18).

Remark 2.3. A similar notion to the Lipschitz property from Assumption[2.1] which goes under the
name of Bregman continuity, was introduced in (Antonakopoulos et al.||2019) as a generalization of
the standard Lipschitz continuity.

We are ready to state the first main result of the paper.

Theorem 2.4 (Convergence of the simultaneous MDA algorithm l ). Let (v*, u*) be an MNE of
and (V°, u°) be such that sup,,cc Dy, (v,1°) + supueD Dy (u, u%) < oo. Suppose that Assumption

. . .and.hold Suppose that TL < %, with L := max{L,, L, }. Then, we have

N-1 N-1
1 1 LF (Sup eC Dh(Vv VO) =+ sup €D Dh(ua /1*0))
NI(— " — " <4 B £ .

n=0

Remark 2.5. Theorem is consistent with the already known convergence rate O (ﬁ) of

the MDA algorithm for min-max games with strategies in compact convex subsets of R%; see e.g.
(Bubeck, 2015, Theorem 5.1).

Remark 2.6 (Imtlahzatlon COIldlthIl) The initialization requirement in Theorem [2.4] namely,
sup,ee Dn (v, v°) + sup,cp Du(p, %) < oo must be verified case by case, depending on the
choice of h and the admissible classes C, D. Such verifications for Examples|I.3|and[I.4]are carried
out in Lemmas|C.7]and[C.§| respectlvely

Remark 2.7 (About the proof of Theorem [2.4). In their proof of convergence of the infinite-
dimensional MD algorithm for convex F, (Aubin-Frankowski et al.||2022|) show that relative smooth-
ness is sufficient to prove that F' is monotonically decreasing along the sequence (V"),,>o generated
by MD, i.e., F(v"t1) < F(v™), for all n > 0. The monotonicity property is key to establishing that
the MD scheme converges to a minimizer of F' with rate O(%) In the case of , Assumption
and the fact that TL < % imply that F (v, ™) < F(v™, pu™) < F(u™, u"h), for all n > 0.
Thus, in the min-max setup, relative smoothness does not imply monotonic decay of F along the
iterates. In contrast, we show that combining Assumption[I.6|with Assumption[2.1|allows us to con-
trol the Bregman divergence between consecutive iterates, i.e., Dy (v™ 1, v™) and Dy, (™, u™),
by O(7?) (see Lemma . This condition will turn out to be sufficient to bypass the lack of mono-
tonicity of F' and also will guarantee the conveﬁence in NI of the simultaneous MDA algorithm

with rate O (ﬁ) For the proof, see Section

3 CONVERGENCE OF THE SEQUENTIAL MDA ALGORITHM (2))

Before we state the main result concerning the convergence of the sequential MDA algorithm (2),
we introduce the necessary notions on the dual space of the space of probability measures.



Under review as a conference paper at ICLR 2026

Let (M(X), || - ||Tv) be the Banach space of finite signed measures p on X equipped with the total
variation norm ||u ||y = |p](X). Let (By (X), || - ||o) be the Banach space of bounded measurable
functions from X C R? to (R, | - |) where | - | is the Euclidean norm. For any (f, m) € By(X) X
M(X), we define the duality pairing (-, ) : Bp(X) x M(X) — R by

/ fa 5)

Next, we define the notion of convex conjugate of h : P(X’) — R relative to the duality pairing .

Definition 3.1 (Convex conjugate). Let h : P(X) — R be a function. Then the map h* : By(X) —
R given by h*(f) := sup,,,ep(x) {{f,m) — h(m)} is called the convex conjugate of h.

Regardless of the convexity of h, it follows from (Bonnans & Shapiro} 2000, Theorem 2.112)
that h* is convex on By(X), ie., for all A € [0,1] and all f',f € By(X), we have that
R (1= X)f 4+ Af') < (1= X)h*(f) + Ah*(f'). In Example[G.2] we provide the explicit form of
h* when h is the entropy. The following corollary shows that the first variation of ~A* is the unique
maximizer of m +— (f,m) — h(m). This result is expected since on R? the “gradient” of the convex
conjugate (of a strictly convex function) is the maximizer of the Legendre—Fenchel transformation.

Corollary 3.2. Let h* : Bb( ) — R be the convex conjugate of h. If Assumptionholds and h*
admits the first variation - (f) (cf. ) on By(X), then

oh*

() = argmax {(f,m) — h(m)} ©)
f me&
As shown in Example when h is chosen as the entropy, its convex conjugate h* admits the
first variation %( f). If Assumption holds, then, via (Hu et all [2021, Lemma 4.1), we can
characterize the convexity of h* with respect to its first variation, i.e., for any f, f’ € By(X),
N N oh*
W= > [ (@) - fe) S (),

and furthermore we can define the Bregman divergence between f and f’ on the dual space.

Definition 3.3 (Dual Bregman divergence). Let h* : By(X) — R be the convex conjugate of h. The
dual h*-Bregman divergence is the map Dy« : By(X) x By(X) — [0, 00) given by

D (1)) =107 = 1 0) = [ (@) = @) 5 (1) (o).
Since f, g are bounded and %(g) is a probability measure (cf. Definition , it follows that
Sy (f(x) = g(x)) 55};* (9)(dz) is well-defined. Moreover, since h* is convex, Dp«(f’, f) > 0, for
all f/, f € Bp(X).

The following Lipschitzness assumption on the second variation 2 s f2 (cf. Definition i will turn

out to be crucial for showing the improvement in the convergence rate of the sequennal algorithm
(2) compared to the simultaneous algorithm.

Assumption 3.4. Suppose that (By(X) x By(X)) > (f,9) — 5;;2* (f)(g) € M(X x X) is TV-
Lipschitz, i.e., there exists L+ > 0 such that, forall f, g, f',g' € By(X), it holds that

S2h* ., 8%h*
e (f)(g) - W(f)(g)

< L= (I = flloo + 119" = gll0)
TV

In Example and Proposition , we provide the explicit form of the second variation 552 J?;
and verify Assumption respectively, in the case where h is the entropy.

The following assumption ensures that F' and its flat derivatives 5F , ‘;F are uniformly bounded.

Assumption 3.5 (Uniform boundedness of F' and its flat derlvatlves). Suppose that there exists
M >0,C, > 0and C,, > 0 such that for all v, u € P(X), and all x,y € X, we have

oF
|F(V7,u)| S M7 E(Vmu”x) S CV7 S Cp,-

oF )
5# v, 1,y
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In Proposition[D.T]and [E-T| we verify that Assumption [3.3]is satisfied by Example[T.2]and [E]

Now, we are ready to state the second main result of the paper.
Theorem 3 6 (Convergence of the sequentlal MDA algorithm (2| .) Let (v*,u*) be an MNE of
and (V°, 1°) be such that sup,,cc Dp(v,v°) + sup,,cp D (p, p°) < oo (cf Remark . Let

Assumpnon n . . . H and. 3.5 hold. Suppose that TL < %, with L := max{L,, Lu}

Then, we have

N-1 2/3
1
NI <N > o Z o > < 2N2/3 (3 (sup Dy, (v,1°) + sup Dh(u,u°)> X

n=0 vel neD
1/3
x (KLp+ + 2LpL)Y% + 2M>, 7

where k= C3 + 03.

Remark 3.7. In particular, if F(v,1) = [, [, f( dz)u(dy), for a boundedﬁmction f:
X x X — R, then Assumption @ is satzsﬁed and zn Deﬁmtwn E we have L, = L, = 0.
Therefore, L = 0 in ([7), and hence Theorem[3.6]is consistent with the already known convergence
rate O ( s ) of the MDA algorithm for min-max games with strategies in compact convex subsets

of R? and bilinear payoff function; see (Wibisono et al., 2022, Theorem 3.2 and Corollary 3.3). Since
we work in an infinite-dimensional setting with a non-linear convex-concave objective function F,
Theorem[3.6| substantially generalizes the results of (Wibisono et al.] 2022)).

Remark 3.8 (About the proof of Theorem@) The main difference compared to Theorem [2.4) is
the extra term F(v" 1 u") — F(v™, u™) which arises from the non symmetry of the flat deriva-
tives ofF in Algorithm @) We combine this difference with fx L, p ) (v — vt (de)
and fX 6; (vt y) (u Tt — ™) (dy) via relative smoothness. This produces the Bregman

commutators Dy, (v™, v 1) — Dy, (v v™) and Dy, (p™, p™ ) — Dy (u™ 1, u™). To handle these
commutators, we pass from the measure space to the dual space of bounded measurable functions.
Hence, the commutators become Dy« (3 (v" T, - — Dp- (—(1/", 9, %(V"H, 1)) and
analogously for . Applying Assumptlonl@ and @f we show that these commutators are of order
O(73). This refined estimate yields the improved convergence rate O ( N /3) For the proof, see
Section[A]

4 NUMERICAL EXAMPLE

In this section, we outline how to implement the infinite-dimensional algorithms (I) and () in the
case where £ is the relative entropy. For brevity, we present the derivations only for Algorithm (TJ),
as the arguments for Algorithm (2) are entirely analogous. The complete algorithms for both the
simultaneous and sequential MDA schemes can be found in Algorithm (3) and Algorithm () in
Section[Bl

4.1 SIMULATION OF INFINITE-DIMENSIONAL MDA

As shown in Example[T.3] by taking / to be the entropy, the corresponding h-Bregman divergence is
exactly the KL divergence. Moreover, using the flat derivative formula (), the first-order optimality
condition (Hu et al, 2021, Proposition 2.5) applied to ( n+l u"“) in Algorithm (1)) gives

log " (x) — logv™(z) = —TJV( vt ) + C,
log "+ (y) —log ™ (y) = 755 (v, ", y) + C',

for every n > 0 and, for all z,y € X Lebesgue a.e., where C,C’ € R. By summing over n and
exponentiating both sides, we obtain

v (z) o 10 (z)e~T Timo 55 au"yw)7
o 0 (y)e™ =0 S ),
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where the constants C, C’ are absorbed into the normalizations. For simplicity, suppose the ini-
tial samples (X j>Yj)}]:1 are drawn uniformly, so that (°, ) are uniform densities. We set

(Xj.0,Yj0))=1 = (X;,Y;)7—, and sample from (', u') via Langevin dynamics:

oF

Xjtv1 =X =7V 5

2
0,1 X;0) + %Nj,t,

Y1 = Yje + VV(;E(VOa 10, Yja) + \/ENM’
I T

forl < j < Jand 0 <t < T — 1, where v > 0 is the step size and ./\/j,t are i.i.d stan-

dard Gaussian variables. For sufficiently large J and 7', the terminal particles (X j,T,Yj,T)le

approximate samples from (!, u'). Repeating this procedure recursively then yields samples from

(W2 )., (0 7).

4.2 TRAINING GANS BY MDA

We train the mean-field GAN from Example [I.2] using simultaneous and sequential MDA-GAN
(Algorithms (E[) and @) on the 8-Gaussian mixture and Swiss Roll datasets (Gulrajani et al., [ 2017).
B

Full algorithmic details, including hyperparameters and network architectures, are in Section
Both methods are run for 2000 iterations, with performance assessed by visualizing generated sam-
ples at 400, 1000, and 2000 iterations.

Snapshot at iteration 0 Snapshot at iteration 500 Snapshot at iteration 1000 Snapshot at iteration 2000
o Real data : . . “ '
] o Generated data * o c 0 & *-

N : L4 v J . 3 °
A R N o0 o . 005 .
8 £ o2 g . o0 ": K ° e o 3
e S, LY agk

o ¥
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%

(a) Iterationn = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 1: Simultaneous MDA-GAN (Algorithm learning an 8-Gaussian mixture
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Figure 2: Sequential MDA-GAN (Algorithm@ learning an 8-Gaussian mixture

Figures [T] and [2] show the training dynamics of simultaneous and sequential MDA-GANSs on the
8-Gaussian mixture, with analogous results on the Swiss Roll in Figures [3|and @] In both settings,
generated samples start far from the data but the sequential variant captures the multi-modal structure
and the spiral geometry of the Swiss Roll more clearly and at earlier iterations. In Section[B] we plot
the L'-Wasserstein distance W, (Tgn #E, é) for both tasks over iterations n, confirming the faster
convergence of sequential MDA-GAN.
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A PROOFS OF THEOREM AND THEOREM

This section is dedicated to the proofs of the main results, namely Theorem [2.4] and Theorem [3.6]
Before we proceed, we will need an auxiliary result, which will turn out to be essential for proving
both main theorems. The proof of Lemma[A.T]is given in Appendix[C]

Lemma A.1. LetAssumptlon andhold Suppose that T L < 5, with L == max{L,,L,}.
Then, for both Algorithms (1) and (2)), it holds, for all n > 0, that

Dp(v" v <4Lpt*  and Dy (p"th p") < ALpT?
A.1 PROOF OF THEOREM [2.4]

Proof of Theorem[2.4] Since v — T fX 5. (V" p, x)(v—r")(dz) is convex, applying Lemma
with 7 = v"*! and = v™ implies that, for any v € C, we have

‘;f( i ) (v — v™)(da) + Di(v, ™) >T/ )~ ) (da)

+ Dy (V™0™ + Dy (v, 0™

)

12
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or, equivalently,
6F n n n n n+1 n
=7 | 5, et a) (v =) (de) = Da(v,v") < =7 5 vt ) (" — ) (d)
x oV
( n+1 yn) _Dh(% V"-H). (8)

Similarly, since p — —7 [, % e 5# mou™y)(w — p™)(dy) is convex, applying Lemma with
v =p"*!and p = p" implies that for any i € D, we have

6F n n n
o — " 1" y) (e — p")(dy) — Da(p, p" <T/ o v y) (T = ™) (dy)
_ Dh(un—i-l n) Dh(,u/ Mn-i—l)' (9)
Using the convexity of v — F (v, p) in (), with v = v™ and 1 = pu", we have that
", 1)~ F(v, ") ~ - Dy(w, " / )" — ()
1
— th(V"*'l,z/") — =Dyp(v,v" ). (10)
T T

From L, -relative smoothness and the fact that 7L < % < 1, it follows that
n+1 n 5F n+1 n n+1 n
F" ™ u") < FU™,p) + 7( ) (VT =) (de) + Ly Dy (v 0"

1
/ 5 Vo™ x) (v — v (de) + ;Dh(u"H, vy, (11)
Hence, combining (T0) with (TT)), we obtain for any v € C that

1 1
F@"™ u") — F(v,u") — ;Dh(y, v < F(™ ™) — F(o™ ™) — ;Dh(y, v (12)

Similarly, using concavity of p — F'(v, 1) in @) with v = v™ and p = p™, we have that
F@" p) = F@" p") = th (1, ™) / o V) L= ) (dy)
1
- ;Dh( T ) = —Di(p, gt (13)

From L, -relative smoothness and the fact that 7L < % < 1, it follows that
PO ) = PO+ [ S0t )t = i) — LD )

O
Hence, combining (T3) with (T4), we obtain for any ;i € D that

> F(" )+/Xf( ) (e = ) (dy) — %Dh(u"“,u")- (14)

P, ) = F@" ") = 2Dy ") < FOp ) = FW ) = 2 Disp™ ). (15)
Adding inequalities and implies that for any (v, ) € C x D we have
F(" p) = Fy,p") < F",p") = F@"H u™) + F(", p"*h) — P, pu™)
£ 2D D i)~ D) = 1Dy ). (16)

By Assumption[2.I] we have that
‘F(Vnnun) - F(Vn+1a:un)|2 = |F(Vn+17:un) - F(Vna:un)|2 < LFDh(Vn+17Vn) < 4L§7T2a

13
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and
|F(V”,M”+1) _ F(V",/Ln)|2 S LFDh(Mn-HaMn) S 4Li—‘7’2

where the last inequalities follows from Lemma[A.T] Therefore, from (I6), we obtain
n n 1 n 1 n 1 n+1 n+1
F(V 7/“‘)_F(l/’:u )§4LFT+;Dh(V’V )+;Dh(/‘nu )—;Dh(y’z/ )_7Dh(//' 1% )
Summing the previous inequality over n = 0, 1,..., N — 1, using Dy, (v, v™) 4+ Dy, (u, u™¥) > 0, for

any (v, 1) € C x D, bounding the right-hand from above by its supremum over (v, 1) € C X D, and
dividing by N gives

=

2=

—1
1
(F(v",pu) — Fv,pu™)) < 4LpT + — (sup Dy, (v, V°) + sup Dh(,u,uo)> .17
Nt \vec neD

3
i
=]

Since v — F(v,u) and p — —F (v, ) are convex, it follows by Jensen’s inequality that

1N—1 1]\/'—1 1N—1
Nn:O (F(l/n,,u)—F(V7/,[,n)):N;F(V”,M)—NT;F 4
1]\/'—1 1N—l
F<N;)V",M> —F(V,an;)/f‘). (18)

Combining with and taking maximum over (v, ) gives

1 N—-1 1 N—-1 1
NI <N 1;) v, v ; u”) SALpT + 5= <sup Dy, (v,v°) + sup Dh(ﬂvﬂo)) :

vel neD

Minimizing the right-hand side over 7 amounts to taking

S 1 [sup,ec Dh(V7 VO) + Sup,ep Dh(:u’7 /1'0)
N LrN ’

and hence we obtain

NI ( 1 ]vzl Z 1 ) \/LF (SUPyeC Dh(”» VO?\:’ Sup,ep Dh(/j/a IU’O)> )

n=0 n=0

A.2 PROOF OF THEOREM [3.6]

Proof of Theorem[3.6] We start the proof by following the same calculations from Theorem[2.4] For
(2), after applying Lemma[C.T]and using convexity-concavity of F, remains unchanged, i.e.,

1 oF
PO ) = Pl = 2Dylm) < [ S 07 )" = o))

1 1
- 7Dh(1/"+1’ Vn) - 7Dh(ya Vn+1)a
T T

while becomes
F(V"+1,u) _ F<Vn+1’un) 7Dh I, M / 5M n+17 n7y)(un+1 _ /Jn)(dy)

1 n n 1 n
— =D (" ") = = Da(p, ™).
T T

14
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Adding the previous two inequalities, summing the resulting inequality over n = 0,1,..., N — 1,
dividing by N, using (18) and taking maximum over (v, ;1) we arrive at

1N—1 1N—1 1N—1 SF
NI — n+l — n| <« — oF (n n n o+l
(v Sy o) 3, S - ot

n=0

§F 1
+/ y(vn“,u”,y)(u"“ - u”)(dy)> <sup Dy (v,°) + sup Dh(ﬂvﬂo))
x op Nt

vel neD
N—-1 N-1
1 1
+ N Z (F(Un-i_l,un) _ F(Vn“un)) _ ﬂ Z (Dh(yn—&-l’yn) + Dh(un—ﬁ—l"u/n))7 (19)
n=0 n=0

where we used the fact that Dy, (v, v™V) + Dy, (u, p¥) > 0, for any (v, ) € C x D.

Note that the key difference to the estimates from Theorem [2.4] is the appearance of the term
F™t um) — F(v™, u™) due to the non-symmetry of the flat derivatives of F' in . The
idea is to combine F(V"‘H,,u") — F(v™, p") with both [, 3E(v", p", 2)(v™ — v"+1)(dz) and
Jx ‘; v ) (untt — p™)(dy) via relative smoothness in order to obtain Dy, (v™, v+ —
Dy (v "*1, v™) and Dy, (u™, p™ 1) — Dy, (p™*1, u™), which will prove to be of order O(73).

Since the flat derivative of € 3 m + Dj,(m, m’) € [0, 00) is given by s2-Dj, (-, m’) = 22 (m, z) —

Sh (!, z), it follows that the first-order conditions for (2) read

Sm
B4, 0) = (07, 0) = I i), o0
St y) = S y) = TS (T ),

for all (z,y) € X x X Lebesgue a.e. It can be shown directly from Deﬁnitionthat

/(ﬁny) gwwvﬁ/—mmw=DM%VHJ%@Vﬁ @D

for all v, € C, and analogously for Dy, (11, pt) + Dy (s, 11'). Then, using and we obtain
that

i %<yn’un’x)(yn+l )(dm) / (ZZ( ,JJ) — gi(yn’x)) (yn+1 _ y“)(d-’f)

1
= — (Dp(@" ") + DR v ) (22)

and similarly

/X %(Vn+1’un,y)(un+1 fu”)(dy) _ %/X (g/}j(un+1’y) _ gZ(u”,y)> (Mn+1 7un)(dy)

1
= — (D" 1) + Do, 1)) (23)
Therefore, using (22)) and 23)) in (I9), we obtain that

1 N—-1 1 N-—1 1
n+1 n . 0 . 0
NI(N;V ,N;u ) sNT(wpDh(v,v>+supDh(u,u))

velC neD
1 N-1
tae (Dh@"“w") D" v ) Dy ) + thwl))
1 N-1 1 N-1
+ N Z (F(V”+17/Ln) _ F(Vn“un)) _ m Z (Dh(yn—&-l’yn) + Dh(Mn—&-l”un)) . (24
n=0 n=0

Then, we observe that

1 1
- (Dh(Vn7 VnJrl) o Dh(l/nJrl, I/n)) 4=

D n . n+l _
() =5 2

(Dh(ynv Vn+1) + Dh(Vn+1v Vn)) ’
(25)
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and a similar representation holds for Dy, (u™, u*1). Similarly, we can write

1
Byt = F", p") = o (PO 0t = F", i)

1
+ 5 (F@"T ") = PO ) 4+ PO ) = PO, ) - (26)

Therefore, putting (23)) and 26) into (24) gives

1 N-1 1 N—-1 1
NI| = i pt < = (Sup Dy (v,v°) + sup Dy (p, p° )
(35w 2] < e (apptests+ it
1 N—-1
+ 5 2o (Da(@" ™) = D" 0" 4 Dy, ™) = Dy (™, )
n=0
1 = /1
+ﬁ Z <(Dh(Vn n+1)+Dh( n+1 n))+F( n+1 Mn)F(Vn”un))
n=0
1 (1
+T (T(Dh(un Hn+1)+Dh(‘un+1 n))+F( n+1 Mn) F( n+1 Iun+1)
n=0

+ Pt — P, m)) X))

Combining the fact that v — F(v, u) is L, -smooth relative to & with the first-order condition ,
we have that

F
F" ™ ™) — F(v™, u™) < / fs—y(u", p ) (v — v (dx) + L, Dy (v v
x

_ 71 on+1 o 57h n n+l . n n+l . n
= 7'/2( <5V(1/ , ) 6V(V ,x)) (v v™)(dx) + L, Dy (v, 0")
— _1 (Dh(yn+1’ Vn) + Dh(Vn,Vn+1)) + LVDh(l/nJrl,I/n), (28)
-

where the last equality follows from (Z1)).
Similarly, using L,,-smoothness of y — F'(v, i) relative to h together with , we can show that

1
B, pt) = P p ) 4 — (Da(u", ) + Do 1)) < LpDa (", ™). (29)

Therefore, using and in (27), and recalling that L = max{L,, L, } gives

NI iNZl Z << D 0 D 0
N sup Dy, (v,v”) + sup h(u,u))

n=0 n=0 vel neD
1 N-1
+ o D (D" v™) = Da(v™ 1 0™) + Da(u, i) = Di (™, ™)
n=0
I N-1 1
+ o 2 (Pa(™ L0 4 Dy u™) + o (F (0, 6) = F@0, %) - (30)
n=0

Since, by Lemma Dy (v v™) < 4Lp7? and Dy (u™ 1, u™) < 4Lp72, it suffices to show
that Dy, (v™, ") — Dy, (v v™) + Dy (p™, p™ 1) — Dp(p™ ™t u ) is of order O(7?). Indeed,
we could then choose 7 = O ( ) and since by Assumptlonn |F NouN ) ’ < M, we would
obtain that

Wy Sty S) 20 () w0 (3) =0 ().

n=0

N1/3
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because + < forall N > 1.

N2/3 I

In order to show that Dy, (v™, v 1) — Dy, (v, v™) + Dy (u™, u™ 1) — Dy (u™+L, u™) is O(73),

we will leverage the connection between Bregman divergence and dual Bregman divergence given

by Lemma [H.3|together with Assumption [3.4] [3.3]

If we denote " = gh( ,+), for any n > 0, then by Lemma | we have that Dy, (v, v 1) =

Dy« (f7+1, f™). For anﬁ € [0,1] denote &+l = gfntl 4 (1 —&)f™ and f&" = ef™ + (1 —
3.3

g) f**1. By Definition[3.3] we have that

D (P17 = WD) =) = [ () = £7(a) S () o)

! n+1 n * A,n+1 n+1 n 6h* n
-/ <f+ I3 f(f >>dA—<f 3 f(f )
1
— n+1l _ 71 A,n+1 n

[ [ ] @ re) e - ))%(f"A’"H)(f"A’”“)(dx’@dx)dnd)\,
AxX

where the second and last equalities follow from (@3) and (@6), respectively. Similarly, by Lemma
we have that Dy, (V"1 1) = Dy« (f™, f**1), and hence

1 1
Dy (f7, f741) = / / /X @ = @) () - 1 6)
02h*
X e

(f7™) () (e’ © da)dnd .

Therefore, we obtain that

Dy (F™0, %) — Dy (f7, 1) = /0 /0 /X AT @) = @) ) - )

52h*
df? e

Using Assumption [3.4] we further obtain

« (W(fn)\,nﬂ)(fn)\,nJrl) _ (fn/\’n)(f"’\’”)> (dz’ ® da)dnd.

Dy (f™1, ) Dy (f7 1) < / / /X AT @)= @) ) - )

2h* 52h*
< 512 (frmEn (it — Mz(f“’")(f”’")) (dz’ ® dz)|dndA
52h*
et [ SR SO e () aaranan
52h* 5%h*
n+1 n|2 nA,n+1 An+1y ni,n ni,n
S A |Gyt - S )|

1 1
< 2Ll — R / 3 [ 2dnan < L -

where the third inequality follows since |1 — 2nA| < 1, for all , A € [0, 1]. The first-order condition
for the minimizing player in (20) can be rewritten as
oF
fn+1(x) _f7b($> = _TT(Vn7Mn7x)a (31)
v

17
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for all # € X Lebesgue a.e. By Assumption there exists C,, > 0 such that || 5 (v™, u, )| <
C,, for any n > 0. Hence, we obtain that

3

. . oF
Dy (f L+17 fn)_Dh* (f L7 fn+1> < Lp» an—&-l_fn”go — Lh*Tg 5 (l/", Iun7 ) < Lh*T3CS,
Similarly, denoting g™ = g—Z(u”, -), for any n > 0, and repeating the steps above, we can prove
that
n+1 n n+1 n+1 n|(3 6F n+1 n ’ 3,3
Dp=(9""",9")=Dn~(g ) < Li-llg" =g" I3 = L7 || - (" ") || < LG
where C), > 0 exists due Assumption [3.5]
Set k== C3 + C’g > 0. Then,
Dy (v™, ") — D (™ ™) 4 Dy (p™, p™ ) — Dy (ut u™) < kL. (32)

Hence, using Lemmal[A.T] (32) and Assumption[3.5] estimate (30) becomes

1 N—-1 1 N—-1 1
n+1 n 0 0
NI<anov ,N;::O/i > <M(supDh(v,V)stupDh(u,ﬂ))

veC neD

N—-1
1 n n n n n n n n
+ o n§=0 ((Dh(v D) — Dy (0T ) + (Di (" p" ) — Dy (u" T )))

(Dn (™ 0™) + Do (™, ™)) + %N (F (N, 1Y) = O, %)

1 1 M
= D 0 D 0 “kLpe +4LpL ) 72 + —.
o (iteug n(v,v )+21€1g n (e p )>+<2m he +4Lp )T +

Minimizing the right-hand side over 7 amounts to taking

1/3
I Dy (v,v°) + sup,ep Dn(p, p1°)
N(rLp- +2LpL) ’

and since §

Nz/s , forany N > 1, it follows that

1 N—1 1 N-1 1 2/3
n+1 n 0 0
NI <N nE:O VLN nE:O I ) < SN2 (3 (Sup Dy (v,v") + sup Dy (p, pt )> X

vel neD
x (kLp+ +2LpL))"? + 2M> .

O

B DETAILS ON NUMERICAL EXPERIMENTS

In this section, we present the additional details of the numerical experiments. We begin by summa-
rizing the implementable versions of the simultaneous and sequential MDA algorithms introduced
in Section[d] We now turn to Algorithms (3)) and (@) in the setting where F corresponds to the GAN
objective introduced in Example [T.2} Recall that F' takes the form

Fw = [ [ ] Datw) (ot - ) @pmiamutan)
/ /L / D (3) (Toke) () (@)~ | / D)€ (dy)u(d)

18
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Algorithm 3: IMPLEMENTABLE SIMULTANEOUS MDA

Input: objective function F) initial measures (19, u°), stepsize 7,y > 0, time horizons K, N
and number of particles J

s 0 y0\/ 0 ,,0
Generate i.i.d (X9, )j:1 ~ (0, 1%
0 yvo\/ _ (x0 yo0)’

Set (X70,Yj0) 1y = (X75Y7)
forn=0,1,...,N —1do
fork=0,1,..., K —1do

Generate independent Gaussian random variables /\/j”k

forj =1,2,...,Jdo

n n OF (.n ,n n 2y

X1 = X3 = VS (™, X7) + 4/ 3
VI =Y +AVEEwn pn Y ) + /2N
J,k+1 7.k Y Sp 7# s Lk T 7 Vik

forj=1,2,...,Jdo
| XG50 =Xk Vi =Yk

n J n J
|V = %Zj—l 5X’-”’ = %Zj:l Jy’
Output: (% Zn oV N Zn o M )

Algorithm 4: IMPLEMENTABLE SEQUENTIAL MDA

Input: objective function F, initial measures (v, u°), stepsize 7,7 > 0, time horizons K, N
and number of particles J

J
Generate i.i.d (X§,Y} )J L~ %)

0 yo0 0 y0y/
Set (XJO’YJO)J 1 (Xj’yj>j:1
forn=0,1,...,N —1do
fork:O,l,...,K—ldo
Generate independent Gaussian random variables N1,
forj=1,2,...,Jdo

L JkJrl_XJn,k_’yvgy( XD+ ik

forj=1,2,...,Jdo
n+1l _ n
| X759 Xa,

+1 _
yn = 7 Z]:l X;0+1
fork=0,1,..., K —1do
Generate independent Gaussian random variables /\/j”k

forj =1,2,...,Jdo
L ]7k+1 —Y;k-‘r’)/véF( n+17lu 7}/jnk)_|_ Jnk

forj=1,2,...,Jdo
1
[V =Y

n J
| W= K by
Ol.ltpllt: (% Zn 0 l/nJrl’ N Zn oM )

By Definition [T} we have
St = [ Duw) ) @y,

19
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V:U'v //Duz TO#& dy da /Duz

The flat derivat“’es can be approximated using empirical averages. For a batch of real data
{gral L gl ~ £ we have

/D MZD (ereal).

For the term in & (1/ 1, w) that involves integration with respect to both v and the generated data
To#E, we appr0x1mate via sampling as follows. We sample

N M
{6 62 9~y {Zi(])}_i1 ~ Ty #E,

leading to the estimator

[ [ Dot @) (pwian) < LS b, (x0).

=1 j=1

Analogously, for 3£ (v, 1, 0) we sample

and approximate

[ [ Petw) ) @ty < LSS

1=1 j=1

To mitigate the computational cost of Algorithms and (@), we follow the approach of (Hsieh
et al., 2019) and employ Langevin dynamics with exponential damping (see also their Algorithm
3). Below, we present this algorithm in both the simultaneous and sequential variants used in our
experiments.

Algorithm 5: SIMULTANEOUS MDA-GAN

Input: Initial parameters w®, 6°, step sizes {y"}_}, {7"})_}, time horizon { K™

averaging parameter 3 € [0, 1], source probability measure &
forn=0,1,...,N —1do
Set @™, w§ = w" and 0", 0 = O™;
fork=0,1,..., K; — 1do
A={Z1,....Zu} ~ Ton#&;

N-1
n=0 >

n o _gn_ " 29"\ .,
b =0 — 37 Vo > Dun(Zi) + N
Z;,€A

B = {é{eal7 . redl} €
B/ = {Z{, e Z]\f} ~ Tgn#g;

n n ,.Yn Vn Teal 27” n
Wy = Wy + MV“’ Z Dy (Z;) - MV“’ Z Dy (& )+ kS
Z!eB’ &eB
| @' = (1= B)a" + Buwyyy, 0" = (150" + B0y

wn+1 — (1 _ B)wt + Bu—}n7 9n+1 — (1 _ B)Hn + Bén;
N HN

Output: w

In all experiments, we closely follow the specifications from (Hsieh et al. |2019). We adopt the
gradient-penalized discriminator of (Gulrajani et al., |2017) as a soft-constraint alternative to the

20
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Algorithm 6: SEQUENTIAL MDA-GAN
N—-1 N-1

Input: Initial parameters w®, #°, step sizes {7”}5;01, {T"},—y , time horizon {K™},' .
averaging parameter € [0, 1], source probability measure &

forn=0,1,...,N —1do

Set @, w} = w” and 6", 0 = ™

fork=0,1,...,K; —1do

A=A{Zy,....Zu} ~ Tor #&
" n " 29"
L= 0~ 1190 Y Dunz) 4 AT
Z,€EA
| 0" = (1= )"+ B
"t = (1 - B)o" + BO™;
fork=0,1,...,K; — 1do
B={e,... e} ~ &
B ={Z}..... 2} ~ Tyun#é:
n n, v real 2"\
Wet1 = Wi + MV“’ Z Dy (Z;) - MV“’ Z Dy (& )+ T kS
Z;EB/ §EC“IEB
| 0" = (1- 80" + Buf,y;

L wt = (1= B + pu”;
Output: w6V

original Wasserstein GAN formulation to increase stability. The gradient penalty parameter is set to
A = 0.1. For our Simultaneous and Sequential MDA-GANSs, we fix the damping factor to 8 = 0.8.
The scheduling of the parameters K™, 4", and 7" is K™ = [(1 + 107°)"], 4™ = v(1 — 107°)",
with v = 0.01, and 7 = 7(1 — 5 x 107°)~%, with 7 = 100. The number of samples per batch
is M = 1024. For both the 8-Gaussian mixture and Swiss Roll datasets, we use fully connected
networks for the generator and discriminator, each consisting of two-hidden-layers with J = 512
neurons on each layer. The generator and discriminator networks use ReLU activations, except for
the output layer of the discriminator, which employs a tanh activation. All network parameters are
initialized from a normal distribution A/(0, 0.01).

Snapshot at iteration 0 Snapshot at iteration 500 Snapshot at iteration 1000 Snapshot at iteration 2000

Real data
Generated data

X

Real data ‘I« Realdata
. + Generated data Generated data

Real data
Generated data

1o —05 00 05 1

(a) Iterationn = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 3: Simultaneous MDA-GAN (Algorithm learning the Swiss Roll

C PROOFS OF ADDITIONAL RESULTS

In this section, we present the proofs of the additional results of the paper. We start with the proofs
of Lemma[A-T]and Lemma[C.I] which play a key role in proving the main results. Then we continue
with the proofs of some auxiliary results.
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Snapshot at iteration 0 Snapshot at iteration 500 Snapshot at iteration 1000 Snapshot at iteration 2000
: « Real data 3 + Real data o Real data
2 + Generated data | + Generated data 2 + Generated dat \
1 - .

] ool %« Real data a

o » Generated data

15 -1o -05 00 05 10 15 1 o 1 2 3 -1s -lo 05 oo 05 10 15 “1s -lo -05 oo 05 10 15

(a) Iterationn = 0 (b) Iteration n = 500 (c) Iteration n = 1000 (d) Iteration n = 2000

Figure 4: Sequential MDA-GAN (A]gorithm@) learning the Swiss Roll

Training Progress Training Progress
1.2 —— Simultaneous MDA-GAN —— Simultaneous MDA-GAN
10l I — Sequential MDA-GAN 201 | —— Sequential MDA-GAN
o o
M.;‘ 0.8 M_,:‘ 1.5
%t oe k3
= = 10
£ 04 3
0.2 031
0.0' 0_0_
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
lteration n Iteration n
(a) 8-Gaussian mixture (b) Swiss Roll

Figure 5: L!-Wasserstein distance between generated and real data for the 8-Gaussian mixture and
Swiss Roll
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C.1 PRrROOF OF LEMMAI[AT]

Proof of Lemma[A1} We will only prove the lemma for scheme (I)) since the argument for (2) is
almost identical. From L, -relative smoothness and the definition of "% in , forany v € C, it
follows that

F 1 1
F" ™ ™ < F(v™, ,u")—l—/ 6(V",u",x)(u”+1—y")(dx)+( +L,— ) Dy (v vm)
x Ov T T

oF 1 1
< F(Vn,/l,n) +/ f(V”,M”,fL')(U _ l/")(dl') + th(M V") 4 (Lu _ ) Dh(V7L+1,U7L).
x Ov T T

Setting ¥ = ™, we obtain that

1
P w0ty < PO, i) + (LV - ) Da(v™ 0™,

Recall L := max{L,, L, } > 0. By assumption, 7L < , and so we get
1
;Dh(unﬂ, ") < F(u",p™) — Fo™ ™, p") < /Lpy/Dp(vntlvn),

where the last inequality follows from Assumption Hence, since Dy, (v, v™) > 0, for all
n > 0, we obtain that
Dh(l/nJrl, Vn) S 4LFT2.

From L,,-relative smoothness and the definition of x"*! in , for any i € D, it follows that

F™, p"th) > F(v", p )+/ St y)(p oy )(dy)—<+Lu—) Dy (p™ ™)
x o T T
n n 6F n n n 1 n 1 n+1 n
> F(™, u") + T(” T y) (e — ™) (dy) = =Dp(p, p™) = ( Ly — = ) Dp(p"h, p™).
x Op T T

Settlng M - ILL 5 we ()btaln that
F n n+1 F n n [ n+1 n
(V ) ILL ) >— (U ’ lu’ ) ( 12 ) D l(/’L I /’L )

Using again the assumption 7L < %, we get

1
o Dn(u™ ™) S P, p ) = F", p) </ L/ Du(u 1, ),

where the last inequality follows from Assumption Hence, since Dy, (u"*1, u™) > 0, for all
n > 0, we obtain that
Dy(p"+h, p") < ALp7®.

O

C.2 PROOF OF LEMMAI[CT]

Lemma C.1 (Three-point inequality). Let Assumption [[ 1| hold. Let G : & — R be convex and
admit flat derivative on €. For all i € &, suppose that there exists v € £ such that

v € argmin{G(v) + Dp(v, )}
ves

Then, for any v € £, we have

G(v) + Dp(v,p) > G(v) + Dp(v, ) + Dp(v, ).

Proof. From Definition[T.2] we have

oh

— (1, y)(v — p)(dy),

Dy (v, ) = h(v) — h(p) — 7
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and hence, for any p € K, and all y € X Lebesgue a.e., we have

SDn oh oh
v LRV

=5, 7y) - @(u,y)-
Therefore, for any p € IC, we have that

Doy 49) = Datwsi) = Do) = [ (b)) | =)t
= Dulos ) = Dl — [ o) = 2))+ [ 5o = o))
= )=o) = [ =i + [ G - )
- [ S - o+ [ Fne- o)
— ()=o) = [ S )= )d)
— Da(v, ).

Given p € K, if we denote g(v) :== G(v) + Dy (v, u), then by linearity of flat derivative, we further
obtain that

Dy(v,7) = Dg(.y+py ()W ) = Dg(v,0) + Dp, (..,y v, 7) = Dg(v,0) + Dp(v, ) > Dy (v, D),

since D;(v,7) > 0 by convexity of G. By optimality of 7, the first-order condition 22 2(v,y) =
constant holds for all y € X Lebesgue a.e., and hence

9(v) = g(7) = Dy(v,7) = 0.
Therefore, we obtain that
9(v) = g(7) + Dy(v,v) = g(¥) + D (v, 7),
which is the desired inequality. O

C.3 PROOFS OF AUXILIARY RESULTS

In this subsection, we start by establishing two results: one concerning the verification of Assump-
tion[2.1land the other on the uniform boundedness of the second-order flat derivatives of F.

Lemma C.2 (Verification of Assumption for h relative entropy). Suppose that there exists
Cry > 0and Cpy > 0 such that, for all (v,u) € C x D, and all (z,y) € X x X, it holds
that SE

67(1/7#735)

S CF,IM

oF
M(V’u’y)‘ S CF,,un

Take h to be the relative entropy, i.e., h(v) = [, log :gg v(dz), where v, m € P(X) are absolutely

continuous with respect to Lebesgue measure on X and 7 is fixed reference probability measures on
P(X). Then Assumption|2.1|is satisfied.

Proof. Since h is the relative entropy, it follows from Example that Bregman divergence is in
fact the Kullback-Leibler divergence. Then, from Definition we have

B/ p) = F(v,p)| = [F(V', 1) = F(v, i) + Fv, i) = F(v, p)
< \F(V' M/) *F(V WO+ |F (v, ') = F(v, p)]

(v+e( —v), i, z) (v —v)(dx)de

7& (v, pte(p —p),y) (W — p)(dy)de

S CF,Z/ TV (V/7V) + CF,;L vV (,LL/,,LL) )
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where the last inequality follows since F' is assumed to have bounded first-order flat derivatives by
Cru,Cr, > 0, respectively. The conclusion follows by squaring both sides and applying Pinsker’s

inequality, that is, TV?(v/,v) < 2 KL(V/,v). O

We show that, under Assumption|l.5|and 1.6} the second-order flat derivatives ‘; £ ‘Z £ are non-

negative and bounded above by g h g h multlphed by the respective smoothness constants.

Lemma C.3 (Uniform boundedness of second order flat derivatives of F'). Let Assumption[1.3]
and (1.6l hold. Suppose that v — F(v,u), u — F(v, ), and h admit second-order flat derivative
(cf. )on C, D and &, respectively. Then, we have

0< /1 / /E/ (j:—g (v+n0 —v),pz,2) —v)(da)dn(v' — v)(dz)de
<1, / / / 51/2 Wt —v),z,2') (v — v)(da)dn(' — v)(dz)de,

_/O /X/OE/X (;7];(%#4-77(// — ), y,9) (0 — ) (dy)dn(p' — p)(dy)de
1 c 9
= L#/O /X/O /X %(M‘F??(l/ — )y, ) (1 — p)(dy)dn(i — p)(dy)de.

Proof. We observe that combining relative smoothness and convexity for v — F(v, u) gives that
for some L, > 0, any v,v/ € C and any p, i’ € D, we have

OF
0<FW,u)—F(v,p) — /X E(V’M’ z)(v' —v)(dz) < L,Dy(V,v). (33)

Since v +— F(v,p), p — F(v, 1), and h admit second-order flat derivative (cf. (40)) on C,D and
&, respectively, from (33)), we obtain

og/l/ // f;—lj(y—l—n(l/—u),,u,:mx') (' — ) (da')dy (' — v)(dz)de

<L, / / / / (v+n(/ —v),x,2") (V' —v)(da")dn(v' — v)(dz)de.

The analogous inequalities are similarly obtained for relative smoothness and relative concavity. [

When F is strongly convex- strongly -concave relative to h and Assumption [1.1] holds, it can be
shown that (v*, u*) is the unique MNE of (1] . (see the proof of (Lascu et al.| 2025, Lemma A.5)).
Moreover, based on relative convexity-concavity of I, we prove in Lemma u that the NI error
satisfies a type of “quadratic growth” inequality relative to h.

Assumption C.4 (Relative convexity-concavity). Assume that, given {,,,¢,, > 0, the function F' is
¢, -strongly convex in v and {,,-strongly concave in i relative to h, i.e., for any v,V € C and any
w, 1’ € D, we have

oF
DF(~,M)(V/?V) = F(V/au) - F(MM) _/ E(Vvﬂ‘ax)(l/ - V)(d.’l,‘) Z EVDh(Vlay); (34)
X

!/ ! §F ! !
Dpg,y(W,pn) = Fv, ') — F(v, p) — /X @(V,u,y)(u —w)(dy) < =L, Dp(p'sp).  (35)

Lemma C.5 (“Quadratic growth” of NI error relative to h). Suppose that Assumption[l.1|and
hold. Then, for all (v, u) € C x D, it holds that

NI(v, ) 2 £(Dp(v,v") + Da(p, 1%))
where { == min{¢,,(,,}.
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Remark C.6. We refer to Lemma as “quadratic growth” of NI error relative to h due to the
similar notion of quadratic growth of a convex function relative to the squared Euclidean norm on
R? (see e.g. (Anitescu} 2000)).

Proof. Let (v,u) € C x D. Since F is ¢,-strongly convex in v and £,-strongly concave in g, it
follows that

OF
Fo) = Fi) 2 [ 50 ) = ) da) + 6Dy (0s),
X
oF

F*,p) - Fv*,p") < . @(V*,u*,y)(u — 1) (dy) = L Dn(p, p1*)-
Since (v*, 1*) is the MNE of F, we have

oF

S (v*, u*,y) = constant,
v

v x) = constant, —
) /”L ) ) 6/1,
for all (z,y) € X x X Lebesgue a.e. Hence, adding the inequalities above and using the definition
of NI error, we get
NI(v,p) = €(Dp(v,v*) + Dn(p, 1*)) -
O

By Lemma the time-averaged iterates (% Zﬁ[;ol v % Zg;ol u") converge in Bregman di-

vergence to the unique MNE (v*, 11*) of (L)) with the rates proved in Theorem [2.4]and Theorem [3.6]
respectively.

We now check that the condition sup,,cc Dy, (v, v°)+sup,,cp Dp (11, 1°) < oo required in Theorems
[2:4]and [3.6]is satisfied in the specific cases of Examples @ and[T.4]

Lemma C.7. Let h denote the relative entropy from Example B and set E5 = C U D. Suppose
Vo, to € Ea, and assume there exists C1,Co > 0 such that, for all v, € P(X),
OF oF
7(1/’“’.) ‘(I/,,U/,') SCQ
H ov op Lo (X)

gcla ‘

Lo (X)
Then the iterates produced by Algorithms (]ZI) and (|Z|) remain in Eg, i.e.,
(zx",,u")n20 C &s.
Furthermore, they satisfy the uniform bound
sup KL(v, %) + sgg KL(u, 1°) < 68 + 270 + 27C5.
o

vel

Proof. We provide the proof only for Algorithm (I)), as the argument for the other algorithm is
essentially the same. Using the flat derivative formula (@), the first-order optimality condition (Hu
et al., 2021, Proposition 2.5) applied to (v™**, u™*1) in Algorithm (1) gives

m(x)
1 (y) ) oF £ 1)

) 108 Ty = T (00,0 y) —log [ e Ty W)y,

vi(z VO (z _p8F (0,0 0y ,0(y
log Tr((x)) —log (z) _ 77%(1/0,u0,x) —log er s (7m0, )—W((x))ﬂ(x)dx,
log

for all z,y € X a.e. Taking the sup-norm on both sides over z, y and using the assumptions gives

1 .

logy() §25+2T01,
() ()
1 .

log L() <28+ 2705,
7(:) Lo (X)
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and inductively, (v, u™), o C Eg. Therefore, for any (v, p1) € &g,
(

hence the conclusion. O

Lemma C.8. Let h denote the x*-divergence from Example and set F, = C U D. Suppose
v, o € Fy, and assume there exists Cy, Co > 0 such that, for all v, jn € P(X),

oF oF

il . < . .
6]/(1/7:“7 ) 017 5M(Va,u7 )

< Cs.
L3(X) L7(X)
Then the iterates produced by Algorithms (|Z|) and (|Z|) remain in J), i.e.,
", “n)nzo C Fy.
Furthermore, they satisfy the uniform bound

v() O

() 7()

2

1) K0

m()  w()

VEC

_|_7Sup §477+’7'Cl+’7'02.

12(x) 2 pep

2(x)

Proof. We provide the proof only for Algorithm (T)), as the argument for the other algorithm is
essentially the same. The first-order condition (see e.g., (Bonnans & Shapiro, 2000, Section 5.1.1))
shows that for a.e. z,y € X,

0F , v o 1 /dvt d® dut
o~ 4= () 2N >0, veee
<5V(Vau7)+7_<dﬂ_ dn a(b dn Lz_ ) ¢€ )

OF o o 1 /dpt  dp? du!
- B [P _ = >

where (-, ) ;2 is the inner product on L2 (X), and € is the nonempty closed convex set defined by

¢= {c/) € L2(X)|¢ > 0 m-ae. on X and /qb(m)ﬂ(dx) = 1} :

Define the projection map Il¢ : L2(X) — € such that Il¢ (o) = argmingce [|¢ — @l 12 () for all
¢ € L2(X), which satisfies

TI(g) — ¢, ~TI{g))y2 20, VoeC

Then

)
dpt du® OF 00
iy S el 3.
dn ¢ ( d +7 5H( s, )
Note [[TTe(¢1) — Me(w2)llr2(x) < [lor — @2llrz (xy forall 1,00 € LZ(X) (see e.g., (Ciarlet,
2013} Theorem 4.3-1)). Moreover, since d” =1l ( 0) duw’ _ =Il¢ ( ) forae. z,y € X,

dr ) dm
dvt dv? OF
' I ’ +7 ( 7p’ ) <n+ TCla
dmllpz )~ Hdm iz e Nl oV 12 (4)
OF
T Y e
dm || 2 L2(4) o L2(A)
and inductively, (v", )nZO C F,,. Therefore, for any (v, u) € F,
1 lw( 0112 1] - 01
v 00 st O et ee
2|m() () L2(X) 2||=() () L2(X)
hence the conclusion. O
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D VERIFICATION OF ASSUMPTION [1.5][T.6],2.1] AND [3.5] FOR EXAMPLE@

In this section we verify that Assumption[I.3] [[.6] 2-1] and[3.3]are satisfied by the objective function
F in Example[T.2}

Proposition D.1 (Verification of assumptions for Example . Let Y, Z C R with € € P(Y)
and ¢ € P(Z). Suppose Ty : Z — Y is measurable with @ € © C R% _and D,, : Y — Ris
uniformly bounded and measurable with w € W C R%. Then Assumpttonsn . hand . are

satisfied by the objective
F(v,p) ::/ / (6, w)v(dd)u(dw)
wJe

Jfrom Example[I.2]
Proof. By Definition [FI]

(v, 1,0 / f(0,w)u(dw),
and

(v, p,w / f(0,w)v(dh).

Therefore, Assumption [T.3]holds w1th equality, and Assumption [I.6|holds with equality with L, =
L, = 0. Since D,, is uniformly bounded by some Mp > 0, we have

1001 = [ Duto) (T~ €) a)
< /y 1D (4)] (To€) (dy) + /y 1D, (4)| £(dy) < 2Mp,

where the last inequality holds because £ € P () and, since ¢ € P(Z), we have Ty#¢ € P(Y).
Therefore,

P/ ) = Flv, )| = [FO/ ) = F/s ) + F /) — P, )
< [ [ 10w @i  pigaw)

+ [ 1o = vi@uaw)

<4Mp (TV(/ ,v) + TV (', 1)),

since TV(m/,m) = 1 [ |m’ —m/|dx for all m € P(X) by (Tsybakov,[2008, Lemma 2.1). Squaring
both sides and applylng Remark 2.2 yields

|F(V/a:u,) - F(”?M)l < 8M% (Dh<V/’V) + Dh(u/nu)) )
forall v/, i/, v, u € P(X). Hence, Assumptionholds with L = 8 M3 . Finally, we have

\F(v,1)| < 2Mo, “;Fw, 9)‘ < 2Mp, ‘ff(u,u,w)’ <2y,
v 1

forall v,u € P(X)and all § € 6, w € w. Hence, Assumptionholds withM =C, =C, =
2Mp. O

E EXAMPLE: ADVERSARIAL TRAINING OF MEAN-FIELD NEURAL
NETWORKS

Let Y C Rand Z C R?! be compact with 1 € P() x Z) representing the training data (y, z) €
Y x Z. Let (w,b) € R¥~! x R be the parameters of the neural network and let ¢ : R — R be
a bounded, continuous, non-constant activation function. For z := (w,b) € R? and z € R?"1,
define the function ¢(z, z) = £(b)p(w - z), where £ : R — [—K, K] is a clipping function with
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clipping threshold K > 0. The training of the two-layer neural network aims to find the optimal set
of parameters {z;}¥.; which minimize the non-convex L2-loss function

1
F](\)/(:Ela"'a'IN) = 5/
R

Instead of solving the non-convex minimization problem (36), we lift it to space of probability
measures and consider the mean-field optimization problem (see e.g. (Hu et al., 2021, Section 3)
and the references therein)

fi(dy, dz). (36)

1

min F°(v), with FO(v) == = / ly — EX~[3(X, 2)] |2 fi(dy, dz).
vEP(RY) 2 Jyxz

To account for potential attacks by an adversary aiming to manipulate the training data /i, we min-

imize over the parameter distribution v, considering the “worst-case” perturbation of fi. This leads

to the following mean-field min-max game

i FO>u, ) — TV (i, o), 37
L nin, e (v, 1) oy (37)

where TV? denotes the squared total variation distance, which represents the cost incurred by the ad-
versary to alter the original training data /. The resulting objective F'(v, i) = FO(v, 1) —TV?(, 1)
is a non-linear function covered by our general framework. The choice of the incurred cost in
is, to an extent, arbitrary, and we focus here on TV? due to its convenience for verifying our as-
sumptions. Alternative cost functions include the Wasserstein distance (Bai et al.l 2023} |Trillos &
Trillos,2023)) and the KL divergence (Si et al., 2023)).

Proposition E.1 (Verification of assumptions for Example . Let Y C Rand Z C RI¥! pe
compact with fi € P(Y x Z). For x := (w,b) € R and z € R let p(z,2) = L(b)p(w - 2),
where { : R — [— K, K] is a clipping function with clipping threshold K > 0 and ¢ : R — Risa
bounded, continuous, non-constant function. Then Assumptions [[.5] [.6] 2.1} and[3.3] are satisfied
by the objective

=5 [y B ) . d2) - TV ).

Proof. Observe that by linearity of the expectation in v and convexity of | - |2, the function

P p) = /y =B ) )

satisfies the flat-convexity condition
FO((]' - 5)1/ + EVIMU’) S (1 - €)F0(Va /u’) + EFO(Vlvu)a

for any v,v/ € P(R?), u € P(Y x Z) and any ¢ € [0, 1]. Hence, by (Hu et al., 2021, Lemma 4.1),
v F(v, p) satisfies Dp(. ,)(v',v) > 0. Again, by convexity of | - |2, it holds that TV? is convex,
that is,

TVH (1 —e)p+ep'sf) < (1—2) TV, o) + e TVZ(i', ),
for any p, i/ € P(Y x Z) and any € € [0, 1]. Also, by linearity of F° in 1, it follows that F satisfies
the flat concavity condition

Fu,(1— )+ ep) > (- &) Fv,p) + eF (v, ),

forany p/, pu € P(Y x Z), v € P(R?) and any ¢ € [0, 1]. Hence, by (Hu et al., 2021, Lemma 4.1),
p = F(v, ) satisfies D, ) (¢, 1) < 0. Therefore, F' satisfies Assurnption

To verify Assumption it is enough to show that for all v/, v € P(R?), u € P(Y x Z) and all
x € R4,
SF

OF
— ( - < !
5 V', u,x) 5 (v,p,2)| < Cpr TV, v)

29



Under review as a conference paper at ICLR 2026

since by Definition [F.1] this implies

PO/ = P = [ G a)( = v)(do)

- / /. (‘fj(we(u' V) - ‘fi(u,u,x)) (v — v)(de)de

1
< 2CF/ TV +e( —v),v) TV, v)de
0

1
<20p / eTV3(V,v)de

0
o 2/ Cr ’
*OFTV (Val/) < 7Dh(y al/)a

where the last inequality follows from Remark 2.2} Thus, Dp. ) (v/,v) < L,D ( v) in As-

sumptionmholds with L, CF . The same argument applies to Dy, .y (1, 1) > =Ly Dy (', 1)
in Assumption [I.6]

Note that 5F
Sme) == [ (- EXp(X.2)]) (o ldy, ).
v VXZ
Since ¢ is bounded by M, > 0, we obtain

5F oF
‘(SV(V ,u,x) - 67(1/3,“'7

)| < / / 16z, 2)| [V — v] (dz) |$(z, )| u(dy, dz)
YVxZ JRA
2 2
<2K°MZTV(V,v).
Thus, L, = KQMEJ.

Letr := (y, z) € R?, and assume for simplicity that both y, /i are absolutely continuous with respect
to Lebesgue measure. We claim that

op

for i # fi a.e. Fix [i. For any p/, any p # i a.e., and any € € (0, 1), (Tsybakov, 2008, Lemma 2.1)
gives

(o) = 5 siem () — (1)),

lim ~ (TV (s + (' — 1), ) — TV (1, )

e—=0 ¢

~ lim - / (lu(r) = f(r) + (' (r) = p(r))] = |p(r) = a(r)]) dr.
Rd

e—0 2¢

Since | - | is differentiable at every v # 0 with derivative sign(v), we obtain by dominated conver-
gence

tim L (TV (£’ — ), ) — TV, ) = 5 / sign (u(r) — () (4 (1) — () (dr).

e—0 ¢

To justify dominated convergence, note that for every r, the reverse triangle inequality gives

() = i) + (' (r) = p(r)] = |u(r) = )|
| ( ) ( ) ( ( )E §|u'(r)—,u(r)|€L1(Rd).
If 4 = fi a.e., then the map R 3 v — |v] is not differentiable at v = 0 but its subdifferential is the
interval [—1 1] Hence, the subdifferential of TV at such measures is the interval [—3, 1].

Finally, by the chain rule,

4 TV2('a /j[/)
op

STV(-, 1)

(/J, ) - 2TV( ) 5# (Iu7r)7
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and we immediately see that M(

STV2(-, 1) (or) = {TV(M7 Q) sign (u(r) — a(r)), p#pae.,

w,7) = 0if u = ji a.e.. Hence, combining both cases,

o 0, p=jae.
Consequently,
oF 1 Xeouia 2 N N
E(V’ o) = 5 |y =BG 2)][7 = TV (e, o) sign (u(r) — fu(r)) -
Hence,

= [TV (i, ) sign (1 (r) = u(r)) = TV (p, o) sign (u(r) = i(r))] -
(38)

SF, . OF
’5“](1/;/17)_5'“/(1/’“77")

If sign(p/(r) — fa(r)) = sign(u(r) — f(r)) > 0 a.e. or both are < 0 a.e., then becomes

§F, §F . X
‘5/1 (v, 1y 7) 5N(V7u,7“) TV (', f1r) = TV (p, 1)
1

5| ) =tar = [ ) = ir)ar
< TV(u', p).

If sign(p/(r) — fi(r)) > 0 a.e. and sign(u(r) — f1(r)) < 0 a.e., or vice versa, then becomes

oF OF

5# (V’ :u/’ 7‘) - E(M s T) TV( ) + TV(M /’L)

=5 [ =+ [ )= i) ar

5 [, - ())dr+2/w(ﬂ() p(r) dr
< TV, p).

Thus, L, = %
To verify Assumption [2.T]and[3.3] note that

\” < / ly — EX[p(X, 2)]| [6(, )] p(dy, d)
YVxZ

E(Vnuﬂx)
< KM, (ny + KM,) = C,,

where
py = [ lolu(dyde) < oc
VX Z
since ) X Z is compact.
Similarly,
‘ SF

S )| = |5 by = EYRCE I = TV ) s () ()

<1+ % (diam(Y) + K M,)* == C,,
since Y is compact and TV (p, i) < 1.
Forv/,v € P(R?) and i/, p € P(Y x Z),
P ) — Flw, )| = [F (1) = Flo, 1) + Flo, ) — F(w, )|
<\F(V' W) = Fv,p")| + [F (v, i) = F(v, p)

6—F (v+e( —v), i, z) (v —v)(dx)de

— Wpte(p —p),y) (W — p)(dy)de

X
<20 TV( v)+2C, TV (', ).

31



Under review as a conference paper at ICLR 2026

Squaring both sides and using Remark [2.2] gives that Assumption 2.I] holds with Lp =
8max{C?,C~}

For Assumption [3.5] observe that

—_

P < 5+ 5 (@iam(Y) + K M) = M,

[\V]

since ) is compact and TV (u, i) < 1. O

F DIFFERENTIABILITY ON THE PRIMAL SPACE

In this section, following (Carmona & Delarue, 2018, Definition 5.43) and (Santambrogio, 2015}
Definition 7.12), we introduce the notion of differentiability on the space of probability measure
that we utilize throughout the paper.

Definition F.1. For any X C R% let K C P(X) be convex. A function F' : P(X) — R admits
first-order flat derivative on IC, if there exists a measurable function % : K x X — R such that, for

any v,v' € K, there exists C > 0 such that, for all v € X, we have ‘%(1/, x)| < C, and it holds
that
F f— - F oF
lim ZW W =) = F) _[OF ) g, (39)
=0 € x OV

The functional % is called the flat derivative of F' on K. We note that ‘35—1; exists up to an additive
constant, and thus we make the normalizing convention [, ‘;—5 (v, z)v(dx) = 0.

If, for any fixed x € X, the map v — %(V, x) satisfies Definition , we say that F' admits a
second-order flat derivative denoted by f;Tf. Consequently, by Deﬁniti there exists a measur-
able functional ‘E;TIZ K x & x X = R such that

1 6*F

;gng)g(ff;m»s(u'—v),x)—5V<u,x>)= [ (/=) @), @O

G DIFFERENTIABILITY ON THE DUAL SPACE

In this section, we start by recalling the notions of Fréchet and Gateaux derivative for functions
H : By (X)— X, where (By, (X), || - ||) is the Banach space of real-valued bounded measurable
functions on X C R? and (X, || - ||x) is a normed vector space; see e.g. Chapters 7, 1, 3 in (Alipran-
tis & Border, [2007; |[Ambrosetti & Prodi, (1995} |Ortega & Rheinboldt, [1970), respectively. Based
on these notions of differentiablity, we will introduce the notions of first and second variation for
functions H.

G.1 PRELIMINARIES ON FRECHET AND GATEAUX DERIVATIVES

For X C R% let £ (B, (X),X) and £ (B, (X)) denote the space of continuous linear maps from
By, (X) to X, and from By, (X) to itself, respectively.

Definition G.1 (Fréchet differentiability). Let U C By (X) be open. Given f € U, the function
H : U — X is Fréchet differentiable at f if there exists T € L(By(X),X) such that, for all

g € Bb(X),
15 (f+9)—H(f) =T (9)llx

llgll oo —0 19/l

If it exists, the map T is unique, we write T = NV xH(f), and call V  H(f) the Fréchet derivative
of H at f. If H is Fréchet differentiable at every f € U, then we say that H is Fréchet differentiable
onlU.

Example G.2 (Convex conjugate of entropy). If h is the entropy, then a straightforward calculation
directly from Definition[3.1| shows that its dual h* is given by

R*(f) = log (/X ef(z)dz> .
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Example G.3 (Fréchet derivative of entropy). From Definition|G.1|and following the argument from
(Kerimkulov et al.| 2023, Proposition 3.9), we can show that h* is Fréchet differentiable on By(X)
with Fréchet derivative given by

f(z)
Vzh*(f)(9) :/Xg(z)feef(z)dzdz’ (41)
x

forall g € By(X).

Definition G.4 (Géteaux differentiability). Let U C By, (X) be open. Given f € U, the function
H : U — X is Gdteaux differentiable at f if there exists T € L(By(X),X) such that for any

direction ' € By(X),

If it exists, the map T is unique, we write T = NgH (f), and call Vg H (f) the Gdteaux derivative of
H art f. If H is Gdteaux differentiable at every f € U, then we say that H is Gateaux differentiable
onlU.

As observed in Chapter 1,3 in (Ambrosetti & Prodi, (1995} |Ortega & Rheinboldt, |1970), if H is
Fréchet differentiable, then it is automatically Gateaux differentiable and the two derivatives coin-
cide, i.e., VxH = VgH. Moreover, (Ortega & Rheinboldt, (1970, Proposition 3.1.6) proves that
Fréchet differentiability of H at f € U implies that H is continuous at f, whereas in the case of
Gateaux differentiability, this does not necessarily hold; see (Ortega & Rheinboldt, |1970, Proposi-
tion 3.1.4).

Following the discussions in (Aliprantis & Border, [2007; /Ambrosetti & Prodi, |1995} [Ortega &
Rheinboldt, [1970), it is possible to extend Deﬁnition@] to higher-order Fréchet derivatives.

Definition G.5 (Second-order Fréchet differentiability). Let U C By, (X) be open and let | €
U. Suppose that H : U — X is Fréchet differentiable (cf. Definition at f, and ad-
mits Fréchet derivative NV xH(f). Then VxH(f) is Fréchet differentiable at f, if there exists
T € L(By(X), L (By(X), X)) such that for all ', f" € By(X),

lim IVNzH (f + ") (f) = VEH()) =T ) ()l x
1£7]c—0 11l oo

If it exists, the map T is unique, we write T' = V%—H (f), and call V%_—H (f) the second Fréchet
derivative of H at f.

Example G.6 (Second order Fréchet derivative of entropy). If h is the entropy, using {#1) and
Sollowing the argument from (Kerimkulov et al.l [2023, Proposition 3.6), we can show that V zh*(f)
is Fréchet differentiable on By, (X') with Fréchet derivative given by

VA = /X o (fl(m) - /X e f;eff(<z)>dzdz> fxeeff((z))dzdx

e/ ()
:/X (g(x)Ag(z)M%dz+/)(g(z)Wdz> «
< (r@- [ re o ) I

x [pel@dz") [, elGdz

of(2) / / ) @)

= [ (o0~ [ oo Smma) (1o - [ 1o Seme) et
Sorall g € By(X), where the last line used the fact that
el (2) ef (@)
/ / fX ef ( / f(z erf(z ) fX ef(z)dzdzdac =0

The motivation behind working with Fréchet instead of Gateaux differentiability is that the higher-
order derivatives in the case of the former could be identified with continuous symmetric multi-
linear maps. As proved in Section 3 of Chapter 1 from (Ambrosetti & Prodi, [1995), the space

=0.
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L (By(X), L (Bp(X), X)) is isometrically isomorphic to Ly (By(X), X) , i.e., the space of continu-
ous bilinear maps from By(X') x Bp(X) to X, and therefore, we could naturally view the second-
order Fréchet derivative of H, if it exists, as a continuous bilinear map.

Furthermore, due to (Ambrosetti & Prodi, (1995, Theorem 3.5), we have that the second-order
Fréchet derivative is always symmetric. On the contrary, the second-order Gateaux derivative is
not necessarily symmetric as noted on page 78 in (Ortega & Rheinboldt, |1970).

Remark G.7. If we replace By(X) with R? and X with R, then the first and second-order Fréchet
derivatives are precisely the gradient and Hessian matrix of H at f.

G.2 FIRST AND SECOND VARIATIONS
Following Chapter 2 from (Abraham et al. [2012), we introduce the notions of first and second

variation for Fréchet differentiable functions H, relative to the duality pairing (5).

Definition G.8 (First variation of H). Let H : B,(X) — X be Fréchet differentiable at f € By,(X).
If it exists, the first variation of H at f is the unique continuous map By(X) > f — %—I; (f) e P(X)
such that, for all g € By(X),

(055} = V=H (o)

Example G.9 (First variation of the dual of entropy). From Example we observe that the first
variation % : Bp(X) — P(X) of h* is given by

Sh* el (2)

—_— dz) = —————dz=.

Assuming that H : By(X) — R is Fréchet differentiable at f € By(X’) with Fréchet derivative
VrH(f), then it is Gateaux differentiable (cf. Definition|G.4) with the same derivative, and there-
fore the first variation of H at f can be characterized as

(55 =tim 2 (1 +c0) = 1 (7). @)

forall g € By(X).

Let f,g € By(X). Forany X € [0, 1], set f* := f 4+ Ag. Then since f* € By(X), forall X € [0, 1],
it follows by that

i & (1 (7 +20) = 1 (1) = (0. 57 (7).

10 € Tof
Since f* + eg = f*¢, it follows by the fundamental theorem of calculus that
! 1 Ate A ! oH A
H(f+g9)—H(f) = hmf(H(f )fH(f ))d)\: g,—(f) dA. (43)
o &lo e 0 6f

With the definition of first variation at hand, we can introduce necessary and sufficient conditions
for H to have an extremum at f € By(X).

Lemma G.10 (Necessary first-order condition on By (X)). Let X = R. Suppose that H : By(X) —
R admits first variation at f. If H has an extremum at f, then it holds that

0H

R — =0.

57
Proof. For a proof, see (Abraham et al., [2012| Proposition 2.4.22). O

Lemma G.11 (Sufficient first-order condition on By,(X)). LetU C By(X') be non-empty and con-
vex. Suppose that H : U — R admits first variation on U and is convex in the sense that, for
all X € [0,1), and all f,g € U, it holds that H (1 —N)f +Xg) < (1 — NH(f) + AH(g). If

%—?(f*) = 0, for some f* € U, then [* is a global minimum of H.

34



Under review as a conference paper at ICLR 2026

Remark G.12. An analogous result can be identically proved for concave functions and global
maxima, so we will give the proof only for the convex case.

Proof. Since H is convex and admits first variation, following the argument in (Hu et al., 2021}
Lemma 4.1), it can be shown that for any f,g € U

H(g) = H(f)+ <g 7 ffj(f>> |

For f = f* and using the assumption that %—?I(f*) =0, we get

H(g) > H(f"),
forallg € U, i.e. f* is a global minimum. O
Definition G.13 (Second variation of H). Let H : By(X) — X be twice Fréchet differentiable

at [ € By(X). If it exists, the second variation of H at f is the unique element %Qfg(f) €
Lo (By(X), %) such that, for all g,g' € By(X),

/ g(x)‘;%(f)(f)(dy ® da)g (y) = VEH()(9)(¢).
XXX

2 2
where 575 (f)(f)(dy © dz) = §H (f)(dz)(f)(dy).
Example G.14 (Second variation of the dual of entropy). From Example we observe that the
second variation éfg t By(X) = L (By(X), M(X)) of h* is given by

52h of(2) ef (@)
52 (Dlg)dr) = (9(50) - /Xg(z)fX ef(z)dzdz> [REICT Ta

Assume that H : By(X) — X is twice Fréchet differentiable at f € B, (X). Then its first-order
Fréchet derivative V  H(f) is Fréchet differentiable at f, and thus it is Gateaux differentiable (cf.
Definition [G.4) with the same second-order derivative. Hence, using Definition [G.8] the second
variation of H at f can be characterized in terms of the first variation as

02H , 1 0H
| @m0 swge) —int (o (50 -50)) @

forall g,g’ € By(X).

Let f,g,9" € By(X). For any A € [0,1], set f* := f + A\g’. Then since f* € By (X), for all
A € [0, 1], it follows by (45)) that

im L (g, (22 oH 5°H ,
15¢ < (5f (f*+ g)_(;f(f/\)>>—/XXX9($)5fQ () (f) (dy ® dz)g (y).

Since f* + g’ = f e, it follows that
§H . OH ! §H .
(o (e -7 )= (o [ i (57 0795 (fk)>dA>
LS| §H ‘)
Ll (o i)

/ /X I 5f2 (£) (1) (dy © da)g' (y)dx,

where the first equality follows from the fundamental theorem of calculus and the second equality

from Fubini’s theorem and the dominated convergence theorem.
Proposition G.15 (Verification of Assumption 3. for entropy). Suppose that X C R is bounded.
Let f,g € By(X) and denote ¢(f)(dx) = ﬁdx € P(X). Then, for h being the entropy, its

second variation ({#4)) satisfies Assumption 3.

(44)
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Proof. Note that the second variation (#4)) can be written as
52h*
e (N0 = (s0) ~ [ s21en)@) plr)ao)
Since o(f) is absolutely continuous with respect to Lebesgue measure on X, it follows that
82h* ., &6%h* B 52n* ., . 6%h*
@) - 56| = [ |50 - G
(90~ [ der)@) et - (90 - [ arotni) ot
x X

-J.

(£)(9)

(d)

dz

_ / 7 @)@ — o)) / 7 (2e(f)(2)dz — g@e(f) (@) + o(f)(@) / 9(2)o(f)(2)dz|dz
X X X

<I + I,

where

I = / 10 @)e(f) (@) — g@)e(f) ()| d,
X

dz,

L= [ o) [ s@etn@ - o) [ 700

and the last inequality follows from triangle inequality. For 17, we observe that
I = /X g/ (@) (f) (@) — g'(@)e(f)(x) + ¢' (@) (f)(2) — g(x)e(f)(z)| dz
< [ W @lle()a) - e@)de+ [ (D@19 @) - glz)] d.
x x

Since f,g" € By(X), there exist C,, Cy > 0 such that |¢'(z)| < Cy and |p(f)(z)| < Cy, for all
x € X. Since f, f’ are bounded on X, following the argument in (Lascu et al., 2025, Lemma A.2),
we deduce that f — ¢(f) is Lipschitz, i.e., there exists L, > 0 such that, for all z € X,

le(f) (@) = () (@)] < Ly |f'(2) = ()]

Hence, I; becomes
I < Cg'Lw/X |f'(x) — f(z)] dz + Cy /X lg'(z) — g(x)| dzx

< maX{Cg'Lwa}/X (If' (@) = (@) + |9 (z) — g(2)]) dz
< max{Cy Ly, CAHXI(If = flloo + llg" — gll) -

Similarly, for I», we have that

L= /X o(f)(@) /X 9(2)e(1)(2)dz - o(f) () /X 7 (o(f)(2)dz
o(f)() /X ¢ el (2)dz — o(f") (@) /X ¢ (o (f)(2)dz|dz

< /X o(f)(@) /X 9(2)0(F)(2) — ¢ (2)p(f") (2)|dadz

+ /X o (1)(@) — o) (@) /X 19 (D le(f)(2)|d=dz

<C; [ 190l - )@z + CCpL, [ 15@) - F@)lds
X X

<y /X 9(2)0(F)(2) — ¢ (o) (2)ldz + Oy Cpr Lol X|[If — .
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‘We observe that
¢ /X 90 (2) — ¢ (2o (f)(2)|dada
=Cy /X l9(2)e(f)(2) — g (2)e(f)(2) + ¢'(2)o(f)(2) — g (2)p(f)(2)|dzdz

< Cf/X l9(2) — g’ ()]l (f)(2)|dzdz + Cf/X 19’ (2)(f)(2) — p(f')(2)|dzdz
<I|XICHG = glloo + |X[CrCy Ly |l f = flloo-
Hence, we get that
L+ I < |X|max{Cy Ly, Cr} (| f" = flloo + 119" — glloc)
+|XICHG = glloo + 1XICCy Lol f = Flloo + 1X|Cy Crr Lyl f = flloo
= |X[max{Cy Ly, Cr} (| /' = flloo + 19" = gll)
+|XICH G = glloo + X[ (C; + Cp) Cyr Ly || f* = flloo
< || (max{Cy Ly, Cs} + max{C}, (Cy + Cp) Cyr Lp}) (I = flloo + llg" = glloo) -

Setting L+ = |X| (max{CgrLg,7 Ct} + max{C%, (Cy + Cy) C’g/L@}) finishes the verification.
O

H TECHNICAL RESULTS ON DUALITY

In this section we state and prove some technical results which are central to the proof technique via
dual Bregman divergence that we developed in Subsection 3]

Proposition H.1. Let Assumption hold. Let h* : By(X) — R be the convex conjugate of h.
Then, the following are equivalent:

1. The supremum of £ > m +— (g*,m) — h(m) € R is attained at m = m*,

2. g*(x) — %(m*, x) = constant, for all x € X Lebesgue a.e.,

3. The supremum of By(X) > g — (g, m*) — h*(g) € R is attained at g = g*,

4. m* = (g),

Proof. (1) = (2): Suppose that (1) holds. Then the supremum of m — (g*,m) — h(m)
is attained at the maximizer m* = argmax,,c¢ {(g*, m) — h(m)}. Hence, by (Hu et al, [2021,
Proposition 2.5), m* satisfies the first-order condition
5h
g% (z) — %(m*, z) = constant,
for all z € X Lebesgue a.e.

(2) = (1): Suppose that (2) holds. Observe that the map m — (g*,m) — h(m) is strictly
concave due to the strict convexity of & and the linearity of m — (g*,m). Then by the converse
of (Hu et al.l 2021}, Proposition 2.5), it follows that m* is the maximizer of the map £ > m —
(g*,m) — h(m) € R, and so (1) holds.

(3) = (4): Suppose that (3) holds. Then the supremum in g — (g, m*) — h*(g) is attained at

a maximizer g* € argmax,¢p, vy {(9,m*) — h*(g)} . Hence, by Lemma|G.10| it follows that g*

satisfies the first-order condition sh

oy

m*

(g7)-

(4) = (3): Suppose that (4) holds. Observe that B, (X) is convex and the map g — (g, m™) —
h*(g) is concave due to the convexity of A* and the linearity of g — (g, m*). Hence, by Lemma
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G.11} it follows that g* is a maximizer of the map By(X) 2 g — (g, m*) — h*(g) € R, and so (3)
holds.

(1) = (3): Suppose that (1) holds. Then, by Definition [3.1] we have that h*(g) = (g, m*) —
h(m*), and equivalently h(m*) = (g,m*) — h*(g). Clearly, P(X) is convex and (P(X), TV),
where TV is the total variation distance, is Hausdorff since it is a metric space, hence we can
apply the Fenchel-Moreau theorem (Zalinescu,, 2002, Theorem 2.3.3) to conclude that h** = h, i.e.,
h(m*) = supyep, (x)1(9,m*)—h*(g)}. Therefore, h(m*) is the supremum of g — (g, m*)—h*(g)
attained at g = g*.

(3) = (1): Suppose (3) holds. Then h**(m*) = (g*,m*) — h*(g*), or equivalently h*(g*) =
(g*,m*) — h**(m*). Again, by the Fenchel-Moreau theorem (Zalinescu, 2002, Theorem 2.3.3),
h**(m) = h(m), for all m € &, and hence h*(¢g*) = (g*, m*) — h(m*). Hence, by Definition [3.1]
the supremum of m +— (g*, m) — h(m) is realized at m = m*. O
Lemma H.2. Let Assumption hold. Let h* : By(X) — R be the convex conjugate of h. Fix
frg € Bo(X) and p,p’ € E.If f(2) = %(u,z) and g(z) = %(u’,z),for all z € X Lebesgue
a.e., up to an additive constant, then

D+ (f,9) = Dn(1', ).

Proof. By Definition[3.3] we have that

Di(F,9) = h*(f) ~ *(g) - /(() () - (9)(d)
= (o) = h) = baup) + 1) = [ () = 9(2) G- (0) (@)
= h(u') ~ h(u) + /X (1, 2)n(d2) - / f i as) = [ () = o)) )

=) = 1) = [ S )0 = () = Da ),

where the second and third equalities follow from Lemma [H.I] and Corollary 3.2} while the last

equality follows from the definition of the Bregman divergence. O
Lemma H.3. Consider (/| (l) and (_2) (I) Let Assumptlon u 1.1\ hold. Let h* : By(X) — R be the convex
conjugate of h. For eachn > 0, fix f*,g" € By(X),v" € Cand "™ € D. If f" = ( " .) and

g" = %Z(;ﬂh -), then, for any n > 0, we have that

Dh(Vn+17Vn):Dh*(fn7fn+1)7 Dh(ynayn+1)_ *(fn+17fn)7
Dy (u"*t,u") = Dp-(g",9" ™), Du(u",u™*') = Dy (9", g").
Proof. First, observe that due to Assumption | the pairs (¢!, " *1) in (1) and (2) are unique.

We will only present the proof for (T)) since the argument for () is identical. The updates in () can
be equivalently written as

v = arg min {/ 6—F(V", px)(v —v")(de) + th(V, V”)}
x OV T

veC
ar%enclin{/ T%( " z)(yyn)(dz)+h(y)h(l/”)/)(gf(yn x)(v—v" )(dx)}
:argenclin ( vt ) ) v—v")(dz) + h(v )} (47)

Z( o x>)” i)
[ (om0 wan -0}
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and

5F 1
‘unJrl = argmax {/ T(anﬂnvy)(:u - :U’n)(dy) - Dh(,u’mun)}
neD T

= arg max {/ Ta v y) (e — ™) (dy) — h(p) + h(p") + /X %(u”,y)(u - u”)(dy)}

neD

oF
—argux{ [ <6(u T ) ) G ) ) | @9)
neD X 1 1%
éh oF
= arg max / ( phy) + T — @ p"y ) p(dy) — h(p }
v { [ (G000 4 750700 ) ) = G
Using the notation f™ = 5—”( ,-) and g" = %(,u", -), for each n > 0, the first-order conditions
for (I) can be equivalently wrltten as
oF
[ @) = (@) = =m0 ), (49)
n n 6F n n
9" y) — 9" (y) = 5 ), (50)

for all (x,y) € X x X Lebesgue a.e. Then using (6), (47) becomes
oF
v" ! = arg max {/ (f"(x) - Té(un,u”,x)) v(dz) — h(l/)}
X 1%

vel
n+1 5h n+1
—argmax ] [ f (@)w(da) — h(v) § = S (£, (51)
vel X 5f
for all n > 0. Similarly, from (#8)), we have that
oh*
n+1 _ n+1 52
7 57 (9", (52)
for all n > 0. The conclusion follows directly from Lemma O

I PROOF OF CONVERGENCE FOR THE MDA IMPLICIT ALGORITHM

In this section, we prove that an implicit Euler discretization of the Fisher-Rao flows studied
in (Lascu et al., 2024) yields a linear convergence rate O(1/N), which matches the result in
continuous-time under the same assumption of convexity-concavity of F' (see (Lascu et al.| |2024,
Theorem 2.3)). However, a major weakness of this implicit game is that it is not implementable in
practice as opposed to (I and (2).

For a given stepsize 7 > 0, and fixed initial pair of strategies (v, o) € C x D, for n > 0, the
implicit MDA algorithm is defined by

Algorithm 7: IMPLICIT MDA

Input: Initial measures (v, o), stepsize 7 > 0
forn=0,1,...,N —1do

S arg min{fX %(V”,unJﬂ,x)(V _ V”)(daj) + %Dh(l/, V”)}a
vel

= argma{ [ SE(wnth, py) (e — 1) (dy) — £Dp(p, ™)}
ne

Output: (% Zg 01 A Z ")

Theorem L.1 (Convergence of the implicit MDA algorithm (7). Ler (v*, u*) be an MNE of (1) and
(v°, u%) be such that sup,,ce Dy (v,1°) 4 sup,ep Di(p, u%) < oo. Let Assumption and
hold. Suppose that TL < 1, where L := max{L,, L, }. Then, we have

N-1
NI <Ji/' Z Z 1) < N (supDh(y, V%) 4 sup Dh(p,uo)) )

n—0 n—0 veC neD
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Proof. Since v + 7 [ %(V”, pu 1 2) (v — v™)(dx) is convex, applying Lemmawith U=
v+ and ;1 = v™ implies that, for any v € C, we have

F F
T i—y(yn, p" Tz (v — v (dx) + Dy (v, ") > T c;—V(V", p" T ) (0T — ™) (da)

+ Dp (V™ 0™ + Dy (v, 0™,
or, equivalently,

oF

E(V”, p" T x) (v — v (dx) — Dy (v, ") < —T/ %(y", p T ) (T — ™) (de)

— Dy (v ™) — Dy (v, v, (53)

-7

Similarly, since p — —7 [ %(V”+l, w™y)(pw — p™)(dy) is convex, applying Lemma with
v = "+l and p = p™ implies that, for any 4 € D, we have
T/ S ) = ) (dy) = D ") < T/@(V Lt y) (e = ) (dy)
= Dy (" p") = D (p, p" ). (54)
Using the convexity of v — F(v, i) in , with v = ™ and p = ™+, we have that

1 oF
F(Vna/u‘n+1) - F(V7 ’unJrl) - ;Dh(ya Vn) < A E(VnhunJrle)(Vn - Vn+1)(dx)

1 1

— =Dy (V" V™) — =Dy (v, "), (55)
T T

From L, -relative smoothness and the fact that 7L < 1, it follows that

F
F(Vn—&-l”un—&-l) < F(Vn“un—&-l) +/ %(V7L7Mn+17x)<yn+l _ V”)(da:) + Lth(Vn+1,Vn)
X

oF 1
< Fv™, p™t) + /X E(V”,,LLHJFI,I')(Z/HJFI —v")(dz) + ;Dh(V”“, V™). (56)

Hence, combining (53) with (56)), we obtain that
1 1
F(Vnﬁun+1)_F(V7 MnJrl)_*Dh(V’ Vn) < F(Vnaun+1)_F(Vn+1a:LLnJrl)_*Dh(Vv Vn+1)'
T T
(57)
Similarly, using concavity of i +— F'(v, ) in (54), with v = v"*! and 1 = p™, we have that
n+1 n+1 n 1 n 6F n+1 n n+1 n
F™ o p) = F" T p0™) = =Dp(p, p") < | —@" 6" y) (™™ — p")(dy)
T x O
1 1
= =Da(u" T p") = — D, ") (58)

From L ,-relative smoothness and the fact that 7L < 1, it follows that
n+1 n+1 n+1 n 6F n+1 n n+1 n n+1 n
F" ™y ) > F" u") + @(V Y (T = ) (dy) = L Dp (0™, 1)
X
n+1 n OF n+1 n n+1 n 1 n+l n
= F@" 5 p) 4 | M ) (0 = ) (dy) = — D (). (59)
x O T
Hence, combining (58) with (59), we obtain that

F" ™ p)—F@" )=~ D, ") < F(v Tt =Pt )= —Dn(p, p .
(60)
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Adding inequalities and (60) implies that
F"™ p) = Fy,p™* ) < Fm ptth) — Rt
1 1 1 1
+ =Dy, ") + =D, ") — = Di(v,v" ") — =Dy (i, 5" )
T T T T

Summing the previous inequality over n = 0,1, ..., N — 1, bounding the right-hand side from above
by its supremum over (v, 1), dividing by NN, applying Jensen’s inequality and taking maximum over
(v, ) in the left-hand side leads to

| V-1 L V-1 1
NI| — pHl ) < <supD v, V%) + sup Dy, (11, p° ) ,
(0 3 2] < o () s D1

where the last inequality follows since Dy, (v, ™) + Dy (u, p¥) > 0, forall (v,u) €C x D. O

J  FURTHER RELATED WORKS

Besides the vanilla MDA algorithm, (Hsieh et al.l 2019) considers the entropic Mirror Prox algo-
rithm, which requires the computation of an extra gradient at an intermediate point and two projec-
tions onto the dual space. Although it is proved in (Hsieh et al.,2019) that the Mirror Prox algorithm
achieves O (N _1) convergence rate for deterministic gradients, it is also outlined that for stochastic
gradients (which one has typically access to in practice) Mirror Prox and simultaneous MDA achieve
the same rate O (N ~1/2) .

Another approach based on reproducing kernel Hilbert spaces (RKHS) is developed in (Dvurechen-
sky & Zhu, [2024) and achieves the same convergence rates O (N *1) and O (N -1/ 2) for the de-
terministic and stochastic Mirror Prox algorithm, respectively. To our knowledge, the analysis of a
sequential version of the Mirror Prox algorithm has not appeared in the literature.
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