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ABSTRACT

Active learning has been a cost-efficient approach to obtaining high-performance
AI models with fewer selective annotations. In scenarios where the acquisition
of original unlabeled data poses significant challenges, active learning harnessing
synthesized data instances is more promising than traditional pool-based methods.
In this paper, we propose the Self-Informed Generative Active Learning (SIGnAL)
framework as an effective solution to actively generate and select data instances
for annotation and downstream model training. In SIGnAL, we propose to guide
the data generation based on a reinforcement learning policy, where the generator
is self-informed by the reward to generate more informative instances. In addition,
we introduce an acquisition function that measures both the informativeness and
relevance of instances. Such acquisition function can be transformed to the reward
seamlessly for generator optimization. Our experiments on the text classification
task validate the effectiveness of our framework, especially when the original data
scale is limited.

1 INTRODUCTION

Active learning has been an effective solution to the contradiction between the demand for super-
vised training data and the high cost of data annotation. High-quality data, especially data with anno-
tations or human feedback, is crucial for the performance of various AI models. Empirical analysis
has shown that even SOTA models are significantly undertrained and can benefit from more data
(Kaplan et al., 2020; Hoffmann et al., 2022). However, constructing diverse, high-quality datasets
poses challenges, as manually annotating data can be both costly and time-intensive. Toward this
end, active learning seeks to select from the data pool fewer but more informative data instances, of
which annotations are obtained to add significant improvements to the trained models.

Existing active learning research centers on pool-based approaches, which aim to select the most
informative instance or batch from a pool of unlabeled data. However, pool-based methods face two
main limitations: First, instances from the unlabeled pool might not be optimal across the entire
data space. For example, techniques like regularization (DeVries, 2017; Geirhos et al., 2018; Sun
et al., 2020) and adversarial perturbation (Miyato et al., 2016) create out-of-distribution (OOD) data
that lead to better model generalization and robustness. Second, pool-based methods assume that a
large unlabeled pool of data is readily accessible. In situations where collecting unlabeled data itself
is costly or challenging, such as in the robotics and medical fields, the available data tend to suffer
from biased distributions or be insufficient for training.

These limitations motivate query-synthesizing approaches to use generative models to produce in-
formative instances with higher informativeness. In theory, generative models allow broader ex-
ploration of the data space and reduce dependence on a large unlabeled pool. However, such ex-
ploration turns out to be challenging in practice for two reasons: First, optimizing the generative
model requires translating the concept of informativeness into learnable signals, but informativeness
is difficult to be defined as a simple loss function due to the absence of a definitive correct solution
and its inherently delayed nature. Specifically, we cannot directly provide the most informative data
point for the model to learn from, and informativeness is assessed at the end of the progressive steps
of generation. Second, the over-optimization and randomness feature of the generative model can
lead to the produce of irrelevant OOD data (e.g., q in Figure 1). Although might be considered in-
formative following traditional definitions such as uncertainty-based methods, this type of instance
is irrelevant to the original data distribution and can negatively impact model performance.
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To address the mentioned challenges in query-synthesizing active learning, in this paper, we propose
the Self-Informed Generative Active Learning (SIGnAL) framework (Figure 2). SIGnAL is a gen-
eral reinforcement learning (RL)-based framework for both data instance generation and selection
in active learning. The contributions of this work are as follows. First, we provide a smooth solution
to the challenge of the dynamic and delayed nature of informativeness through the usage of rein-
forcement learning. Specifically, we serve instance informativeness as the reward signal from the
concept of reinforcement learning to optimize the generative model, since reinforcement learning
is well-suited for handling dynamic optimization targets and unclear ordinary losses. Second, we
design an acquisition function that evaluates both the traditional informativeness and the relevance
of data instances, which is transformed into the reward during training. Third, we provide a practical
method to align large language models (LLM) with our RL-based framework and validate its effec-
tiveness on text classification tasks. It is worth mentioning that SIGnAL is a general framework that
has the potential of leveraging the advantages of various SOTA large generative models in different
tasks.

Figure 1: An illustrative example for our proposed acquisition function. Two synthetic data points
p, q are both highly contrastive with their nearest neighbours, but the acquisition function deems p
as more informative since it is closer to its neighbours.

2 RELATED WORKS

2.1 ACTIVE LEARNING

Current active learning approaches can be categorized as pool-based or query-synthesizing. Pool-
based algorithms utilize different sampling strategies to select the most informative data points from
the unlabeled set, while query-synthesizing methods leverage generative models to synthesize infor-
mative samples. Our work aligns with the latter, a less explored but increasingly significant field as
the capabilities of generative models advance.

Pool-based algorithms can be further broken down into uncertainty-based methods, diversity-based
methods, and mixed methods. Uncertainty-based approaches quantify the uncertainty of data points
and select those with high uncertainty. Simple definitions of uncertainty (Nguyen & Smeulders,
2004) include confidence (Lewis & Catlett, 1994), margin (Joshi et al., 2009), and entropy (Shan-
non, 1948; Luo et al., 2013) that make use of model posterior probabilities. Recent advancement
in uncertainty measurement include using Monte Carlo dropout (Gal et al., 2017) for deep neural
networks and attaching a loss prediction module that estimates the loss of unlabeled data (Yoo &
Kweon, 2019). In contrast, diversity-based methods select batches of data points representative of
the unlabeled set. Clustering methods have been widely applied to choose data points closest to the
cluster centroids. The core-set approach (Sener & Savarese, 2017) marks a pivotal advancement in
diversity-based methods. It frames active learning as a core-set selection problem, which aims to
find a subset of the full dataset such that the model trained on the subset effectively approximates
the whole dataset. Mixed approaches seek to leverage the advantages of both uncertainty and diver-
sity. For example, Batch Active learning by Diverse Gradient Embeddings (BADGE) (Ash et al.,
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Figure 2: A high-level overview of SIGnAL. The workflow begins with the generative model pro-
ducing unlabeled instances based on in-context examples. These instances are added to the unlabeled
set, where the classification model actively selects data points for annotation and is then retrained on
the expanded labeled set. Then, the classification model assesses the informativeness of the gener-
ated instances, providing a reward signal to optimize the generative model for subsequent iterations.

2019) selects data points by clustering their hypothetical gradient embeddings, and Contrastive Ac-
tive Learning (CAL) (Margatina et al., 2021) defines informative data points as those contrastive
with their neighbors in the data space.

Another line of research is query-synthesizing methods, which seek to utilize generative models
to create informative data points. Generative Adversarial Active Learning (GAAL) (Zhu & Bento,
2017) is the first work that incorporates deep generative models into solving the active learning
problem. It employs a GAN to generate informative data points through descending the gradi-
ent of a simple loss function. However, GAAL reports lower accuracy than the random sampling
baseline, because the generative model is over-optimized and produces irrelevant and indistinguish-
able instances in later stages of training. Subsequent works, including Adversarial Sampling for
Active Learning (ASAL) (Mayer & Timofte, 2020)and the Bayesian Generative Active Deep Learn-
ing (BGADL) (Tran et al., 2019), use a mixed dataset of synthetic and real data. ASAL generates
synthetic instances and then identifies similar real data within the unlabeled pool, while BGADL ini-
tially queries the unlabeled set and then synthesizes similar data points. Nevertheless, these methods
are based on similarity instead of looking for potentially more informative data points.

2.2 SYNTHETIC DATA GENERATION

Collecting large-scale human-written data is time-consuming and labor-intensive. As powerful
instruction-tuned large language models emerge, LLM-generated data have been widely used in
model training and shown comparative performance to human-written data. The Self-Instruct frame-
work (Wang et al., 2022) introduces an automated pipeline for generating high-quality instruction-
tuning data with only LLMs. It conditions data generation on a set of 175 seed tasks and applies
filtering to obtain high-quality data. and conditions data generation on the tasks Finetuned on the
52k instruction-response pairs generated by OpenAI’s Text-Davinci-003, the Alpaca model (Taori
et al., 2023) performs on pair with Text-Davinci-003, which is trained with private user data and
human annotations. More recently, Microsoft’s Phi series (Gunasekar et al., 2023; Li et al., 2023;
Abdin et al., 2024) has incorporated billions of tokens of textbook-quality synthetic data into its
training process, further demonstrating the effectiveness of synthetic data.
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2.3 ALIGNMENT WITH REINFORCEMENT LEARNING

The modeling objective for large language models – predicting the next token on a large corpus
of text from the Internet – often diverges from the objective of following the user’s instructions
helpfully and safely. Yet “helpful and safe” is an abstract concept and is difficult to encode into a
loss function in the supervised setting since the problem has no single correct answer and involves
sequence decision-making. Therefore, reinforcement learning has been applied to align LMs in
various NLP tasks, ranging from text summarization (Ziegler et al., 2019) to story generation (Zhou
& Xu, 2020). Building on these efforts, Ouyang et al. proposes the RLHF framework (Ouyang
et al., 2022), which first trains a reward model based on human preferences, and then finetunes the
LM using reinforcement learning. The success of the resulting model, InstructGPT, has established
reinforcement learning as a paradigm for aligning LMs with abstract, indirect objectives.

3 PROBLEM DEFINITION

In this section, we formally define the generative active learning problem and set up the notations
for the rest of the paper. With a target classification model M(x; θ) and a generative model G(x;ϕ),
we consider a C classification problem defined over a data space X to a label space Y = {1, ..., C}.
We also consider a loss function l(·, ·) : X × Y → R.

We assume an underlying data distribution pz , and we have access to a pool of unlabeled data points
{xi}i∈[n] drawn i.i.d. from pz , which form the real data pool R. In addition, we can use generative
model to create extra data points {x′

i}i∈[m] = G(x;ϕ), which form the synthetic data pool S.
Together,R and S form the unlabeled pool U .

Given an annotation budget b, the generative active learning problem can be defined as:

min
s⊆U,|s|≤b

E(x,y)∼pz
[l(M(x; θs), y)]

where θs is a set of parameters learned on a labeled set s by minimizing E(x,y)∼s[l(M(x; θ), y]

The active learning problem is the same as in the pool-based setting with two exceptions: First, we
introduce a new synthetic unlabeled pool S in addition to the real data pool R. Second, we also
consider the case where n is small; for example, n < b.

4 METHOD

In this section, we introduce the proposed SIGnAL method. We start with the generation of new
unlabeled data using a language model in section 4.1. Next, we define the acquisition function
that serve both as the sampling criterion and reward signal in section 4.2. Finally, we describe the
optimization of the generative model with the feedback from the classification model in section 4.3.

4.1 DATA GENERATION

In this work, we use pretrained large language models for text data generation. A principal challenge
of LLM-generated data is that they tend to be repetitive and redundant as LLMs tend to follow the
most probable paths based on their priors. Filtering synthetic data based on similarities to exist-
ing data is one possible solution, but since generation is expensive, we employ another strategy of
crafting a diverse set of prompts to promote diversity in the generated texts.

For each generation, the prompt comprises an instruction I that specifies the domain of the dataset
and the task and p in-context examples. The in-context examples are chosen at random from the
real distribution to promote the generation of in-distribution data. The generation process can be
characterized by

x′ = argmax
x

P (x|I, x1, ..., xp;ϕ)

Here is an example generation from the SST-2 (Socher et al., 2013) dataset:

Prompt: Based on the following examples of movie reviews, come up with a new example:
Example 1: of an authentic feel
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Algorithm 1 Single Iteration of SIGnAL
Require: Classification model M(x; θ), generative model G(x;ϕ), real dataset R, unlabeled

dataset U , labeled dataset L, prompt size p, annotation budget b
1: Randomly choose p in-context examples {x1, ..., xp} fromR
2: Generate b synthetic instances {x′

i}i∈[b] ← G(I, x1, ..., xp;ϕ)
3: Update U ← U ∪ {x′

i}i∈[b]

4: for xi ∈ U do
5: Find k nearest neighbors in the labeled set {x(j)

l }j∈[k] ← KNN(Φ(xu),Φ(L), k)
6: Compute informativeness score:

sxi
← 1

k

k∑
j=1

KL(p(y|xi) ∥ p(y|x(j)
l ))

d(Φ(xi),Φ(x
(j)
l ))

7: end for
8: Select batch B ← argmax

x
sx, |B| = b

9: Update L ← L ∪B
10: Update M : θ∗ ← argmin

θ
E(x,y)∼L[l(M(x; θ), y)]

11: Construct RL dataset DRL ← {(I, x1, ..., xp)i, x
′
i}i∈[b]

12: Define reward r((I, x1, ..., xp), x
′)← sx′

13: Update G: ϕ∗ ← argmax
ϕ

E(x,y)∼DRL

[
r(x, y)− β log

(
πRL
ϕ (y | x)/πPretrained(y | x)

)]

Example 2: that really , really , really good things can come in enormous packages
Example 3: is listless , witless , and devoid of anything
New Example:
Generated Instance: quick-paced, witty exploration of contemporary society

We repeat this procedure to generate b synthetic data and add them to the unlabeled set.

4.2 ACQUISITION FUNCTION

Pool-based acquisition functions are designed under the assumption that the sample distribution
represents the underlying data distribution. However, this assumption no longer holds with the
presence of synthetic data, which may come from a completely different data distribution. Thus, we
introduce a relevance metric to informativness measurement in the generative setting.

First, we define relevance as the closeness between the model encodings of a data point and its
neighbors. A data point xi is irrelevant if the distance between the model encodings of itself and its
nearest neighbor xj maximally diverge:

d(Φ(xi),Φ(xj))→∞

Next, we follow the definition of informativeness in the work CAL (Margatina et al., 2021). A
data point xi is informative if the predicted likelihood between itself and its nearest neighbor xj

maximally diverge:
KL(p(y|xi)||p(y|xj))→∞

Combining these two definitions, we get the following acquisition function:

sxi
=

1

k

k∑
j=1

KL(p(y|xi)||p(y|xj))

d(Φ(xi),Φ(xj))

where {xj}j∈[k] are the k nearest neighbors for xi. This acquisition function aims to find data points
whose predictive likelihood is contrastive with those of their neighbors while staying close to the
distribution.
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Table 1: Dataset statistics
DATASET TASK TRAIN VAL TEST CLASSES
SST-2 Sentiment Analysis 67.3K 872 1.82K 2
AGNEWS Topic Classification 120K - 7.6K 4
QNLI Natural Language Inference 105K 5.46K 5.46K 2

4.3 GENERATOR OPTIMIZATION

In this section, we aim to optimize the generative model towards producing more informative data
points. We achieve this using reinforcement learning and the PPO algorithm (Schulman et al., 2017).

First, we construct a dataset consisting of prompt-response pairs for reinforcement learning DRL =
{(I, x1, ..., xp)i, x

′
i}i∈[b]. Next, we define the reward for each prompt-response pair as the informa-

tiveness score of thegenerated instance

r((I, x1, ..., xp), x
′) = sx′

Then, we use the PPO algorithm to finetune a new RL policy. Specifically, we maximize the follow-
ing combined objective function in RL training:

objective (ϕ) = E(x,y)∼DRL

[
r(x, y)− β log

(
πRL
ϕ (y | x)/πPretrained(y | x)

)]
where πRL

ϕ is the learned RL policy, and πPretrained is the pretrained policy. The KL penalty from
the pretrained model mitigates over-optimization of the reward model.

5 EXPERIMENT

5.1 TASKS AND DATASETS

We evaluate SIGnAL across multiple text classification tasks. Specifically, we use SST-2 (Socher
et al., 2013) for sentiment analysis, AGNEWS (Zhang et al., 2015) for topic classification, and QNLI
(Wang, 2018) for natural language inference. To simulate scenarios with a limited initial unlabeled
pool, we randomly sample 0.1% and 1% of the original size from each dataset. Since the SST-2 and
QNLI are a part of the GLUE benchmark and the labels for their test sets are not publicly available,
we use their respective validation sets for evaluation.

5.2 BASELINES

We compare SIGnAL with five pool-based baselines, as existing query-synthesizing methods are de-
signed to handle image data. Random functions as a baseline where no active learning is involved.
Entropy (Luo et al., 2013) is the most commonly used uncertainty-based baseline method and selects
points with the highest predictive entropy. BERTKM (Yuan et al., 2020) is a diversity-based baseline
which applies applies k-means clustering using the l2 normalized BERT embeddings and chooses
the nearest data point to each center. BADGE (Ash et al., 2019) and CAL (Margatina et al., 2021)
are two recently proposed methods that generalize the uncertainty and diversity principles. Specifi-
cally, BADGE computes the hypothetical gradient embeddings of each data point and clusters them
with k-means++. CAL chooses data points whose predictive probabilities differ from those of their
neighbors.

5.3 IMPLEMENTATION DETAILS

We use BERT-BASE (Devlin, 2018) with a task-specific classification layer as the target classifica-
tion model and Qwen2.5-7B-Instruct (Yang et al., 2024) as the generative model. To assess model
performance, we measure accuracy at increments of an additional 10% of labeled data. While tra-
ditional pool-based methods halt once 100% of the data has been acquired, SIGnAL continues by
actively generating new data throughout the process. Nonetheless, we limit the evaluation of SIG-
nAL’s accuracy to up to 200% of the acquired data, which is sufficient for understanding its behavior.
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Each active learning method is evaluated multiple times with varying initial labeled datasets, and we
report the mean and standard deviation of the performance across trials. To ensure a fair comparison,
the same random seed is used across all methods for each trial.

A key challenge in experiments of active learning with synthetic data is annotation. In pool-based
experiments, all labels are known but remain hidden from the model until selected for annotation.
However, the labels for synthetic instances are not known in advance. To address this, we use
classification models fine-tuned on the respective datasets to annotate the synthetic instances. The
annotators achieve accuracies of 91.3% on SST-2, 93.75% on AGNEWS, and 90.99% on QNLI.
Although we assume the oracle provides 100% accurate annotation, this could result in performance
degradation in practice.

]

Figure 3: Test accuracy for different AL methods under different acquired dataset size

5.4 ANALYSIS

We present the results of our experiments in 3. We observe that SIGnAL consistently outperforms
pool-based methods across all datasets and dataset sizes, especially in SST-2 0.1%, SST-2 1%, and
AGNEWS 0.1%.

When comparing different dataset sizes, SIGnAL tends to perform better on smaller datasets. This
is due to two key reasons. First, smaller datasets have a higher likelihood of being biased, as the
limited data may not adequately represent the underlying distribution. In the generative setting,
the model can learn to explore underrepresented areas of the data distribution, thereby mitigating
bias. Second, as the dataset size increases, the model experiences diminishing returns: while larger
datasets continue to improve performance, the rate of improvement gradually decreases.

When comparing different datasets, we observe that SIGnAL tends to perform better on SST-2 and
AGNEWS than on QNLI. This can be explained by the similarity between the data distribution of the
task and the training distribution of the generative model. SST-2 consists of movie reviews that are
either positive or negative, and AGNEWS contains new articles across categories of world, sports,
business, and sci/tech. These data are prevalent on the Internet, from which the training corpus of the
generative model is sourced. However, QNLI contains question-response pairs where the response
either contains the answer to the question or not. The generative model is less probable to create
responses that do not contain the answer to the question, which leads to a bias towards entailment
(response containing the answer to the question) data. Nevertheless, we observe that while the
generative model starts to create exclusively entailment data, it gradually learns to produce more
not-entailment data as entailment data become less informative to the classification model. This
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adaptive behavior explains why SIGnAL performs bette on QNLI 1% as compared to QNLI 0.1%:
The generative model requires time to adjust its generation policy towards producing more balanced
labels.

In each experiment, we observe a consistent pattern: SIGnAL tends to underperform compared
to pool-based methods during the early stages of training. A closer examination of the generated
data reveals that, in the beginning, the generative model often produces instances similar to the
in-context examples, which can lead to inefficient use of the annotation budget if these repetitive
instances are selected. However, as training progresses, the generative model gradually learns what
constitutes informative data and begins to generate instances that are more informative than real
data. This observation suggests a potential improvement for SIGnAL: implementing an adaptive
budget allocation strategy that progressively shifts from relying on real data to incorporating more
synthetic data.

Lastly, we compare the performance of different pool-based acquisition functions. Overall, all meth-
ods outperform the random baseline. Among them, BERTKM achieves the best performance in
most experiments, highlighting the effectiveness of diversity-based sampling on smaller datasets.
Additionally, ENTROPY ranks among the top two performing acquisition functions across all ex-
periments despite its simplicity. Two combined methods, BADGE and CAL, deliver more mediocre
results in our experimental setting.

6 CONCLUSION

In this work, we introduce SIGnAL, an RL-based query-synthesizing framework that actively gen-
erates and selects data instances for annotation and downstream model training. We also propose an
AL acquisition function for a pool made up of both real and synthetic data. We have demonstrated
the effectiveness of SIGnAL on multiple text classification tasks with a limited unlabeled pool.

SIGnAL constitutes an initial effort that integrates LLMs into the traditional AL paradigm, which
implies that future works can explore improvements to SIGnAL from multiple angles. Future au-
thors can follow the traditional line of AL research and design more effective acquisition functions,
or explore more effective or computationally efficient ways of optimizing the generative model. Fur-
ther, while we apply SIGnAL specifically to text data in this work, it is flexible framework that can
be applied to other forms of data, such as images.
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