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ABSTRACT

Recent work in learning vector-space embeddings for multi-relational data has fo-
cused on combining relational information derived from knowledge bases with
distributional information derived from large text corpora. We propose a sim-
ple trick that leverages the descriptions of entities or phrases available in lexical
resources, in conjunction with distributional semantics, in order to derive a bet-
ter initialization for training relational models. Applying this trick to the TransE
model results in faster convergence of the entity representations, and achieves
small improvements on Freebase for raw mean rank. More surprisingly, it results
in significant new state-of-the-art performances on the WordNet dataset, decreas-
ing the mean rank from the previous best 212 to 51. We find that there is a trade-off
between improving the mean rank and the hits@ 10 with this approach. This illus-
trates that much remains to be understood regarding performance improvements
in relational models.

1 BACKGROUND

A key challenge of intelligent machines is the need to communicate with humans and understand
relationships between objects described in unstructured text. The goal of our work is to find ways
of integrating structured knowledge bases and word embeddings, which remains an open prob-
lem (Faruqui et al., 2015; Xu et al., 2014; Fried & Duh, 2015; |Yang et al., 2015} |[Labutov & Lip-
son, 2013). More concretely, we address the problem of knowledge base completion, in which
the goal is to generalize relationships between entities in a structured dataset. Perhaps the most
well-known existing approach is Translating Embeddings (TransE) (Bordes et al., |2013), which
takes a pre-existing semantic hierarchy as input and embeds its relational information into a vector
space, where linear relationships between entities are learned. For example, given a relation such as
won(Germany, FIFA Worldcup), the TransE model learns vector representations for won, Germany,
and FIFA Worldcup such that Germany + won ~ FIFA Worldcup.

Existing work that uses distributional vectors for knowledge base completion assumes that reliable
distributional vectors are always available for all of the entities in the hierarchy being modeled.
Unfortunately, this assumption does not hold in practice; when moving to a new domain with a
new knowledge base, there will likely be many entities or phrases for which there is no or very
little distributional information in the training corpus. For example, 50-80% of entities from the
benchmark WordNet and Freebase datasets are missing from the embedding dictionaries derived
using word2Vec and GloVe models. Thus, a method to derive entity representations that works well
for both common and rare entities is needed.

Fortunately, knowledge bases typically contain a short description or definition for each of the enti-
ties or phrases. For example, WordNet contains synset glosses, and Freebase contains descriptions
for entities. We propose a simple and efficient trick that converts short entity descriptions into vec-
tor space representations, with the help of existing word embedding models. These vectors are then
used as the input for further training with TransE, in order to incorporate structural information.
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2 ARCHITECTURE OF THE APPROACH

2.1 THE TRANSE MODEL

The Translating Embedding (TransE) model (Bordes et al.,|2013)) has become one of the most pop-
ular multi-relational models due to its relative simplicity, scalability to large datasets, and (until
recently) state-of-the-art results. It uses a simple additive interaction between vector representations
of entities and relations. More precisely, assume a given relationship triplet (h, [, ¢) is valid; then,
the embedding of the object ¢ should be very close to the embedding of the subject h plus some
vector in R¥ that depends on the relation /.

For each positive triplet (h,[,) € S, a negative triplet (h',1,t') € S is constructed by randomly
sampling an entity from E to replace either the subject h or the object ¢ of the relationship. The
training objective of TransE is to minimize the dissimilarity measure d(h + [,t) of a positive triplet

while ensuring that d(h/ + 1, t/) for the corrupted triplet remains large. This is accomplished by
minimizing the hinge loss over the training set:

L= Y 3 [y+dh+it)—dn +1,t)

(h,l,t)eS (B 1t )es’

where + is the hinge loss margin and [z]; represents the positive portion of x. There is an additional
constraint that the Ly-norm of entity embeddings (but not relation embeddings) must be 1, which
prevents the training process to trivially minimize L by artificially increasing the norms of entity
embeddings.

2.2 INITIALIZING REPRESENTATIONS WITH ENTITY DESCRIPTIONS

We propose to leverage some external lexical resource to improve the quality of the entity vec-
tor representations. In general, this could consist of product descriptions in a product database,
or information from a web resource. For example, in a medical dataset with many technical
words, the Wikipedia pages, dictionary definitions, or medical descriptions via a site such as
medilexicon.com could be leveraged as lexical resources. Similarly, when building language
models for social media, resources such as urbandicionary.com could be used for informa-
tion about slang words. For the WordNet and Freebase datasets, we use entity descriptions which
are readily available.

Although there are many possible ways to incorporate this information, we propose a simple ini-
tialization trick which we show to have empirical benefits. In particular, we first decompose the
description of a given entity into a sequence of word vectors, and combine them into a single embed-
ding by averaging. We then reduce the dimensionality using principle component analysis (PCA),
which we found experimentally was important to avoid overfitting. We obtain these word vectors
using distributed representations computed using the skip-gram model (Mikolov et al.| [2013)), and
the GloVe model (Pennington et al.l [2014). Approximating compositionality by averaging vector
representations is simple, yet has some theoretical justification Tian et al.| (2015 and can work well
in practice |Wieting et al.| (2015). This approach is similar to that found in (Chen et al), [2014) and
elsewhere, but we show that it has a surprising effectiveness when applied to relational models.

3 EXPERIMENTS

3.1 TRAINING AND TESTING SETUP

We perform experiments on the WordNet (WN) (Miller, [1995) and Freebase (FB15k) (Bollacker
et al., 2008) datasets used by the original TransE model. TransE hyperparameters include the learn-
ing rate A\ for stochastic gradient descent, the margin  for the hinge loss, the dimension of the
embeddings k, and the dissimilarity metric d. We use the optimal hyperparameters from (Bordes
et al.2013): for WN, A = 0.01, v = 2, k = 20, and d = L;-norm; for FB15k, A = 0.01, v = 0.5,
k = 50, and d = Ly-norm. The values of k& were further tested to ensure that £ = 20 and k& = 50
were optimal. The distributional vectors used in the entity descriptions are of dimension 1000 for the
word2vec vectors with Freebase vocabulary, and dimension 300 in all other cases. Dimensionality
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WN FB15k

Mean rank Hits@10 Mean rank Hits@10

Raw Filt Raw Filt Raw Filt Raw Filt
. SE (Bordes et al.}2011) 1,011 985 | 685%  80.5% 273 162 | 28.8%  39.8%
E; TransD (unif) (J1 et al.[|2015)) 242 229 | 792% 92.5% 211 67 | 494% 74.2%
g  TransD (bern) (J1 et al.,|2015) 224 212 | 79.6%  92.2% 194 91 | 534% 77.3%
%  TransE random init. 266 254 1 76.1% 89.2% 195 92 | 41.2% 552%
&~ TransE W2V init. — — — — 195 91 413%  55.4%
= TransE W2V entity defs. (NS) 210 192 | 785% 92.1% 195 91 41.6%  55.7%
"qg) TransE GloVe entity defs. (NS) 63 51 64.6%  73.2% 194 9 | 41.7%  55.8%
§ TransE W2V entity defs. 191 179 | 77.8% 91.6% 195 91 41.6%  55.6%
S  TransE GloVe entity defs. 71 59 | 753% 88.0% 193 90 | 41.8%  55.8%

Table 1: Comparison between random initialization and using the entity descriptions. ‘NS’ tag
indicates stopword removal from the entity descriptions‘TransE W2V init’ model uses word2vec
pre-trained with the Freebase vocabulary.

reduction with PCA was then applied to reduce this to £ = 30 for WN, and k£ = 55 for FB15k. The
model is trained with minibatch SGD and early stopping on the validation set.

We use the same train/test/validation split and evaluation procedure as (Bordes et al.| 2013): for
each test triplet (A, [, t), we remove entity A and ¢ in turn, and rank each entity in the dictionary
by similarity according to the model. We evaluate using i) the mean of the predicted ranks, and ii)
hits@ 10, which represents the percentage of correct entities found in the top 10 list.

3.2 RESULTS AND ANALYSIS

Table [1| summarizes the experimental results, compared to baseline and state-of-the-art relational
models. We see that the mean rank is greatly improved for the TransE model with strategic ini-
tialization over random initialization. More surprisingly, all of our models achieve state-of-the-art
performance for both raw and filtered data, compared to the recently developed TransD model.
These results are highly significant with p < 1072 according to the Mann-Whitney U test. Thus,
even though our method is simple and straightforward to apply, it can still beat all attempts at more
complicated structural modifications to the TransE model on this dataset.

Also interesting is the relationship between the mean rank and hits@10. By changing our model, we
are able to increase one at the expense of the other. For example, using word2vec without stopwords
gives similar hits@ 10 to TransD with better mean rank, while using GloVe further improves the
mean rank at a cost to hits@10. We conjecture that our model helps avoid ‘disasters’ where some
correct entities are ranked very low, which improves mean rank significantly.

For Freebase, our models slightly outperform the TransE model with random initialization, with
p-values of 0.173 and 0.410 for initialization with descriptions (including stopwords) using GloVe
and word2vec, respectively. We also see improvements over the case of direct initialization with
word2vec. Further, we set a new state-of-the-art for mean rank on the raw data, though the improve-
ment is marginal. The difference in performance between datasets can be partly explained by their
different nature: WordNet relations are general and are meant to provide links between concepts,
while the Freebase relations are specific and denote relationships between named entities.

4 CONCLUSION AND FUTURE WORK

Our initialization trick is simple and leads to significant improvements on WordNet mean rank. More
complex methods initialization methods could easily be devised, e.g. by using inverse document
frequency (idf) weighted averaging, or by applying the work of [Le & Mikolov|(2014)) on paragraph
vectors. Alternatively, distributional semantics could be used as a regularizer, similar to|Labutov &
Lipson|(2013), with learned embeddings being penalized for how far they stray from the pre-trained
GloVe embeddings. However, even with intuitive and straightforward methodology, leveraging lex-
ical resources can have a significant impact on the results of models for multi-relational data. These
insights are perhaps most transferable to domains with many out-of-vocabulary (OOV) words.
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